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1. Introduction.

We shall consider the blow-up problem for the nonlinear Schr\"odinger equa-
tion:

$C(p)$ $\{$

(NS) $2i \frac{\partial u}{\partial t}+\Delta u+|u|^{p-1}u=0$ $(t, x)\in R_{+}\cross R^{N}$ ,

(IV) $u(O, x)=u_{0}(x)$ , $x\in R^{N}$

Here $i=\sqrt{-1},$ $u_{0}\in H^{1}(R^{N})$ and $\Delta$ is the Laplace operator on $R^{N}$ . The nonlinear
Schr\"odinger equation of the form (NS) arises in various domains of physics,
$e.g.$ , fluids, plasmas and optics. The equation (NS) also derived from a field
equation for a quantum mechanical nonrelativistic many body system in the
semi-classical limit.

The unique local existence of solutions of $C(p)$ is well known for $1<p<$

$2^{*}-1$ ($2^{*}=2N/(N-2)$ if $N\geqq 3,$ $=\infty$ if $N=1,2$): For any $u_{0}\in H^{1}(R^{N})$ , there
exists a unique solution $u(t, x)$ of $C(p)$ in $C([0, T_{m});H^{1}(R^{N}))$ for some $T_{\pi\iota}\in$

$(0, \infty]$ (maximal existence time), and $u(t)$ satisfies the following two conserva-
tion laws of $L^{2}$ and the energy:

(1.1) I $u(t)$ I $=Hu_{0}||$ ,

(1.2) $E_{p+1}(u(t)) \equiv||\nabla u(t)||^{2}-\frac{2}{p+1}||u(t)||_{p+1}^{p+1}=E_{p+1}(u_{0})$ ,

for $t\in[0, T_{m})$ , where $||\cdot||$ and $||\cdot||_{p+1}$ denotes the $L^{2}$ norm and $L^{p+1}$ norm re-
spectively. Furthermore $T_{m}=\infty$ or $T_{m}<\infty$ and $\lim_{tarrow\tau_{m}}||\nabla u(t)||=\infty$ . For details,
see $e.g.,$ $[11,12,14]$ .
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AS for the existence and non-existence of global solutions of $C(p)$ , the fol-
lowing is well known (see [11, 12, 13, 14, 30, 31]).

(i) If $1<p<1+4/N$, there exists a global solution $u\in C_{b}(R;H^{1}(R^{N}))$ , for
any $u_{0}\in H^{1}(R^{N})$ , where $C_{b}(R;H^{1}(R^{N}))=C(R;H^{1}(R^{N}))\cap L^{\infty}(R;H^{1}(R^{N}))$ .

(ii) If $1+4/N\leqq p<2^{*}-1$ , there is a subset $\ovalbox{\tt\small REJECT}\in H^{1}(R^{N})$ such that for any
$u_{0}\in B$ the solution of $C(p)$ blows up, $i$ . $e$ . the $L^{2}$ norm of its gradient
explodes in finite time $T_{m}$ .

AS we have seen above, the number $p=1+4/N$ is the critical number for
the existence of blow-up solutions of $C(p)$ . In what follows, we refer to (NS)

with $p=1+4/N$ as (NSC), $i$ . $e.$ ,

$\langle NSC)$ $2i \frac{\partial u}{\partial t}+\Delta u+|u|^{4/N}u=0$ ,

and we shall use the notations

$E(v)=E_{\sigma}(v)$ , $\sigma=2+\frac{4}{N}$ .

The nonlinear Schr\"odinger equation of the form (NSC) is of physical interest,
because (NSC) with $N=2$ arises in a theory of the stationary self-focusing of a
laser beam $propagat\dot{l}ng$ along the $t$-axis in a nonlinear medium (see $e.g.,$ $[1,2$ ,
15, 40]). We may say that the blow-up of solution corresponds to the focusing
of the laser beam.

Recently, many mathematicians have studied the formation of singularities
in blow-up solutions of (NSC) near blow-up time $(e.g.,$ $[7,19,20,21,23,24,25$ ,
27, 29, 35, 37, 38]). Here, it is worth while to note that (NSC) has a remarka-
ble property that it is invariant under the pseudo-conformal transformations
$\langle$see $e.g.,$ $[7,29]$ and (1.7) beIow). This symmetry seems to be closely related
to the structure of solutions of (NSC) (see $e.g.$ , Weinstein $[37, 38]$ , Nawa and
M. Tsutsumi [29] and Cazenave and Weissler [7] $)$ : in the super critical case
$(p>1+4/N)$ , Merle [19] suggested that every blow-up solution of (NS) has a
strong limit in $L^{2}$ at blow-up times; in the critical case $(p=1+4/N)$ , Nawa
$[24, 25]$ and Weinstein [38] showed that every blow-up solution of (NSC) loses
its $L^{2}$ continuity at blow-up time because of the concentration of its $L^{2}$ mass
(see also Merle [20], Merle and Y. Tsutsumi [21], and Y. Tsutsumi [35]).

Moreover we know how amount the blow-up solution of (NSC) concentrate
their $L^{2}$ mass. Precisely, if the solution $u(t)$ of (NSC) blow up at time $T_{m}>0$ ,
then we have

(1.3) $\sup_{R>0}(\lim_{t\uparrow T}\inf_{m}(\sup_{y\in R^{N}}\int_{|x-y|\leqq R(T_{m}-t)^{1/2}}|u(t, x)|^{2}dx))\geqq||Q||^{2}$ ,

where $Q$ is a nontrivial solution of the elliptic equation
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(1.4) $\Delta Q-Q+|Q|^{4/N}Q=0$

such that

(1.5) $\frac{2}{\sigma}||Q||^{4/N}=\inf_{v\in H^{1}(R^{N})}\frac{||v||^{4/N}||\nabla v||^{2}}{||v||_{\sigma}^{\sigma}}$

$= \inf_{c\in H^{1}(R^{N})}\{\frac{2}{\sigma}||v||^{4/N};||\nabla v||^{2}-\frac{2}{\sigma}||v||_{\sigma}^{\sigma}\leqq 0\}$ .

The focusing of a laser beam could be understood mathematically as “mass
concentration” phenomena of blow-up solutions of (NSC).

REMARK 1.1. The left hand side of (1.3) measures the “size” of the “largest”
singularity, since the blow-up solution, in general, has several $L^{2}$-concentration
$po^{\backslash }nts$ (see Merle [20] and Nawa [25]).

REMARK 1.2. (1) The equation (1.4) is a time-independent version of (NSC)

and arises in various domain of physics. See [3, 6, 32, 36] and Proposition 2.5
of this paper for the existence of positive solutions of (1.4) and for the asso-
ciated minimization problems. The standard argument shows that $Q\in S$ (the

space of $C^{\infty}$ functions of rapid decreasing). We can also prove that $E(Q)=0$ .
(2) By the first equality in (1.5) and the conservation law (1.2), we see

that if $||u_{0}||<||Q||$ , the corresponding solution exists globally in time. For this,
see Weinstein $[36, 37]$ . In this sense, the estimate (1.3) is optimal.

However the profiles of blow-up solutions have not been investigated so
well. Concerning this problem, the following results are known.

(I) Let $u(t)$ be a solution of (NSC) such that $||u(t)||=||Q||$ and $||\nabla u(t)||arrow\infty$

as $tarrow T_{m}$ for some $T_{m}\in(0, \infty]$ . Then we have, for $\lambda(t)=||\nabla u(t)||^{-1}$ ,

(1.6) $||\lambda(t)^{N/2}u(t, \lambda(t)(\cdot-\gamma(t)))e^{t\theta(t)}-Q(\cdot)||arrow 0$ as $tarrow T_{m}$

for some $\gamma(t)\in R^{N}$ and $\theta(t)\in R$ (Weinstein [37]).
(II) Let $u(t)$ be a solution of (NSC) such that $xu(t)\in L^{2}(R^{N})$ and $||\nabla u(i)||$

$arrow\infty$ as $tarrow T_{m}$ for some $T_{m}\in(0, \infty)$ . If $u(t)$ satisfies $||(x-a)u(t)||arrow 0(tarrow T_{m})$ ,

then $u(t)$ must be of the form:

(1.7) $(T_{m}-t)^{-N/2} \exp(\frac{-i|x_{t}(a,v)|^{2}}{2(T_{m}-t)})V(\frac{t}{T_{m}(T_{m}-t)},$ $\frac{x_{t}(a,v)}{T_{m}-t})e^{iv/T_{m}(x-(v/2\tau_{m})t)}$ ,

where $V(t, x)$ is also a solution of (NSC) in $C(R_{+} ; H^{1}(R^{N}))\cap L^{2}(R^{N} ; |x|^{2}dx)$

such that $E(V(t))=0$ , and where

$x_{t}(a, v)=x-a+v- \frac{v}{T_{m}}t$

for an appropriate $v\in R^{N}$ (Nawa and M. Tsutsumi [29]).
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(III) For given $L$ points {a, $a^{2}$ , $\cdot$ .. , $a^{L}$ } $\subset R^{N}$ , there exists a blow-up solu-
tion $u(t)$ of (NSC) such that

(1.8) $||u(t)- \sum_{j=1}^{L}Q^{j}(t)||_{\sigma}arrow 0$ as $tarrow T_{m}$ ,

where

(1.9) $Q^{j}(t, x)=(T_{m}-t)^{-N/2} \exp(\frac{-i|x-a^{j}|^{2}}{2(T_{m}-t)})Q(\frac{x-a^{j}}{T_{m}-t})e^{it/2\tau_{m^{(T_{m}-t)}}}$

for $T_{m}\in(0, \infty)$ (Merle [20]).

REMARK 1.3. $Q(x)e^{it/2}$ , which is a standing wave solution of (NSC), is
transformed into $Q^{j}$ by the space-time transformation appearing in the left hand
side of (1.7) with $a=a^{j}$ and $v=0$ . We call this transformation pseudo-conformal
transformation. Since we have $E(Q(\cdot)e^{it/2})=0$ , $Q^{j}$ is a blow-up solution of
(NSC) such that $||(x-a^{j})u(t)||arrow 0(tarrow T_{m})$ by virtue of (II).

These results require additional conditions on initial data (or solutions):
$||u_{0}||=||Q||$ for (I); $|x|u_{0}\in L^{2}(R^{N})$ for (II) and (III). Our purpose here is to in-
vestigate the asymptotic profile of generic $H^{1}- blow$-up solution of (NSC).

We have

THEOREM 1. Let $u(t)$ be a srngular solution of $(NSC)$ such that

(1.10)
$\lim_{t-T}\sup_{m}||\nabla u(t)||=\lim_{t-T}\sup_{m}||u(t)||_{\sigma}=\infty$

for some $T_{m}\in(0, \infty]$ . Let $\{t_{n}\}$ be any sequence such that

(1.11)
$\sup_{t\in\subset 0.c_{n})}||u(t)||_{\sigma}=||u(t_{n})||_{\sigma}$ .

