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   Introduction. 

   Let V0, V1, ..•, V n be smooth vector fields on Rd (in general may be a 

smooth manifold) and we consider the stochastic differential equation (abbr. 

SDE) on Rd: 

n 

                     dXt= ~V1(X5)odB 
(0.1) 

                       X°= x 

where (B~, •.., Bi) is the n-dimensional Brownian motion starting from OERd, 

B=t and the symbol c denotes the Stratonovich integral. Let us denote by 
X (t, x) the solution to this SDE. (Here let us suppose some appropriate condi-

tion under which the SDE (0.1) has a unique and global solution.) Then as 

t 0, X (t, x) is expanded as follows: 

n (0.2) X(t, x) rv x+ Bt1...imV21 ... Vim(x).                                                       m=1 til,... 

This is called the stochastic Taylor expansion and has a sense as an asymptotic 

expansion, and generally does not converge in probability for given t>0. In 

the expansion, Brlm is a multiple stochastic integral for Btl, ..., Btm defined 

by 

(0.3) B~l...1m = t o dBsm 3m a dBsm=i ... o dB32 32 o dBsl . 
                              0 0 0 

   When we study the asymptotic problem of quantity relative to X(t, x) such 

as heat kernel, the expansion (0.2) is basic and there is a routine as follows: 
We decompose X(t, x) as X(t, x)=F(t, x)+R(t, x) such that F(t, x) is a finite 

expansion in (0.2) cut in the m°-th term (m° is chosen large enough in advance) 

and R(t, x) is the remainder, and then show R(t, x) to be actually negligible 

in an appropriate sense and hence reduce the problem to that for F(t, x), i. e., 

a finite system Bit tm, 0<i1, ••• , im<n, 1<m<mo. 
   In this paper, we are interested in an infinite system Brl'..im, 0<i1,
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n, m>_1 and would like to know what it means. Since the expansion (0.2) is 

not convergent in a usual sense, we forget that Vi is a vector field on Rd and 

regard it as a variable (or an indeterminate). Then (0,2) is a formal power 

series in variables V0, V1, • • • , V,, i.e., in (0.2), V it • • • Vim is a monomial of 

degree m and i 1..., im=oBt1 imV it • Vim is a homogeneous polynomial of degree 

m and the expansion (0.2) is the sum of these homogeneous polynomials. 

   In general let (Am be the subspace of homogeneous polynomials of degree 

m. Then the algebra A of polynomials is the direct sum GA and the 

closure with respect to a pseudo norm (cf. Section 1.2) is the algebra of 

formal power series. Equipped with a bracket product (which is defined as 

usual), A is a Lie algebra and so is (~ is a Lie subalgebra of), Let £ 

be a Lie subalgebra of A generated by V0, V1, • • • , V n and £ be its closure in 

', If £m is the subspace spanned by brackets of order m of V0, V1, • • • , V n, 
then £ is the direct sum ~m=iEB~m• 

    In Theorem 1 and 2 below it is stated that 1+~m=1 1 ... im=o Bt1...imV11 

V im E is an exponential of an L-valued process Ut=~m=1Um, t where Um., t E 

£m, i.e., 

n (0.4) 1+ Br1...imVi1 •.. Vim = expUt 
                                               m=1 i1, ••• im=0 

and that each Urn, t is given explicitly by the formula in terms of Btl..,jm, 0_<      

, j m < n and brackets of order m of V0, V1, , V,. (Here exp is a mapp-
ing of the closure Jm=lEjJm into 1 defined by (1.10).) This is shown alge-
braically by appealing to Friedrichs' theorem and Specht-Wever theorem, but 
the proof is not hard. We remark that the expression (0.4) already appears in 

[F-CN], though the explicit formula of Um, t is not obtained. 
    Next we give another description of Ut. By means of the Campbell-

Hausdorff formula, a multiplication in £ is introduced (cf. (1.16)) and with 
this £ has a group structure. Although £ is of infinite dimension, it is 
regarded as a "Lie group" and its "invariant algebra" is itself. Corresponding 
to a variable V i, an "invariant vector field" Ri on £ can be defined (cf. (1.20)), 
Similarly as (0.1), we consider the SDE on £ : 

n 

                      dU1= Ri(Ut)odBt 
(0.5) i=U 

                         Uo=O. 

Then, in Theorem 3 below, it is stated that the preceding Ut=gym=1 Urn, t is 
the unique solution of the SDE (0.5). Since £ is in fact not a Lie group, the 

problem is modified into that of finite dimension and the proof is precisely done 
as follows: Let £[1, m] : =~k 1EJEk . £[1, m] is clearly a finite dimensional 

subspace of £. Moreover a multiplication in £ makes it a usual Lie group
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and the restriction Rim' of Ri to £[1, m] is an invariant vector field. Hence 

the SDE (0.5) (replacing Ri by Rim') is valid and it is shown that ~k 1 Uk, t is 
the unique solution of the modified SDE. We remark that in [B], Ben Arous 
introduces Rim' and considers this SDE. 

   Finally, as an application of those theorems, we present the representation 

formula (abbr. RF) of solutions to SDE's with nilpotent coefficients, i, e., of the 

solution X(t, x) to the SDE (0.1) in which the vector fields V0, V1, • .. , Vn ge-

nerate a nilpotent Lie subalgebra f. Following Yamato [Y], we consider the 

system of first order partial differential equations on R5: 

                Rim'h(., x) = V 1(h(, x)) i = 0, 1, . , n 
(0.6)                   h

(0, x) = x 

where m is the order of nilpotency of , i, e., a positive integer such that ~,m+1 

(=the bracket of order m+1 of ~)_ {0} . This solution is given explicitly by 
the formula (3.3). (In [Y], this is only implicitly determined.) In Theorem 4 

below, the RF of X(t, x) is obtained from the conclusion of Theorem 3 and the 

formula (3.3). 
   So far we have considered such as (0.1) the SDE's with respect to Brownian 

motions. But, Bi being replaced by a continuous semimartingale Mt with Mo 
=0, the above results remain to hold. In particular Mt being deterministic, 

the RF mentioned above is just that of solutions to ordinary differential equa-

tions (abbr. ODE) which is stated in Strichartz [S] (cf. Theorem 5). 
   The problem finding the RF for SDE's has been already studied by Yamato 

[Y], Kunita [Ki], [K2], Fliess and Normand-Cyrot [F-NC], Ben Arous [B], 
Hu [H] and Castell [C]. Among them, in [K1], [F-NC], [H] and [C], the RF 

for ODE'S is based on first, and then from the transfer principle (due to Mal-

liavin) or from the approximation theorem the stochastic version of the RF is 

obtained. In contrast to this we directly derive it without the transfer prin-

ciple. Our approach seems to be sharp and simpler. We remark that in [H] 
and [C] the explicit formula of Urn, t in (0.4) is obtained in finding the RF for 

SDE's 

   The organization of this paper is as follows : Section 1 is a section for 

some preliminaries. There, notion and notations necessary for stating and 

proving the above theorems (Theorem 1'5) are presented. Also some facts 

(Fact 1~5) which are like as lemmas for these theorems are presented. Although 
they can be seen in some standard text books, we give their proofs for the 
completeness. In Section 2, our main results (Theorem 1~3) are stated and 

proved. By virtue of much efforts in Section 1 the proofs are not hard. As 
an application of the results, in Section 3 the RF for SDE's and ODE'S (Theorem 

4 and 5) are obtained.
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   1.1. For each bcZ+.={0, 1 2                                             , , •••}, set 

                  {1} (where 1eR)           E -                      b-
                                  {i1...2b, 21, ... , 2bEE} 

and for a, b EE Z+ such that a <_ b 

                         E[a, b] := EaU ... UEb 

                          E[a, cc) := EaUEa+1U ... . 

