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1. Introduction.

Let $Y$ be a complete hyperbolic complex space. We assume that $Y$ is
hyperbolically imbedded into an irreducible compact complex space $\overline{Y}$ as its
Zariski open subset. Let $X$ be a Zariski open subset of an irreducible compact
complex space. We denote by $Hol(X, Y)$ (resp. $Mer_{dom}(X,$ $Y)$ ) the set of all
holomorphic (resp. dominant meromorphic) mappings of $X$ into $Y$ , where a
mapping is said to be dominant if its image contains a nonempty open subset.
In this paper, by making use of the theory developed by Noguchi [12, 13, 16]

we study the structure of $Hol(X, Y)$ . We first prove the following finiteness
theorem for mappings in noncompact case, which was conjectured by Noguchi
(cf. [16], Conjecture (5.5)),

FINITENESS THEOREM (cf. Theorem 2.3). Let $X$ and $Y$ be as above. Then
$Mer_{dom}(X, Y)$ is a finite set.

This is regarded as the splitting case of the finiteness theorem of the sec-
tions of hyperbolic fibre spaces, and plays an essential role in considering the
structure of hyperbolic fibre spaces in more general setting below. In the case
of a noncompact quotient $D/\Gamma$ of a bounded symmetric domain $D$ in the com-
plex vector space by a torsion free arithmetic discrete subgroup $\Gamma$ of the
identity component of the holomorphic automorphism group of $D,$ $D/\Gamma$ is com-
plete hyperbolic and hyperbolically imbedded into its Satake compactification
(cf. [6]). Thus applying the theorem to this case, we see the finiteness of
$Mer_{tlom}(X, D/\Gamma)$ . Tsushima [20] obtained this result by showing the finiteness
of dominant strictly rational maps into a smooth algebraic variety of log-general
type. In the case where $Y$ is a Riemann surface of finite type $(g, n)$ with
$2g-2+n>0$ , Imayoshi [2] proved the above finiteness theorem. The compact
version of the above theorem (a Lang’s conjecture in [8]) was recently solved
by Noguchi [16] (see \S 2 for precise statement). Using this, Noguchi [12, 11, 16]
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proved the finiteness theorem of non-constant holomorphic sections and of trivial
fibre subspaces of hyperbolic fibre spaces (see \S 3 for definitions and precise
statement), which gave a proof of a higher dimensional analogue of Mordell‘ $s$

conjecture over function fields (see Noguchi [14, 11, 16] and their references
for related Diophantine geometry). We consider a non-compact version of
finiteness theorem of non-constant holomorphic sections and of trivial fibre sub-
spaces of hyperbolic fibre spaces. Let $Y$ be as in the above Finiteness Theorem
and $X$ be a nonsingular Zariski open subset of an irreducible compact complex
space $\overline{X}$. Let $(Y\cross X, P, X)$ be the trivial hyperbolic fibre space with the natural
projection $P:Y\cross Xarrow X$ . We obtain

THEOREM 4.1. Let $X$ and $Y$ be as above. Then $(Y\cross X, P, X)$ contains only
finitely many meromorphically trivial fibre subspaces, and carraes only finitely
many holomorphic sections except for constant ones in those bimeromorphic tri-
vializations.

In the case of nonsingular fibre spaces whose fibres are Riemann surfaces
of fixed finite type $(g, n)$ with $2g-2+n>0$ and whose base spaces are Riemann
surfaces of finite type, Imayoshi and Shiga [4] showed the finiteness of non-
constant sections by making use of the theory of Teichm\"uller spaces and Kleinian
groups. In the case of nontrivial normal fibre spaces, which has a compacti-
fication, such that the fibres are noncompact curves and that its generic fibres
are hyperbolic, Zaidenberg [22] gave two proofs of the finiteness theorem.
One followed the approach used in [12], which is the same one as we take.
The other was based on the idea, which was suggested by Parshin, that the
case was reduced to the case of compact fibres, $i$ . $e.$ , Manin’s theorem (an an-
alogue of Mordell’s conjecture for curves over function fields) (cf. [10]). When
the fibre dimension is equal to one, our theorem says nothing but the finiteness
of non-constant holomorphic mappings. But when the fibre dimension is greater
than one, we can see a detailed structure of the moduli space $Hol(X, Y)$ .

In \S 2, we give a proof of the Finiteness Theorem and obtain an estimate
of dimensions of the moduli space $Hol(X, Y)$ . In \S 3, we recall Noguchi’s finite-
ness theorem of nonconstant sections and of the trivial fibre subspaces, and
prove it for the sake of convenience. In \S 4, Theorem 4.1 is proved.

The author is grateful to express his sincere gratitude to Professor J.
Noguchi for valuable discussion and useful suggestion.

General Remark. Throughout this paper, we assume that all complex spaces
are paracompact and reduced and that all complex manifolds are connected.
The term “hyperbolic” is always used in the sense of Kobayashi. For complex
hyperbolic geometry, refer to Kobayashi [5], Lang [9], Noguchi and Ochiai [17]

and Noguchi [14].
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2. Finiteness of mappings in noncompact case.

Let $X$ be a Zariski open subset of an irreducible compact complex space $\overline{X}$ .
Let $Y$ be an irreducible complex space. A mapping $f$ of $X$ into $Y$ is said to
be dominant if the image of $X$ by $f$ contains a non-empty open subset of $Y$ .
We denote by $Mer_{1om}(X, Y)$ (resp. $Hol(1om(X, Y))$ the set of all dominant mero-
morphic (resp. holomorphic) mappings from $X$ into $Y$ . Recently, Noguchi [16]

proved the following finiteness theorem, which was conjectured by Lang [8]

from Diophantlne geometric point of view;

NOGUCHI $S$ FINITENESS THEOREM (cf. [16], TheOrem A). If $Y$ iS COmpaCt
hyPerbolic, then $Mer_{dom}(X, Y)$ is a finite set.

This is a higher dimensional version of classical de Franchis theorem, which
asserts that there are only a finite number of surjective holomorphic mappings
of a fixed compact Riemann surface onto another fixed compact Riemann sur-
face of genus greater than one. We consider a noncompact version of Noguchi’s
finiteness theorem.

Let $X$ be a Zariski open subset of a compact complex manifold $\tilde{X}$ such that
the boundary $\partial X:=\tilde{X}-X$ of $X$ is a hypersurface with only normal crossings.
Let $Y$ be a connected Zariski open subset of a compact complex space $\overline{Y}$ .
Assume that $Y$ is complete hyperbolic and hyperbolically imbedded into $\overline{Y}$ . The
spaces $Hol(X, Y)$ and $Hol(\tilde{X},\overline{Y})$ are equipped with compact-open topology. Since
$\tilde{X}$ is compact, according to Douady’s theory (cf. [1]) the latter space carries
the universal structure of complex sPace such that its underlying toPology
coincides with compact-open topology and the evaluation mapping

$Hol(\tilde{X},\overline{Y})\cross\tilde{X}\ni(f, x)-f(x)\in\overline{Y}$

is holomorphic. The extension and convergence theorem of Noguchi (cf. [13],
Theorem 1.19) implies that the extension mapping of $Hol(X, Y)$ into $Hol(\tilde{X},\overline{Y})$

is homeomorphic onto the image of the mapping and by the natural identifica-
tion the space $Hol(X, Y)$ is regarded as the topological subspace of $Hol(\tilde{X},\overline{Y})$ .
In fact the following structure theorem due to Noguchi holds;

$NoGUCHI’ S$ STRUCTURE THEOREM (cf. [13], TheOrem 2.8). i) The space
$Hol(X, Y)$ is a Zanski oPen subset of the compact analytic subspace $\overline{Hol(X,Y)}$ of
$Hol(\tilde{X},\overline{Y})$ where $\overline{Hol(X,Y}$) is the closure of $Hol(X, Y)$ in $Hol(\tilde{X},\overline{Y})$ and the
evaluation $map\ovalbox{\tt\small REJECT} ng$

$\Phi$ : $Hol(X, Y)\cross X\ni(f, x)-f(x)\in Y$

is holomorphic and extends to a holomorphic mapping



684 M. SUZUKI

$\overline{\Phi}$ : $Hol(X, Y)\cross\tilde{X}arrow-$ .
ii) (universality) For a complex space $T$ and a holomorphic maPPing $\psi:T\cross$

$Xarrow Y$ , the natural mapping

$T\ni trightarrow\psi(t, )\in Hol(X, Y)$

is holomorphic.