For this $\{t_{n}\}$ , we put

(1.12) $\lambda_{n}=\frac{1}{|u(t_{n})||_{\sigma}^{\sigma/2}}$

and, we constder the scaled functions
(1.13) $u_{n}(t, x)=\lambda_{n}^{N/2}\overline{u(t_{n}-\lambda_{n}^{2}t,\lambda_{n}x})$

for $t\in[0, t_{n}/\lambda_{n}^{2})$ . Then there exists a subsequence of $\{u_{n}\}$ (still denoted by $\{u_{n}\}$ ),
which satisfies the following properties: there exist

(i) a finite number of nontnvial solutions $u^{1},$ $u^{2},$
$\cdots,$

$u^{L}$ of $(NSC)$ in
$C_{b}(R_{+} ; H^{1}(R^{N}))$ with $E(u^{j})=0$ , and

(ii) sequences $\{\gamma_{n}^{1}\},$ $\{\gamma_{n}^{2}\},$ $\cdots$ , $\{\gamma_{n}^{L}\}$ in $R^{N}$ ,
such that, for any $T>0$ ,

(1.14) $\lim_{narrow\infty}\sup_{t\in[0,T]}||u_{n}(t, )-\sum_{j=1}^{L}u^{f}(t, \cdot-\gamma_{n}^{j})||_{\sigma}=0$ ,
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(1.15) $\lim_{narrow\infty}\sup_{l\in[0,T]}||\nabla u_{n}(t, )-\sum_{j=1}^{L}\nabla u^{j}(t, \cdot-\gamma_{\dot{n}}^{f})||=0$ ,

(1.16) $\lim_{narrow\infty}\sup_{t\in[0.T]}||u_{n}(t, )-\sum_{j=1}^{L}u^{j}(t, \cdot-\gamma_{n}^{j})-\phi_{n}(t, )||=0$ ,

where

(1.17) $\phi_{n}(t, )=\exp(\frac{it}{2}\Delta)*(u_{n}(0, )-\sum_{j=1}^{L}u^{j}(0, \cdot-\gamma d))$ .

Furthermore we have

(1.18) $||u_{0}||^{2} \geqq\sum_{j=1}^{L}||u^{j}(t)||^{2}\geqq L||Q||^{2}$ ,

where $Q$ is a nontnvial solution of (1.4) and (1.5).

REMARK 1.4. (1) If the solution satisfies $\lim\sup_{tarrow\tau_{m}}||\nabla u(t)||=\infty$ , then we
have, by the energy conservation law $\lim\sup_{\iotaarrow\tau_{m}}||u(t)||_{\sigma}=\infty$ . So, (1.10) is
always assured. If $T_{m}<\infty$ , we have (1.10) with $\lim\sup$ replaced by $\lim$ .

(2) We can choose a sequence as in (1.11), since we have (1.10).

(3) The scaled function $u_{n}$ in (1.13) also solves (NSC), and satisfies $||u_{n}(t)||$

$=||u(t)||$ and $E(u_{n}(t))=\lambda_{n}^{2}E(u(t))$ . This is a special feature of (NSC).

Each $u^{j}$ can be considered to correspond to the “strong” singularity in
blow-up solution, since one has, by (1.16),

(1.19) $\lim_{narrow\infty}\sup_{n}||\overline{u(t,\cdot})-\sum_{jt\in[\iota_{n}-\lambda_{n}^{2}T.t]=1}^{L}u_{n}^{j}(t, )-\emptyset_{n}(t, )||=0$ ,

where

(1.20) $u_{n}^{j}(t, x)= \frac{1}{\lambda_{n}^{N/2}}u^{j}(\frac{t_{n}-t}{\lambda_{n}^{2}},$ $\frac{x-\gamma i\lambda_{n}}{\lambda_{n}})$ ,

(1.21) $\phi_{n}(t, x)=\frac{1}{\lambda_{n}^{N’ 2}}\phi_{n}(\frac{t_{n}-t}{\lambda_{n}^{2}},$
$\frac{x}{\lambda_{n}})$ .

We note that there is a possibility that $\phi_{n}$ produces “weak” singularities, around
which the rate of blow-up is lower than $||u(t)||_{\sigma}$ . $lfN\geqq 2$ , “weak” singularities
may form a $N-1$ dimensional manifold as in the case of semilinear heat equa-
tions (Giga and Kohn [10]). $lf\phi_{n}$ produces no singularity, we can safely say
that the blow-up set consists of finite number of points as in the case of one-
dimensional semilinear heat equations (Chen and Matano [8]). However, there
still remains a Possibility of ergodic behavior of singularities, i. e., even in the
case of $L=1,$ $\{\lambda_{n}\gamma_{n}^{1}\}$ may perform an ergodic behavior (in full sequence).

Theorem 1 seems to be closely related to a phenomenon which has been
observed in various nonlinear problems by the name of bubble theorem or con-
centrated comPactness theorem (for examPle, see [4, 16, 17, 18, 22, 33, 34]). In
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fact, the proof of this theorem is inspired by Br\’e $z$ is and Coron [4]. One may
find that the underlying idea being the method of concentrated compactness due
to Lions $[17, 18]$ . However, we do not use the general method of it. Our
basic tool is the compactness device as in Lieb [16] (see also Br\’ezis and Lieb
[6] and Fr\"ohlich, Lieb and Loss [9] $)$ . We extend Lieb’s compactness lemma
to space-time one, with which the Ascoli-Arzela theorem plays a crucial role
in our analysis working with the scaled solutions of (NSC) defined by (1.13).

Proposition 3.1 in Sect. 3 of this paper is the heart of the matter. The use
of the general method of concentrated compactness in the study of blow-up
problem for the nonlinear Schr\"odinger equation can be traced back to Wein-
stein [37].

We can safely say that our analysis investigates, by means of Proposition
3.1, how the “dichotomy” (in the terminology of concentrated compactness)

occurs in the sequence $\{u_{n}\}$ . Theorem 1 asserts that $u_{n}$ behaves like a finite
superposition of zero energy time global solutions of (NSC) (see $(1.13)-(1.16)$).

It is worth while to note again that the scaled function $u_{n}$ also solves (NSC),

and satisfies $||u_{n}(t)||=||u(t)||$ and $E(u_{n}(t))=\lambda_{n}^{2}E(u(t))$ ( $arrow 0$ as $narrow\infty$ ). We itera-
tively use Proposition 3.1 to construct $u^{j}’ s$ (see Sect. 4). Here the important
thing is the finiteness of $u^{j}’ s$ . This follows from $E(u^{j})=0$ (for any $]$ ), since
in this case we have $||u^{j}||\geqq||Q||$ for any $j$ (see (1.5) and Proposition 2.5 in Sect.
2 of this paper). If the iteration was not terminated at some finite index, we
would have by the construction of $u^{j}’ s$ that $\lim\sup_{karrow\infty}\Sigma_{j=1}^{k}E(u^{j}(t))\leqq 0$ (see the
argument in Sect. 4 bellow (4.43) $)$ . Hence we can conclude $E(u^{j})=0$ for any
$j$ , if we know that every bounded global solution must have nonnegative
energy, $i$ . $e$ . ;

THEOREM 2. If the solution $u(t)$ of $(NSC)$ belongs to $C_{b}([0, \infty);H^{1}(R^{N}))$ ,

then its energy must be nonnegative, $i$ . $e.$ ,

$E(u(0))\geqq 0$ .

In other words, if $E(u(O))<0$ , then there exists $T_{m}\in(0, \infty]$ such that the corre-
sponding solution $u(t)$ of $(NSC)$ satisfies

$\lim_{tarrow T}\sup_{m}||\nabla u(t)||=\lim_{tarrow T}\sup_{m}||u(t)||_{\sigma}=\infty$
,

$i$ . $e.,$ $u(t)$ belows up (in finite time) or grows up (at infinity). If $T_{m}<\infty$ , we can
replace $\lim\sup$ by $\lim$ .

Tbis is an improvement of previous results concerning tbe existence of
blow-up solution of (NSC) in the sence that we do not require additional con-
ditions on initial data except $E(u(O))<0$ . However Theorem 2 does not assert
that every negative energy initial datum leads to the blow-up solution of
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$C(1+4/N)$ . There remains a possibility that $T_{m}=\infty$ . The blow-up of negative
energy solutions has been proved under some conditions: $|x|u_{0}\in L^{2}(R^{N})$ (Glassey

[13] $)$ while this is an important class of initial data and quite reasonable phy-
sically; $N\geqq 2$ and $u_{0}$ is radially symmetric (Ogawa-Y. Tsutsumi [30]); $N=1$

and $p=1+4/N$ (Ogawa-Y. Tsutsumi [31]). Hence the results of Ogawa-Tsutsumi
$[30, 31]$ ensure that Theorem 2 with $T_{m}<\infty$ holds true for the case of $N=1_{r}$

and of $N\geqq 2$ and $u(O)$ being radially symmetric. We refer [28] for the proof
of Theorem 2 $(N\geqq 2)$ , although we do not prove it in this paper (see Remark
(Added on Revision) below Corollary 2 of this section). We may say that
Theorem 2 is a weak version of a theorem which has long been speculated. It
is worth while to note here that the essential results of this paper are valid
for all dimensions $N\geqq 1$ .

Next two corollaries give sufficiently conditions that we have $L=1$ in
Theorem 1. We, however, do not need Theorem 2 to prove $L=1$ in the proofs
of both corollaries.

COROLLARY 1. Let $u(t),$ $\{t_{n}\},$ $u_{n}(t)$ and $Q(x)$ be as in Theorem 1. Assume
in addition $u(O)$ is radially symmetnc. Then there exists a subsequence of $\{u_{n}\}$

(still denoted by $\{u_{n}\}$ ), which satisfies the following properties: there exzsts a
nontnvial solution $u^{1}$ of $(NSC)$ in $C_{b}(R_{+} ; H^{1}(R^{N}))$ with $E(u^{1})=0$ , and such that,

for any $T>0$ ,

(1.22) $\lim_{narrow\infty}\sup_{c\in[0,T]}||u_{n}(t, )-u^{1}(t, )||_{\sigma}=0$ ,

(1.23) $\lim_{narrow\infty}\sup_{t\in[0.T]}||\nabla u_{n}(t, )-\nabla u^{1}(t, )||=0$ ,

(1.24) $\lim_{narrow\infty}\sup_{t\in[0,T]}||u_{n}(t, )-u^{1}(t, )-\phi_{n}(t, )||=0$ ,

where

(1.25) $\phi_{n}(t, )=\exp(\frac{it}{2}\Delta)*(u_{n}(0, )-u^{1}(0, ))$ .

COROLLARY 2. Let $u(t),$ $\{t_{n}\},$ $u_{n}(t)$ and $Q(x)$ be as in Theorem 1. Assume
in additim $||u(0)||=||Q||$ . Then there exists a subsequence of $\{u_{n}\}$ (still denoted
by $\{u_{n}\})$ , which satisfies the following properties: there exist

(i) a nontnvial solution $u^{1}$ of $(NSC)$ in $C_{b}(R_{+} ; H^{1}(R^{N}))$ with $E(u^{1})=0$ , and
(ii) a sequence $\{\gamma_{n}^{1}\}$ , in $R^{N}$ ,

such that, for any $T>0$ ,

(1.26) $\lim\sup||u_{n}(t, )-u^{1}(t, \cdot-\gamma_{n}^{1})||=0$ .
$narrow\infty t\in\subset 0.T\ddagger$

REMARK (Added on Revision). When this paper was submitted for publi-



564 H. NAWA

cation, the title of the paper was “Fomation of singulanties in solutions of the
one dimensional nonlinear Schrodinger equation with critical Power nonlinearity”.
The referee kindly suggested the author to rephrase the title and introduction,
since the essential results of this paper are valid for all dimensions $N\geqq 1$ , and
since Theorem 2 (Theorem $0$ ’ in the first manuscript) does hold for data in
$H^{1}(R^{N})$ with $|x|u_{0}\in L^{2}(R^{N})$ which is an important class of initial data and
quite reasonable physically. The author is grateful to the referee for this and
his valuable comments. The author [28], however, proved Theorem 2 for $N\geqq 2$

after first submission of this paper. Its proof is also relevant to a phenomenon
which has been observed in various nonlinear problems by the name of bubble
theorem or concentrated compactness theorem. The proof, which is long and
rather technical, proceeds combining the results (or methods) of Nawa $[24, 27]$ ,
Ogawa-Y. Tsutsumi $[30, 31]$ and Proposition 3.1 of this paper.

