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\S 1. Introduction and statement of results.

In general, it is difficult to determine whether a two generator M\"obius

group is Kleinian or not, or is discrete or not. In [1], for the purpose of
studying one dimensional Teichm\"uller spaces, Keen obtained a moduli inequality
which assures some two generator M\"obius groups are Kleinian. To state her
theorem, we need some notation. Let $A$ and $B$ be M\"obius transformations and
let $G=\langle A, B\rangle$ be the group generated by $A$ and $B$ . By the well known isomor-
phism between the Mobius group and PS$L(2, C)$ , we put

$x=trace(A)$ , $y=trace(B)$ and $z=trace(AB)$ .
The groups we are interested in this article are those which satisfy the following.

(1) $x^{2}+y^{2}+z^{2}=xyz$ ,

(2) $z>2$ and

(3) $|x|>2$ and $|y|>2$ .
For those groups Keen showed the following.

THEOREM 1 ([1]). If the moduli tnple $(x, y, z)$ satisfies (1), (2), (3) and the
inequality

(4) $|z{\rm Im}(x)-2{\rm Im}(y)|<2|{\rm Re}(x)|$ ,

then the group $G=\langle A, B\rangle$ is Kleinian.

On the other hand, we showed the following.

THEOREM 2 ([3]). Let $U=(_{0}^{\alpha}$ $\beta 0)$ and $V=(\begin{array}{ll}a bc d\end{array}),$ $bc\neq 0$ , be loxodromic

elements of $PSL(2, C)$ such that $UVU^{-1}V^{-1}$ is parabolic. If, for each integer $n$ ,

the inequality

(5) $\frac{|\alpha^{n}a|+|\beta^{n}d|}{|\alpha^{n}a+\beta^{n}d|}<\frac{|\alpha|+|\beta|}{|\alpha-\beta|}$
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holds, then $G’=\langle U, V\rangle$ is Kleinian.

Restricting to the case in which $trace(U)=z>2$ and putting $trace(V)=y$

and $x=trace(UV^{-1})$ , we see that the triple $(x, y, z)$ satisfies (1), (2) and (3).

In this article we compare Theorem 1 with Theorem 2 in this situation. That
is, we compare (4) with (5). As a by-product of this comparison, we obtain
the following improvement of Theorem 1, which is also an improvement of
Theorem 2 in the case $\alpha+\beta>2$ .

THEOREM 3. If the moduli triple $(x, y, z)$ satisfying (1), (2), (3) also satisfies
(6) ${\rm Im}(x){\rm Im}(y)<0$

(7) $x\overline{y}+\overline{x}y>\$

(8) $2|x|^{2}>|x\overline{y}-\overline{x}y|$

(9) $2|y|^{2}>|x\overline{y}-\overline{x}y|$ ,

then the grouP $G=\langle A, B\rangle$ is Kleinian.

Our comparison of Theorems 1 and 2 relys on the comparison of the two
different normalizations. We summarize each of these two normalizations in
\S 2 and \S 3, respectively. After an observation of some special cases in \S 4, we
compare Theorems 1 and 2 in \S 5. In \S 6 we prove Theorem 3.

REMARK 1. Equality (1) is a special case considered in [1], but also the
most interesting case. Equality (1) implies that the commutator $A^{-1}B^{-1}AB$ is
parabolic. Instead of (1), the equality $x^{2}+y^{2}+z^{2}=xyz+4-k$ is studied there,
where $k=2-trace(A^{-1}B^{-1}AB)$ . Our statement of Theorem 1 is for the case
$k=4$ and it is a main assertion in [1] that $\Omega(G)/G$ is a pair of once punctured
tori, where $\Omega(G)$ is the region of discontinuity of $G$ .

REMARK 2. In appearance, inequality (4) is not symmetric with respect to
$x$ and $y$ . Later we will rewrite (4) so that it is symmetric in $x$ and $y$ . (See

(29) in \S 5.)

REMARK 3. Inequality (6) comes up from our normalization generators.

\S 2. Normalization I.

In this section we recall the normalization in [1]. (See also [4].) Throug-
hout this article we assume that the moduli triple $(x, y, z)$ satisfies (1), (2) and
(3). By conjugation in $SL(2, C)$ we normalize $A$ and $B$ such that

$A= \frac{1}{2}(\begin{array}{ll}x b_{1}c_{1} x\end{array})$ and $B= \frac{1}{2}(\begin{array}{ll}y b_{2}c_{2} y\end{array})$
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and that the fixed point of $A^{-1}B^{-1}AB$ is $-1$ . One computes the matrix $AB$

and obtains

$AB= \frac{1}{4}(\begin{array}{ll}xy+b_{1}c_{2} b_{2}x+b_{1}yc_{2}x+c_{1}y xy+c_{1}b_{2}\end{array})$ .

Since $trace(AB)=z$ , we have

(10) $b_{1}c_{2}+c_{1}b_{2}=4z-2xy$ .
One computes

$(b_{1}c_{2}-c_{1}b_{2})^{2}=(b_{1}c_{2}+c_{1}b_{2})^{2}-4b_{1}c_{1}b_{2}c_{2}$

$=(\ -2xy)^{2}-4(x^{2}-4)(y^{2}-4)$

$=16(z^{2}-xyz+x^{2}+y^{2}-4)=-64$ .
Hence we obtain $b_{1}c_{2}-c_{1}b_{2}=\pm 8i$ , where $i=\sqrt{-1}$ . We choose a sign $such_{A}^{\vee}that$

(11) $b_{1}c_{2}-c_{1}b_{2}=8i$ .
NOW we can write down $b_{1},$

$c_{1},$
$b_{2}$ and $c_{2}$ by the moduli $(x, y, z)$ .

LEMMA 1. $b_{1}=x- \frac{2}{z}(y-ix)$ , $c_{1}=x- \frac{2}{z}(y+ix)$ ,

$b_{2}=y- \frac{2}{z}(x+iy)$ and $c_{2}=y- \frac{2}{z}$ (x-iy).

PROOF. From (10) and (11) we obtain $b_{1}c_{2}=2z-xy+4i$ so that

$\frac{1}{4}(xy+b_{1}c_{2})=\frac{1}{2}(z+2i)$ .

Likewise, we obtain

$\frac{1}{4}(xy+c_{1}b_{2})=\frac{1}{2}(z-2\iota)$ .

Therefore we see that, for some $X$ and $Y$ ,

$AB= \frac{1}{2}(\begin{array}{ll}z+2i XY z-2i\end{array})$ .

Comparing two matrices $AB$ and $BA$ , we see that

$BA= \frac{1}{2}(\begin{array}{ll}z-2i XY z+2i\end{array})$ .