E[0, cc) form a basis of LA(E). Let LAO, LA[a, b] and 
spanned by Eb, E[a, b] and E[a, cc), respectively. 

   For I ~E[1, cc), I I := the degree of a monomial 

[I ] L(E) is defined as follows : 

                 1 21 
(1.1) [i1 ... ib] := 

                          C[...[[i1, 22], 23], ...                                          Zi], i0 

([I]; I E[1, cc)} belong to a Z-module in LA 
c'EZ, 1, J~E[l, cc) are uniquely determin 

coefficient of J in expanding [1], and hence 

clear that 

   (1) ci=o~, i, j~E1=E 

   (ii) rank(cJ)r,,EE0=: rb>_1 for each bEN.

   1. Some preliminaries. 

   What we will state in this section can be partly seen in other papers [Ti] 

and [T2]. We here state them minutely and intelligibly. 

   In the following (except in the proof of Theorem 5 below) let us fix nEN. 

   Let E : = {0, 1, , n } . Let LA(E) and £(E) be the free algebra (over R) 
and the free Lie algebra (over R) generated by E, respectively. They are here 

interpreted as follows : LA(E) is an algebra of polynomials in variables (or 

indeterminates) 0, 1, • • • , n over R. Thus LA(E) R, 1(~R) is a unit and in 

general LA(E) is non-commutative. If, for X, Y ~LA(E) set the bracket product 

[X, Y] :=XY-YX as usual, then LA(E) is a Lie algebra over R and £(E) is 
a Lie subalgebra of LA(E) generated by E. Moreover the freeness of £(E) 

and LA(E) means that 

   (i) given a Lie algebra £ over R and r : E-.r, r has a unique homo-
morphic extension of £(E) into £, 

   (ii) given an algebra LA over R and a : E-LA, a has a unique homomor-

phic extension of LA(E) into LA such that a([X, Y])=[a(X), a(Y)] for any X, 
Y or(E).

if b=0 

if b~N

LA [ a, cc) be the subspaces

I, 1. e., ~i1 ... 2bI :=b,

         if b=1 

    ] if b 2. 

(E) generated by E[l, cc). 
ed by [1 ]=~JEE[1 ,~)cIJ(Ci 
cl =0 if IJ I~II I ). Then

and

is 

it

So 

a 

is
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By (ii) we can take a subset GbC Eb such that #Gb=rb and the row vectors 

(ci)JEEb, IEGb are linearly independent. 
   For a, bEN such that a b, let Lb, L[a, b] and L[a, oo) be the subspaces 

of L(E) spanned by {[1]; IEEb}, {[I]; IEE[a, b]} and {[1]; IEE[a, co)}, 

respectively. Then, taken Gb above, {[I]; I EGb} form a basis of Lb. Con-

versely if GbCEb has this property, then #Gb=rb and it has the preceding 

property. Although the choice of such a Gb is not unique, we choose one 
arbitrarily and fix it in the following. 

   EXAMPLE 1. For b=1, G1=E1=E. For b=2, 3, we can take 

          G2={ij;0<i<j<_n} 

    G3={ijk, jki; 0<i<j<k<n}U{jkj, jkk; 0<_ j<k<n}. 

   For a, bEN such that a<_b, similarly as E[a, b] and E[a, 0), set 

                         G[a, b] := GaU ... UGb 

                          G[a, oo) := GaUGa+IU ... 

Since {[1 ]; IEG[1, cc)} form a basis of L[1, oo), there exist (e;)IEG[1,~),JEE[1,~) 

CZ such that 

           [J] = eJ[I ] for each J E E[1, 0) 
                              IEG[1,~) 

where e;=0 if I I I Ill. If A is an algebra over R and a : E J, then a 
homomorphic extension a has the same property as above, i. e., 

(1.2) a([J]) = 'a([I ]) for each J E E[1, oo). 
                              IEG[1.~) 

   Similarly as [I], define z(1)E.C(E) for 1 EE[1, oo) as follows (cf. (1.1)): 

                  i1 if b=1 
(1.3) r(i1." ib) := 

                       [21, [22, ...~ [2b-2, [b-1, 2b]]".]] if b ? 2. 

Clearly z(i1•..ib)=(-1)b-1[ib..•i1]. Since A[1, oo) is spanned by E[1, co), mappings 
of E[1, oo) into L(E) : IH[I ], IHr(I) are uniquely extended to linear mappings 

of A[1, oo) into L(E). We denote them by the same symbols [ ], 2. Then 
it is known as the Specht-Wever theorem (cf. [J]) that 

(1.4) XELb€=[X]=bX                         if 

(1.5) X E .C b =4r(X) = bX .                       if 

   1.2. The algebra A(E) is a graded algebra with Ab as the subspace of 

homogeneous elements of degree b :
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                A(E) = ~ Ab 
                                                 b=0 

                        JbAc C .Ab+c b, c E Z+ 

So it can be extended to the algebra ](E) of formal power series in variables 

0, 1, • • • , n over R. More specifically the elements of J(E) are the expressions 

LJb=OXb=XO+Xl+X2+"', XbEAb such that OXb-OYb if and only if Xb 
Yb, b Z+. The algebraic structure (i.e., addition, scalar multiplication and 
multiplication) in 1Y is defined as follows : 

           Xb+ Yb •- (Xb+Yb) 
                b=0 b=0 b=0 

        a~Xb:= jAXb a€R 
                  b=0 b=0 

       (xb)(Yb) := ~j Zb where Zb:= XbYO+ ... +XOYb.                   b=o b=0 b=0 

Let A[b, oo) be the subset of all elements of the form Xb+Xb+l+"•. It is a 

two-sided ideal in i E). We introduce a pseudo norm I • I in 11) by 

                                   XI .- 2-max{b;XE[b,~)} 
It is clear that 

(1.6) X A [b, oo) @== I X I< 2-b 
                          if 

(1.7) X+Y XIV}YI 

(1.8) IAXI<IXI ASR 

(1.9) XY I <_ I X I I Y I. 