The paper is organized as follows.
In Section 2, we give a lemma concerning the evolution operator for the

free Schr\"odinger equation, and give one proposition which concerns (1.4), (1.5)

and Remark 1.2.
In Section 3, we prepare a key proposition to prove Theorem 1.
In Section 4, we prove Theorem 1.
In Section 5, we prove Corollaries 1 and 2.
Throughout this paper we will use the following notations:

NOTATIONS. $\partial_{t}=\partial/\partial t,$ $\partial_{k}=\partial/\partial x_{k},$ $\nabla=(\partial_{1}, , \partial_{n});\langle\cdot, \cdot\rangle$ denotes the scalar
product in $L^{2}$ and various pairing of dual spaces of functions; $\mu$ denotes the
Lebesgue measure on $R^{N}$ ; The set $\{x\in R^{N} ; f(x)>\epsilon\}$ is simply represented as
$[f>\epsilon]$ , which is also used to denote the characteristic function of this set;
$B(y ; R)=\{x\in R^{N} ; |x-y|\leqq R\}$ ; Let $\Omega\subset R^{N}$ be open. The symbol $\omega\subset\subset\Omega$ means
that di (the closure of $\omega$) is compact and toc $\Omega;C(I;F)$ denotes the space of
strongly continuous function from an interval $I\subset R$ to a Fr\’echet space $F;L^{\theta}(I;B)$

denotes the space of measurable functions $v$ from an interval $I\subset R$ to a Banach
space $B$ such that $||v(\cdot)||_{B}\in L^{\theta}(I);C_{b}(I;F)=L^{\infty}(I;F)\cap C(I;F);U=U(t)=$

$\exp((it/2)\Delta)$ .

2. Preliminaries

We recall Proposition $D$ in [25] as Proposition 2.1 below. Although we
have already proved this in [25] to study the “mass concentration” phenomena
in blow-up solutions of (NSC) to obtain the formula (1.3), we shall give the
proof of Proposition 2.1, since the proof of Theorem 1 in Sect. 4 proceeds after
the model of it. Using this, we also consider (1.4) and (1.5) in the previous
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section (see Proposition 2.5 below).

PROPOSITION 2.1. Let $\{f_{n}(x)\}$ be a bounded sequence of functions in $H^{1}(R^{N})$

such that, for some $po\alpha tive$ constants $C_{\sigma}$ ,

(2.1) $\lim_{narrow}\sup_{\infty}||f_{n}||_{\sigma}^{\sigma}\geqq C_{\sigma}>0$ ,

(2.2) $\lim_{narrow}\sup_{\infty}E(f_{n})=\lim_{narrow}\sup_{\infty}(||\nabla f_{n}||^{2}-\frac{2}{\sigma}||f_{n}||_{\sigma}^{\sigma})=E_{0}$ .

Then there exist
(i) a family of functions in $H^{1}(R^{N}):\mathfrak{U}=\{f‘, f^{2}, \}$ , and
(ii) a family of sequences in $R^{N}$ : $\tilde{\mathfrak{B}}=\{\{y_{n}^{1}\}, \{y_{n}^{2}\}, \}$

such that we have

(2.3) $\lim_{narrow\infty}|\sum_{k=2}^{j}y_{n}^{k}|=\infty$ $(j\geqq 2)$ ,

and, for some subsequence (still denoted by the same letter), we have

(2.4) $f_{n}^{1}\equiv f_{n}(\cdot+y_{n}^{1})arrow f^{1}\not\equiv 0$ ,

(2.5) $f_{n}^{j}\equiv(f_{n}^{J-1}-f^{j-1})(\cdot+yl)arrow f^{j}\not\equiv 0$ $(j\geqq 2)$ ,

weakly in $H^{1}(R^{N})$ and strongly in $L^{q}(\Omega)$ for any $\Omega\subset\subset R^{N}$ and $q\in[2,2^{*})$ , and

(2.6) $\lim_{narrow\infty}\int_{R^{N}}||ff_{\iota}|^{q}-|fl-f^{j}|^{q}-|f^{j}|^{q}|dx=0$ , $q\in[2,2^{*})$ ,

(2.7) $\lim_{narrow\infty}\{E(f1)-E(f_{n}^{j}-f^{j})-E(f^{j})\}=0$ ,

(2.8) $E_{0}- \lim_{narrow\infty}E(f_{n}^{j}-f^{j})=\sum_{k=1}^{j}E(f^{k})$ .

Furthermore, we have: If $L\equiv\#\mathfrak{U}<\infty$ ,

(2.9) $\lim_{narrow\infty}||f_{n}^{L}-f^{L}||_{L\sigma(R^{N})}=0$ ,

(2.10) $\lim_{narrow\infty}\{\sup_{y\in R^{N}}\int_{|x-y\}<R}|f_{n}^{L}(x)-f^{L}(x)|^{2}dx\}=0$ ;

if $\#\mathfrak{U}=\infty$ ,

(2.11) $\lim_{jarrow\infty}\lim_{narrow\infty}||f_{n}^{j}-f^{j}||_{L\sigma(R^{N})}=0$ ,

(2.12) $\lim_{jarrow\infty}\lim_{narrow\infty}\{\sup_{y\in RN}\int_{Ix-yt<R}|fi(x)-f^{j}(x)|^{2}dx\}=0$ ,

for any $R>0$ .
Proposition 2.1 asserts that $f_{n}$ behaves like a superposition of several func-
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tions of the form $f^{j}(t, x-\Sigma_{k=1}^{j}y_{n}^{k}),$ $(]=1,2, \cdots )$ as $narrow\infty$ .
The proof of Proposition 2.1 is inspired by the method of concentrated

compactness due to Lions $[17, 18]$ . However, we do not use the general method
of it. Our basic tool is the same compactness device as in Lieb [16]. We
repeatedly use Lieb’s lemma to decompose $\{f_{n}\}$ iteratively into several parts
with the help of Br\’e $z$ is-Lieb’s lemma [5].

We collect here these results needed for the proof of Proposition 2.1.

LEMMA 2.2 (Fr\"ohlich, Lieb and Loss [9]). Let $1<\alpha<\beta<\gamma$ and let $g(x)$ be
a measurable function on $R^{N}$ such that, for some positive constants $C_{\alpha},$ $C_{\beta}$ and $C_{r}$ ,

(2.13) $||g||_{\alpha}\leqq C_{\alpha}$ , $||g||\beta\geqq C_{\beta}>0$ , $||g||_{\gamma}\leqq C_{\gamma}$ .

Then we have

(2.14) $\mu([|g|>\eta])>C_{1}$

for some $\eta,$
$C_{1}>0$ depending on a, $\beta,$ $\gamma,$

$C_{\alpha},$ $C_{\beta},$ $C_{\gamma}$ but not on $g$ .

LEMMA 2.3 (Lieb [16]). (1) In addition to the assumption of Lemma 2.2, $we$

assume

(2.15) $||\nabla g||_{\alpha}\leqq C_{2}$ ,

for some positive constants $C_{2}$ . Then there exists a shift $T_{y}g(x)=g(x+y)$ such
that, for some constant $\delta=\delta(C_{1}, C_{2}, \eta)$ ,

(2.16) $\mu(B(0;1)\cap[|T_{y}g|>\frac{\eta}{2}])>\delta$ .

(2) Let $1<\alpha<\infty$ and let $\{f_{n}\}$ be a uniformly bounded sequence of functions
in $W^{1.\alpha}(R^{N})$ such that $\mu([|f_{n}|>\eta])\geqq C$ for some positive constants $\eta$ and $C$ .
Then there exists a sequence $\{y_{n}\}$ in $R^{N}$ such that, for some subsequence (still

denoted by the same letter),

(2.17) $f_{n}(\cdot+y_{n})-f\not\equiv 0$ ,

weakly in $W^{1.\alpha}(R^{N})$ .

LEMMA 2.4 (Br\’ezis and Lieb [5]). Let $\{f_{n}(x)\}$ be an bounded family in
$L^{\alpha}(R^{N})$ for $\alpha\in(0, \infty)$ . Suppose that $f_{n}arrow f$ a. $e$ . in $R^{N}$ . Then we have

(2.18) $\lim_{narrow\infty}\int_{R^{N}}||f_{n}|^{\alpha}-|f_{n}-f|^{\alpha}-|f|^{\alpha}|dx=0$ .

REMARK 2.1. One may find proofs of these results in the next section,
since we extend these results to functions of space-time variables in
$C_{b}(I;W^{1,\alpha}(R^{N}))$ for $I\subset R$ in Sect. 3. So, Lemmas 2.2-2.4 are considered to be
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stationary versions of lemmas in Sect. 3.

PROOF OF PROPOSITION 2.1. In what follows, we shall often extract sub-
sequences with explicitly mentioning this fact. By the assumption (2.1), Lemma
2.2 and Lemma 2.3 (2), we can shift each $f_{n}$ so that

(2.19) $f_{n}^{1}\equiv f_{n}(\cdot+y_{n}^{1})arrow f^{1}\not\equiv 0$ ,

weakly in $H^{1}(R^{N})$ , strongly in $L^{q}(\Omega)$ for any $\Omega\Subset R^{N}$ and $q\in[1,2^{*})$ , and $a$ . $e$ . in
$R^{N}$ . Hence we have, by Lemma 2.4,

(2.20) $\lim_{narrow\infty}\int_{R^{N}}||f_{n}^{1}|^{2}-|f_{n}^{1}-f^{1}|^{q}-|f^{1}|^{q}|dx=0$ , $q\in[2,2^{*})$ .

Moreover we have

(2.21) $\lim_{narrow\infty}||\nabla f_{n}^{1}||^{2}-||\nabla f_{n}^{1}-\nabla f^{1}||^{2}-||\nabla f^{1}||^{2}=0$ ,

since $\nabla f_{n}^{1}arrow\nabla f^{1}$ weakly in $L^{2}$ . Combining (2.20) with $q=\sigma$ and (2.21), we have

(2.22) $\lim_{narrow\infty}\{E(f_{n}^{1})-E(f_{n}^{1}-f^{1})-E(f^{1})\}=0$ .

Suppose that $\lim\sup_{narrow\infty}||f_{n}^{1}-f^{1}||_{\sigma}\neq 0$ . Then there exists a sequence $\{y_{n}^{2}\}$

in $R^{N}$ such that

(2.23) $f_{n}^{2}\equiv(f_{n}^{1}-f^{1})(\cdot+y_{n}^{2})arrow f^{2}\not\equiv 0$ ,

weakly in $H^{1}(R^{N})$ , strongly in $L^{q}(\Omega)$ for any $\Omega\subset\subset R^{N}$ and $q\in[2,2^{*})$ , and $a$ . $e$ . in
$R^{N}$ by Lemma 2.2 and Lemma 2.3 again. Moreover we have, by Lemma 2.4,

(2.24) $\lim_{narrow\infty}\int_{R^{N}}||f_{n}^{2}|^{q}-|f_{n}^{2}-f^{2}|^{q}-|f^{2}|^{Q}|dx=0$ , $q\in[2,2^{*})$ ,

(2.25) $\lim_{narrow\infty}\{E(f_{n}^{2})-E(f_{n}^{2}-f^{2})-E(f^{2})\}=0$ ,

(2.26) $E_{0}- \lim_{narrow\infty}E(f_{n}^{2}-f^{2})=\sum_{k=1}^{2}E(f^{k})$ ,

since we have

(2.27) $\lim_{narrow\infty}||f_{n}^{1}-f^{1}||_{q}=\lim_{narrow\infty}||f_{n}^{2}||_{q}$ , $q\in[2,2^{*})$ ,

(2.28) $\lim_{narrow\infty}E(f_{n}^{1}-f^{1})=\lim_{narrow\infty}E(f_{n}^{2})$

by the translation invariance of $||\cdot||_{q}$ and $E(\cdot)$ . The local $L^{2}$ convergence of
(2.24) and the nontriviality of $f^{2}$ yield that $\lim_{narrow\infty}|y_{n}^{2}|=\infty$ : if not, we have
that, for any $K\subset\subset R^{N}$ ,

(2.29) $\lim_{narrow\infty}\int_{K}|f_{n}(x+y_{n}^{1})-f^{1}(x)-f^{2}(x-y_{n}^{2})|^{2}dx=0$ ,
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from which we conclude $f^{2}\equiv 0$ by the local $L^{2}$ convergence of (2.19).