Our normalization that the fixed point of $A^{-1}B^{-1}AB$ is $-1$ implies that AB $(-1)$

$=BA(-1)$ . So we obtain easily

$X+Y=2z$ .
On the other hand, computing the determinant of $AB$ , we have
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$XY=z^{2}$ .

Therefore we have $X=Y=z$ and

(12) $AB= \frac{1}{2}(\begin{array}{ll}z+2i zz z-2i\end{array})$ .

From the equation

$4AB=(\begin{array}{ll}xy+b_{1}c_{2} b_{2}x+b_{1}yc_{2}x+c_{1}y xy+c_{1}b_{2}\end{array})=(\begin{array}{ll}\ +4i 2z2z 2z-4i\end{array})$

one derives

$xy^{2}+b_{1}c_{2}y=2(z+2\iota)y$ and $b_{2}c_{2}x+b_{1}c_{2}y=2zc_{2}$ .

Noting $y^{2}-b_{2}c_{2}=4$ , one obtains from these equations

$c_{2}=y- \frac{2}{z}(x-iy)$ .

Similar computations yield the remaining three equations.

Thus we showed that the moduli tnPle $(x, y, z)$ and a normalization with
the choice (11) determine $A$ and $B$ uniquely and so $G$ , too.

Let $p_{AB}$ and $q_{AB}$ be the repelling and the attractive fixed points of $AB$ ,

respectively. Then

(13) $p_{AB}=- \frac{\sqrt{z^{2}-4}}{z}+\frac{2}{z}i$ and $q_{AB}= \frac{\sqrt{z^{2}-4}}{z}+\frac{2}{z}i$ .

Let $K$ be the circle passing through three points $p_{AB},$ $q_{AB}$ and $(x+2)/c_{1}$ . Then
it is shown in [1] that $K$ passes through more three points $(x-2)/c_{1}$ and
$-(y\pm 2)/c_{2}$ and that the center $c_{K}$ of $K$ lies on the imaginary axis of the
complex plane, perhaps at the point at infinity. If $c_{1}$ is not real, then $c_{K}$ does
not lie at infinity. Then, from the equation of equidistance of two points from
the center

$|(x+2)/c_{1}-c_{K}|=|(x-2)/c_{1}-c_{K}|$ ,

we have

(14) $c_{K}= \frac{x+\overline{x}}{c_{1}-\overline{c}_{1}}$ .

Denoting by $r_{K}$ the radius of $K$, we can state that the geometric form of
Keen’s inequality (4) is

(15) $|c_{K}|>r_{K}$ .
For completeness, we derive (4) from (15).

LEMMA 2. Inequality (4) is equzvalent to (15).

PROOF. First we shall show that (15) is equivalent to
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(16) $(b_{1}-\overline{b}_{1})(c_{1}-\overline{c}_{1})>0$ .
Since $r_{K}$ is the distance between $c_{K}$ and $(x+2)/c_{1},$ (15) is equivalent to

$|x+\overline{x}||c_{1}|>|x\overline{c}_{1}+\overline{x}c_{1}-2(c_{1}-\overline{c}_{1})|$ .
The square of the right hand side of the above is

$(x\overline{c}_{1}+\overline{x}c_{1})^{2}-4(c_{1}-\overline{c}_{1})^{2}=(x^{2}-4)\overline{c}_{1}^{2}+(\overline{x}^{2}-4)c_{1}^{2}+2(|x|^{2}+4)|c_{1}|^{2}$

$=(b_{1}\overline{c}_{1}+\overline{b}{}_{1}C_{1}+8+2|x|^{2})|c_{1}|^{2}$ ,

so (15) is equivalent to

$x^{2}+\overline{x}^{2}>b_{1}\overline{c}_{1}+\overline{b}_{1}c_{1}+8$ .
Making use of the equations $x^{2}-b_{1}c_{1}=4$ and $\overline{x}^{2}-\overline{b}{}_{1}\overline{C}_{1}=4$ , one easily obtains (16).

Thus we have shown that (15) and (16) are equivalent. By Lemma 1 we have

$b_{1}- \overline{b}_{1}=2i({\rm Im}(x)-\frac{2}{z}{\rm Im}(y)+\frac{2}{z}{\rm Re}(x))$

and
$c_{1}- \overline{c}_{1}=2i({\rm Im}(x)-\frac{2}{z}{\rm Im}(y)-\frac{2}{z}{\rm Re}(x))$ .

Therefore (16) is written as

$({\rm Im}(x)- \frac{2}{z}{\rm Im}(y))^{2}-(\frac{2}{z}{\rm Re}(x))^{2}<0$ .

This is equivalent to (4).

By considering the normal subgroup, $H=\langle AB, BA, A^{-1}B, BA^{-1}\rangle$ , of $G$ of
index 2, the following is shown under this normalization.

THEOREM 4 ([4]). If the moduli tnple $(x, y, z)$ satisfies (1), (2), (3) and
$x=\overline{y}$ , then $G$ is Kleinian.

\S 3. Normalization II.

In this section we recall some results and normalizations in [3]. Let $(x$ ,
$y,$ $z)$ be the moduli triple satisfying (1), (2) and (3). Let $U$ and $V$ be elements
of $SL(2, C)$ such that $trace(U)=z$ and $trace(V)=y$ and that they satisfy (1)

with $x=trace(UV^{-1})$ . Conjugating by a M\"obius transformation, we normalize
$U$ and $V$ so that

$U=(\begin{array}{ll}\alpha 00 \beta\end{array})$ and $V=(\begin{array}{ll}a bc d\end{array})$ ,

where $\alpha\beta=1,$ $\alpha>\beta$ and $ad-bc=1$ . We further conjugate $U$ and $V$ by $(\begin{array}{ll}k 00 1/k\end{array})$

with some complex number $k$ so that $\alpha,$ $\beta,$ $a$ and $d$ are invariant and the fol-
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lowing holds:

(17) $c= \frac{\alpha+\beta}{\alpha-\beta}$ .

We note the following.

LEMMA 3. Equation (1) is equivalent to saying that the commutator $UVU^{-1}V^{-1}$

is parabolic. It is also equivalent to

(18) $ad=c^{2}= \frac{z^{2}}{z^{2}-4}=\frac{(\alpha+\beta)^{2}}{(\alpha-\beta)^{2}}$ .

PROOF. First we note that the second and the third equalities of (18) are
clear from (17). Substituting $x=\beta a+\alpha d$ , $y=a+d$ and $z=\alpha+\beta$ into (1), we
see that (1) is equivalent to $(\alpha+\beta)^{2}=(\alpha-\beta)^{2}ad$ . It follows that (1) is equivalent
to (18). One computes

$trace(UVU^{-1}V^{-1})=2ad-(a^{2}+\beta^{2})bc$

$=-(\alpha-\beta)^{2}ad+(\alpha+\beta)^{2}-2$ .