We set
$Hol(k;X, Y):=$ { $f\in Hol(X,$ $Y)$ ; rank $f=k$ } ,

where $k$ is a nonnegative integer. Then we know the following

PROPOSITION 2.1 (cf. Noguchi [13], Proposition 2.18, Theorem 3.3, $i$) $)$ .
$Hol(k;X, Y)$ is oPen and closed in $Hol(X, Y)$ , hence it carnes a structure of
complex space. In Particular, $Hol(n;X, Y)$ where $n=\dim Y$ is a compact complex
space.

In this section, for any element $g\in Hol(X, Y)$ , we denote the extension of
$g$ to $\tilde{X}$ by the same letter $g$ . Put $\partial Y:=\overline{Y}-Y$ . The next assertion essentially
follows from the proof of Noguchi’s structure theorem, i) (cf. the proof of
Theorem 2.8, i) in [13], pp. 23-24). For the sake of convenience and the later
use, we state it in the following

LEMMA 2.2. Let $Z$ be a connected compment of $Hol(X, Y)$ . Take an element
$g_{0}\in Z$ and put $\partial X_{0}:=Suppg_{0}^{-1}(\partial Y)$ and $Z_{0}:=\{g\in Z;Suppg^{-1}(\partial Y)=\partial X_{0}\}$ . Then
$Z=Z_{0}$ .

PROOF. Since $Y$ is complete hyperbolic, $g^{-1}(\partial Y)$ must be a hypersurface in
$\tilde{X}$ for $g\in Z$ and is contained in $\partial X$ . Note that the convergence in compact-
open topology of $Hol(X, Y)$ implies one in compact-open topology of $Hol(\tilde{X},\overline{Y})$

by the extention and convergence theorem of Noguchi (cf. [13], Theorem 1.19).

Then $Z_{0}$ is closed since for any sequence $\{g_{\nu}\}_{\nu=1}^{\infty}$ of $Z_{0}$ converging to $g\in Z$

$Suppg^{-1}(\partial Y)=\lim_{\nuarrow\infty}Suppg_{\nu}^{-1}(\partial Y)$

where the limit set in the right is used in the following sense: A point $x\in\tilde{X}$

is in the set $\lim Suppg_{\nu}^{-1}(\partial Y)$ if and only if for every neighborhood $N$ of $x$

there is a positive integer Vo such that $N\cap Suppg_{\nu}^{-1}(\partial Y)\neq\emptyset$ for all $\nu\geqq\nu_{0}$ (see
[13], the proof of Theorem (2.8), p. 23). We see that $Z_{0}$ is open in $Z$ . In
fact, if $Z_{0}$ is not open, there exist an element $g\in Z_{0}$ and a sequence $\{g_{\nu}\}\subset Z$

such that $\lim_{\nu}g_{\nu}=g$ and $Suppg_{\nu}^{-1}(\partial Y)\neq\partial X_{0}$ . Since $\partial X$ is compact, the number
of the distinct supports of the hypersurfaces in $\tilde{X}$ which are contained in $\partial X$

is only finite. Thus by taking a subsequence if necessary, we see that all the
inverse images $g_{\nu}^{-1}(\partial Y)$ coincide and are different from $\partial X_{0}$ . It follows from
the first half of the proof that $Suppg^{-1}(\partial Y)=\partial X_{0}$ . This contradicts that $g$ is
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in $Z_{0}$ . $\blacksquare$

THEOREM 2.3. Let $Y$ be a comPlete hyPerbolic comPlex sPace which is $hyper-$

bolically imbedded into an irreducrble compact complex space $\overline{Y}$ and is a Zanski
open subset of Y. Then for any Zanski open subset $X$ of any irreducible comPact
complex space $\overline{X},$ $Mer_{dom}(X, Y)$ is a finite set.

PROOF. Assume that $Mer_{dom}(X, Y)$ is not finite. Let $\overline{X}^{*}arrow\overline{X}\alpha$ be a resolu-
tion of singularities such that $\overline{X}^{*}-\alpha^{-1}(X)$ is a hypersurface with only normal
crossings and put $X^{*}:=\alpha^{-1}(X)$ . Then we have $f\circ(\alpha|_{x*})\in Mer(X*, Y)$ for $f\in$

$Mer(X, Y)$ . Since $x*is$ nonsingular and $Y$ is complete hyperbolic, $f\circ(\alpha|x*)$ is,
in fact, a holomorphic mapping of $x*intoY$ (cf. [5], Chapter VIII, Theorem
1.2). Then replacing $x*$ by $X$ and putting $\tilde{X}:=\overline{x}*$ and $\partial$ $:=\tilde{X}-X$ , we may
assume that $\tilde{X}$ is a compact complex manifold, $X$ a Zariski open subset of $\tilde{X}$

and $\partial X$ a hypersurface with only normal crossings. Assume that $Hol_{do}.(X, Y)$

is not finite. It follows from Proposition 2.1 that $Hol(n;X, Y)$ is a compact
complex space with positive dimension where $n=\dim Y$ . Take an irreducible
component $Z$ of $Hol(n;X, Y)$ with $\dim Z>0$ . The extension mapping $g_{0}$ : $\tilde{X}arrow\overline{Y}$

is surjective by the irreducibility of $\overline{Y}$ . If we put $\partial X_{0}:=Suppg0^{1}(\partial Y)$ , we see
from Lemma 2.2 that $Suppg^{-1}(\partial Y)=\partial X_{0}$ for any $g\in Z$ . Consider the evaluation
mapping

$\Phi$ : $Z\cross\tilde{X}\ni(z, x)-z(x)\in\overline{Y}$ ,

which is holomorphic. Put $X_{0}:=\tilde{X}-\partial X_{0}$ and take a point $x_{0}\in X_{0}$ . Then the
subset $Z(x_{0}):=\{\Phi(z, x_{0})\in Y;z\in Z\}$ of $\overline{Y}$ is a compact hyperbolic complex sub-
space of $Y$ . Let $Y_{0}$ be an irreducible compact hyperbolic complex subspace of
$Y$ containing $Z(x_{0})$ with the maximum dimension among those subspaces. Take
an element $z_{0}\in Z$ at which $Z$ is nonsingular. Since the mapping $z_{0}|_{X_{0}}$ : $X_{0}arrow Y$

is proper holomorphic, $(z_{0}|_{X_{0}})^{-1}(Y_{0})$ is a compact subvariety in $X_{0}$ . Let $X_{0}’$ be
the irreducible component of $(z_{0}|_{X_{0}})^{-1}(Y_{0})$ contalning $x_{0}$ . Then the mapping
$z_{0}|_{x_{0}}$ : $X_{0}’arrow Y$ is surjective. Moreover, the subset $\Phi(Z\cross X_{0}’)$ of $Y$ is an irreduci-
ble compact hyperbolic complex subspace containing $Y_{0}$ . Thus we see that
$\Phi(Z\cross X_{0}’)=Y_{0}$ . Because of the finiteness of holomorphic mappings in $Z$ which
map a given point to a given point (cf. [21], Theorem 1), together with $\dim Z>0$ ,

it holds that the mapping $Zarrow Hol_{dom}(X_{0}’, Y_{0})$ is non-constant. This contradicts
Noguchi’s finiteness theorem, and we complete the proof. $\blacksquare$

REMARK. The use of Lemma 2.2 was pointed out by Professor J. Noguchi
and makes the proof of Theorem 2.3 simpler than the original one.