Repeating this procedure until the quantity $\lim\sup_{narrow\infty}||f_{n}^{j}-f^{j}||_{\sigma}$ becomes $0$ ,
we obtain desired families $\mathfrak{U}$ and 8. It remains to prove (2.11). Suppose the
contrary that, for some positive constant $\epsilon_{0}$ and a subsequence $\{](k)\}$ of $\{j\}$ ,
one has

$\lim_{narrow}\inf_{\infty}||f_{n}^{jk)}-f^{j(k)}||_{\sigma}^{\sigma}>\epsilon_{0}$ .

Hence there is a constant $C_{0}$ essentially depends on $\epsilon_{0}$ such that

(2.30) $||f^{j(k)+1}||_{0}^{\sigma}>C_{0}$ ,

since the size of $||f^{j}||_{\sigma}$ essentially depends on the lower bound of $||f_{n}^{j-1}-f^{j-1}||_{0}^{\sigma}$

by Lemma 2.2, Lemma 2.3 (2) and the construction of $f^{j}$ . We choose $k\in N$

large enough (specified latter). Using the formula (2.6) with $j=1,2,$ $\cdots$ $j(k)$ ,

we have by (2.30) that, for enough subsequence with respect to $n$ ,

(2.31) $\lim_{narrow}\sup_{\infty}||f_{n}||_{\sigma}^{\sigma}>\lim_{narrow}\sup_{\infty}(||f_{n}||_{\sigma}^{\sigma}-||f_{n}^{j(k)}-f^{j(k)}||_{\sigma}^{\sigma})$

$= \sum_{j=1}^{j(k)}$ il $f^{j}||_{\sigma}^{\sigma}> \sum_{l=1}^{k}||f^{j(l)}||_{\sigma}^{\sigma}$

$>kC_{0}$ .
Thus we reach a contradiction, if we take $k$ as $kC_{0} \geqq\lim\sup_{narrow\infty}||f_{n}||_{\sigma}^{\sigma}$ .

We next consider (1.4) and (1.5) in the previous section.

PROPOSITION 2.5. Let

(2.32) $m= \inf_{v\in H^{1}(R^{N})}\{||v||$ ; $E(v) \equiv||\nabla v||^{2}-\frac{2}{\sigma}||v||_{0}^{o}\leqq 0\}$ ,

(2.33) $\frac{1}{C_{N}}=\inf_{v\neq 0}\frac{||v||^{4/N}||\nabla v||^{2}}{||v||_{\sigma}^{\sigma}}v\in H^{1}(R^{N})\equiv\inf_{v\in H^{1}(R^{N})}J(v)$ .

There is a function $Q\in H^{1}(R^{N})-\{0\}$ such that

(2.34) $||Q||=m$ ,

(2.35) $\Delta Q-Q+|Q|^{4/N}Q=0$ ,

(2.36) $\frac{2}{\sigma}|||Q||^{4/N}=\frac{1}{C_{N}}$ ,

(2.37) $E(Q)=0$ .

REMARK 2.1. (1) The constant $C_{N}$ in (2.22) is the best constant for the
Gagliardo-Nirenberg inequality, so that

(G-N) $||v||_{\sigma}^{\sigma}\leqq C_{N}||v||^{4/N}||\nabla v||^{2}$
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holds true for any $v\in H^{1}(R^{N})$ .
(2) The estimate of the best constant $C_{N}$ in terms of the solution of (2.35)

can be traced back to Weinstein [36]. He consider the minimizing sequence
for (2.33), and employ the radial rearrangement and radial compactness lemma
to obtain the suitable minimizer. We shall give an another proof of Proposition
2.5. Our proof concerns the $L^{2}$ minimizing sequence of (2.32) instead of (2.33),

and apply Proposition 2.1 to it. Thus our analysis do not rely on the radial
rearrangement and radial compactness lemma.

PROOF OF PROPOSITION 2.5. First we note that $m>0$ , more precisely

(2.38) $\frac{2}{\sigma}m^{4/N}\geqq\frac{1}{C^{N}}$

by the Gagliardo-Nirenberg inequality (G-N).

Let $\{v_{n}\}\subset H^{1}(R^{N})$ be a minimizing sequence for (2.32), $i$ . $e.$ ,

(2.39) $\lim_{narrow\infty}||v_{n}||=m$ ,

(2.40) $E(v_{n})\leqq 0$ for any $n\in N$ .

It is worth while to note that the boundedness of $\{v_{n}\}$ in $H^{1}(R^{N})$ is not known.
So we consider tbe following scaled function:

(2.41) $Q_{n}(x)=v_{n}^{N/2}v_{n}(\nu_{n}x)$ , $\nu_{n}=\frac{1}{||v_{n}||_{\sigma}^{\sigma/2}}$

so that we have
$||Q_{n}||=||v_{n}||arrow m$ as $narrow\infty$ ,

(2.42) $||Q_{n}||_{\sigma}=1$ ,

$E(Q_{n})=v_{n}^{2}E(v_{n})$ .

Hence we get an $H^{1}$ -bounded minimizing sequence $\{Q_{n}\}$ for (2.32). We apply
Proposition 2.1 to this $\{Q_{n}\}$ to obtain a subsequence of $\{Q_{n}\}$ (we still denote
it by $\{Q_{n}\})$ which satisfies

(2.43) $Q_{n}^{1}\equiv Q_{n}(\cdot+y_{n}^{1})-Q^{1}\not\equiv 0$ weakly in $H^{1}(R^{N})$ ,

(2.44) $\lim_{narrow\infty}\{E(Q_{n}^{1})-E(Q_{n}^{1}-Q^{1})-E(Q^{1})\}=0$ ,

(2.45) $\lim_{narrow\infty}(||Q_{n}^{1}||^{2}-||Q_{n}^{1}-Q^{1}||^{2}-||Q^{1}||^{2})=0$ ,

for some $\{y_{n}^{1}\}\subset R^{N}$ . We note that $Q_{n}^{1}$ is also a $H^{1}$-bounded $m\dot{\iota}nimizing$ sequence
of (2.32). Now we suppose that $E(Q_{1})>0$ , so that (2.44) and the fact $E(Q_{n}^{1})\leqq 0$

yield that $E(Q_{n}^{1}-Q^{1})\leqq 0$ for sufficiently large $n$ . Thus we have $||Q_{n}^{1}-Q^{1}||\geqq m$

for large $n$ by the definition of $m$ . Since $\lim_{narrow\infty}||Q_{n}^{1}||=m$ , we get from (2.45)
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that $||Q^{1}||$ SO, which is a contradiction. Thus we obtain

(2.46) $E(Q^{1})\leqq 0$ .

It follows from (2.46) and the definition of $m$ that $||Q^{1}||\geqq m$ , so that we have

(2.47) $||Q^{1}||=m$ ,

since $Q_{n}^{1}arrow Q^{1}$ weakly in $L^{2}(R^{N})$ . Thus we get $\lim_{narrow\infty}||Q_{n}^{1}-Q^{1}||=0$ . (So we
have $L=1$ in the terminology of Proposition 2.1)

Let $s=\sqrt{\sigma||\nabla Q^{1}||^{2}/2||Q^{1}||_{\sigma}^{\sigma}}(\leqq 1)$ , and put $Q_{s}=Q^{1}(_{S}^{-})$ . Then we have

(2.48) $E(Q_{s})=0$ , $||Q_{s}||=s^{N/2}||Q^{1}||\leqq||Q^{1}||$ .

Hence $s$ must be 1. Thus we obtain

(2.49) $E(Q_{1})=0$ ,

and we have $\lim_{narrow\infty}||Q_{n}^{1}-Q^{1}||_{H1(R^{N})}=0$ .
Let $\{w_{n}\}\subset H^{1}(R^{N})$ be a minimizing sequence for (2.33). We rescale $w_{n}$ as

follows:

$\langle$2.50) $W_{n}(x)=w_{n}( \frac{x}{g_{n}})$ , $D_{n}=\ulcorner\frac{\sigma||\nabla w_{n}||^{2}}{2||w_{n}||_{\sigma}^{\sigma}}$ .

Then one has

$\langle$2.51) $J(W_{n})=J(w_{n})$ ,

(2.52) $E(W_{n})= \tilde{\nu}_{n}^{N-2}(||\nabla w_{n}||^{2}-\tilde{\nu}_{n}^{2}\frac{2}{\sigma}||w_{n}||_{\sigma}^{a})=0$ ,

so that

(2.53) $\frac{1}{C_{N}}=\lim_{narrow\infty}\frac{2}{\sigma}||W_{n}||^{4/N}$ , $E(W_{n})=0$ .

Thus by the definition of $m$ , we have $(2/\sigma)m^{4/N}\leqq 1/C_{N}$ . Hence we obtain, by
$\langle$2.38),

(2.54) $\frac{2}{\sigma}m^{4/N}=\frac{1}{C_{N}}$ .

Thus $Q^{1}$ is a critical point of $J(\cdot)$ . Since $|\nabla|Q^{1}|$ ;$ $|\nabla Q^{1}|$ , we many assume
$Q^{1}\geqq 0$ . So we have

(2.55) $\frac{d}{dt}J(Q^{1}+t\varphi)|_{t=0}=0$

for any $\varphi\in C_{0}^{\infty}(R^{N})$ . Hence $Q^{1}$ satisfies

(2.56) $\Delta Q^{1}-(\frac{2||\nabla Q^{1}||^{2}}{N||Q^{1}||^{2}})Q^{1}+|Q^{1}|^{4/N}Q^{1}=0$



Asymptotic profiles of blow-up solutions 571

in the sense of distribution.
Taking

(2.57) $Q(x)^{\wedge N/2}=\nu Q^{1}(\nu\wedge x)$ , $\nu=\wedge\sqrt{\frac{N||Q^{1}||^{2}}{2||\nabla Q^{1}||^{2}}}$

one can easily verify that this $Q$ satisfies (2.35) and $||Q||=||Q^{1}||=m$ .
We conclude this section with the estimates of the evolution operator of the

free Schr\"odinger equation. We say that a pair $(\nu, \rho)$ of indices is admissible if

$\frac{1}{2}-\frac{1}{n}<\frac{1}{\rho}\leqq\frac{1}{2}$

and

$\frac{2}{\nu}=\frac{n}{2}-\frac{n}{\rho}\equiv\delta(\rho)$ .