It follows that (18) is equivalent to $trace(UVU^{-1}V^{-1})=-2$ which is equivalent
to $UVU^{-1}V^{-1}$ being parabolic.

AS a special case of Theorem 2, the following is shown.

PROPOSITION 5 ([3]). Let $U$ and $V$ be in Theorem 2. Let $C_{1}$ and $C_{2}$ be
the circles such that

$C_{1}=\{w\in C||w-a/c|=1/|d|\}$ and
(19)

$C_{2}=\{w\in C||w+d/c|=1/|a|\}$ .

If $C_{1}$ and $C_{2}$ are separated by the imaginary axis, then $G’=\langle U, V\rangle$ is Kleinian.

Our comparison is made by Proposition 5 and it will be shown in \S 5 that
Theorem 1 and Proposition 5 are equivalent. Our improvement of Theorem 2
in our case is made in an altered form of it. (See also Proposition 6’ in \S 6.)
TO state this we need one more piece of notation. Put

(20) $p_{1}= \frac{a}{c}+\frac{1}{d}$ and $p_{2}= \frac{a}{c}-\frac{1}{d}$

and denote by $R$ the ring domain bounded by the circles

(21) $R_{i}=\{w\in C||w|=|p_{i}|\}$ $(i=1,2)$ .

NOW we can state Theorem 2 in our case in the following form.

PROPOSITION 6 ([3]). Let $U$ and $V$ be as in Theorem 2 and let $U$ be hy-
perbolic. Let $n$ be the integer such that $U^{n}(C_{2})\cap R\neq\emptyset$ and $U^{i}(C_{2})\cap R=\emptyset(i\neq n$ ,
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$n+1)$ . If $C_{1}$ intersects neither $U^{n}(C_{2})$ nor $U^{n+1}(C_{2})$ , then $G’=\langle U, V\rangle$ is Kleinian.

PROOF. The geometric meaning of (5) is that, for each $n,$ $U^{n}(C_{2})$ does
not meet $C_{1}$ . Since $C_{1}$ is contained in the closure of the ring domain $R$ , it
suffices to check this for those $U^{n}(C_{2})$ which meet $R$ . The condition of the
proposition is just for such $U^{n}(C_{2})s$ .

\S 4. Special cases.

In this section we shall dispose of some special cases in order to ease our
discussion in the succesive sections. We write $x$ and $y$ as the sum of their
real and imaginary parts so that

$x=x_{1}+ix_{2}$ and $y=y_{1}+iy_{2}$ .
Then, separating the real and the imaginary parts of (1), we have

(22) $x_{1}^{2}-x_{2}^{2}+y_{1}^{2}-y_{2}^{2}+z^{2}=(x_{1}y_{1}-x_{2}y_{2})z$

and

(23) $2(x_{1}x_{2}+y_{1}y_{2})=(x_{1}y_{2}+x_{2}y_{1})z$ .

PROPOSITION 7. If $x_{1}=y_{1}=0$ , then the group $G=\langle A, B\rangle$ is Kleinian.

PROOF. By Lemma 1 we have $b_{1}=-2x_{2}/z+i(x_{2}-2y_{2}/z)$ and $c_{1}=2x_{2}/z+$

$i(x_{2}-2y_{2}/z)$ so that $b_{1}=-\overline{c}_{1}$ . We also have $b_{2}=-\overline{c}_{2}$ . It follows that

$A= \frac{1}{2}(\begin{array}{ll}ix_{2} -c_{1}c_{1} ix_{2}\end{array})$ and $B= \frac{1}{2}(\begin{array}{ll}iy_{2} -\overline{c}_{2}c_{2} iy_{2}\end{array})$ .

It is easy to see that both $A$ and $B$ leave invariant the unit circle $\{w\in C||w|$

$=1\}$ . Therefore the limit set of $G$ is contained in the unit circle. Hence $G$

is Kleinian.

Because of this proposition we henceforth assume

(AO) $x_{1}\neq 0$ or $y_{1}\neq 0$ .

Next we consider the case in which either $x$ or $y$ is real.

PROPOSITION 8 (LEMMA A.2 in [2]). Let $\langle$X, $Y\rangle$ $\subset PSL(2, C)$ be a free group
such that $trace(XYX^{-1}Y^{-1})=-2$ . If $trace(X)$ and $trace(Y)$ are both real, then
$\langle$X, $Y\rangle$ is a quast-Fuchstan group.

Putting $X=AB$ and $Y=A$ or $B$ , we see by Lemma 3 that $trace(XYX^{-1}Y^{-1}\rangle$

$=-2$ . If either $x$ or $y$ is real, then Proposition 8 implies that $G=\langle A, B\rangle=$

$\langle$AB, $A\rangle$ $=\langle AB, B\rangle$ is Kleinian. Henceforth we assume

(A1) $x_{2}\neq 0$ and $y_{2}\neq 0$ .
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If $x_{1}=0$ or $y_{1}=0$, say $x_{1}=0$ , then we have by (23) and (AO) that $y_{2}=x_{2}z/2$ .
Substituting this into (22), we have $y_{1}^{2}+((z/2)^{2}-1)x_{2}^{2}+z^{2}=0$ . In view of (2)

this equation does not hold. Hence we may assume hereafter

(A2) $x_{1}\neq 0$ and $y_{1}\neq 0$ .

For the case in which $|x|=|y|$ we have

LEMMA 4. If $|x|=|y|$ , then $y=\overline{x}$ .
PROOF. First we shall show that $|x|=|y|$ implies

$x_{1}x_{2}+y_{1}y_{2}=x_{1}y_{2}+x_{2}y_{1}=0$ .

Assume to the contrary that $x_{1}y_{2}+x_{2}y_{1}\neq 0$ . Then by (23) we have $x_{1}x_{2}+y_{1}y_{2}$

$\neq 0$ . We also have

(24) $z= \frac{2(x_{1}x_{2}+y_{1}y_{2})}{x_{1}y_{2}+x_{2}y_{1}}$ .

Substituting (24) into (22) and factoring, we have

$\langle$25) $4(x_{1}x_{2}+y_{1}y_{2})^{2}=(x_{1}y_{2}+x_{2}y_{1})(x_{2}y_{1}-x_{1}y_{2})(|x|^{2}-|y|^{2})$ .
The assumption $|x|=|y|$ and (25) imply $x_{1}x_{2}+y_{1}y_{2}=0$ , a contradiction. Hence
we have shown that $x_{1}y_{2}+x_{2}y_{1}=0$ . By (23) we have $x_{1}x_{2}+y_{1}y_{2}=0$ . Thus we
have the desired equalities.