If we put $X=Y$ in Theorem 2.3, we obtain the following, which was proved
in the case where $Y$ is nonsingular by Miyano and Noguchi (see [11], Theorem
(2.4) $)$ .



686 M. SUZUKI

COROLLARY 2.4. Let $Y$ be as in Theorem 2.3. Then the hmeromorPhic
automorPhism grouP of $Y$ is finite.

REMARK 2.5. Note that the finiteness of the biholomorphic automorphism
group in Theorem 2.4 of Miyano and Noguchi [11] implies the finiteness of the
bimeromorphic one. In fact, if $Y$ is nonsingular, the bimermorphic automor-
phism is really biholomorphic (cf. Kobayashi [5], Theorem 1.2). If $Y$ has
singularity, it is not always the case. For example, let $Y$ be a compact Rie-
mann surface with genus greater than one and the nontrivial biholomorphic
automorphism group. Take a nontrivial biholomorphic automorphism $g$ and
two distinct points $y_{1},$ $y_{2}$ in $Y$ such that $g(y_{1})\neq y_{2}$ . Identifying $y_{1}$ with $y_{2}$ , we
obtain a singular irreducible curve $Y’$ . $Y$ is the normalization of $Y’$ . It is
clear that $g$ ’lnduces a bimeromorphic automorphism of $Y’$ , which is not biholo-
morphic. Kodama constructed an example of a normal irreducible complete
hyperbolic complex space which has a bimeromorphic and non-biholomorphic
automorphism (cf. Kodama [7]).

NOW, we can obtain some information about the moduli spaces of holomor-
phic mappings in our situation. Let $X$ be a Zariski open subset of an irreducible
compact complex space $\tilde{X}$ . We assume that $\partial X:=\tilde{X}-X$ is a hypersurface with
only normal crossings and $X$ is nonsingular. Let $Y$ be as in Theorem 2.3 and
$Z$ be a connected component of $Hol(X, Y)$ . Note that the closure $\overline{Z}$ of $Z$ in
$Hol(\tilde{X},\overline{Y})$ is a compact complex subspace of $Hol(\tilde{X},\overline{Y})$ and $Z$ is a Zariski open
subset of $\overline{Z}$ by Noguchi’s structure theorem (see the theorem before Proposition
2.1). We see that some of the nature of the target space transfer themselves
to their moduli spaces of holomorphic mappings.

PROPOSITION 2.6 (cf. [13], Remark (2.16) and [11], Lemma (2.13)).
i) $Z$ is complete hyperbolic and hyPerbolically imbedded into $\overline{Z}$ .

ii) If $Y$ is quasi-projective algebraic and carnes a projective compactification
$\overline{Y}$ such that $Y$ is hyPerbolically imbedded into $\overline{Y}$ , then $Z$ is $qua\alpha$ -projective.

See for the proof the papers cited above.

PROPOSITION 2.7. The sPace $Hol(k;X, Y)$ is compact for $k>\dim\partial Y$ where
$\partial Y\cdot=\overline{Y}-Y$ .

The proof is same as in Noguchi [13], Theorem (3.3), i). We obtain an
estimate of the complex dimension of the moduli spaces.

THEOREM 2.8. Let $Z$ be an irreductble component of $Hol(X, Y)$ . If $Z$ con-
tains a non-cmstant holomorphic $mapp2ng$ , then $\dim Z\leqq\dim Y-1$ .

PROOF. According to Noguchi’s structure theorem (cf. the theorem before
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Proposition 2.1), the evaluation mapping

$\Phi$ : $Z\cross X\ni(z, x)-z(x)\in Y$

is holomorphic and is holomorphically extended to the mapping
$\overline{\Phi}$ : $\overline{Z}\cross\tilde{X}arrow\overline{Y}$ .

Since $\overline{Z}$ is compact, for any $x\in X$ the mapping

$\overline{\Phi}(\cdot, x)$ : $\overline{Z}\ni z-z(x)\in\overline{Y}$

is finite. Thus $\dim\overline{Z}\leqq\dim\overline{Y}$ . Assume that $\dim Z=\dim Y$ . Then $\Phi(\cdot, x)\in$

$Hol_{dom}(Z, Y)$ for any $x\in X$ . It follows from Theorem 2.3 that $\Phi(\cdot, x)$ : $Zarrow Y$

is a holomorphic mapping independent of $x\in X$ . Thus each $z\in Z$ is a constant
mapping. $\blacksquare$

REMARK 2.9. In the case where $Y$ is a noncompact quotient of a bounded
symmetric domain in the complex vector space by a torsion free arithmetic
discrete subgroup of the identity component of its holomorphic automorphism
group, more precise estimates were obtained in Sunada [19], Theorem $B$ , and
Noguchi [13], Theorem (4.7), (4.10) (see for the compact quotient case Noguchi
and Sunada [18], and Imayoshi $[2, 3])$ . In fact, in that case, $\dim Z$ is not
greater than the maximum value of dimension of the proper boundary com-
ponents of the bounded symmetric domain.

PROPOSITION 2.10. Suppose that $co\dim\partial Y\geqq 2$ . Let $z_{0}$ be an element in
$Hol(n-1;X, Y)$ such that $z_{0}(X)$ is relatively compact in $Y(n=\dim Y)$ . Then
$\dim_{z}{}_{0}Hol(n-1;X, Y)=0$ .

PROOF. By Proposition 2.7 it holds that $Hol(n-1;X, Y)$ is compact. Let
$Z$ be an irreducible component of $Hol(n-1;X, Y)$ containing $z_{0}$ . Then for any
element $z\in Z$ the extension of $z$ maps $\tilde{X}$ into $Y$ . Thus the image $Y’$ of $Z\cross\tilde{X}$

under the evaluation mapping $\overline{\Phi}$ : $\overline{Hol(X,Y)}\cross\tilde{X}arrow\overline{Y}$ is an irreducible compact
complex subspace of $Y$ , hence is hyperbolic. Since $\dim Y’=n-1$ , we see that
$Z\subset Hol_{sur_{J}}(\tilde{X}, Y’)$ . The result follows from Noguchi’s finiteness theorem (cf.

the theorem before Proposition 2.1). $\blacksquare$

3. Finiteness of nontrivial sections and of trivial fibre subspaces
in compact case.

Let $\overline{R}$ and $\overline{W}$ be irreducible compact complex spaces and $\overline{\Pi}$ : $\overline{W}arrow\overline{R}$ a sur-
jective holomorphic mapping with connected fibres. Let $R$ be a nonsingular
Zariski open subset of $\overline{R}$ and $\partial R:=\overline{R}-R$ . Put
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$W:=\overline{W}|_{R}=\overline{\Pi}^{-1}(R)$ , $\Pi:=\overline{\Pi}|_{W}$ .

Suppose that each fibre $W_{t}:=\Pi^{-1}(t)$ is irreducible for $t\in R$ . We denote by $\Gamma$

the set of all holomorphic sections of the fiber space $(W, \Pi, R)$ .

DEFINITION 3.1 (cf. [12], \S 1). We call a fibre space $(W, \Pi, R)$ a hyperbolic

fibre space if all the fibres $W_{t}$ for $t\in R$ are hyperbolic. We say that the fibre
space $(W, \Pi, R)$ is hyPerbolically imbedded into ( $\overline{W}$ , Z7, $\overline{R}$ ) along $\partial R$ if for any
$t\in\partial R$ there are neighborhoods $U$ and $V$ of $t$ in $\overline{R}$ such that $U$ is relatively
compact in $V$ and $W|_{U-\partial R}$ is hyperbolically imbedded into VV $|_{V}$ .

Noguchi proved the following global triviality for normal hyperbolic fibre
spaces (cf. [12], Main Theorem (3.2) and [16], Theorem A).