LEMMA 2.6. (1) For every $\phi\in L^{2}$ and for every admissible pazr $(\nu, \rho)$ , the

function $t-U(t)\phi$ belongs to $C(R;L^{2})\cap L^{\nu}(R;L^{\rho})$ and satisfies
$||U(\cdot)\phi||_{L\nu(R;L\rho)}$ ili$ $C||\phi||_{2}$ ,

where $C$ is independent of $\phi\in L^{2}$ .
(2) Let I be an interval $I\subset R$ and let $t_{0}\in\overline{I}$ . Let $(\kappa, \theta)$ be an admissible pair

and let $v\in L^{\kappa’}$ $(I;L^{\theta} ‘)$ , where $1/\kappa^{l}+1/\kappa=1/\theta’+1/\theta=1$ . Then, for every admis-

szble pair $(\nu, \rho)$ , the function $t- \int_{t_{0}}^{t}U(t-\tau)v(\tau)d\tau$ belongs to $C(\overline{I} ; L^{2})\cap L^{\nu}(I;L^{\rho})$

and satisfies
$|| \int_{t_{0}}U(\cdot-\tau)v(\tau)d\tau||_{L^{\nu}(I_{i}L\rho)}\leqq C||v||_{L^{\kappa’}(I,L^{\theta}})$

where $C$ is independent of $v\in L^{\kappa’}$ $(I;L^{\theta} ‘)$ .

For Lemma 2.6, see [11, 14, 39].

3. A Convergence result.

The aim of this section is to prove the following proposition, which is
crucial for the proof of Theorem 1.

PROPOSITION 3.1. Let $\{v_{n}\}$ be an equibounded family in $C([0, T];H^{1}(R^{N}))$

such that

(3.1) $2i \frac{\partial v_{n}}{\partial t}+\Delta v_{n}+|v_{n}|^{4/N}v_{n}=g_{n}$ ,

(3.2) $\sup_{t\in[0,T]}||v_{n}(t)||_{\sigma}\neq 0$ .
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Here $\{g_{n}\}$ is an equibounded family in $C([0, T];L^{\sigma^{r}}(R^{N}))$ such that, for any
$R>0$ ,

(3.3) $\lim_{narrow\infty}$ $\sup_{\neg,t\in I0.T_{\lrcorner}}||g_{n}(t, )||_{\sigma’}=0$
,

where $1/\sigma+1/\sigma’=1$ . Then there exist
(i) a nontnvial solution $v$ of $(NSC)$ in $C([0, T];H^{1}(R^{N}))$ and
(ii) a sequence $\{\gamma_{n}\}\subset R^{N}$

such that for $\Omega\overline{arrow\subset}R^{N}$ and for some subsequence (still denoted by the same letter),

(3.4) $\tilde{v}_{n}\equiv v_{n}(\cdot, \cdot+\gamma_{n})\underline{*}v$ $weakly^{*}$ in $L^{\infty}([0, T];H^{1}(R^{N}))$ ,

(3.5) $\tilde{v}_{n}arrow v$ strongly in $C([0, T];L^{\alpha}(\Omega))$ for $a\in[2,2^{*})$ as $narrow\infty$ .

Furthermore we have

(3.6) $|\tilde{v}_{n}|^{4/N}i)_{n^{-}}|\partial_{n}-v|^{4/N}(\partial_{n}-v)-|v|^{4/N}varrow 0$

strongly in $C([0, T];L^{\sigma’}(R^{N}))$ ,

(3.7) $\lim_{narrow\infty}\sup_{t\in[0,T]}\int_{R^{N}}||i\}_{n}|^{\alpha}-|V_{n}-v|^{\alpha}-|v|^{\alpha}|dx=0$ , $\alpha\in[2,2^{*})$ ,

(3.8) $\lim_{narrow\infty}\int_{0}^{T}\{E(\tilde{v}_{n})-E(i)_{n}-v)-E(v)\}dt=0$ ,

and for any $t\in[0, T]$

(3.9) $\lim_{narrow\infty}\{E(\partial_{n}(t))-E((i\prime_{n}-v)(t))-E(v(t))\}=0$ .

TO prove Proposition 3.1, we prepare the following lemmas.

LEMMA 3.2. Let $1<a<\beta<\gamma$ and $I\subset R$ . Let $g(t, x)$ be a measurable function
on $I\cross R^{N}$ such that, for some positive constants $C_{\alpha},$ $C_{\beta}$ , and $C_{\gamma}$ ,

(3.10) $ess.\sup_{t\in I}||g(t)||_{\alpha}^{\alpha}\leqq C_{\alpha}$ , $ess.\sup_{c\in I}||g(t)||_{\beta}^{\beta}\geqq C_{\beta}>0$ , $ess.\sup_{t\in I}||g(t)||_{\gamma}^{\gamma}\geqq C_{\gamma}$ .

Then we have

(3.11) $ess.\sup_{t\in I}\mu([|g(t, )|>\eta])>C_{1}$

for some $\eta,$
$C_{1}>0$ depending on a, $\beta,$ $\gamma,$

$C_{\alpha},$ $C_{\beta},$ $C_{\gamma}$ , but not on $g$ .

PROOF. Simple calculation with (3.10) implies that, for sufficiently small
$\eta>0$ ,
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$\int_{R^{N}}|g(t, x)|^{\beta}dx$

$= \int_{[|g(t,.)|<\eta]}|g(t, x)|^{\beta}dx+\int_{[\eta<|g(t,.)|<1/\eta]}|g(t, x)|^{\beta}dx+\int_{\subset|g(t})|>1/\eta l|g(t, x)|^{\beta}dx$

$\leqq\frac{C_{\beta}}{4C_{a}}\int_{[|g(t..)I<\eta]}|g(t, x)|^{\alpha}dx+\int_{[\eta<|g(t,.)|<1/\eta]}|g(t, x)|^{\beta}dx$

$+ \frac{C_{\beta}}{4C_{\gamma}}\int_{[|g(t..)|>1/\eta]}|g(t, x)|^{\gamma}dx$

$\leqq\frac{C_{\beta}}{4C_{\alpha}}ess.\sup_{t\in I}||g(t)||_{\alpha}^{\alpha}+\int_{[\eta<|g(t,.)|<1/\eta]}|g(t, x)|^{\beta}dx+\frac{C_{\beta}}{4C_{\gamma}}ess.\sup_{t\in I}||g(t)||_{\gamma}^{\gamma}$

$ $\frac{C_{\beta}}{2}+\mu([|g(t, )|>\eta])(\frac{1}{\eta})^{\beta}$

Thus we have (3.11) with $C_{1}=(C_{\beta}/2)\eta^{\beta}$

LEMMA 3.3. Let $1<a<\infty$ and $I\overline{c\subset}R.$ Let $g(t, x)\in L^{\infty}(I;W^{1,\alpha}(R^{N}))$ such that

(3.12) $ess.\sup_{t\in I}||\nabla g(t)||_{\alpha}\leqq C_{2}$ ,

(3.13) $ess.\sup_{t\in I}\mu([|g(t)|>\eta])\geqq C_{3}$

for some Positive constants $C_{2}$ and $C_{3}$ . Then there exists a shift $(T_{y}g)(t, x)=$

$g(i, x+y)$ such that, for some constant $\delta=\delta(C_{1}, C_{2}, \eta)$ ,

(3.14) $ess$ .$\sup_{t\in I}\mu(B(0;1)\cap[|T_{y}g(t)|>\frac{\eta}{2}])>\delta$ .

PROOF. For simplicity, we suppose that $g\in C_{b}(I;W^{1.\alpha}(R^{N}))$ . In general
case, we employ Lusin’s theorem.

We borrow the idea of Br\’ezis in Lieb [16]. Let $f$ be a non trivial func-
tion such that $f(\cdot)\in C_{b}(I;W_{1oc}^{1,\alpha}(R^{N})),$ $\sup_{t\in I}||\nabla f(t, )||_{\alpha}\leqq 1$ . Let

$K=1+ \frac{1}{\sup_{t\in R}||f(t)||_{\alpha}^{\alpha}}$ ,

$C_{y}=$ cube in $R^{N}$ with center $y$ and the side length $\frac{2}{\sqrt{}\overline{N}}$ .

First we claim that there exists a point $(s, y)\in I\cross R^{N}$ such that

(3.15) $\int_{c_{y}}|\nabla f(s, x)|^{\alpha}dx<K\int_{c_{y}}|f(s, x)|^{a}dx$ .

Indeed suppose the contrary that, for any $(s, y)\in I\cross R^{N}$ ,
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(3.16) $\int_{c_{y}}|\nabla f(s, x)|^{\alpha}dx\geqq K\int_{c_{y}}|f(s, x)|^{\alpha}dx$ .

We choose $\{y_{k}\}$ in $R^{N}$ such that $\mathring{C}_{y_{k}}\cap\mathring{C}_{y_{j}}=\emptyset$ for $j\neq k$ and $U_{k=1}^{\infty}C_{y_{k}}=R^{N}$ . For
this $\{y_{k}\}$ , we have

(3.17) $\int_{c_{y_{k}}}|\nabla f(s, x)|^{\alpha}dx\geqq K\int_{c_{y_{k}}}|f(s, x)|^{\alpha}dx$

for any $s\in R$ . Summing (3.17) from $k$ equals 1 to $\infty$ , we have

$\langle$3.18) $1 \geqq\int_{R^{N}}|\nabla f(s, x)|^{\alpha}dx\geqq K\int_{R^{N}}|f(s, x)|^{\alpha}dx$

for any $s\in R$ . Now we take the supremum of the right hand side of (3.18)

with respect to $s\in I$, so that we obtain, by the definition of $K$,

$\mathfrak{l}(3.19)$

$1 \geqq 1+\sup_{c\in R}||f(t)||_{\alpha}^{a}>1$ ,

which is a contradiction.
By (3.15) we have

$|\langle 3.20)$ $\int_{c_{y}}|\nabla f(s, x)|^{\alpha}+|f(s, x)|^{a}dx<(K+1)\int_{c_{y}}|f(s, x)|^{\alpha}dx$ .

On the other hand, by the Sobolev inequality, we have

(3.21) $\int_{c_{y}}|\nabla f(s, x)|^{\alpha}+|f(s, x)|^{\alpha}dx\geqq S(\int_{c_{y}}|f(s, x)|^{\alpha*}dx)^{\alpha/\alpha*}$ ,

where $1/a^{*}+1/N-1/\alpha$ if $a<N$ and, if $a\geqq N,$ $a^{*}$ is arbitrary with $\alpha<a^{*}<\infty$ .
$S$ depends only on $a,$ $a^{*}$ . Combining (3.20) and (3.21), we have that, for some
open, small interval $I_{s}$ containing $s$ ,

(3.22) $S \sup_{\iota\in I_{S}}(\int_{c_{y}}|f(t, x)|^{\alpha*}dx)^{a/\alpha*}<(K+1)\int_{c_{y}}|f(s, x)|^{\alpha}dx$ .

Here we have used the fact that $f(t)$ is continuous in $t$ with values in $W_{1\dot{o}c}^{1\alpha}(R^{N})$ .
From (3.22), we have by the Holder inequality that, for $\tau\in l_{s}$ (if necessary,
taking smaller interval),

$((3.23) S \sup_{t\in 1_{S}}(\int_{\sigma_{y}}|f(t, x)|^{\alpha*}dx)^{\alpha/\alpha^{*}}$

$<(K+1) \mu(C_{y}\cap suppf(\tau, ))^{1-\alpha/a*}(\int_{c_{y}}|f(\tau, x)|^{\alpha*}dx)^{\alpha/\alpha*}$

Hence it follows that

$\langle$3.24) $S<(K+1) ess.\sup_{t\in I}\mu(C_{y}\cap suppf(t, ))^{1-\alpha/\alpha*}$

NOW we put $f(t, x)= \max(|g(t, x)|-\eta/2,0)$ . For simplicity we assume that
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$||\nabla g(t)||_{\alpha}\leqq 1$ so that $\sup_{t\in R}||\nabla f(t, )||_{\alpha}\leqq 1$ . From (3.13), we have

(3.25) $\sup_{t\in R}||f(t)||_{\alpha}^{\alpha}\geqq(\frac{\eta}{2})^{\alpha}\sup_{t\in R}\mu([|g(t, )|>\frac{\eta}{2}])i(\frac{\eta}{2})^{\alpha}C_{3}$ ,

and thus $K\leqq 1+2^{\alpha}/\eta^{\alpha}C_{3}$ . From (3.24) we deduce (3.14) for some point $y\in R^{N}$

and some constant $\delta$ depending only on $N,$ $\alpha,$ $\eta,$
$C_{2}$ and $C_{1}$ .