NOW, adding $2(x_{1}x_{2}+y_{1}y_{2})=0$ to $|x|^{2}=|y|^{2}$ , we have

$(x_{1}+x_{2}-y_{1}+y_{2})(x_{1}+x_{2}+y_{1}-y_{2})=0$ .
If $x_{1}+x_{2}-y_{1}+y_{2}=0$ (resp. $x_{1}+x_{2}+y_{1}-y_{2}=0$), then we have from $x_{1}x_{2}+y_{1}y_{2}=0$

the following.

$(x_{1}+y_{2})(x_{2}+y_{2})=0$ (resp. $(x_{1}+y_{1})(x_{2}+y_{1})=0$).

There are four cases to consider.
CASE I. $y_{1}=x_{1}+x_{2}+y_{2}$ and $y_{2}=-x_{1}$ : In this case we have $y=y_{1}+iy_{2}=$

$\langle$ $x_{1}+x_{2}-x_{1})+(-x_{1})i=-i(x_{1}+ix_{2})=-ix$ . Then (1) becomes $z^{2}=-ix^{2}z$ . Hence
we have $z=-ix^{2}=2x_{1}x_{2}-i(x_{1}^{2}-x_{2}^{2})$ . By (2) we have $x_{1}=x_{2}$ so that $x=(1+i)x_{1}$ .
It follows that $y=-ix=(1-i)x_{1}=\overline{x}$ .

CASE II. $y_{1}=x_{1}+x_{2}+y_{2}$ and $y_{2}=-x_{2}$ : In this case we have $y=(x_{1}+x_{2}-$

$x_{2})+i(-x_{2})=x_{1}-ix_{2}=\overline{x}$ .
CASE III. $y_{2}=x_{1}+x_{2}+y_{1}$ and $y_{1}=-x_{1}$ : In this case we have $y=-x_{1}+$

$(x_{1}+x_{2}-x_{1})i=-x_{1}+ix_{2}=-\overline{x}$ . Then (1) becomes $x^{2}+X^{2}+z^{2}=-|x|^{2}z$ . Substi-
tuting $x=x_{1}+ix_{2}$ into this equation, we have

$(z+2)x_{1}^{2}+(z-2)x_{2}^{2}+z^{2}=0$ .
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But (2) implies that the left hand side of this is positive. Hence this case
does not occur.

CASE IV. $y_{2}=x_{1}+x_{2}+y_{1}$ and $y_{1}=-x_{2}$ : In this case we have $y=-x_{2}+$

$i(x_{1}+x_{2}-x_{2})=ix$ . Then (1) becomes $z^{2}=ix^{2}z$ . Hence we have $z=ix^{2}=-2x_{1}x_{2}+$

$i(x_{1}^{2}-x_{2}^{2})$ . By (2) we have $x_{2}=-x_{1}$ so that $x=(1-i)x_{1}$ and $y=ix=(1+i)x_{1}=\overline{x}$ .
Thus we have shown that $y=X$ in all cases and the proof of the lemma

is completed.

By Theorem 4 and Lemma 4 we can omit the case in which $|x|=|y|$ , so
we assume hereafter

(A3) $|x|\neq|y|$ .

It is not hard to see from (23), (A1) and (A2) that if $x_{1}y_{2}+x_{2}y_{1}=0$ , then $|x|$

$=|y|$ . So we assume hereafter

(A4) $x_{1}y_{2}+x_{2}y_{1}\neq 0$ .

We note that (A4) and (23) imply that (24) and (25) are available. For later
use we prove two lemmas.

LEMMA 5. $(x_{1}^{2}-y_{1}^{2})(x_{2}^{2}-y_{2}^{2})>0$ .

PROOF. By (A4) we see that $xy\neq\overline{x}\overline{y}$ . So from (1) and $\overline{x}^{2}+\overline{y}^{2}+z^{2}=\overline{x}\overline{y}z$

we have $z=(x^{2}+y^{2}-\overline{x}^{2}-\overline{y}^{2})/(xy-\overline{x}\overline{y})$ . From this equality one computes and
obtains

$z+2=2(x_{1}+y_{1})(x_{2}+y_{2})/(x_{1}y_{2}+x_{2}y_{1})$

and
$z-2=2(x_{1}-y_{1})(x_{2}-y_{2})/(x_{1}y_{2}+x_{2}y_{1})$ .

Hence we have

(26) $z^{2}-4=4(x_{1}^{2}-y_{1}^{2})(x_{2}^{2}-y_{2}^{2})/(x_{1}y_{2}+x_{2}y_{1})^{2}$ .

By (2) we have Lemma 5.

LEMMA 6. $x_{1}y_{1}>0$ .

PROOF. In view of (25) there are several cases to consider. First we
assume $|x|>|y|$ . If $x_{1}y_{2}+x_{2}y_{1}>0$ (resp. $<0$), then by (24) we have $x_{1}x_{2}+y_{1}y_{2}$

$>0$ (resp. $<0$). By Lemma 5 we have $|x_{1}x_{2}|>|y_{1}y_{2}|$ . It follows that $x_{1}x_{2}>0$

(resp. $<0$). By (25) we have $x_{2}y_{1}-x_{1}y_{2}>0$ (resp. $<0$) so that $x_{2}y_{1}>0$ (resp.
$<0)$ . Therefore we obtain $x_{1}x_{2}^{2}y_{1}>0$ . Hence $x_{1}y_{1}>0$ . Next we assume $|x|<$

$|y|$ . If $x_{1}y_{2}+x_{2}y_{1}>0$ (resp. $<0$), then by (24) we have $x_{1}x_{2}+y_{1}y_{2}>0$ (resp.

$<0)$ . By our assumption $|x|<|y|$ and by Lemma 5 we have $|y_{1}y_{2}|>|x_{1}x_{2}|$ .
$lt$ follows that $y_{1}y_{2}>0$ (resp. $<0$). By (25) we have $x_{2}y_{1}-x_{1}y_{2}<0$ (resp. $>0$)
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so that we have $x_{1}y_{2}>0$ (resp. $<0$). Hence we obtain $x_{1}y_{1}y_{2}^{2}>0$ so that $x_{1}y_{1}$

$>0$ . Thus we have shown in all cases that $x_{1}y_{1}>0$ .

\S 5. Comparison.

In this section we shall show that Theorem 1 and Proposition 5, which is
a special case of Theorem 2, are equivalent. As mentioned in \S 4, we are as-

suming $(A1)\sim(A4)$ and so (24) and (25) are available. Recall that $V=(\begin{array}{ll}a bc d\end{array})$

and $a+d=y$ under normalization II. Write $a$ and $d$ as the sum of their real
and imaginary parts so that

$a=a_{1}+ia_{2}$ , and $d=d_{1}+id_{2}$ .

LEMMA 7. $a_{1}d_{1}>0$ .