Then 15 is complete as a linear space equipped with a pseudo norm l • I and 
the subalgebra Jl(E) is dense in it. 

   Now, for X ~ A[1, oo) we define exp X, log(1+X)C (E) by 

(1.10) expX :=1+ Xm , log(1+X) := Xm 
                                  m=1 Yn , m=1 in 

The series converge with respect to l • I. Clearly 

(1.11) exp log(1+X) =1+X, log expX = X 

(1.12) expX-expY , log(1+X)-log(1+Y) <_ X-Y I. 

Let E) and £[a, oc) be the closures of £(E) and £[a, cc) in(E), res-

pectively. Then £(E) is a Lie subalgebra of ~(E) and £[a, cc) is an ideal 
of 2E5. Also £[a, cc) is the subset of all elements of the form Xa+Xa+1+ 
•. , • Xbe JLb, and thus £[a, oc)CJ[a, cc). Moreover the following holds :
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   FACT 1. For X, YEL(E), log(expXexpY)EL'(E) and it is given by the 
Campbell-Hausdorff formula : 

(1.13) log (expX expY) _ cb(X, Y) 
                                                                  b=1 

where cb(X, Y)EC[b, oo) is defined by 

    cb(X, Y) 

          1 b (-1)m-i (adX)p1(adY)g1...(adX)pm(adY)gm
• b 

m=1 p1, q1,• 
          pi+qi, 

          pi+qi+

 pm, qm?o; m 
  pm+qm~1 

...+pm+qm
,=b

p1~g1~...p,~zl9ml

Here (adX )Y : _ [X, Y ] and adX : = X. 

   PROOF. For details see [J]. Let o be the diagonal mapping of A(E), i. e., 

the homomorphism of A(E) into A(E)O(E) such that o(i)=lOi+i®l. Then 

XEA(E) belongs to £(E) if and only if o(X)=1®X+X®1. This criterion is 

known as Friedrichs' theorem. Similarly as A(E), A(E)OA(E) is a graded 

algebra with (A(E)®4(E))b +®A as the subspace of homo-

geneous elements of degree b. Thus we can construct the algebra A(E)®A(E) 
as A(E). Then the diagonal mapping o has an extension to a homomorphism 

of Jinto A(E)®A(E). Indeed, if, for X=fib oXb(XbE b), we define 

                     o(X) : _ U(Xb) 
                                                            b=o 

then this o is the desired one. Here note that o(X)E (Jl(E)OJl(E))b if X Ebb. 

By the definition of o and Friedrichs' theorem it is clear that for XEi(E) 

(1.14) X E £(E) ~} o(X) =1®XH-XO1.                      if 

   We proceed to the proof of Fact 1. First of all note that [1OX, Y®1]=0 

for X, Y E(E) and 

    exp(XO1) _ (expX)®l, exp(1OX) =1®(expX) 

    log((1+X)®1) = log(1+X)®1, log(1®(1+X)) =1Olog(1+X). 

Let X, Y E ..C(E). Then by the above note and (1.14) 

      o(expX expY) = b(expX)o(expY) 

                = expo(X) expo(Y) 

               = exp(1®X+X®1) exp(1®Y+Y®1) 

               = exp(1®X) exp(X®1) exp(1®Y) expY®1) 

               _ (1OexpX) (expXOl) (lOexpY) (expYOl)
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         = (1OexpX) (1®expY) (expXOl) (expY®l) 

         = (1®expX expY) (expX expY®l). 

o(log expX expY) = log8(expX expY) 

           = log(1®expX expY) (expX expY®l) 

           = log(1®expX expY)+log(expX expYOl) 

            =1 ® log expX expY + log expX expY ® 1.

By (1.14) this shows that log expX expY E ~C(E). 

   Next we show the formula (1.13). For X, Y~jl[1, co), a direct calculation 

shows 

                    log expX expY = Zb 
                                                               b=1 

where 

                 b (__1)m-1 Xp1Yg1...~'pmygm 

                  m=1 m p1,g1,"',pm,gm o; Pi! q1 !...~m I qm 
                                        p1+q1,..., pm+qm~1 

                                        p 1+q1+...+pm.+qm=b 

In particular, if X, YEEE, Zb~Ab(b~N). In this case, since ~b 1ZbE C(E), 
ZbEEELb, and hence by (1.5) 

                       Zb = 1 z(Zb). 

b This suggests that for two indeterminates X, Y 

      ± (-1)m-i Xp1Yg1...Xpmygm        m=1 m p1,gi,,pm,gm~O; P1 ! q1 !".Pm I qm I 
                             p1+q1,..., p+qm~i 

                          p1+q1+...+pm+qm=b 

        - 1 , (-1)m-1 (adX)pi(adY)gi...(adX)pm(adY)gm 
              b ni in q p1! g11...Pmlgml 

                                            pi+q1,..., pm+qm~i 
                                        p1+q1+...+pm+qm=b 

Consequently, applying this formula for X, YE.C(E) and substituting it into 
the preceding expression, we obtain the formula (1.13). • 

   REMARK 1. By the same reason as above, it can be verified that for X, 

YEoC(E) 

(1.15) X pYq = 1 E Cb (X, Y) ... cb (X, Y) 
                 p,q o. ! q! m=1if ! bi,...,bm~l; 1 m                      p+q=b bi+...+bm=b 

   By virtue of Fact 1, we introduce a multiplication S in ~'(E) by 

(1.16) X• Y := log(expX expY) X, Y E ~'(E) .
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Then Z'(E) has a group structure equipped with this multiplication, that is, it 

holds that 

   (i) (X.Y)•Z=X•(Y•Z), 

   (ii) the unit element=0, i. e., 0 • X=X • O=X, 

   (iii) the inverse element of X=-X, i. e., (-X)•X=X.(-X)=0. 

   For X E ZE) and 1 E E[1, co), X • t[1 ]E T(E) (tER). By differentiating it 

at 0 component wise, (d/dt)X •t[1 ] I t=oEmL'(E) and it is computed as follows : 

   FACT 2. For each X E .'(E) and 1 E E [ 1, cxc) 

(1.17) dt X .t[1] t=o = [11+ m=1 I (ad(-X))m[1 ] 

Here {bm} m=1 are the Bernoulli numbers, i, e., it is a sequence determined- by the 

Taylor expansion : 

  Z =1-{-----z z I < 27r 
                          ez-1 m=1 m ! 

and 

         (adX)mY := [X, [..., [X, [X, Y]]...]] X, Y E T E5. 

m 

   PROOF. By the Campbell-Hausdorff formula (1.13) 

                                   m-1 

      X•t[1 ] _   --(_-1)b=1 b m=1 m 
                      tql+...+Qm (adX)P1(ad[1])g1...(adX)pm(ad[1])gm 

                ply q1...., pmqm~0p1 ! q1! ...pm I qm 
                   p1+q1,..., pm+qm~i 

                  p1+q1+...+pm+qm=6 

and so, by differentiating it at 0 

   d X•t[1 ] _ [1 ]+ 1 b vi 
     dt t=o b=2 b m=1 k=1 

                             (-1)m-1 (adX)pl+...+pk(ad[1])(adX)pk+i+...+pm
            p1Z1,..., pk-1~1, pk+1z1,..., p 

                     p1+...+pm=b-1 

In the right expression, not 

(adX)pk+1+ +pm=0. Hence t 

   d X t[1] =[1]+     d
t t=0 b 

                       (_1) 
                                2~m_b

' 

m1 m p1I• .. pmI . 

o that if either km-2, or k=m-1 and pm>_2, 

his is further computed as follows 

                             (adX)p1+...+pm[1 ] 
                                                            ... pm =2 b l~m~b m pl?1,..., pm-1~1; p1! 