REMARK 3.1. Since we have Lemma 3.2, the condition (3.13) is always
assured if $g$ satisfies

$ess.\sup_{t\in I}||g(i)||_{\alpha}^{\alpha}\leqq C_{\alpha}$ , $ess$ .$\sup_{t\in I}||g(t)||_{\beta}^{\beta}\geqq C_{\beta}>0$ , $ess.\sup_{t\in I}||g(t)||_{\alpha^{*}}^{\alpha^{*}}\leqq C_{\gamma}$ ,

where $\beta=a(1+\alpha/N)$ .
This lemma and Corollary 3.4 below are closely related to the compactness

device as in Lieb [16].

COROLLARY 3.4. Let $1<a<\infty$ and $I\subset\subset R$ . Let $\{v_{n}(t, x)\}$ be a uniformly
bounded sequence of functions in $C_{b}(I;W^{1.\alpha}(R^{N}))$ such that $ess.\sup_{t\in I}\mu([|v_{n}(t)|$

$>\eta])\geqq C_{3}$ for some positive constant $\eta$ and $C_{3}$ . Furthermore we suppose that
$\{v_{n}(t, x)\}$ is an $eq\iota u$ -continuous family in $C_{b}(I;L^{\alpha}(R^{N}))$ . Then there exist a
sequence $\{y_{n}\}$ in $R^{N}$ and a nontnvial function $v\in L^{\infty}(I;W^{1,\alpha}(R^{N}))$ such that for
$\Omega\subset\subset R^{N}$ and for some subsequence (still denoted by the same letter),

(3.26) $if_{n}\equiv v_{n}(\cdot, \cdot+y_{n})\underline{\star}v$ $weakly^{*}$ in $L^{\infty}(I;W^{1,\alpha}(R^{N}))$ ,

(3.27) $D_{n}---v$ strongly in $C(I, L^{\alpha}(\Omega))$

as $narrow\infty$ .

PROOF. We note that, for any $\{x_{n}\}\subset R^{N},$ $\{v_{n}(t, x+x_{n})\}$ is also an equi-
continuous family in $C_{b}(I;L^{\alpha}(R^{N}))$ . Thus this corollary is a direct consequence
of Lemma 3.3 and the Ascoli-Arzel\‘a theorem.

TO treat the nonlinear term in (3.1), we need

LEMMA 3.5. Let $1<\alpha<\infty$ . Let $\{f_{n}(t, x)\}$ be an bounded family in $L^{\alpha}(I\cross\Omega)$

where $I\cross\Omega\subset R\cross R^{N}$ . Suppose that $f_{n}arrow f$ a. $e$ . in $I\cross\Omega$ . Then we have

(3.28) $|f_{n}|^{\alpha-2}f_{n}-|f_{n}-f|^{\alpha-2}(f_{n}-f)-|f|^{\alpha-2}farrow 0$ in $L^{\alpha}$
‘
$(I\cross\Omega)$ ,

where $1/a+1/a’=1$ , and we have

(3.29) $\lim_{narrow\infty}\int\int_{I\cross\Omega}||f_{n}|^{\alpha}-|f_{n}-f|^{\alpha}-|f|^{\alpha}|dtdx=0$ .

Furthermore if I is a compact interval, and if $\{f_{n}(t, x)\}$ is an equz-continuous
family in $C(I;L^{\alpha}(\Omega))$ , then we have

(3.30) $|f_{n}|^{\alpha-2}f_{n}-|f_{n}-f|^{\alpha-2}(f_{n}-f)-|f|^{\alpha- 2}farrow 0$ in $L^{\infty}(I;L^{\alpha’}(\Omega))$ ,
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and

(3.31) $1 iInsupnarrow\infty\iota\in I\int_{\Omega}||f_{n}|^{\alpha}-|f_{n}-f|^{\alpha}-|f|^{\alpha}|dx=0$ .

PROOF. If we establish the assertions of (3.28) and (3.29), one can easily
verify (3.30) and (3.31).

(3.29) is purely a consequence of the Br\’e $z$ is-Lieb lemma [5]. The conver-
gence (3.28) also follows from the same argument performed in [5]. One can
easily observed that for any $\epsilon>0$ , there exists a positive constant $C_{\epsilon}$ such that

$\sim(3.32)$ $||f_{n}|^{\alpha-2}f_{n}-|f_{n}-f|^{\alpha-2}(f_{n}-f)-|f|^{\alpha-2}f|\leqq\epsilon|f_{n}-f|^{\alpha-1}+C_{\epsilon}|f|^{\alpha-1}$ .

We note that for $I\subset\subset R$ ,

(3.33) $\epsilon|f_{n}-f|^{\alpha- 1}+C_{\epsilon}|f|^{\alpha-1}\in L^{\alpha’}(I\cross R^{N})$ .

NOW set

(3.34) W., $n=[||f_{n}|^{\alpha-2}f_{n}-|f_{n}-v|^{\alpha-2}(f_{n}-f)-|f|^{\alpha-2}f|-\epsilon|f_{n}-f|^{\alpha-1}]_{+}$

where $[a].= \max(a, 0)$ , so that $W_{\epsilon,n}(t, x)arrow 0a$ . $e$ . as $narrow\infty$ and by (3.32), W.. $n$

$\leqq C_{\epsilon}|f|^{\alpha-1}$ . Thus the dominated convergence theorem implies

(3.35) $\lim_{n_{\vee}\infty}\int\int_{I\cross R^{N}}W_{\epsilon,n}(t, x)^{\alpha’}dtdx=0$ .

However we have

(3.36) $||f_{n}|^{\alpha-2}f_{n}-|f_{n}-v|^{\alpha-2}(f_{n}-f)-|f|^{\alpha-2}f|\leqq W_{\epsilon}n+\epsilon|f_{n}-f|^{\alpha- 1}$

and, thus

(3.37) $\lim_{narrow}\sup_{\infty}\int\int_{I\cross R^{N}}||f_{n}|^{\alpha-2}f_{n}-|f_{n}-v|^{\alpha-2}(f_{n}-f)-|f|^{\alpha-2}f|^{\alpha’}$ dtd $x$

$\leqq 2^{\alpha’-\iota}\epsilon\lim_{narrow}\sup_{\infty}\int\int_{I\cross R^{N}}|f_{n}-f|^{\alpha}dtdx$ .

Hence we obtain (3.28).

NOW we are in a position to prove Proposition 3.1.

PROOF OF PROPOSITION 3.1. Since $\{v_{n}\}$ and $\{g_{n}\}$ are equi-bounded families
in $L^{\infty}(I;H^{1}(R^{N}))$ and $L^{\infty}(I;L^{\sigma’}(R^{N}))$ , respectively, it follows from (3.1) tbat
$\{\partial v_{n}/\partial t\}$ is an equibounded family in $L^{\infty}(R;H^{-1})$ , where $H^{-1}$ is the dual space
of $H^{1}(R^{N})$ . From the identity

(3.38) 1 $v_{n}(t)-v_{n}(s)||^{2}=2 \int_{s}^{t}\Re\langle\frac{\partial}{\partial\tau}v_{n}(\tau),$ $v_{n}(\tau)-v_{n}(s)\rangle d\tau$ ,

we have
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(3.39) $||v_{n}(t)-v_{n}(s)||^{2} \leqq 4|t-s|||v_{n}||_{L^{\infty}(R,H1)}||\frac{\partial}{\partial\tau}v_{n}||_{L^{\infty}(R,H)}- 1$

where $t,$ $s\in I$ and $H^{1}=H^{1}(R^{N})$ . By the Gagliardo-Nirenberg inequality, we also
obtain, for $\alpha\in(2,2^{*})$ ,

(3.40) $||v_{n}(t)-v_{n}(s)||_{\alpha}^{\alpha}\leqq C|t-s|^{\theta}||v_{n}||_{LRH^{1})}^{\theta+N(a-2)/2||\frac{\partial}{\partial\tau}v_{n||_{L\infty(R,H^{-1})}^{\theta}}}\infty(;$

’

where $\theta=a/2-N(\alpha-2)/4$ . Hence, for any $\{x_{n}\}\subset R^{N},$ $\{v_{n}(t, x+x_{n})\}$ is an equi-
continuous family in $C_{b}(R;L^{\alpha}(R^{N}))$ for $\alpha\in[2,2^{*})$ . On the other hand, we have,
by (3.2) and Lemma 3.2, that, for some positive constant $C$ independent of $n$ ,

(3.41) $ess.\sup_{t\in I}\mu([|v_{n}(t)|>\eta])\geqq C$ .

Thus, by virtue of Corollary 3.4, there exist a nontrivial function $v$ in
$C([0, T] ; H^{1}(R^{N}))$ and a sequence $\{\gamma_{n}\}\subset R^{N}$ such that, for $\Omega\Subset R^{N}$ and for some
subsequence (still denoted by the same letter),

(3.42) $\tilde{v}_{n}\equiv v_{n}(\cdot, \cdot+\gamma_{n})\underline{*}v$ weakly* in $L^{\infty}([0, T];H^{1}(R^{N}))$ ,

(3.43) $\tilde{v}_{n}arrow v$ strongly in $C([0, T] ; L^{\alpha}(\Omega))$ for $a\in[2,2^{*})$ and

as $narrow\infty$ .
We claim that the limit function $v$ solves (NSC). Since $v_{n}$ solves (3.1), it

holds that, for any $x\in C_{0}^{\infty}(R)$ and $\varphi\in C_{0}^{\infty}(R^{N})$ ,

(3.45) $- \int_{R}\langle 2i\tilde{v}_{n}, \varphi\rangle^{\dot{\chi}}dt+\int_{R}\langle\Delta i\}_{n}\varphi\rangle xdr+\int_{R}\langle|V_{n}|^{4/N}V_{n}, \varphi\rangle\lambda dt=\int_{R}\langle\tilde{g}_{n}, \varphi\rangle xdt$,

where $\tilde{g}_{n}\equiv g_{n}(t, x+\gamma_{n})$ and $=d/dt$ . Hence, by (3.3), (3.42) and (3.43), we have

(3.46) $2i \frac{d}{dt}\langle v, \varphi\rangle+\langle\Delta v, \varphi\rangle+\langle|v|^{4/N}v, \varphi\rangle=0$

in $9’(R)$ (the dual of cvy$(R)$ ), so that the standard argument shows

(3.47) $2i \frac{\partial v}{\partial t}+\Delta v+|v|^{4/N}v=0$ , in $H^{-1}$ .

By (3.39), we have $v\in C_{b}(I;L^{2}(R^{N}))$ . This fact together with $v\in L^{\infty}(I;H^{1}(R^{N}))$

implies $v\in C_{w}(I;H^{1}(R^{N}))$ . Hence $v$ has the definite initial value $v(0)\in H^{1}(R^{N})$ .
Thus the uniqueness theorem of Kato [14] yields $v\in C_{b}(R;H^{1}(R^{N}))$ .