$NoGUCHI’ S$ TRIVIALITY THEOREM FOR HYPERBOLIC FIBRE SPACES. Let
$(W, \Pi, R)$ be a hyperbolic fibre space. Suppose that $(W, \Pi, R)$ is hyperbolically
imbedded into a compact fibre space $(\overline{W},\overline{\Pi},\overline{R})$ along $\partial R$ and that $W$ is normal.
If there exists a point $t\in R$ such that $\Gamma(t):=\{s(t)\in W_{t} : s\in\Gamma\}$ is Zanski dense
in $W_{t}$ , then $(W, \Pi, R)$ is holomorPhically tnvial, 1. $e.$ , there is a biholomorPhic
maptnng $F:W_{t}\cross Rarrow W$ such that $P=\Pi\circ F$ where $P:W_{t}\cross Rarrow R$ is the natural
$pro_{J}$ ection.

Noguchi [16] considered hyperbolic fibre spaces in a more general setting
and obtained the following finiteness theorem for sections and for trivial fibre
subspaces of a hyperbolic fibre space, which gave a partial answer to the
higher dimensional analogue of Mordell’s conjecture over function fields posed
by Lang (cf. [8], p. 781 and Remark 3.5 in this section). For the sake of con-
venience and the later use, we recall it with the sketch of the proof.

DEFINITION 3.2. We say that a fibre space $(W, \Pi, R)$ is meromorphically
tnvial if $(W, \Pi, R)$ is bimeromorphically isomorphic to some trivial fibre space
over $R,$ $i$ . $e.$ , there exist a trivial fibre space $(W_{0}\cross R, PR)$ and a bimeromor-
phic mapping $G:W_{0}\cross Rarrow W$ with $P=\Pi\circ G$ .

THEOREM 3.3 (cf. [16], Theorem $B$ and its correction). Let $(W, \Pi, R)$ be
a hyperbolic fibre space. Assume that $(W, \Pi, R)$ is hyperbolically imbedded into
some compact fibre space( $\overline{W}$ , Z7, $\overline{R}$ ) along $\partial R$ . Then $(W, \Pi, R)$ contains only
finitely many meromorphically tnvial fibre subspaces with Positive dimenstonal
fibres, and carnes only finitely many holomorphic sections except for constant ones
in those bimeromorphic tnvializations.

PROOF. We have after a finite succession of proper modification, a resolu-
tion $\alpha$ : $\overline{R}_{0}arrow\overline{R}$ such that $\overline{R}_{0}$ is smooth and $\overline{R}_{0}-\alpha^{-1}(R)$ is a hypersurface with
only normal crossings. Putting $R_{0}$ $:==\alpha^{-1}(R)$ , the mapping $\alpha|R_{0}$ : $R_{0}arrow R$ is bi-
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holomorphic. Put
$\overline{W}_{0}:=\overline{R}_{0}\cross_{\overline{R}}\overline{W}$ , $W_{0}:=R_{0}\cross_{R}W$ .

Let $\overline{\Pi}_{0}$ : $\overline{W}_{0}arrow\overline{R}_{0}$ and $\Pi_{0}$ : $W_{0}arrow R_{0}$ be the natural projections. Then the fibre
space $(W_{0}, \Pi_{0}, R_{0})$ is hyperbolic and is hyperbolically imbedded into $(\overline{W}_{0},\overline{\Pi}_{0},\overline{R}_{0})$

along $\partial R_{0}:=\overline{R}_{0}-R_{0}$ . Thus we may assume that $\overline{R}$ is smooth and that $\partial R:=$

$\overline{R}-R$ is a hypersurface with only normal crossings. Let $\Gamma$ be the set of all
holomorphic sections of $(W, \Pi, R)$ . Then every $s\in\Gamma$ extends holomorphically
to a section of (VV, $\overline{\Pi},\overline{R}$ ) (cf. [12], Lemma (2.1)). $\Gamma$ is identified with the set
of all holomorphic sections of $(\overline{W},\overline{\Pi},\overline{R})$ . Then $\Gamma$, endowed with compact-open
topology, is compact and carries a complex structure with universal property

such that the mapping

$\Psi:\Gamma\cross\overline{R}\ni(s, t)-s(t)\in\overline{W}$

is holomorphic (cf. [12], the proof of Main Theorem 3.2). Let

$\Gamma=\Gamma_{1}\cup\cdots\cup\Gamma_{\iota}$ $(l<\infty)$

be the decomposition into irreducible components. Take any $\Gamma_{i}$ with $\dim\Gamma_{i}>0$ .
We denote $\Gamma_{i}$ by $\Gamma’$ . Put

$\overline{W}’:=\Psi(\Gamma’x\overline{R})$ , I7’ $:=\overline{\Pi}|_{\overline{W}’}$ , $W’:=\overline{W}’|_{R}$ and I7‘ $:=\overline{\Pi}’|_{W’}$ .

Then $(\overline{W}’,\overline{\Pi}’,\overline{R})$ is a compact fibre subspace of $(\overline{W},\overline{\Pi},\overline{R})$ with fibres of posi-
tive dimension. $(W’, \Pi’, R)$ is a hyperbolic fibre space and is hyperbolically

imbedded into $(\overline{W}’,\overline{\Pi}’,\overline{R})$ along $\partial R$ . Let $\overline{W}_{N}’arrow\overline{W}’\beta$ be the normalization of $\overline{W}’$ .
Then $\overline{W}_{N}’$ is an irreducible normal compact complex space and the mapping $\beta$

from $\overline{W}_{N}’$ onto $\overline{W}’$ is a proper finite map. Hence $\overline{W}_{N.t}’:=(\overline{\Pi}’\circ\beta)^{-1}(t)(=\beta^{-1}(\overline{W}_{t}’))$

is compact hyperbolic for each $r\in R$ . Put

$W_{N}’:=\beta^{-1}(W’)$ , $\overline{\Pi}_{N}’:=\overline{\Pi}’\circ\beta$ : $\overline{W}_{N}’arrow\overline{R}$ and $\Pi_{N}’:=\overline{\Pi}_{N}’|_{W_{N}’}$ .
Then we see that $(W_{N}’, \Pi_{N}’, R)$ is a hyperbolic fibre space and is hyperbolically
imbedded into the compact fibre space $(\overline{W}_{N}’,\overline{\Pi}_{N}’, \overline{R})$ along $\partial R$ . Put

$A:=\{s\in\Gamma’ : s(\overline{R})\subset\overline{W}_{sing}’\}$

where $\overline{W}_{sing}’$ denotes the set of all singular points of $\overline{W}’$ . Then $A$ is a proper
analytic subset of $\Gamma’$ . For any $s\in\Gamma’-A$ , there exists a unique holomorphic
mapping $s_{N}$ from $\overline{R}$ into $\overline{W}_{N}’$ such that $\beta\circ s_{N}=s$ on $\overline{R}$ and then $s_{N}\in\Gamma(\overline{R},\overline{W}_{N}’)$ .
On the other hand, since $(W_{N}’, \Pi_{N}’, R)$ is hyperbolically imbedded into the com-
pact fibre space $(\overline{W}_{N}’, \overline{\Pi}_{N}’,\overline{R})$ along $\partial R$ , the set of holomorphic sections of
$(W_{N}’, \Pi_{N}’, R)$ forms a normal family (cf. [12], Theorem 2.2) and is identified
with the set of holomorphic sections $\Gamma(\overline{R},\overline{W}_{N}’)$ of $(\overline{W}_{N}’, \overline{\Pi}_{N}’.\overline{R})$ , which is com-
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pact. Thus the mapping

$\beta_{*}:$ $\Gamma(\overline{R},\overline{W}_{N}’)\ni s_{N}-\beta\circ s_{N}\in\Gamma(\overline{R}, \overline{W})$

is proper holomorphic. Therefore we see that there exists an irreducible com-
ponent $\Gamma_{N}’$ of $\beta_{*}^{-1}(\Gamma’)$ such that $\beta_{*}(\Gamma_{A’}’)=\Gamma’$ . It follows that the evaluation
mapping

$\Psi_{N}$ : $\Gamma_{N}\cross\overline{R}\ni(s_{N}, t)-s_{N}(t)\in\overline{W}_{N}’$

is a proper surjective holomorphic mapping. Then we see that for $t\in\overline{R}$