PROOF. By (A2) and (18) we have i) $a_{1}+d_{1}\neq 0$ , ii) $a_{1}d_{1}-a_{2}d_{2}=c^{2}$ and iii)

$a_{1}d_{2}+a_{2}d_{1}=0$ . If $a_{1}=0$ , then by i) we have $d_{1}\neq 0$ . Then iii) implies $a_{2}=0$

so tbat $a=0$ . But $ad=c^{2}\neq 0$ , it does not occur. Hence $a_{1}\neq 0$ . If $a_{2}=0$ , then
by iii) we have $d_{2}=0$ . Then $y_{2}=a_{2}+d_{2}=0$ . This contradicts (A1). Hence $a_{2}$

$\neq 0$ . From ii) and iii) we then have

$d_{2}=(a_{1}d_{1}-c^{2})/a_{2}=-a_{2}d_{1}/a_{1}$ ,

so that we have $|a|^{2}d_{1}=c^{2}a_{1}$ . Since $c^{2}>0$ , this implies that $a_{1}$ and $d_{1}$ must
have the same sign.

LEMMA 8. The condition of Propost tion 5 is equivalent to

(27) $\frac{z}{2}(c-\frac{1}{c})>|\frac{d-\overline{d}}{d+\overline{d}}|$ .

PROOF. By Lemma 7 and (17) we see that the real parts of the centers
$a/c$ and $-d/c$ of the circles $C_{1}$ and $C_{2}$ , respectively, have different signs.
Moreover we see from (18) and (19) that $C_{1}$ and the positive multiple $|a/d|$ of
$C_{2}$ are symmetric with respect to the imaginary axis. Hence the condition of
Proposition 5 that $C_{1}$ and $C_{2}$ are separated by the imaginary axis is equivalent
to saying that if $l_{1}$ and $l_{2}$ are lines passing through $0$ and tangent to $C_{1}$ at $t_{1}$

and at $t_{2}$ , respectively, then the real parts of $t_{1}$ and $t_{2}$ have the same sign. A
calculation shows that

(28) $t_{1}= \frac{1}{d}(c-\frac{1}{c}+\frac{2}{z}i)$ and $t_{2}= \frac{1}{d}(c-\frac{1}{c}-\frac{2}{z}i)$ .

Hence we have
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${\rm Re}(t_{1})=((c-1/c)(d+d)-u(d-\overline{d})/z)/|d|^{2}$

and
${\rm Re}(t_{2})=((c-1/c)(d+\overline{d})+2i(d-\overline{d})/z)/|d|^{2}$ .

So $the_{-}^{-}condition{\rm Re}(t_{1}){\rm Re}(t_{2})>0$ is equivalent to

$(c-1/c)^{2}(d+d)^{2}+4(d-d)^{2}/z^{2}>0$ .

Noting $(d-\overline{d})^{2}=-|d-\overline{d}|^{2}$ , we obtain (27).

TO compare (4) and (27) we need to rewrite (27) in $x$ and $y$ .

LEMMA 9. $\frac{z}{2}(c-\frac{1}{c})=|x_{1}y_{2}+x_{2}y_{1}|/\sqrt{(x_{1}^{2}-y_{1}^{2})(x_{2}^{2}-y_{2}^{2})}$ .

PROOF. By (26) we have

$(z/2)^{2}-1=(x_{1}^{2}-y_{1}^{2})(x_{2}^{2}-y_{2}^{2})/(x_{1}y_{2}+x_{2}y_{1})^{2}$

and by (17) we have

$\frac{z}{2}(c-\frac{1}{c})=2/(\alpha-\beta)=1/\sqrt{(z/2)^{2}-1}$ .

Hence the lemma follows.

LEMMA 10. $| \frac{d-\overline{d}}{d+\overline{d}}|=\sqrt{}\overline{(x_{1}^{2}-y_{1}^{2})/(x_{2}^{2}-y_{2}^{2})}$ .

PROOF. We know that $a$ and $d$ are the solutions of the equation $X^{2}-$

$(a+d)X+ad=X^{2}-yX+c^{2}=0$ . One checks that $(y\pm(y_{2}Y+iy_{1}/Y))/2$ satisfy the
equation, where we put $Y=\sqrt{(x_{1}^{2}-y_{1}^{2})/(x_{2}^{2}-y_{2}^{2})}$. Hence we have

$(d-\overline{d})/(d+\overline{d})=i(y_{2}\pm y_{1}/Y)/(y_{1}\pm y_{2}Y)=\pm iY$ .
Thus we have Lemma 10.

$lt$ follows from Lemmas 9 and 10 that (27) can be written as

(29) $|x_{1}y_{2}+x_{2}y_{1}|>|x_{2}^{2}-y_{2}^{2}|$ .
LEMMA 11. Keen’s inequality (4) is equivalent to (29).

PROOF. Substituting (24) into (4), we have

$| \frac{x_{1}x_{2}+y_{1}y_{2}}{x_{1}y_{2}+x_{2}y_{1}}x_{2}-y_{2}|<|x_{1}|$ .

Making use of (A2), one can reduce this to (29) easily.

Thus we have completed our comparison with the conclusion that Theorem
1 and Proposition 5 are equivalent.
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\S 6. Improvement and the proof of Theorem 3.

In this section we shall improve Proposition 6 under normalization I yield-
ing a proof of Theorem 3. To compare two normalizations I and II we in-
troduce a map. Let

$w-t_{1}$

(30) $T(w)=q_{A}\overline{w-t_{2}}$

where $q_{AB}$ is in (13) and $t_{1},$ $t_{2}$ are in (28). The following lemmas explain the
map $T$ .

LEMMA 12. $T(O\rangle=p_{AB}, T(\infty)=q_{AB},$ $T(p_{1})=1$ and $T(p_{2})=-1$ , where $p_{AB}$ is
in (13) and $p_{1},$ $p_{2}$ are in (20).

PROOF. We note that by (17) and (18) we can write (13) in the following
form:

$p_{AB}=-1/c+2i/z$ and $q_{AB}=1/c+2i/z$ .

TO show $T(O)=p_{AB}$ it suffices to show

$(1/c+2i/z)(c-1/c+2i/z)=(-1/c+2i/z)(c-1/c-2i/z)$ .

Making use of the identity

(31) $c^{2}=z^{2}/(z^{2}-4)$ or $1/c^{2}+4/z^{2}=1$ ,

one can check the above equality. The second is clear. Since $p_{1}=(c+1)/d$ ,

to see $T(p_{1})=1$ it suffices to show

$(1/c+2i/z)(1+1/c-2i/z)=1+1/c+2i/z$ .

It is easy to see that this is equivalent to (31), so we have the third. The
same computation shows that $T(p_{2})=-1$ with $p_{2}=(c-1)/d$ in place of $p_{l}$ .

LEMMA 13. $TUT^{-1}=AB$ .

PROOF. Both TUT and $AB$ bave the same fixed points $p_{AB}$ and $q_{AB}$ and
map $-1$ to 1, so they are identical.