                             p1+...+pm=b-1 

    m -1 
~ (adX)pl+...+pm-1(ad[I ])X     m p1Z1,..., pm-21' pm=1; p1! ... pm 

                  P1+...+pm=b-1
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                           ~ 1 (_1)m-1 1 

                                          b=2 b 1<_m<_b p1>1,..., pm-i1; m 1 m 
                                                               p1+...+pm=b-1 

                                             (-l)-' m1 
                                   2m<_b p1>-1,..., pm-2~1, pm=1; m p1! ... pm 

                                                    p1+...+pm=b-1 

Here the last equality is due to the fact : (ad[1 ])X=-(adX)[1 ]. Thus, setting 

{cm} m=1 by 

(1.18 cm :_ ( 1)mm ! ~1 (-1)k-1 ~ 1                         m+1 k=1 k p11,..., pk-1' ; p1 ! ... pk 
                                                                  p1+...+pk=m 

                              - m+1 (_1)k-1 ~ 1 
                                           k=2 k p1?1,..., pk-21 pk=1; p1 ! ... k I 

                                                                             p1+...+pk=m 

we have 

             X t[1 ] = [11+ cm (ad(-X))m[1 ]                     dt 
t=o m=1 m ! 

To obtain (1.17), it remains to show that cm is the Bernoulli number. But this 

is done in Lemma 1 below, so that the proof is complete. 

   LEMMA 1. A sequence {cm} m=1 defined by (1.18) is the Bernoulli numbers. 

   PROOF. Note the Taylor expansion of (ez-1)k-fez (kcN): 

           (ez-1}k-fez = 1 zm z C .                                     m=~ piz1,...,pk-1~1; p1! ... p~ I 
                                                  p1+...+pk=m 

By this and Cauchy's integral formula, we observe 

     nn+1 (.-1)k-1 
~ 1        k=1 k p1 .1,..., pk-11 ; p1 ! ... pk I 

                              p1+...+pk=m 

              1 m+1 (_1)b_1         - 
2?r~/-1 ICI=r1 k (e~-1)k-le~~-m-ld~ 

    ni+1(_1)k-1 
~ 1        k=2 k p1>1,..., pk-2z1, pk=1; p1 ! ... pk 

                                 p1+...+pk=m 

               1 m+1 (-1)k-1 y                                     (
e~-1)k-2e~~-mdb             2

~c~/-1 ICI=rk=2 k 

      _ 1 +1(_1)k-1 1 ((e:_1)1)1md                                                           k-                                                                               -~ 

            2;r'/-1 fl; I=r k=2 k 

               m m+1 (-1)k-1 ( 
           2~c~/-1 15i=r ~ k(k_1) e~-1)k-1~-m-1d~
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       _ m - ~1 (_1)k-1 + (_1)k (es-1)k-ly-m-ld~ 
           2n~/-1 151=r k=2 k-l kk 

                                                                             m+1 
m+1 m 1                         1+ m+1 (-1)k k (_1)m+1              m (e -1) e~- (e~-1) ~- - d~            Z -1 Icl=r k1 k m+l 

     = m ~1(-1)k                                       (e_1)k-le-md                     -I=r k=1         21 ICk 

Here rE(0, log2). Hence (1.18) is simplified: 

                                               ~ ~ (e_1)k-1e-m-1d .              ( 1
~)/mm1 I C 1 1(-1)k-1 (1.19) cm = k                       27r-=r k=1 

But note that 

                  (es_1)k-les~-m-1d~ = 0 if k>_m+2, 

                   

ICI=r 

              (_1)k-1 (es -1)k =loges =~ on {<log2} . 
                     k=1 k 

Therefore (1.19) is further simplified : 

                     _ (-1)mm ! y es m1                   Cm 2n~1-1 ICI=rb e~_1 ~ d~ 

                          2~r~/-1 ICI=r 1-e s 

                 m! 

~ 

           _ __ 

                           21 JI~I=r es-1 

and this shows that cm=bm, mEN. • 

   Before concluding this subsection, we present the following definition : 

   DEFINITION 1. For each i E E, define a mapping R1 of 2 R into itself by 

(1.20) R1(X) := d X .ti                                    dt t=o 

By Fact 2 

(1.21) R1(X) = i+ ~1 m (ad(-X))mi (cf. [B]). 

   1.3. Throughout this subsection let bEN be fixed. l[b+1, oo) was a two-

sided ideal of (E) and £[b+1, oo) was an ideal of 215. Clearly 

                A[i, °°)/A[b+1, °°) = l[1, b], 
(1.22) 

               £(E)/E[b+1, no) £[1, b].
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E[1, b] and {[1 ] ; I G[1, b]} are bases of A[1, b] and £[1, b], respectively. 
Thus, on A[1, b] and £[1, b] the global coordinates are naturally introduced, 

so that they become smooth manifolds. Let us here denote the coordinates by 

(yl)IEE[1,b7 on A[1, b] and (U')IEG[l,b] on £[1, b]. 
   Let X-X', Y-Y' E A[b+1, cc) (where X, X', Y, Y'E i[1, oo)). Then, by 

(1.6), (1.7), (1.9) and (1.12), so are XY-X'Y', expX-expX' and log(1+X)-
log(1+X'), and hence log expX expY-log expX' expY' E A[b+1, cc). In par-

ticular, if X, X', Y, Y' E X •Y-X' •Y' E Z'[b+1, cc) and thus Ri(X)-
Ri(X')EL[b+l, cc) (iEE). By these observations, we define the following: 

   DEFINITION 2. (i) For X, Y E £[1, b], a product Z of X and Y is a 
unique element of £[1, b] such that 

(1.23) X•Y-Z E £[b+1, co) 

where X •Y is a product in £(E) of X and Y. We denote Z by the same 
symbol X•Y. 