Since $i1_{n}$ converges to $v$ in $C(I;L^{2}(\Omega))$ and a fortiori in $L^{2}(I\cross\Omega)$ for any
$\Omega\subset\subset R^{N}$ , we can extract a subsequence from $\{\tilde{v}_{n}\}$ (still denoted by $\{\tilde{v}_{n}\}$ ) such
that $\tilde{v}_{n}arrow v$ a. $e$ . $I\cross\Omega$ . Thus (3.6) and (3.7) follow from Lemma 3.5 and the
equi-continuity of $\{V_{n}\}$ . (3.8) follows from (3.6) and the weak convergence of
$\{\nabla b_{n}\}$ in $L^{2}(I\cross R^{N})$ . (3.9) follows from (3.6) and the weak convergence of
$\{\nabla v_{n}(t)\}$ in $L^{2}(R^{N})$ .
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4. Proof of Theorem 1.

We shall prove Theorem 1 by using Proposition 3.1 in the previous section.
Let $u(t)$ be the singular solution of (NSC) with initial datum $u(O)=u_{0}\in$

$H^{l}(R^{N})$ such that $u(\cdot)\in C([0, T_{m});H^{1}(R^{N}))$ and

(4.1)
$\lim_{tarrow T}\sup_{m}||\nabla u(t)||=\lim_{tarrow T}\sup_{m}||u(t)||_{\sigma}=\infty$

for some $T_{m}\in(0, \infty]$ . Let $\{t_{n}\}$ be any sequence such that

(4.2) $\sup_{\iota\in\zeta 0,c_{n})}||u(t)||_{\sigma}=||u(t_{n})||_{\sigma}$ .

For this $\{t_{n}\}$ , we put

(4.3) $\lambda_{n}=\frac{1}{||u(t_{n})||_{\sigma}^{\sigma/2}}$

and, we consider the scaled functions

(4.4) $u_{n}(t, x)=\lambda_{n}^{N/2}\overline{u(t_{n}-\lambda_{n}^{2}t,\lambda_{n}x)}$

for $t\in[0, t_{n}/\lambda_{n}^{2})$ . One can easily see that

(4.5) $2i \frac{\partial u_{n}}{\partial t}+\Delta u_{n}+|u_{n}|^{4/N}u_{n}=0$ ,

(4.6) $||u_{n}(t)||=||u_{0}||$ ,

(4.7) $\sup_{t\in[0.T]}||u_{n}(t)||_{\sigma}=1$ for any $T>0$ ,

(4.8) $E(u_{n}(t))=\lambda_{n}^{2}E(u_{0})(arrow 0)$ as $narrow\infty$ .

From (4.5), (4.6) and (4.7), it follows that $\{u_{n}\}$ is an equi-bounded family in
$L^{\infty}(R_{+} ; H^{1}(R^{N}))$ . Thus, by Proposition 3.1, there exist

(i) a nontrivial solution $u^{1}$ of (NSC) in $C([0, \infty);H^{1}(R^{N}))$

(ii) a sequence $\{y_{n}^{1}\}\subset R^{N}$

such that for $\Omega\subset\subset R^{N}$ and for some subsequence (still denoted by the same letter),

(4.10) $u_{n}^{1}\equiv u_{n}(\cdot, \cdot+y_{n}^{1})\underline{\star}u^{1}$ weakly* in $L^{\infty}([0, \infty);H^{1}(R^{N}))$ ,

(4.11) $u_{n}^{1}arrow u^{1}$ strongly in $C([0, T];L^{\alpha}(\Omega))$

for $a\in[2,2^{*})$ as $narrow\infty$ . Furthermore we have

(4.12) $|u_{n}^{1}|^{4/N}u_{n}^{1}-|u_{n}^{1}-u^{1}|^{4/N}(u_{n}^{1}-u^{1})-|u^{1}|^{4/N}u^{1}arrow 0$

strongly in $C([0, T];L^{\sigma’}(R^{N}))$ ,

(4.13) $\lim_{narrow\infty}\sup_{t\in[0.T]}\int_{R^{N}}||u_{n}^{1}|^{\alpha}-|u_{n}^{1}-u^{1}|^{\alpha}-|u^{1}|^{\alpha}|dx=0$ , $a\in[2,2^{*})$ ,
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(4.14) $\lim_{narrow\infty}\int_{0}^{T}\{E(u_{n}^{1})-E(u_{n}^{1}-u^{I})-E(u‘)\}$ $dt=0$ ,

and, for any $t\in R_{+}$

(4.15) $\lim_{narrow\infty}\{E(u_{n}^{1}(t))-E((u_{n}^{1}-u^{1})(t))-E(u^{1}(t))\}=0$ .

Here we note that $u^{1}(t)$ is defined on $R_{+}$ , and that $u^{1}\in L^{\infty}(R_{+} ; H^{1}(R^{N}))$ . Hence
we obtain, by Theorem 2, that

(4.16) $E(u^{1}(t))=E(u^{1}(0))\geqq 0$ $t\in[0, \infty)$ .
Suppose that $\lim\sup_{narrow\infty}||u_{n}^{1}-u^{1}||_{\sigma}\neq 0$ . $u_{n}^{1}-u^{1}$ satisfies

(4.17) $2i \frac{\partial(u_{n}^{1}-u^{1})}{\partial t}+\Delta(u_{n}^{1}-u^{1})+|u_{n}^{1}-u^{1}|^{4/N}(u_{n}^{1}-u^{1})=g_{n}^{1}$ ,

where

(4.18) $g_{n}^{1}(t, x)=-(|u_{n}^{1}|^{4/N}u_{n}^{1}-|u_{n}^{1}-u^{1}|^{4/N}(u_{n}^{1}-u^{1})-|u^{1}|^{4/N}u^{1})(t, x)$ .
We note here that (4.12) implies that for any $\{x_{n}\}\subset R^{N}$ and for any $T>0$,

(4.19) $\lim$ $\sup||g_{n}^{1}(t, \cdot+x_{n})||_{\sigma}=0$ .
$narrow\infty t\in 10.TJ$

Clearly $\{u_{n}^{1}-u^{1}\}$ is an equi-bounded family in $L^{\infty}([0, \infty);H^{1}(R^{N}))$ . Thus we
apply Proposition 3.1 to $\{u_{n}^{1}-u^{1}\}$ to obtain

(i) a nontrivial solution $u^{2}$ of (NSC) in $C_{b}([0, \infty);H^{1}(R^{N}))$ with $E(u^{2}(t)\lambda$

$=E(u^{2}(0))\geqq 0,$ $t\in[0, \infty)$ (by Theorem 2) and
(ii) a sequence $\{y_{n}^{2}\}\subset R^{N}$

such that for $\Omega\subset\subset R^{N}$ and for some subsequence (still denoted by the same letter).

(4.20) $u_{n}^{2}\equiv(u_{n}^{1}-u^{1})(\cdot, \cdot+y_{n}^{2})\underline{\star}u^{2}$

weakly* in $L^{\infty}([0, \infty);H^{1}(R^{N}))$ , and

(4.21) $u_{n}^{2}arrow u^{2}$ strongly in $C([0, T];L^{\alpha}(\Omega))$

for $a\in[2,2^{*})$ as $narrow\infty$ . Furthermore we have

(4.22) $|u_{n}^{2}|^{4/N}u_{n}^{2}-|u_{n}^{2}-u^{2}|^{4/N}(u_{n}^{2}-u^{2})-|u^{2}|^{4/N}u^{2}arrow 0$

strongly in $C([0, T];L^{\sigma’}(R^{N}))$ ,

(4.23) $\lim_{narrow\infty}\sup_{t\in[0.T]}\int_{R^{N}}||u_{n}^{2}|^{\alpha}-|u_{n}^{2}-u^{2}|^{a}-|u^{2}|^{a}|dx=0$ , $a\in[2,2^{*})$ ,

(4.24) $\lim_{narrow\infty}\int_{0}^{T}\{E(u_{n}^{2})-E(u_{n}^{2}-u^{2})-E(u^{2})\}dt=0$ ,

and, for any $t\in R_{+}$ ,
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(4.25) $\lim_{narrow\infty}\{E(u_{n}^{2}(r))-E((u_{n}^{2}-u^{2})(t))-E(u^{2}(t))\}=0$ .

We also have by (4.10) and (4.20) that

$\langle$4.26) $\lim_{narrow\infty}|y_{n}^{2}|=\infty$ ,

and we can see that $(u_{n}^{2}-u^{2})$ satisfies

$\langle$4.27) $2i \frac{\partial(u_{n}^{2}-u^{2})}{\partial t}+\Delta(u_{n}^{2}-u^{2})+|u_{n}^{2}-u^{2}|^{4/N}(u_{n}^{2}-u^{2})=g_{n}^{2}$ ,

where

$\langle$4.28) $g_{n}^{2}(t, x)=g_{n}^{1}(t, x+y_{n}^{1})-(|u_{n}^{2}|^{4/N}u_{n}^{2}-|u_{n}^{2}-u^{2}|^{4/N}(u_{n}^{2}-u^{2})-|u^{2}|^{4/N}u^{2})(t, x)$ .
(4.12) and (4.22) imply that for any $\{x.\}CR^{N}$ and for any $T>0$ ,

$\langle$4.29) $\lim_{narrow\infty}\sup_{t\in[0,T]}||g_{n}^{2}(t, \cdot+x_{n})||_{\sigma}=0$ .
It is worthwhile to note that it holds from (4.13), (4.15), (4.23) and (4.25) that,
for any $t\in R_{+}$ and $a\in[2,2^{*})$ ,

$\langle$4.30) $\lim_{narrow\infty}(||u_{n}(t)||_{\alpha}^{a}-||(u_{n}^{2}-u^{2})(t)||_{\alpha}^{a})=\sum_{k=1}^{2}||u^{k}(t)||_{\alpha}^{a}$ ,

$\langle$4.31) $\lim_{narrow\infty}\{E(u_{n}(t))-E((u_{n}^{2}-u^{2})(t))\}=\sum_{k=1}^{2}E(u^{k}(t))$ ,

since $||\cdot||_{\alpha}$ and $E(\cdot)$ are invariant under the action of space-translations.
The proof of Theorem 1 consists of iterating the construction of Proposi-

tion 3.1. In what follows, we freely take enough subsequences. Repeating the
procedure above, we inductively obtain: $(j\geqq 2)$

(i) nontrivial solutions $u^{j}$ of (NSC) in $C_{b}([0, \infty);H^{1}(R^{N}))$ with $E(u^{J}(t))=$

$E(u^{j}(0))\geqq 0t\in[0, \infty)$ (by Theorem 2) and
(ii) a sequence $\{y_{n}^{j}\}\subset R^{N}$ with $\lim_{narrow\infty}|\Sigma_{k=2}^{j}y_{n}^{k}|=\infty$

such that for $\Omega\subset\subset R^{N}$ and for any $T>0$ ,

(4.32) $u_{n}^{j}\equiv(u_{n}^{J-1}-u^{j-1})(\cdot, \cdot+y_{n}^{J})\underline{\star}u^{J}$