We denote by $D_{AB}$ and $D_{AB}’$ the isometric circles of $AB$ and $(AB)^{-1}$ , res-
pectively. By (12) we see that the centers of $D_{AB}$ and $D_{AB}’$ are $-1+2i/z$ and
$1+2i/z$ , respectively. Since their radii are identical and equal $2/z$ , they are
tangent to the real axis at $-1$ and at 1, respectively. Denoting by $R$ the real
axis, we have the following.

LEMMA 14. $T(C_{1})=R,$ $T(R_{1})=D_{AB}’$ and $T(R_{2})=D_{AB}$ , where $C_{1}$ is in (19) and
$R_{1},$ $R_{2}$ are in (21).
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PROOF. Recall that $p_{1}$ and $p_{2}$ are points on $C_{1}$ . Lemma 12 tells us that
$T(p_{1})$ and $T(p_{2})$ lie on the real axis. Also recall that $t_{1}$ is the point at which
$l_{1}$ and $C_{1}$ are tangent. Hence $t_{1}$ is the third point on $C_{1}$ and $T(t_{1})=0$ by (30).
Therefore we have $T(C_{1})=R$ . Next we show $T(R_{1})=D_{AB}’$ . Since $C_{1}$ and $R_{1}$

are tangent at $p_{1}$ , Lemma 12 tells us that $T(R_{1})$ is a circle tangent to $R$ at
$-1$ . By (20) and (21) we see that $-p_{1}$ lies on $R_{1}$ . Hence it suffices to show
that $T(-p_{1})$ lies on $D_{AB}’$ . One computes and obtains $T(-p_{1})=(z^{2}-4+4zi)/(z^{2}+$

4). It is easy to see that this point lies on $D_{AB}’$ . Thus we have shown that
$T(R_{1})=D_{AB}’$ . A similar argument and computation give us $T(R_{2})=D_{AB}$ .

Next we shall show that the generators $A$ and $B$ are conjugate to $UV^{-\iota}$

and to $V$ by $T$ , respectively. In order to show this we prove two lemmas.

LEMMA 15. The fixed pmnts of $TVT^{-1}$ are symmetnc wzth respect to the
origin.

PROOF. Writing the matrices of $T$ and $T^{-1}$ in $GL(2, C)$ as

$(\begin{array}{ll}q_{AB} -q_{AB}t_{1}1 -t_{2}\end{array})$ and $(\begin{array}{ll}t_{2} -q_{AB}t_{1}1 -q_{AB}\end{array})$ ,

respectively, one computes that the matrix of $TVT^{-1}$ is

( $q_{AB}(-at_{1}+dt_{2}+ct_{1}t_{2}-b)*$).
Hence it suffices to show that

$at_{2}-dt_{1}-ct_{1}f_{2}+b=-at_{1}+dt_{2}+ct_{1}t_{Z}-b$ .
This is equivalent to

$(a-d)(t_{1}+t_{2})-2ct_{1}t_{2}+2b=0$ .
Making use of the equalities $t_{1}+f_{2}=2(c-1/c)/d,$ $t_{1}t_{2}=(c^{2}-1)/d^{2},$ $b=(c^{2}-1)/c$ and
$d=c^{2}/a$ , which follow easily from (28), (17) and (18), and of (31), one checks
this easily.

LEMMA 16. The fixed points of $T(UV^{-1})T^{-1}$ are symmetnc with respect to
the ongin.

PROOF. The idea of the proof is the same as that of Lemma 15. Noting

that the matrix of $UV^{-1}$ is $(_{-\beta c}^{\alpha d}-\alpha b\beta a)$ , one computes the matrix of $TUV^{-1}T^{-1}$ ;

the 1–1 element is $q_{AB}(-\beta at_{1}+\alpha dt_{2}+\beta ct_{1}t_{2}-\alpha b)$ and the 2–2 element is
$q_{AB}(\beta at_{2}-\alpha dt_{1}-\beta ct_{1}t_{2}+\alpha b)$ . Hence it suffices to show tbat

$-\beta at_{1}+\alpha dt_{2}+\beta ct_{1}t_{2}-\alpha b=\beta at_{2}-\alpha dt_{1}-\beta ct_{1}r_{2}+\alpha b$

or
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$(\beta a-\alpha d)(T_{1}+t_{2})-2\beta ct_{1}t_{2}+2\alpha b=0$ .

Making use of the five equalities in the proof of Lemma 15, one checks this
easily.

By [3] or by a straightforward computation we see that $p_{2}$ is the fixed
point of the parabolic element $VU^{-1}V^{-1}U$ . Lemma 12 tells us that the fixed
point of $T(VU^{-1}V^{-1}U)T^{-1}$ is at $-1$ . Since $T(UV^{-1})^{-1}V^{-1}(UV^{-1})VT^{-1}=$

$T(^{l}VU^{-1}V^{-1}U)T^{-1}$ , we see by Lemmas 15 and 16 that $T(UV^{-1})T^{-1}$ and $TVT^{-1}$

have the same normalization as $A$ and $B$ . Lemma 13 says that our choice (17)

in normalization II is compatible with (11) in normalization I. Therefore, by
the uniqueness of $A$ and $B$ in normalization I we have the following.

PROPOSITION 9. $T(UV^{-1})T^{-1}=A$ and $TVT^{-1}=B$ .

NOW we see by Proposition 9 that, under normalization I, Proposition 6
assumes the following form.

PROPOSITION 6’. Assume that $A(R)\cap D_{AB}’\neq\emptyset$ and $B^{-1}(R)\cap D_{AB}\neq\emptyset$ . If each
of $A(R)$ and $B^{-1}(R)$ does not meet $R$ , then $G=\langle A, B\rangle$ is Kleinian.

Here we show that the first assumption of Proposition 6’ is equivalent to (6).

LEMMA 17. (6) is $eq\iota uvalent$ to the conditions

$A(R)\cap D_{AB}’\neq\emptyset$ and $B^{-1}(R)\cap D_{AB}\neq\emptyset$ .
PROOF. The condition that $A(R)\cap D_{AB}’\neq\emptyset$ and $B^{-1}(R)\cap D_{AB}\neq\emptyset$ is equi-

valent to that $C_{2}\cap R_{2}\neq\emptyset$ and $U(C_{2})\cap R_{1}\neq\emptyset$ . These are equivalent to the
condition that the absolute values of the centers of $C_{2}$ and $U(C_{2})$ satisfy the
following:

$|d|/c<|a|/c<\alpha^{2}|d|/c$ .
It is also equivalent to the conditions that $|a|-|d|>0$ and $\beta|a|-\alpha|d|<0$ .
Writing $a=|a|e^{\iota\theta}$ and $d=|d|e^{-i\theta}$ , ( $\theta\neq 0,$ $\pi$ by (A1)), we see that

${\rm Im}(trace(V))={\rm Im}(a+d)=(|a|-|d|)\sin\theta$

and
${\rm Im}(trace(VU^{-1}))={\rm Im}(\beta a+\alpha d)=(\beta|a|-\alpha|d|)\sin\theta$ .