   (ii) Smooth mappings J cb' of £[1, b]Xjl[1, b] into A[1, b] and cpcb' of 
£[1, b] into [1, b] are defined as follows: For XEL[1, b] and YE[1, b], 
P cb' (X, Y) and cpcb' (X) are unique elements of A[1, b] such that 

             1+(X, Y)-(eXpX)(1+Y) E ~A[b+1, cc) 
(1.24) 

             1+(X)-expX E 1A[b+1, cc). 

   (iii) For each i E E, a smooth mapping of £[1, b] into itself is defined 
as follows : For X E L [1, b], R(X) is a unique element of £[1, b] such that 

(1.25) R1(X)--R(X) E £[b+1, cc). 

   By definition, it is clear that 

(1.26) fi(X) = 6) 

               ~cb)(X, ~cb)(Y, Z)) = ~cb'(X•1', Z) 
(1.27) 

               in particular b cb, (X, ~ocb, (Y)) = ~ocb> (X • Y) 

(1.28) R(X) = d X •ti i E E.                                   dt i=o 

Moreover the following holds : 

   FACT 3. For each I E E[1, b], X E L[1, b] and i E E 

(1.29) y'°(1+ cb)(X))i = a 1° cb,(X)uJ°Rcb~ X . 

2 

                                   JEG[i, bJ au' y 

   PROOF. For X, YEi(E) let us write X~Y if and only if X-YE~[b+1, cc).
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By (1.27) and (1.24) 

                     1 +pcb' (X .ti) ti expX expti. 

Note that (d/dt) expX expti t=o=(expX)i'(l+co(X))i and that by (1.28) 

              RHS of (1.29) = d y 1 (X . ti) .                                 dt ~ t=o 

Hence combined these we obtain (1.29). 

   We may think of Ri°' E C~(r[1, b]-> E[1, b]) as a vector field on £[1, b] 

by setting 

(1.30) = ~' u'°Rib'- °~ .                                  JEG[1, b] t9UJ 

Here we use the same symbol to denote the vector field. Equipped with 

a multiplication . introduced in Definition 2, (i), £[1, b] has a group structure. 

By (1.13) it is easy to check that a mapping (X, Y)HX.Y-1=X(-Y) is smooth. 

Hence (r[1, b], .) becomes a Lie group. Let L x be the left translation by 
X(EL[1, b]) and tb be the left invariant Lie algebra of £[1, b]. Then 

(1.31) a                 (R)x = (Lx)~ aui o X E oC[1, b] 

and hence REbb. Because by (1.28) and (1.30) 

      (Lx)* a f = a ()fLx                                     °a
u2 o au2 0 

= 

                            dt c=o 

                  = ~' uJ°R(X) f (X) 
                              JEG[1, b7 auJ 

                 = (R)xf f C~(L[1, b]) 

By the freeness of £(E) the mapping E ~&-R i°' c- fib is extended to a homo-
morphism ' of ~'(E) into fjb. It is clear that 

              im]) = [[ ... [[R, Ri2']R], ... , R]. 

Let us denote it by Then the following fact holds 

   FACT 4. For IEG[1, b] 

(1.32) (R)x = (Lx) a X E £[1, b]                      [' aul o 

and for IE E[b+1, co) 

(1.33) R~I~ = 0.
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   PROOF. First of all note that (1.32) is equivalent to (1.32)' or (1.32)": 

(1.32)' R(b' = d uJ°(X •t[1 ]) a                          ] JEG[1, b7 dt t=o auJ 

a (1.32)" (R), = au l o (---). 
For convenience set a smooth function R'J on £[1, b] (JEG[1, b]) by 

(1.34) R(b~'J(X) := uJ°(X •t[1 ])                                   dt t=o 

   We show (1.32) by induction on the degree of 1. When IeG1, (1.32) is 

obvious because it is just (1.31). Next let 1 _< c <b-1 and suppose that (1.32) 

(so (1.32)' or (1.32)") is true for any 1 eG[1, c]. Let JE Er and j e E. By (1.2) 

                     R[j] = IE~G ejRcn 

c By this and the assumption of induction, we observe 

        R(b) - R(b) R(b)]             [J1] -' [ [J], J 

           = ~ eJ[R[17, RJb)] 
                   1 c 

(1.35) _ ~; eIJ R (b~K a RJcb), L a                   IEGc KEG[1,b] [ allK LEG[1,b] auL 

                     eJ R(b),K a _R(b),L a -R(b),L R(b),K 
                  IEGc K,LEG[1,b] 7 auK 7 auL J auL [I] auK 

By (1.34) and (1.17) 

(1.30) Rib;, K(X)[K ] [11+ m (ad(-X))m[1 ]    KEG[1b] m=1 n2 

and this implies that 
                  R[I] K(o) = al, RjL(O) = U 

                 a R cb) K (0) = u K2 ° 1[[L], [1]]                     a
uL [ ] 

                   a R~b,,L(o) = uL° 1 [[K] ,                   auK ~ 2 j] 

Hence a tangent vector (R(? )p at 0 is computed : 

      (RCS 7)0 = eIJ ~., o UL° 1 [[K], ~i(4) 
                     IEGc K>LEG[Lb] 2 uo 

                          --ouK ° 1 [[L] , [i]] a                               ~ 2 auK o 

          _ a                       I uK°[1j]
IEG KE [1,b] auK 0
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            _ ejuK°[Ij] a K 
                    KEGC1,b] IEGc au 0 

                         eK a 
                   KEGCI,b] J1 auK 0 

Here the last equality is seen from the expression : 

             ejUK°[Ij] [K] _ e, (uK°[Ij])[K] 
          KEG[1, b] IEGc IEGc KEGCO, b] 

                           _ e,[Ij] 
                                           IEGc 

                        =[~eJ[I],j] 
                                             IEGc 

          _ [J3] 

                           _ e;.[K]. 
                                                  KEGC1, b] 

Thus we obtain that for JEEP+1 

a                  (R~}
])0 = L x                                   (--)                                     KEG[1,b]eJ auk 0 

and, in particular, for JEG~+1 

a                      (R))
0 = au' o 

since e; =& . This is just (1.32)" and so we see that (1.32) holds for any 1 E 
GC+1. Consequently we have (1.32). 

   Next we show (1.33). By (1.36), it is easy to see that for 1 EGb and iE E 

         R(] 1). K(X) _ o f, a Rib>, K(X) = O KEG[1, b].            C a ul 

By this, (1.35) implies that = 0 for JE Eb and j E E, and hence (1.33) 

follows. • 

   1.4. We start this subsection with the following definition : 

   DEFINITION 3. Let g be a Lie algebra over R and gm, mEN be a decreas-

ing sequence of ideals in g defined by gl :=g, gm :=[g, gm-1] (m>2). Then we 

say that g is b-nilpotent if and only if gb+1= {0}. 