$\overline{W}_{N.t}’:=\overline{\Pi}_{N}^{l-1}(t)=\Gamma_{N}’(t)$ $:=\{s_{N}(t)\in\overline{W}_{N}’ ; s_{N}\in\Gamma_{N}’\}$ ,

which is compact and irreducible. It follows from Noguchi’s triviality theorem
for hyperbolic fibre spaces (cf. the theorem after Definition 3.1) that $(W_{N}’, \Pi_{N}’, R)$

is a trivial fibre space, $i$ . $e.$ , if we denote the general fibre by $W_{N,0}’$ , then

$W_{N}’\cong W_{N}’,$ $0^{\cross R}$

as fibre spaces. Note that since $W_{N}’$ is normal and $R$ is nonsingular, the general
fibre $W_{N}$’ is normal. We see that each element of $\Gamma_{N}’$ is a constant section
of the trivial fibre space $(W_{N}’, \Pi_{N}’, R)$ and that $W_{N.0}’$ is biholomorphic to $\Gamma_{N}’$ .
In fact, we can write through the global trivialization

$\Psi_{N}|_{\Gamma}$

be $\cross R:\Gamma_{N}’\cross R\ni(s, t)-(\psi_{N}(s, t),$ $t)\in W_{N.0}’\cross R$ .

The mapping $\psi_{N}(\cdot, t):\Gamma_{N}’arrow W_{N.0}’$ is a surjective holomorphic mapping for each
$t\in R$ . It follows from Noguchi’s finiteness theorem for mappings (cf. \S 2) that
$\psi_{N}(\cdot, t)$ is independent of $t\in R$ . Thus each element of $\Gamma_{N}’$ corresponds to a
constant section of the trivial fibre space $(W_{N}’, \Pi_{N}’, R’)$ . Since $\Gamma_{N}’$ is the space
of sections, $\psi_{N}(\cdot, t):\Gamma_{N}’arrow W_{N.0}’$ is injective, hence is bijective. Since $W_{N.0}’$ is
normal, $\Gamma_{N}’$ is biholomorphic to $W_{N.0}’$ by Zariski’s main theorem. Since $\Gamma$ is
compact, there are only finitely many zero dimensional irreducible components
of $\Gamma$, which are finite holomorphic sections except for constant ones of the
above meromorphically trivial fibre subspaces.

Let (V, $\Pi|_{V},$ $R$ ) be a hyperbolic fibre subspace with compact fibres of
$(W, \Pi, R)$ which is meromorphically trivial. We show that (V, $\Pi|_{V},$ $R$ ) is a
fibre subspace of one of the above meromorphically trivial fibre subspaces. Let
$V_{0}\cross R$ be the bimeromorphic trivialization of $V$ where $V_{0}$ is a compact complex

space. Taking the desingularization $V_{0^{arrow}}^{r^{\alpha’}}V_{0}$ due to Hironaka, we may assume
that

$V_{0}’\cross Rarrow V\tau$

gives a bimeromorphic trivialization. Since $V_{0}’\cross R$ is nonsingular and (V, II $|_{V},$ $R$)
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is a hyperbolic fibre space with compact hyperbolic fibres, we see that the
mapping $\tau:V_{0}’\cross Rarrow V$ becomes holomorphic. Thus the mapping

$V_{0}’\ni v-\tau(v, )\in\Gamma$

is holomorphic. Then we can take the irreducible component which contains
the image of $V_{0}’$ by the above mapping. $\blacksquare$

REMARK 3.4. In the above theorem, since the mapping

$\beta_{*}|_{\Gamma_{N}’}$ : $\Gamma_{N}’rightarrow\Gamma’$

is a proper finite modification, the space $\Gamma_{N}’$ is the normalization of $\Gamma$ ‘. Then
$\Gamma_{N}’$ gives the normalization of almost all (except for a proper subvariety of $R\rangle$

fibres $W_{t}’$ of the trivial fibre space $(W_{N}’, \Pi_{N}’, R)$ . Moreover if $\Pi^{f}(\overline{W}_{sing}’)\neq\overline{R}$ ,

then
$\Gamma’\cross(R-\Pi’(\overline{W}_{sing}’))arrow W’|_{R-\Pi’(\overline{W}_{S}’}onto$ .. $g^{)}\cong\Gamma_{N}’\cross(R-\Pi’(\overline{W}_{sing}’))$ .

Thus it follows that $\Gamma’$ is biholomorphic to $\Gamma_{N}’$ , so is normal. In this case $\Gamma$ ‘

is imbedded into $W$ .

REMARK 3.5. In the above theorem, the assumption of hyperbolically im-
beddedness is essentially used in the proof. This condition is automatically
satisfied when both the fiber dimension and the base dimension are equal to
one, $i$ . $e.$ , if $(W, \Pi, R)$ is a smooth Pbre space of curves with genus greater
than one and $\dim R=1$ , then there is a compactification ( $\overline{W}$ , I7, $\overline{R}$ ) of $(W,$ $\Pi,$ $R\rangle$

such that $(W, \Pi, R)$ is hyperbolically imbedded into (Ll’, $\overline{\Pi},\overline{R}$ ) along $\partial R$ (cf.

[12], \S 5, [11], Theorem 3.11 and [22], Theorem on domination). Thus,
Noguchi’s triviality theorem for hyperbolic fibre spaces (cf. the theorem after
Definition 3.1) combined with this gave an another proof of Manin’s theorem
(an analogue of the Mordell’s conjecture over function fields) (cf. [10]). In the
higher dimensional case, however, every hyperbolic fibre space does not have
such a nice imbedding even after a finite Galois extension of the base space.
Noguchi gave such an example (cf. [15]).

COROLLARY 3.6. Let $(W, \Pi, R)$ be as in Theorem 3.3. If there is a $p\alpha n\Gamma$

$t\in R$ such that $\Gamma(t)$ is Zanski dense in $W_{t}$ , then $(W, \Pi, R)$ is fnmeromorphically
tnvial, more Precisely, the fibre space $(W_{N}, \Pi_{N}, R)$ obtained by taking the nor-
malization of $W$ as in Theorem 3.3 is a holomorphically tnvial fibre space.

PROOF. Since $\Gamma(t)$ is Zariski dense in the fibre of $t$ , we can take an irre-
ducible component $\Gamma_{0}$ of $\Gamma$ such that $\Psi(\overline{R}\cross\Gamma_{0})=\overline{W}$ . In fact, if there is no
such $\Gamma_{0}$ , the image of $t$ by any irreducible component of $\Gamma$ is a proper analytic
subset of the fibre of $t$ . $\blacksquare$
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A fibre space $(W, \Pi, R)$ is locally trivial if for each point $t$ in $R$ , there
exists a neighborhood $U$ of $t$ in $R$ such that $(\Pi^{-1}(U), \Pi|_{\Pi-1(U)}, U)$ is a holo-
morphically trivial fibre space. In Corollary 3.6, if $(W, \Pi, R)$ is locally trivial,
under the assumption of Corollary 3.6, it is globally trivial.

COROLLARY 3.7. Let $(W, \Pi, R)$ be as in Theorem 3.3. SuPPose that $W$ is
$qua\alpha projective$ and that the set of all holomorPhic sections $\Gamma$ of $(W, \Pi, R)$ is
infinite. Then there exists a hyPerbolic fibre subspace $(W’, \Pi|_{W’}, R)$ of $(W, \Pi, R)$

with irreducible curv es as fibres, which is either genencally tnvial, $i$ . $e.$ , there
exists a ProPer subvanety $V$ (which may be $emP^{t}y$) of $\overline{R}$ such that the hyperbolic

fibre space $(W’|_{R-V}, \Pi|_{(W’1R-V)}, R-V)$ is holomorphically trivial, or locally non-
tnvial.