Since $x_{2}={\rm Im}(trace(VU^{-1}))$ and $y_{2}={\rm Im}(trace(V))$ , it follows that the condition
is equivalent to $x_{2}y_{2}<0$ .

We set $A(R)=D_{AB^{-1}},$ $A^{-1}(R)=D_{A^{-1}B}’,$ $B(R)=D_{AB^{-1}}’$ and $B^{-1}(R)=D_{A^{-1}B}$ . Then
$D_{A^{-1}B}’=A^{-1}B(D_{A^{-1}B})$ and $D_{AB^{-1}}’=BA^{-1}(D_{BA^{-1}})$ . By the normalization of $A$ and
$B$ we see that $D_{A^{-1}B}$ and $D_{BA}’-1$ (resp. $D_{BA^{-}1}’$ and $D_{A1B}-$) are symmetric with
respect to the origin.
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PROPOSITION 10. Under the assumption of Proposition 6’, the extenor of
eight circles $D_{AB},$ $D_{AB}’,$ $D_{BA},$ $D_{BA}’,$ $D_{A^{-1}B},$ $D_{A^{-1}B}’,$ $D_{BA^{-1}}$ and $D_{BA^{-1}}’$ is a fundamental
domain for the normal subgroup $H=\langle AB, BA, A^{-1}B, BA^{-1}\rangle$ of $G$ .

PROOF. The assumption of Proposition 6’ tells us that the exterior of the
eight circles consists of two polygonal regions, one is bounded and contains
the origin and the other is unbounded. It is not hard to check the cycle con-
dition of the Poincar\’e theorem. It follows that it is a fundamental domain for
$H$. It is easy to see that the quotient of the region of discontinuity $\Omega(H)$ by
$H$ is a pair of twice punctured surfaces of genus 2.

The proof of Proposition 10 does not need the condition that both $D_{A^{-1}B}$

and $D_{BA^{-1}}$ do not intersect the real axis, $R$, but only the fact, which the con-
dition implies, that they do not intersect four circles lying in the lower half
plane. So we have the following.

PROPOSITION 11. Let $G$ be a group satisfying (1), (2), (3) and (6). If the
eight conditions below are satisfied, then the extenor of eight circles in Propost-
tion 10 is a fundamental domain for $H$ and so $G$ is Klurnian:

i) $D_{A^{-1}B}\cap D_{BA}=\emptyset$ ii) $D_{A^{-1}B}\cap D_{A^{-1}B}’=\emptyset$ iii) $D_{A^{-1}B}\cap D_{BA^{-1}}’=\emptyset$ iv) $D_{A^{-1}B}$

$\cap D_{BA}’=\emptyset$ v) $D_{BA^{-1}}\cap D_{BA}=\emptyset$ vi) $D_{BA^{-1}}\cap D_{A^{-1}B}’=\emptyset$ vii) $D_{BA^{-1}}\cap D_{BA^{-1}}’=\emptyset$

viii) $D_{BA-1}\cap D_{BA}’=\emptyset$ .
We shall write these eight conditions in terms of moduli $(x, y, z)$ and then

compare them with the conditions of Theorem 3. Before to do this we need
two preparatory lemmas.

LEMMA 18. The centers and the radii of $D_{A^{-1}B}$ and $D_{BA^{-1}}$ are
$(|y|^{2}-b_{2}\overline{c}_{2})/(y\overline{c}_{2}-\overline{y}c_{2})$ and $-(|x|^{2}-b_{1}\overline{c}_{1})/(x\overline{c}_{1}-\overline{x}c_{1})$

$4/|y\overline{c}_{2}-:7c_{2}|$ and $4/|x\overline{c}_{1}-\overline{x}c_{1}|$ ,
respectively.

PROOF. Since $D_{A-1B}=B^{-1}(R)$ , it passes through $B^{-1}(0)=-b_{2}/y,$ $B^{-1}(\infty)=$

$-y/c_{2}$ and $B^{-1}(1)=(y-b_{2})/(y-c_{2})$ . Elementary geometry gives us the values
for the center and the radius of $D_{A^{-1}B}$ as stated in the lemma. The statement
for $D_{BA^{-1}}$ follows similarly.

By Lemma 1 we have easily the following.

LEMMA 19.

$|x|^{2}-b_{1} \overline{c}_{1}=\frac{2}{z}(x\overline{y}+\overline{x}y-2i|x|^{2})+\frac{4}{z^{2}}(|x|^{2}-|y|^{2}-i(x5^{i}+\overline{x}y))$
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$|y|^{2}-b_{2} \overline{c}_{2}=\frac{2}{z}(x5^{i}+\overline{x}y+2i|y|^{2})-\frac{4}{z^{2}}(|x|^{2}-|y|^{2}+i(x5^{i}-\overline{x}y))$

$x \overline{b}_{1}-\overline{x}b_{1}=-\frac{2i}{z}(2|x|^{2}-i(x\overline{y}-\overline{x}y))$

$x \overline{c}_{1}-\overline{x}c_{1}=\frac{2i}{z}(2|x|^{2}+i(x\overline{y}-\overline{x}y))$

$y \overline{b}_{2}-5^{i}b_{2}=\frac{2i}{z}(2|y|^{2}-i(x5^{i}-\overline{x}y))$

$y \overline{c}_{2}-j^{7}c_{2}=-\frac{\ }{z}(2|y|^{2}+i(x 5^{i}-\overline{x}y))$ .

NOW we shall rewrite the eight conditions. We shall begin with iii).
iii) Since $D_{A^{-1}B}$ and $D_{BA}’-1$ are symmetric with respect to the origin, Lemma

18 tells us that the condition is equivalent to

$||y|^{2}-b_{2}\overline{c}_{2}|>4$ .
Making use of the equality $16=(y^{2}-b_{2}c_{2})(y^{2}-b_{2}c_{2})$ , one reduces the inequality
$(|y|^{2}-b_{2}\overline{c}_{2})(|y|^{2}-\overline{b}_{2}c_{2})>16$ , which is equivalent to the above, to

$(y\overline{b}_{2}-\overline{y}b_{2})(y\overline{c}_{2}-\overline{y}c_{2})>0$ .
By Lemma 19 one reduces this to

$4|y|^{4}+(x\overline{y}-\overline{x}y)^{2}>0$ .
This is equivalent to

(9) $2|y|^{2}>|x\overline{y}-\overline{x}y|$ .
vi) By a computation similar to iii) we can rewrite the condition as

(8) $2|x|^{2}>|x\overline{y}-\overline{x}y|$ .
i) The center and the radius of $D_{BA}$ are $-1-2i/z$ and $2/z$ , respectively.