   Fact 4 tells us that the left invariant Lie algebra ~b of £[1, b] is b-nilpotent. 
   Let bEN be fixed as the preceding subsection, Let G be a connected Lie 

group and 2 be the right invariant Lie algebra of G. Suppose that we are 

given AE R, i E E and that a Lie subalgebra g generated by them is b-nilpo-
tent. Let y : £(E)-~g be a homomorphic extension of the mapping E ~i H Al 

Eg. Then the following fact holds:
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   FAcT 5. For X, YE~C[1, b] 

(1.37) expy(X • Y) = (expr(Y))(eXpr(X)) • 

Here exp is the exponential mapping of k into G. 

   PROOF. Fix X, Y E £[1, b]. Note that expy(tX • tY) and expy(tY) expy(tX) 

are analytic functions in t. Thus it suffices to show that for any f C(G) 
and m E N 

(1.38) dm f (eXpY(tX • tY)) = dm f (expr(tY) expY(tX))             dt'n" t=o dtm t=o 

   By (1.13) 

                    tX • tY t~c~(X, Y). 
                                              /2=1 

By the b-nilpotency of g, this implies that 

(1.39) r(tX • tY) = t~c1j(r(X ), r(Y)f 
                                              /1=1 

Here, for A, B E cR, c12(A, B)E R is defined by 

   c~(A, B) 

        1 (ad A)p1(ad B)q1 (ad A)pm(ad B)gm 

              p m=1 m p1, g1,..., pmqm'o; p1 ! q1! .. • pm i qm 1 
                                         p1+q1,..., pm+qm~i 

                                       p1+q1+...+pm+qm=p 

Since c~(y(X), (Y))=0 for p>_b+1 (by the b-nilpotency of g), RHS of (1.39) is 
a finite sum. 

   Let f EC°°(G). In general we know that for AEI, gEG, tER and IEZ+ 

(1.40) f ((exp tA)g) _ tp (Apf)(g)                                  p=o p. 

                           t t1 t' 

                + Odt1 o dt2 ... dtl o (A1+1f)((eXp ti+1A)g)dt1+1. 

Let A=y(tX •tY), g=e and t=1 in (1.40). Then, by (1.39), we have that for 

each l E Z+ 

    f (exp y(tX • tY))                

..tu1+...+~p(c~1(r(X), r(Y)) ... cp(7(X), r(Y))f)(e)+0(t1+1)                    o /I1, . p1 

and hence, for mEN 

m 

      m dtm f (exp r(tX • tY)) t=o 

                    m 1 
               _" k I 

m1,...~m' ~1; (cm1(r(X), r(Y)) ... cmk(r(X), r(Y))f)(e)• 

k 

                                            m1+...+mk=m
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By the same way as above (this time the formula (1.40) is used twice), we have 

that for each IEZ+ 

        f (exp 1'(tY) exp r(tX)) _ tp+q (Y(X)pr(Y)q f)(e)-I O(t~+i)                                             p,q=o p .q. 
and hence, for mEN 

m 

           f (eXp r(tY) exp r(tX)) _ ! (Y(X)pr(Y)gf)(e) 
                                                         p+q=m 

Here recall (1.15). This suggests that as a differential operator on G 

        r(X)pY(Y)g = 1 cm ((X) , r(Y)) ... cm (Y(X), 1(Y)).        p,q~o; p !q ! k=1 k l ml,..., mk>l; 1 Y k 
         p+q=m ml+...+mk=m 

Consequently combining all the above, we obtain (1.38) immediately, r 

   2. Main results. 

   Let (Q, E', P, fix) be a filtered probability space. For each iEE let (Mt)1>o 

be a continuous (t)-local semimartingale such that Mo=0. 

   DEFINITION 4. We define a system (Mr)1>o, I E E[1, oc) of continuous (SFt)-
local semimartingales successively : For 1=i 1 • • • i m E E[ 1, oo) 

                        M~1 if m=1 

                   MI:= r                          t MS1...tim-1odMsm if m>_2. 

0 Here the symbol denotes the Stratonovich stochastic integral. 

   First of all we note the following formula. This plays important roles in 
the following theorems. The proof is easily done by using the chain rule (Ito's 
formula). (Here we remark that this formula appears in appendix of [B].) 

    LEMMA 2. Let m, m1, • • • , mbEN be such that m1+ +mb=m. Then for 
each i1 •. irEE[1, cc) 

                       Mi1...timjMiml+l...inl+m2 ... Mtml+...+mb-1+1..,imi+..,+mb 

                                v(m1+1)<• <v(m1+m2) 
                                                                                                                                                                                  ..................... 

                                    a (m1+...+mb-1+1)<..,<v (m1+...+mb) 

Here ~m is the symmetric group of degree m. 

   THEOREM 1. log (1+~,IEE[1,~)M~1)E~C(E) for each t>_0. 

   PROOF. For simplicity set 

   Yt:= l+ MIT(E), X1=logY1EA[1, cc). 
                            IEE[1 ') 

For the proof, it suffices to show that
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(2.1) b(Yt) =Yr~Yt 

where 8 is the diagonal mapping of A(E). Indeed, since Y1=exp Xt 

                  b(Y1) = exp o(X1) 

                  Y 10Y 1= exp X1®exp X1 

                     = (10 exp X 1)(exp X1®1) 

                     = exp (1OX1) exp (X101) 

                    = exp (10X1+X101). 

Hence by (1.14), (2.1) is equivalent to that X1().                                    E ~E
Now 5(Y1) is computed as follows : 

    5(Y1)=S(1+ MI) 
                          IEE[1, o~) 

       =101+ ~; MS(I) 
                            IEE[1,c ) 

           = 101+ Mt1...imS(ii) ... U(Zm) 
                                     m=1 ii..•im 

         =101+ M~1...im(ii01+10i1) ... (1m01+1®Zm) 
                                     m=1 il.••im 

           =101+ Mti...im((ii ... jm)01+10(Zi ... Zm) 
                            m=1 ilm 

                   m-1 

                  + Za(1) ... 2a(p)®Zc(p+l) ... Za(m)) 
                      p-1 aEC~m; 

                              a(1)<...<a(p) 
                       a(p+l)< <Q(m) 

          = 101+ Mt1...im((ii ... Zm)®1+1®(ii ... Zm)) 
                                      m=1 il...im 

                                       m-i 

                   + Mti...im ii) ... Za(p)0Za(p+l) ... 2a(m)• 
                          m=2 il...im p=1 CEC~m; 

                                           a(p+i)< <a(m) 

By Lemma 2, the last expression is further computed: 

                    m-i 

 L.r L4l t1...im 2a(1) ... 2a(p)®Za(p+1) ... i(m)
i...in p=i aESm~ 
                                 a(1)<...<a(p) 

                          a(p+1)< <a(m) 

                     m-1 i
a(a_l(1))...ia(a-1(m))              -- L.J L ~ M1 Za(1) ia(p)&ia(p+1) ... 1c7(m) 