$weakly^{*}$ in $L^{\infty}([0, \infty);H^{1}(R^{N}))$ , and

$\langle$4.33) $u_{n}^{f}arrow u^{j}$ strongly in $C([0, T];L^{\alpha}(\Omega))$

for $a\in[2,2^{*})$ as $narrow\infty$ ; and furthermore we have

(4.34) $|u_{n}^{j}|^{4/N}u_{n}^{j}-|u_{n}^{j}-u^{j}|^{4/N}(u_{n}^{j}-u^{J})-|u^{\mathcal{J}}|^{4/N}u^{J}arrow 0$

strongly in $C([0, T]|L^{\sigma’}(R^{N}))$ ,

$\langle$4.35) $\lim_{narrow\infty}\sup_{t\in\zeta 0}\tau J\int_{R^{N}}||ui|^{\alpha}-|u_{n}^{j}-u^{j}|^{\alpha}-|u^{j}|^{\alpha}|dx=0$ ,
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(4.36) $\lim_{narrow\infty}\int_{0}^{T}\{E(ul)-E(u_{n}^{f}-u^{j})-E(u^{j})\}dt=0$ ,

and, for any $t\in R_{+}$ ,

(4.37) $\lim_{narrow\infty}\{E(u_{n}^{j}(t))-E((u_{n}^{j}-u^{j})(t))-E(u^{j}(t))\}=0$ ,

(4.38) $\lim_{narrow\infty}(||u_{n}(t)||_{a}^{\alpha}-||(u_{n}^{j}-u^{j})(t)||_{a}^{a})=\sum_{k=1}^{j}||u^{k}(t)||_{a}^{a}$ ,

(4.39) $\lim_{narrow\infty}\{E(u_{n}(t))-E((u_{n}^{j}-u^{j})(t))\}=\sum_{k=1}^{j}E(u^{k}(t))$ ;

besides, $(u_{n}^{j}-u^{j})$ satisfies

(4.40) & $\frac{\partial(ul-u^{j})}{\partial t}+\Delta(u_{n}^{j}-u^{j})+|uf_{\iota}-u^{j}|^{4/N}(u_{n}^{j}-u^{j})=g_{n}^{j}$ ,

where

(4.41) $g_{n}^{j}(t, x)=g_{n}^{J-1}(t, x+y_{n}^{j-1})-(|u_{n}^{j}|^{4/N}u_{n^{-}}^{j}|u_{n}^{j}-u^{j}|^{4/N}(u_{n}^{j}-u^{j})-|u^{j}|^{4/N}u^{j})(t, x)$ .
(4.34) implies that for any $\{x_{n}\}\subset R^{N}$ and for any $T>0$,

(4.42) $\lim_{narrow\infty}\sup_{c\in[0.T]}||g_{n}^{j}(t, \cdot+x_{n})||_{\sigma}=0$ .

We claim that the iteration must terminated at some index $L\in N$ Suppose the
contrary that $L=\infty$ . In this case, we have

(4.43) $\lim\lim\sup||(ul-u^{j})(t)||_{\sigma}=0$ .
$jarrow\infty narrow\infty t\in\zeta 0.T\supset$

lndeed; suppose the contrary that, for some positive constant $\epsilon_{0}$ and a sub-
sequence $\{j(k)\}$ of $\{]\}$ , one has

(4.44) $\lim_{karrow}\inf_{\infty}\lim_{narrow\infty}\sup_{c\in[0,\tau]}||(u_{n}^{j(k)}-u^{j(k)})(t))||_{\sigma}>\epsilon_{0}$ .

Hence there is a constant $C_{0}$ essentially depends on $\epsilon_{0}$ such that

(4.45) $\sup_{t\in[0,T]}||u^{j(k)+1}(t)||_{\sigma}^{\sigma}>C_{0}$ ,

since the size of $\sup_{t\in[0.T]}||u^{j}(t)||_{\sigma}$ essentially depends on the lower bound of
$\sup_{t\in[0.T]}||(u_{n}^{j-1}-u^{j-1})(t)||_{\sigma}$ by Lemma 3.2, Lemma 3.3 and the construction of $u^{j}$ .
We choose $k\in N$ large enough (specified latter). Using the formula (4.38) with
$\alpha=\sigma$ and $j=j(k)$ , we have by (4.45) that, for enough subsequence with respect
to $n$ ,

(4.46) $1> \lim_{narrow\infty}\sup_{t}\sup_{\in[0,T]}(||u^{j(k)+1}(t)||_{\sigma}^{\sigma}-||(u_{n}^{j(k)}-u^{j(k)})(t)||_{\sigma}^{\sigma})$

$= \sup_{t\in[0.T]}\sum_{j=1}^{j(k)}||u^{j}(t)||_{<1}^{\sigma}>\sup_{\iota\in[0.T]}\sum_{t=1}^{k}||u^{j(l)}(t)||_{\sigma}^{\sigma}$

$>kC_{0}$ .
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Thus we reach a contradiction, if we take $k$ as $kC_{0}\geqq 1$ . Hence we get (4.43).
(4.39) together with (4.8) and (4.43) yields that

(4.47) $0$ $ $\lim_{jarrow\infty}\sum_{k=1}^{j}E(u^{k}(t))\leqq\lim_{jarrow\infty}\lim_{narrow\infty}\sup_{t\in[0,T]}||(u_{n}^{j}-u^{j})(t)||_{0}^{\sigma}=0$ ,

so that we have

(4.48) $E(u^{k}(t))=0$ , $j\in N$ .
Then, by Proposition 2.5, we have

(4.49) $||u^{j}(t)||=||u^{j}(0)||\geqq||Q||$ , $j\in N$ .
This together with (4.38) with $\alpha=2$ implies

(4.50) $j||Q||^{2} \leqq\sum_{k=1}^{j}||u^{k}(t)||^{2}\leqq||u_{0}||^{2}$ ,

which is a contradiction. Thus we obtain $L<\infty$ , so that

(4.51) $\lim_{narrow\infty}\sup_{t\in co,T3}||(u_{n}^{L}-u^{L})(t)||_{\sigma}=0$

which implies that (1.14) with $\gamma_{n}^{j}=\Sigma_{k=1}^{f}y_{n}^{k}$ , since we have

(4.52) $(u_{n}^{L}-u^{L})(t, x)=u_{n}(t,$ $x+ \sum_{k=1}^{L}y_{n}^{k})-\sum_{j=1}^{L}u^{j}(t,$ $x+ \sum_{k=+1}y_{n}^{k})$ .

(1.15) follows from (4.39), (4.51) and (4.52). It remains to prove(1.16). Noting
that

(4.53) $\lim_{narrow\infty}\sup_{t\in[0.\tau]}|||u_{n}^{L}-u^{L}|^{4/N}(u_{n}^{L}-u^{L})||_{\sigma’}=0$

we have, by (4.34) with $j=L$ and (4.52), that

(4.54) $|u_{n}|^{4/N}u_{n}(t, )- \sum_{j=1}^{L}|u^{j}|^{4/N}u^{j}(t, \cdot-\gamma_{n}^{j})arrow 0$

strongly in $C([0, T];L^{\sigma^{r}}(R^{N}))$ . Since $u_{n}$ satisfies

(4.55) $u_{n}(t)=U(t)u_{n}(0)+ \frac{i}{2}\int_{0}^{t}U(t-\tau)(|u_{n}|^{4/N}u_{n})(\tau)d\tau$ ,

and $\tilde{u}^{j}(t, x)\equiv u^{j}(t, x-\gamma_{n}^{j})$ satisfies

(4.56) $\tilde{u}^{j}(t)=U(t)a^{j}(0)+\frac{i}{2}\int_{0}^{t}U(t-\tau)(|\tilde{u}^{j}|^{4/N}\tilde{u}^{j})(\tau)d\tau$ ,

we have

(4.57) $u_{n}(t)- \sum_{j=1}^{L}\tilde{u}^{j}(t)-\phi^{u}(t)=\frac{i}{2}\int_{0}^{t}U(t-\tau)(|u_{n}|^{4/N}u_{n}-\sum_{j=1}^{L}|\tilde{u}^{j}|^{4/N}\tilde{u}^{f})d\tau$ ,

where
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(4.58) $\phi_{n}(t, )=U(t)(u_{n}(0)-\sum_{j\Rightarrow 1}^{L}\tilde{u}^{j}(0))$ .

Estimating (4.57) with the help of Lemma 2.6 (2) ( $\nu=\infty,$ $\rho=2$ and $\kappa=\theta=\sigma$), we
have (1.16) by virtue of (4.54).

5. Proofs of Corollaries.

Let $u(t),$ $\{t_{n}\},$ $u_{n}(t)$ and $Q(x)$ be as in the previous section. We shall prove
Corollaries 1 and 2 which give sufficiently conditions that we have $L=1$ in
Theorem 1. In the proofs of both corollaries we, however, do not need Theo-
rem 2 to prove $L=1$ .

PROOF OF COROLLARY 1. Let $H_{r}^{1}(R^{N})=\{v\in H^{1}(R^{N});v(x)=v(|x|), x\in R^{N}\}$ .
Assume $u(O)$ is radially symmetric and $N\geqq 2$ . Then the corresponding solu-
tion $u(t)$ is also radially symmetric in space variables. Precisely $u(\cdot)\in$

$C([0, T_{m});H_{T}^{1}(R^{N}))$ . We note the following fact: if, in Proposition 3.1, we
assume in addition that $\{v_{n}\}\subset C_{b}([0, T];H_{r}^{1}(R^{N}))$ , then we have that $\gamma_{n}\equiv 0$ ,

and that

(5.1) $v_{n}arrow v$ strongly in $C([0, T];L^{\alpha}(R^{N}))$ for $a\in(2,2^{*})$

as $narrow\infty$ , since the embedding $L^{\alpha}(R^{N})c_{arrow}H_{r}^{1}(R^{N})$ for $a\in(2,2^{*})$ is compact. Thus
we have in the sam $e$ way as in the proof of Theorem 1 that, for radially sym-
metric family $\{u_{n}\}$ , there exists a nontrivial solution $u^{1}$ of (NSC) in $C([0, \infty)$ ;
$H_{r}^{1}(R^{N}))$ such that for some subsequence (still denoted by the same letter),

(5.2) $|u_{n}|^{4/N}u^{u}-|u^{1}|^{4/N}u^{1}arrow 0$ strongly in $C([0, T];L^{\sigma’}(R^{N}))$ ,

(5.3) $\lim_{narrow\infty}\sup_{t\in[0.T]}||(u_{n}-u^{1})(t)||_{\sigma}=0$
$a\in(2,2^{*})$ ,

(5.4) $\lim_{narrow\infty}\int_{0}^{T}\{E(u_{n})-E(u_{n}-u^{1})-E(u^{1})\}dt=0$ ,

and for any $t\in[0, T]$

(5.5) $\lim_{narrow\infty}\{E(u_{n}(t))-E((u_{n}-u^{1})(t))-E(u^{1}(t))\}=0$ .

The strong convergence (5.3) implies $L-1$ in the terminology in Theorem 1.
From (5.3) and (5.4), we have

(5.6) $E(u^{1}(t))=E(u^{1}(0))\leqq 0$ .
Theorem 2 is only used to prove $E(u(t))=0$ .

PROOF OF COROLLARY 2. Assum$e||u_{0}||=||Q||$ . In the same way as in the
proof of Proposition 2.5, we can prove that (in the proof of Theorem 1) we
have
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(5.7) $|u_{n}^{1}|^{4/N}u_{n}^{1}-|u^{1}|^{4/N}u^{1}arrow 0$

strongly in $C([0, T];L^{\sigma^{l}}(R^{N}))$ , and we have

(5.8) $\lim_{narrow\infty}\sup_{t\in[0,T]}||(u_{n}^{1}-u^{1})(t)||_{\alpha}=0$
$\alpha\in[2,2^{*})$ ,

(5.9) $E(u^{1})=0$ .
Thus we have $L=1$ in the terminology in Theorem 1. We note that we do
not use Theorem 2.
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