It follows from Lemma 18 that the condition is equivalent to

$|(|y|^{2}-b_{2}\overline{c}_{2})/(y\tilde{c}_{2}-5^{i}c_{2})+1+2i/z|>4/|y\overline{c}_{2}-\overline{y}c_{2}|+2/z$ .
By Lemma 19 one eliminates $b_{2},$ $c_{2}$ and obtains

$|zx\overline{y}-|y|^{2}+3|x|^{2}-2i\overline{x}y|>z^{2}+2|x|^{2}+i(x\overline{y}-\overline{x}y)$ .

Squaring both sides, making use of the identity $z^{4}=(x^{2}+y^{2}-xyz)(\overline{x}^{2}+\overline{y}^{2}-\overline{x}\overline{y}z)$

and dividing by $2|x|^{2}+i(x\overline{y}-\overline{x}y)$ , one obtains

(32) $z(x\overline{y}+\overline{x}y)>z^{2}-|x|^{2}+|y|^{2}$ .
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viii) By a computation similar to i) we can rewrite the condition as
(33) $z(x5^{i}+\overline{x}y)>z^{2}+|x|^{2}-|y|^{2}$ .
We note that two conditions i) and viii) are written together as

(34) $z(x\overline{y}+\overline{x}y)>z^{2}+||x|^{2}-|y|^{2}|$ .
iv) Since the center of $D_{A^{-1}B}$ lies in the left half plane $\{w\in C|{\rm Re}(w)<0\}$

and since $D_{AB}$ and $D_{AB}’$ are symmetric with respect to the imaginary axis, the
condition is included in i).

v) By a similar reasoning to iv) we see that the condition is included in
viii).

Before rewriting ii) and vii), we show the following.

LEMMA 20.
$-(x\overline{c}_{1}-\overline{x}c_{1})(y\overline{b}_{2}-\overline{y}b_{2})-(y\overline{c}_{2}-\overline{y}c_{2})(x\overline{b}_{1}-\overline{x}b_{1})-32$

$=(|x|^{2}-b_{1}\overline{c}_{1})(|y|^{2}-\overline{b}_{2}c_{2})+(|x|^{2}-\overline{b}{}_{1}C_{1})(|y|^{2}-b_{2}\tilde{c}_{2})$ .
PROOF. Since $D_{A-1B}$ and $D_{BA^{-1}}$ are tangent externally, we have by Lemma 18

$|(|x|^{2}-b_{1}\overline{c}_{1})/(x\overline{c}_{1}-\overline{x}c_{1})+(|y|^{2}-b_{2}\tilde{c}_{2})/(y\overline{c}_{2}-\overline{y}c_{2})|$

$=4/|x\overline{c}_{1}-\overline{x}c_{1}|+4/|y\overline{c}_{2}-\overline{y}c_{2}|$ .

Squaring both sides, making use of the identities

$16=(x^{2}-b_{1}c_{1})(\overline{x}^{2}-\tilde{b}{}_{1}\overline{C}_{1})$

$=|x|^{4}-(\overline{b}{}_{1}\overline{C}_{1}X^{2}+b_{1}c_{1}\overline{x}^{2})+|b_{1}c_{1}|^{2}$

$16=|y|^{4}-(\overline{b}{}_{2}\tilde{C}_{2}y^{2}+b_{2}c_{2}\overline{y}^{2})+|b_{2}c_{2}|^{2}$

$|x\overline{c}_{1}-\overline{x}c_{1}||y\overline{c}_{2}-jc_{2}|=(x\overline{c}_{1}-\overline{x}c_{1})(y\tilde{c}_{2}-5c_{2})$

and dividing by $(x\overline{c}_{1}-\overline{x}c_{1})(y\overline{c}_{2}-\overline{y}c_{2})$ , one obtains the desired equality.

ii) By Lemma 18 we see that the condition is equivalent to

$|(|y|^{2}-b_{2}\overline{c}_{2})/(y\overline{c}_{2}-\overline{y}c_{2})-(|x|^{2}-b_{1}\overline{c}_{1})/(x\tilde{c}_{1}-\overline{x}c_{1})|$

$>4/|x\overline{c}_{1}-\overline{x}c_{1}|+4/|y\overline{c}_{2}-j^{7}c_{2}|$ .
This is equivalent to

$|(|y|^{2}-b_{2}\overline{c}_{2})/(y\tilde{c}_{2}-5^{i}c_{2})-(|x|^{2}-b_{1}\overline{c}_{1})/(x\overline{c}_{1}-\overline{x}c_{1})|$

$>|(|y|^{2}-b_{2}\overline{c}_{2})/(y\overline{c}_{2}-\overline{y}c_{2})+(|x|^{2}-b{}_{1}\overline{C}_{1})/(x\overline{c}_{1}-\overline{x}c)|$ ,

because $D_{A^{-1}B}$ and $D_{BA}-1$ are tangent externally. It is easy to see that this is
equivalent to
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$(|y|^{2}-b_{2}\overline{c}_{2})(|x|^{2}-\overline{b}_{1}c_{1})+(|x|^{2}-b_{1}\overline{c}_{1})(|y|^{2}-\overline{b}_{2}c_{2})>0$ .
By Lemmas 19 and 20 we obtain

$(2|x|^{2}+i(x\overline{y}-\overline{x}y))(2|y|^{2}-i(x\overline{y}-\overline{x}y))$

$+(2|y|^{2}+i(x\overline{y}-\overline{x}y))(2|x|^{2}-i(x\overline{y}-\overline{x}y))>8z^{2}$

This is equivalent to

(35) $(x5^{i}+\overline{x}y)^{2}>4z^{2}$ .
By (34) and (35) we obtain

(7) $x\overline{y}+\overline{x}y>2z$ .
vii) By symmetry it is clear that the condition is equivalent to (35) in ii).

Thus we have shown that, under the conditions (1), (2), (3) and (6), the eight
conditions are $eq\iota uvalent$ to four conditions (7), (8), (9) and (34).

NOW we shall prove Theorem 3. To prove the theorem it suffices to show
that (34) follows from other conditions. If we could show

$z^{2}>||x|^{2}-|y|^{2}|$ ,

then (34) would follow from (7). By (24) and (25) we see that the desired ine-
quality is equivalent to

$|x_{1}y_{2}-x_{2}y_{1}|>|x_{1}y_{2}+x_{2}y_{1}|$ .
Since $x_{1}y_{1}>0$ by Lemma 6 and since $x_{2}y_{2}<0$ by (6), it holds except for the
cases in \S 4, in which $G$ is Kleinian. Thus we have shown that (34) follows
from others and have completed the proof of Theorem 3.
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