                     J91 aEC~m; ii...ir 

                           a(1)<...<a(p) 

               m-1              = ( Mia-1(1Y..ia_l(m) ii .. i ®i ... i                                                   V1t ' p p+1 m 

                       p=1 il...im ae rn 

                                  a(1)<...<a(p) 
                              a(p+1)< •<a(m)
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               m-1 

                      Mr1 1pMrp+1 ~m21 .•' ip®2p+1 ... 2m 
                     p=1 ii".im 

       = MiMJIOJ. 
                X11+IJI=m 

Hence substituting it into the expression of o(Y1), we see 

      8(Y7) =1O1+ Mi(IO1+1®I )-I- MiMJI®J 
                             IEE[i,a) m?2 iIl+iJi=m 

         =1®1+ ~, Mi(IO1 +1OI )+ MiMJI® J 
                                IEE[1, ~) I , JEE[1, ~) 

           =Yt®Yt 

and (2.1) is obtained. • 

   By Theorem 1, we can take Xm(t)E.L'm, m~N such that 

(2.2) log (i+ Mil = X m(t) .                                            IEE[1,=) m=1 

This LHS can be written down as follows: 

       tog1-I- MiI = ~i ( 1)b-1 Mii... Mib 1.                      IEE[1,=) m=1 IEEm b=1 b I1, IbEE[1,~); 
                                                                                                      1=11...I b 

Hence combined these it is obtained that 

            X m(t) - (_ 1)b-1 Mil... Mib I, 
                               IEEm b=1 b I1,...,IoEE[1,=); 

                                                                             1=11...Ib 

and thus by (1.4) we have 

                    1 m (_1)b-1           X (
t) = - Mil ... Mib [I J.                               m IEEm b=1 b I1,...,IiEE[1,vi); 

                                                                               1=1 i...Ib 

   Now let us apply Lemma 2 to this RHS. Then 

                            bl 

     Xm(t) = 1 (-1)                     m b=1 b zl"'im 

                                   Mt1«.ttmiM m1+1...1„m1+m2 ... Mtmi+...+mb-1+1...1m1+...+mb [ii . im] 
                      m1,• mbT1; 

                       m1+•••+mb=m 

_ 1m(_1) 
      m i=i b 1'•.m 

                                                 Mt 21 zm 
                         m1,..., mb>_i; vEC~m;Q(1)<..,<a(m1) 

                     mi+ ••+mb=m v(m1+1)< <Q(m,+m2) 

                                            ofmi+...+mb-1+i)<...<Q(m1+...+mb)
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            1 m (_ 1)b-i                                                                               ia-1(1)..iQ_1(m) ]                 Y 
111m CE b=1 b 

where d(m, b, a) is the number of (m1, • • • , mb) Nb such that m1+ +mb=m, 
Q(1)< ... <a(m1), a(m1+l)< ... <a(m1+nz2), ... , 6(m1+ ... +,nb-1+1)< ... <a(mi 
+ • • +mb). This value is computed by Strichartz [S] : 

                                              m--e(Q)-1 (2.3) d(m, b, a) = lb>e(v)+1 b1 

Here o (b) is introduced in Definition 5 below. From (2.3), it is easy to see 

              b=1 b () m_1 ([ ])                                       m 
eCa') 

Thus, substituting it into the preceding expression, we conclude that 

(2.4) X (t) _ M1(1)...iQ_1(m) [i .. i                      m t 1 m]                             il...im QE~m m2 m-1 
                           e(a) 

                        _ 'c't il...im (1)e(P)                         - !J Mt [Za(1) ... 2o(m)] 
                            i1...im oE~m m2 m-1 

   We return to (2.2). By this 

        1+ MI = exp Xm(t) 
               m=1 IEEm m=1 

                  =1 + 1 X m(t) p 
                                          p=1 m=1 

m 

                       =1+ Xml(t) ... Xm , (t).                                                m=1 p=1 m1, mp>1; 

                                                                       m1+•••+mp=m 

and hence 

m 

                  MI = E Xml(t) ... Xm (t). 
                          IEEm p=1 . m1, ,mpz1; 

                                                m1++m p=m 

   Summarizing all the above, we obtain the following formulas as a by-product 

of Theorem 1. Before stating them, we introduce the following notations for 

simplicity: 

   DEFINITION 5. Let m E N. For a m and 1i1 i m E m, define 

                       1 U:= 2i(1) ... 2u(m) Em 

    e(a):= #11m-i,• a(j)>a(j+1)}.
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   THEOREM 2. Define Xm(t)~Lm, m~N as follows: 

(2.5) Xm(t) :_ ( M~ -1 [I ]                             IEEm 7Em ~m m2 m-1                                 e(u) 

                                      1 ° (2.6) = M( C-1) 
                                       m eCo') 

Then 

(2.7) log 1+ MtI = X(t) 
                                             IEE[1, oo) m=1 

                                                                                               00 

(2.8) 1 + ~' M i 1= exp Xm(t) 
                                      IEE[1, ~) m=1 

m 

(2.9) MU= Xm1(t) ... Xmp(t) mEN.                  IEEm p=1 p 1 m1,..., n11; 
                                                   m1+...+m p=m 

   Next we give another characterization of this X(t)=gym=1Xm(t). 

   For this recall a mapping Ri of 2'(E) into itself defined by (1.20) (i E). 

We consider the following SDE on ~(E) 

                      dX1_ Ri(X1)°dM~ 
(2.10) iEE 

                         Xo=O. 

This SDE can be solved as follows: Written X~ZE) as X==1Xm(Xm~ 

£m), (1.21) tells us that 

                                              m) ... ad(-Xm )i.         R1(X) = i+ by ad(-X1                                    m=1 p=1 p . m1,..., mp~l; p 
                                          m 1+• +m p=m 

Hence we see that the solution of (2.10) =~m=1Xm(t) where Xm(t)~Lm, m~N 

are given by the recursion formula : 

      X1(t) _ Mii 
                   iEE 

                         m-1 b 
(2.11) X m(t) = p                     iEEp=1 p 

t 

                       ad(-Xm1(s))...ad(-X mp(s))i°dMs m >_ 2. 
                      m1, m1; o 

                 m1+ +m p=m-1 

   THEOREM 3. The solution (2.10) coincides with=1 X(t) where X(t)~ 

£m, mEN are in Theorem 2. In other words, two definitions (2.5) (or (2,6)) 
and (2.11) o f X m(t), m N agree with the other.
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   We distinguish two definitions : Let X(t) and X(t) be defined by (2.5) 

(or (2.6)) and (2.11) respectively. Clearly by (2.8) 

               exp ~; Xn,(t) =1+ Mil.                                        m=1 IEE[1, ~) 

It is easy to check that the right expression is characterized by the SDE on 

                      dYt = ~Yti°dMt 
(2.12) iEE 

                         Y0= 1. 

Thus in order to prove Theorem 3, it suffices to show that exp {~m.1 X ~, (t)} 

satisfies the SDE (2.12). 