PROOF. Since $\Gamma$ is infinite, there is an irreducible component $\Gamma’$ of $\Gamma$ with
$\dim\Gamma’>0$ . If $\dim\Gamma’=1$ , we put

$W’:=\Psi(\Gamma’\cross R)\subset W$

where $\Psi$ is as in the proof of Theorem 3.3. If $\dim\Gamma’\neq 1$ , we can construct a
hyperbolic fibre subspace with one dimensional fibres as follows. From the
proof of Theorem 3.3 we see that

$\overline{W}_{N}’\cong\Gamma_{N}’\cross\overline{R}$

as fibre spaces where $\overline{W}_{N}’$ is the normalization of the closure $\overline{W}’$ of $W’$ in $\overline{W}$

and $\Gamma_{N}’$ is the normalization of $\Gamma’$ (see also Remark 3.4). Take $t\in R$ such
that $\Gamma’(t)\not\subset W_{sing}’$ . Then since $\Gamma’(t)$ is projective algebraic, so is its normaliza-
tion $\Gamma_{N}’$ . Therefore one can find a compact irreducible curve $C’\subset\Gamma’$ so that
the dimension of the image of the holomorphic mapping

$\Psi|_{C’\cross\overline{R}}$ : $C’\cross\overline{R}arrow\overline{W}’$

is equal to $\dim R+1$ . Replacing $C’$ with $\Gamma’$ , we put

$W’:=\Psi(\Gamma’\cross R)$ and $-’\cdot=\Psi(\Gamma’\cross\overline{R})$ .
NOW let $\Re(\overline{W}’)$ be the non-normal locus:

$SU$ (VV’): $=$ { $x\in\overline{W}’$ : $\overline{W}’$ is not normal at $x$ }.

If $9l(\overline{W}’)=\phi$ ( $i$ . $e.$ , IV ls normal), then $(W’, \Pi|_{W’}, R)$ is globally trivial by
Noguchi’s triviality theorem (see the theorem after Definition 3.1). Assume
that $\Re(\overline{W}’)\neq\phi$ . Taking the normalization $\overline{W}_{N}’arrow\overline{W}’\beta$ of $\overline{W}’$ and putting

$\overline{\Pi}_{N}’:=(\overline{\Pi}|\pi’)\circ\beta$ , $W_{N}’:=\beta^{-1}(W’)$ and $\Pi_{N}’:=\overline{\Pi}_{N}’|_{W_{N}’}$ ,

$\langle$ $W_{N}’,$ $\Pi_{N}’$ , $R)$ is the globally trivial hyperbolic fibre space by Corollary 3.6. If
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$\overline{\Pi}(\Re(\overline{W}’))$ is a proper analytic subset of $\overline{R}$ , the hyperbolic fibre space

( $W’|_{R-\overline{\Pi}(\mathfrak{R}(\pi))}’$ , the restriction of $\Pi,$ $R-\overline{\Pi}(\Re(\overline{W}’))$ )

is globally trivial. Suppose that $\overline{\Pi}(\Re(\overline{W}’))=\overline{R}$ . Let $p:\overline{W}_{N}’arrow\Gamma_{N}’$ be the natural
projection through the identification of $\overline{W}_{N}^{f}$ with $\Gamma_{N}’\cross\overline{R}$ . Put $S_{N}:=P(\beta^{-1}(\Re(^{-}’)))$ ,
$S:=\beta_{*}(S_{N})$ and

$A:=\{s\in\Gamma’ ; s(\overline{R})\subset\Re(\overline{W}’)\}$ .
Then clearly $A\subset S$ . Since the restriction $\beta*|_{\Gamma_{N}^{J}-\beta_{*}^{-1}(A)}$ : $\Gamma_{N}^{f}-\beta_{*}^{-1}(A)arrow\Gamma’-A$ is
biholomorphic and $\beta_{*}^{-1}(S)=S_{N}$ , the mapping

$\beta_{*}|_{\Gamma_{N^{-S_{N}}}^{r}}$ : $\Gamma_{N}’-S_{N}arrow\Gamma’-S$

is biholomorphic. In general, we have $S_{N}(\overline{R})\supset\beta^{-1}(\Re(\overline{W}’))$ . If $S_{N}$ is a proper
analytic subset of $\Gamma_{N}’$ , then $S_{N}$ is a finite set. Hence $S_{N}(\overline{R})=\beta^{-1}(\Re(\overline{W}’))$ . Thus
we see that $S(\overline{R})=\Re(\overline{W}’)$ and that the restriction

$\Psi|_{(\Gamma’-S)\cross R}$ : $(\Gamma’-S)\cross\overline{R}arrow\overline{W}’-\Re(\overline{W}’)$

is a biholomorphism. The former equality implies that $A=S$ and therefore
$A(\overline{R})=\Re(\overline{W}’)$ . Since $A$ is finite, it follows that

$\Psi:\Gamma’\cross\overline{R}arrow\overline{W}’$

is bijective, hence it induces the isomorphism as fibre spaces. Suppose that
$S_{N}=\Gamma_{N}’$ . Let

$\beta^{-1}(\Re(\overline{W}’))=\bigcup_{j=0}^{\nu}V_{j}$ $(\nu<\infty)$

be the irreducible decomposition. If there exists a point $t$ at which ( $\overline{W}’$ , I7 $|_{\pi\prime},\overline{R}$ )

is locally trivial, $i$ . $e.,$
$(\Pi-|_{\overline{W}’})^{-1}(U)\cong\Gamma’(t)\cross U$ where $U$ is some neighborhood of

$t$ in $\overline{R}$ , then $\Gamma’(t)$ is a finite set of non-normal points. Since the pull-back of
those points by $\beta*is$ a finite subset of $\Gamma_{N}’$ , the projection $p$ is locally constant
on $\overline{\Pi}_{N}^{J-1}(U)\cap\beta^{-1}(\Re(\overline{W}’))$ . Thus $p$ is constant on each irreducible component
which intersects $\overline{\Pi}_{N^{-1}}’(U)$ , in particular, on each $V_{j}$ with $\overline{\Pi}_{N}’(V_{j})=\overline{R}$ . We see
that the image of sum of the other components by $\overline{\Pi}_{N}^{f}$ becomes a Proper analytic
subset of $\overline{R}$ . We complete the proof. $\blacksquare$

REMARK. Corollary 3.7 is a slightly more detailed version of Corollary 3.6
in Noguchi [12].

It is necessary to take the normalization of the total space in the proof of
Theorem 3.3. We give an example of the non-normal hyperbolic fibre spaces
with infinitely many sections which is locally nontrivial. The author wishes
to thank Professor Tetsuo Ueda for his help in constructing this example.
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EXAMPLE 3.8. Let $R$ be a compact Riemann surface of genus greater than
one. Let $\sigma$ be a holomorphic automorphism of $R$ which is not the identity
mapping and $c$ be the identity mapping of $R$ . Put

$a(t)=(a(t), t)\in R\cross R$ for $r\in R$

and
$c(t)\wedge=(t, t)\in R\cross R$ for $t\in R$ .

We define an equivalence relation on $R\cross R$ as follows: for $y_{1},$ $y_{2}\in RxR,$ $y_{1}\sim y_{2}$

if and only if there exists a point $t\in R$ such that $y_{1}=\hat{\sigma}(t)$ and $y_{2}=c\wedge(t)$ . Put
$W:=R\cross R/\sim$ . Then we see that $W$ is a complex space and that the projec-
tion $\beta:R\cross Rarrow W$ is holomorphic. Let $\Pi$ be the projection such that $\Pi\circ\beta=P_{2}$

on $R\chi R$ where $P_{2}$ : $R\cross Rarrow R$ is the second projection. Then $(W, \Pi, R)$ is a
hyperbolic space with compact hyperbolic fibres and carries infinitely many
sections which come from the trivial fibre space $(RxR, P_{2}, R)$ through the pro-
jection $\beta$ . Since $RxR$ is the normalization of $W$ , the trivial Pbre space
$(RxR, P_{2}, R)$ gives the meromorphic trivialization of $(W, \Pi, R)$ . The fibre
space $(W, \Pi, R)$ is locally nontrivial. In fact, suppose that there exists a local
trivialization $\varphi:W|_{Uarrow}^{\cong}W_{0}\cross U$ where $U$ is an open set in $R$ and $W_{0}$ is an irre-
ducible curve. We take the normalizations of the domain and the image of the
localization and consider the lifting $\tilde{\varphi}$ of the mapping $\varphi$ between the two
normalizations. Then we see that $\tilde{\varphi}$ generates infinitely many holomorphic
automorphisms of $R$ . This is absurd since $R$ is compact hyperbolic.

4. Finiteness of nontrivial sections and of trivial fibre subspace
in noncompact case.

We consider about finiteness of trivial fibre subspaces in the case where all
the fibres are noncompact. We treat only a special case, trivial fibre spaces,
but the result supplies information about the moduli of holomorphic mappings.
Let $\overline{X}$ be an irreducible compact complex space and $X$ be a nonsingular Zariski
open subset of $\overline{X}$ .

THEOREM 4.1. Let $X$ be as above. Let $Y$ be an irreducrble complete hyper-
bolic complex space. Suppose that $Y$ is hyperbolically imbedded into some compact
complex space $\overline{Y}$ and $Y$ is Zazaski open in Y. Then the tnvial fibre space
$(Y\cross X, P, X)$ contains only finitely many meromorphically tnvial fibre subspaces
where $P$ is the natural projection ($i$ . $e.$ , any meromorphically tnvial fibre subspace

of $(\overline{Y}\cross\overline{X}, P,\overline{X})$ is a tnvial fibre subspace of one of them) and carnes only
finitely many holomorphic sections except for constant ones in those bimeromorphic
tnvializations.
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PROOF. Let (V, $P|_{V},$ $X$) be a meromorphically trivial fibre subspace of
$(Y\cross X, P, X)$ such that the closure $\overline{V}$ of $V$ in $\overline{Y}\cross\overline{X}$ is a subvariety of $\overline{Y}\cross\overline{X}$ .
Let $V\sim V_{0}\cross X$ be the bimeromorphic trivialization. Then there exists a fibre
$V_{t}$ of (V, $P|_{V},$ $X$) such that $V_{t}$ is bimeromorphic to $V_{0}$ . Let $\overline{V}_{t}$ be tbe closure
of $V_{t}$ in $\overline{Y}$ , so that $\overline{V}_{t}$ is a compact subvariety of $\overline{Y}$ . Let $\overline{V}_{r^{arrow}}^{\alpha}\overline{V}_{t}$ be the
resolution of singularities such that $\partial V_{r}:=\overline{V}_{r}-\alpha^{-1}(V_{t})$ is a hypersurface with
only normal crossings and put $V_{r}:=\alpha^{-1}(V_{t})$ . We denote by $f$ the bimeromor-
phic mapping of $V_{r}\cross X$ to $V$ . Since $Y$ is complete hyperbolic and $V_{r}\cross X$ is
nonsingular, then the meromorphic mapplng $P_{Y^{\circ}}f$ of $V_{r}\cross X$ to $Y$ is holomorphic
where $P_{Y}$ : $Y\cross Xarrow Y$ is the first projection (cf. [5], Chapter VIII, Theorem 1.2).

We may assume that $X$ is smooth and $\partial X:=\overline{X}-X$ is a hypersurface with only
normal crossings. $Hol(X, Y)$ is a Zariski open subset of a compact analytic
subspace $\overline{Hol(X,Y)}$ of $Hol(\overline{X},\overline{Y})$ by Noguchi’s structure theorem (cf. the theo-
rem before Proposition 2.1). Let $\bigcup_{j=1}^{l}\overline{Z}_{j}(l<\infty)$ be the irreducible decomposi-
tion of $HOl(XY)Y)$ and put $Z_{j}:=\overline{Z}_{j}\cap Hol(X, Y)$ for each $j$ . Note that all the
mappings in $Z_{j}$ have the same rank (see Proposition 2.1). The mapping

$\Psi:\overline{Hol(X,Y)}\cross\overline{X}\ni(s, x)-(s(x), x)\in\overline{Y}\cross\overline{X}$

is an injective holomorphic mapping and through this correspondence $Hol(X, Y)$

is regarded as the space of sections of the fibre space $(Y\cross X, P, X)$ . We denote
the constant holomorphic section $X\ni x->(v, x)\in V_{r}\cross X$ for $v\in V_{r}$ by the same
letter $v$ . Put $V_{r}’:=$ { $v\in V_{r}$ ; $v(X)\not\subset the$ indeterminacy locus of $f$ }. Then $V_{r}’$ is
a nonempty Zariski dense open subset of V.. The mapping

$\sigma:V_{r}^{f}\ni v-P_{Y}\circ f\circ v\in Hol(X, Y)$

is holomorphic. Let $\overline{V}_{r}’’arrow\overline{V}_{r}a’$ be the modification along $V_{r}$– $V_{r}’$ such that the
mapping $\alpha’|_{V_{r}’’}$ : $V_{r}’’arrow V_{r}’$ is biholomorphic and $\partial V$ “ $:=\overline{V}_{r}’’-V_{r}’’$ is a hypersurface
with only normal crossings where $V_{r}’’:=\alpha^{\prime-1}(V_{r}’)$ . Since $Hol(X, Y)$ is complete
hyperbolic and hyperbolically imbedded into $HOl(XY)Y)$ (cf. Proposition2.6, $i$) $)$ ,

the holomorphic mapping $\sigma\circ(\alpha’|_{V_{r}^{r;}}):V_{r}’’arrow Hol(X, Y)$ is holomorphically extended
to the mapping $\overline{\sigma\circ(\alpha’|_{V_{r}^{ll}}}$) of $\overline{V}_{\tau}’’$ to $\overline{Hol(X,Y)}$ . Let $\overline{Z}_{j}$ be the component which
contains $\overline{\sigma\circ(\alpha’|_{V_{r}’’}}$) $(\overline{V}_{r}’’)$ and put $Z:=Z_{j}$ . Then V. is meromorphically imbedded
into $\overline{Z}$ so that $\dim\overline{Z}\geqq\dim$ $V.=\dim V_{0}$ .

Case (a). Let $Z$ be compact. Put $W:=\Psi(Z\cross X)$ . Then $\overline{W}=\Psi(Z\cross\overline{X})$ is a
compact complex subspace of $\overline{Y}\cross\overline{X}$ . Put Zil: $=P|_{\overline{W}}$ and $II:=\overline{\Pi}|_{W}$ . Since for
any $x\in X$

$W_{x}$ $:=\Pi^{-1}(x)=\{(s(x), x)\in Y\cross X ; s\in Z\}\subset Y\cross\{x\}$ ,

the fibre space $(W, \Pi, X)$ is a hyperbolic fibre space whose fibres are compact.
It is clear that $(W, \Pi, X)$ is hyperbolically imbedded into $(\overline{W},\overline{\Pi},\overline{X})$ along $\partial X$ .
Thus by Corollary 3.6 if we take the normalizations $W_{N}$ and $Z_{N}$ of $W$ and $Z$
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respectively, then $iV_{N}$ is isomorphic to $Z_{N}\cross X$ as fibre space. In particular,
$(W, \Pi, X)$ is bimeromorphically equivalent to the trivial fibre space $(Z_{N}\cross X, P, X)$ .

Case (b). Let $Z$ be noncompact. In this case $Z$ is a Zariski open subset
of the compact complex space $\overline{Z}$ by Noguchi’s structure theorem (cf. the theo-
rem before Proposition 2.1 in \S 2). It follows from the complete hyperbolicity
of $Y$ that for each $s\in\partial Z:=\overline{Z}-Z$ , the image of $\overline{X}$ under the extension of $s$ is
contained in $\partial Y$ . Let $W$ and $W_{x}$ be as in case (a). Then for $x\in X$

$W_{x}=\{(s(x), x)\in\overline{Y}\cross X ; s\in Z\}cY\cross\{x\}$

where $\overline{W}_{x}$ is the closure of $W_{x}$ in $\overline{Y}\cross X$ . Since $Y$ is complete hyperbolic and
hyperbolically imbedded $\dot{l}nto\overline{Y}$ , $W_{x}$ is also complete hyperbolic and hyper-
bolically imbedded into $W_{x}$ . $\overline{W}=\Psi(\overline{Z}x\overline{X})$ is a compact complex subspace of
$\overline{Y}\cross\overline{X}$ . Put

$\overline{\Pi}:=P|\pi$ and $\Pi:=\overline{\Pi}|_{W}$ .

Then $(W, \Pi, X)$ is a hyperbolic fibre space with complete hyperbolic fibres
which are hyperbolically imbedded into compact complex spaces as Zariski open
subsets. $\overline{Z}$ is identified via the mapping $\overline{Z}\ni s-\rangle$ $\Psi(s, )\in Hol(\overline{X},\overline{W})$ with some
compact irreducible component 1“ of the complex space $\Gamma(\overline{X},\overline{W})$ of all section
of the fibre space $(\overline{W},\overline{\Pi},\overline{X})$ . Since $\partial Z$ is a proper analytic subset of $\overline{Z},$ $Z$

corresponds to a Zariski open dense subset $\Gamma$ of $\overline{\Gamma}$ Put $\partial\Gamma:=\overline{\Gamma}-\Gamma$. Note
that $\gamma(\overline{X})\subset\partial W:=\overline{W}-W$ for $\gamma\in\partial\Gamma$. Take the normalization $\overline{W}_{N^{arrow}}^{\beta}\overline{W}$ of $\overline{W}$ .
Then $\overline{W}_{N}$ is an irreducible compact normal complex space. Put

$W_{N}:=\beta^{-1}(W)$ , $\overline{\Pi}_{N}:=\overline{\Pi}\circ\beta$ , $\Pi_{N}:=\overline{\Pi}_{N}|_{W_{N}}$

and for $x\in X$ ,
$W_{N.x}.=(\Pi\circ\beta)^{-1}(x)=\beta^{-1}(W_{x})$ .

Then for $x\in X$ ,
$\overline{W}_{N.x}=(\overline{\Pi}\circ\beta)^{-1}(x)=\beta^{-1}(\overline{W}_{x})$ ,

and $W_{N,x}$ is complete hyperbolic and is hyperbolically imbedded into $\overline{W}_{N.x}$ .
Thus $(W_{N}, \Pi_{N}, X)$ is a hyperbolic fibre space whose fibres have the above pro-
perties. We can find an irreducible compact complex subspace $\overline{\Gamma}_{N}$ of $\Gamma(\overline{X},\overline{W}_{N})$

such that $\beta_{*}(\overline{\Gamma}_{N})=\overline{\Gamma}$ where $\beta*is$ the pull-back of $\Gamma(\overline{X},\overline{W}_{N})$ to $\Gamma(\overline{X},\overline{W})$ . Put
$\Gamma_{N}:=\beta_{*}^{-1}(\Gamma)\cap\overline{\Gamma}_{N}$ . Then $\Gamma_{N}=\overline{\Gamma}_{N}-\beta_{*}^{-1}(\partial\Gamma)$ is a Zariski open subset of $\overline{\Gamma}_{N}$ .
Let $\overline{\Psi}_{N}$ be the holomorphic mapping of $\overline{\Gamma}_{N}\cross\overline{X}$ into $\overline{W}_{N}$ which is the restriction
of the evaluation mapping of $Hol(\overline{X},\overline{W}_{N})\cross\overline{X}$ into $\overline{W}_{N}$ . Then we see that

$\overline{\Psi}_{N}(\overline{\Gamma}_{N}\cross\overline{X})=\overline{W}_{N}$ , $\overline{\Psi}_{N}(\Gamma_{N}\cross X)=W_{N}$ , $\overline{\Psi}_{N}(\overline{\Gamma}_{N}\cross\{x\})=\overline{W}_{N.x}$ ,
and

$\overline{\Psi}_{N}(\Gamma_{N}\cross\{x\})=W_{N.x}$ for $x\in\overline{X}$ .
Note that since $\overline{\Gamma}_{N}$ is irreducible, $\overline{W}_{N.x}$ is irreducible and so is $W_{N,x}$ . Applying
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the argument in the proof of Main Theorem 3.2 of Noguchi [12] (cf. [12], $p$ .
37), we can construct the horizontal direction field $\eta$ in the fibre space $(\overline{W}_{N}$ ,
$\overline{\Pi}_{N},\overline{X})$ . Then we see that the fibre space $(\overline{W}_{N},\overline{\Pi}_{N},\overline{X})$ is a holomorphic fibre
bundle with typical fibre $\overline{W}_{N,0}$ . If we put $\tilde{W}_{N}:=\overline{\Psi}_{N}(\Gamma_{N}\cross\overline{X})$ and $\prod_{N}:=\overline{\Pi}_{N}|_{\tilde{W}_{N}}$ ,

it follows from the construction of $\eta$ that the fibre subspace $(\tilde{W}_{N},\tilde{\Pi}_{N},\overline{X})$ is a
hyperbolic fibre subbundle of $(\overline{W}_{N},\overline{\Pi}_{N},\overline{X})$ with typical fibre $W_{N,0}$ , whose
structure group is the holomorphic automorphism group of $W_{N.0},$ $i$ . $e.$ , for a
sufficiently small neighborhood $U$ of a point $x\in\overline{X}$ , there is a trivialization
$\overline{W}_{N}|_{U}\cong\overline{W}_{N,0}\cross U$ and $\tilde{W}_{N}|_{U}\cong W_{N,0}\cross U$ . Since $\overline{W}_{N}|_{U}$ is normal, so is $\overline{W}_{N.0}$ and
$W_{N,0}$ also. Through this local trivialization, consider the following mapping:

$\overline{\Psi}_{N}$ : $\Gamma_{N}\cross U\ni(\gamma, x)-(\psi(\gamma, x),$ $x)\in W_{N.0}\cross U$ .

Since the mappings $\psi(ex):\Gamma_{N}arrow W_{N,0}$ are surjective for all $x\in U$ , it follows
from Theorem 2.3 that $\psi(\cdot, x)$ does not depend on $x\in U$ . This implies that
for two distinct elements $\gamma_{1},$

$\gamma_{2}\in\Gamma_{N},$ $\gamma_{1}(x)\neq\gamma_{2}(x)$ for any $x\in\overline{X}$ since $\Gamma_{N}$ is the
space of sections. Thus the holomorphic mapping $\psi(\cdot, x)$ of $\Gamma_{N}$ to $W_{N,0}$ is
bijective. Since $W_{N,0}$ is normal, it becomes the biholomorphism between them.
Then we see that the mapping $\overline{\Psi}_{N}|_{\Gamma_{N^{\cross\overline{X}}}}$ : $\Gamma_{N}\cross\overline{X}arrow\tilde{W}_{N}$ is biholomorphic. Since
$\beta(\pi_{N}|_{X})=W$ , we see that $(W, \Pi, X)$ is meromorphically trivial. $\blacksquare$

From the above proof we obtain an estimate of the dimension of moduli
spaces of the holomorphic mappings with intermediate rank.

COROLLARY 4.2. Let $X$ and $Y$ be as in Theorem 4.1 and $f\in Hol(X, Y)$ . If
$f(X)$ is not relatively compact in $Y$ , then the dimenston of the irreducible com-
ponent of $Hol(X, Y)$ which contains $f$ is not greater than the dimenszon of $\partial Y$ .

REMARK 4.3. In the case where $Y$ is the quotient space of a bounded
symmetric domain by a torsion free arithmetic discrete subgroup of the identity
component of the holomorphic automorphism group, Corollary 4.2 was obtained
in Noguchi [13], Theorem 4.7 (iv).
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