   PROOF OF THEOREM 3. Write Xm(t)=X(t) and let X(t) :=1Xm(t). X(t) 

is the solution of (2.10). Fix bENarbitrarily. Let X(t) :=~m=1Xm(t)EoC[1, b]. 

Recall cp(b) C"(C[1, b]--> l[1, b]) and Rib) C°°(L[1, b]--*L[1, b]) (or ~X(.C[1, 

b])). Since X(t)~Xcb)(t) (this notation is in the proof of Fact 3),

(2.13) l+cp(b)(X(b)(t)) '-S-' expX(t) 

(2.14) Rib>(Xcb)(t)) --' Ri(X(t)) 

By (2.10) and (2.14), X(t) is a solution of the SDE on £[1, b] : 

                  d(t) - R~b)(X(b)(t))°dMi 
(2.15) iEE 

                   X(b>(0) = 0. 

Hence from this and (1.29) it follows that for each IEE[1, b] 

           dyl°~(b)(X(6)(t)) = i~ Rib)(yl °(P(b))(X(b)(t))°dMt 
                        = i~ yl °(1-f-~(b)(X(b)(t)))i°dA1 . 

This together with (2.13) implies that expX(t) satisfies the SDE (2.12) up to the 

first b-th component. Finally letting b T oo we obtain the conclusion. •

   3. Applications to the SDE's with nilpotent coefficients. 

   In this section, as a consequence of our main results we present the re-

presentation formulas of solutions to SDE's and ODE'S with nilpotent coefficients. 
   For this we first state the following fact: Let M be a smooth manifold, 

V1, i E E be smooth vector fields on M and Ij be a Lie subalgebra of (M) 

generated by them. Suppose that 

(3.1) V i is a complete vector field for each i E
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(3.2) fj is b-nilpotent. 

Let i3 : £(E)--be the homomorphic extension of the mapping iHV Z. By (3.2) 
lj is of finite dimension and hence, by Palais [P], the statement of (3.1) is 
strengthened as follows: j3(X)EIj is complete for any Xe~(E). By virtue of 
this, we can define a smooth mapping h of £[1, b] X M into M by 

(3.3) h(X, x) := Exp(/3(X))(x) . 

Then the following fact holds: 

   FACT 6. For each x E M, h(., x) satisfies the following system o f first order 

partial differential equations on M: 

(3.4) Rh(•, x) = V •(h(•, x)) i E E , 

or more precisely for f C°°(M) 

(3.5) Rf (h(•, x)) _ (V 1f)(h(•, x)) i E. 

   PROOF. By Palais [P], we can take a connected Lie group G and a smooth 
mapping cp of G X M into M such that 

(3.6) cp(g, cp(h, x)) = cp(gh, x) g, h E G, x E M 

(3.7) co(e, x) = x 

(3.8) co is an isomorphism of R onto fj . 

Here R is the right invariant Lie algebra of G and cP+ is defined by the foll,,w 
ing way: For L c, and x E M 

                    ~+(L)x := d (exptL, x) t=o .                            dt `~ 

For simplicity write gx : =cp(g, x) for g E G, x E M. By definition 

(3.9) Exp(cp+(L))(x) _ (expL)x L E 2, x M. 

By (3.8) R is b-nilpotent. Moreover there exists a homomorphism r of £(E) 
into R such that co (r(X))= jS(X) for any X EEL(E). Hence by this and (3.9) 

(3.10) h(X, x) _ (expr(X))x X E £[1, b], x E M. 

Here we recall Fact 5. From this and (3.10), it follows that for X, Y aE[ 1, b] 
and xEM 

                 h(X •Y, x) _ (expr(Y))h(X, x). 

In particular, letting Y =ti in the above we have 

                  h(X •ti, x) = Exp(tVi)(h(X, x)).
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Consequently differentiating it at t=0, we obtain (3.4) at once. • 

   As in the preceding section let (Q, , P, t) be a filtered probability space 
and (Mr)t~0, i~E be a system of continuous (Ft)-local semimartingales with 
Mo=0. 
   Let V i E'(M), i E be as above and we consider the following SDE on M: 

                     dXt = ~Vi(Xt)°dM~ 
(3.11) iEE 

                       Xo=x. 

As for the solution to the SDE (3.11), we have the following : 

   THEOREM 4. The SDE (3.11) has a unique solution X(t, x) and it is given 
explicitly by the formula : 

                                    (_1)e(Q)          X(t
, x) = exp Mr -1VC11 (x)                          IEE[1, b] QEC~ I11 III 2 III -1 

                                 e(Q) 

                                (_ 1)"                 = exp M~ V [l oQ1 Cx) 
                        IEE[1, b] QEC~ I I I Ill 2 III * 1 

                                  e(Q) 

Here, as R, we set VC1~:=3([1]) for I~E[1, oo). 

   PROOF. Let X(t) be the solution of the SDE (2.15) on £[1, b]. Then 
from (3.4) it is easy to see that h(X (bi(t), x) satisfies the SDE (3.11). Also, as 
we saw in the proof of Theorem 3, X(b~(t)=~,=1Xm(t) where Xm(t) is given 
by (2.5) or (2.6). Hence by (3.3) h(X (bi(t), x) equals the above formulas. This 
shows the existence of solutions. By the general theory of SDE's the uni-

queness is obvious. Consequently we complete the proof. • 

   As a corollary to Theorem 4, we can state the following: Let g be a Lie 
subalgebra of M) such that 

(3.12) g is of finite dimension 

(3.13) every V g is complete 

(3.14) g is b-nilpotent. 

Suppose we are given an Li°c-function A of [0, cc) into g. This means that 
every component of A with respect to some (and so every) basis of g is in L i 
as a real function on [0, cc). We now consider the following ODE on M: 

                     d 
x(t) =At xt 

(3.15) 
                       x(0) = x.
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Here A(t, x) denotes a tangent vector of A(t) ~'(M) at x M. Then we have 

the following : 

   THEOREM 5. The ODE (3.15) has a unique solution x(t, x) and it is given 
explicitly by the formula : 

                     x(t, x) = Exp(z(t))(x) 
where 

           m=1 CESm m2 m--1 
                 e(o) 

    X ... [[...[A(s6cu), A(S~(2))J, A(SQ(m-1))], A(Sc(m))ldsl...dsm. 
      O<Sj<...<Sm<t 

    PROOF. Let n+1 : =dimg where n>_ 0. When n =O, i. e., dimg=l, it is 

easily seen that 

t 

                  x(t, x) = Exp A(s)ds (x) 

0 satisfies the ODE (3.15). Hence we may suppose that n >_ 1. 
   Let V0, V1, ..., V n be a basis of g. Then we can find an a E L i°c([0, o o)-_+ 
Rn+1) such that 

n (3.16) A(t) = a1(t)V1. 
                                                          i=o 

t 

We set Mr := ai(s)ds. This (M~)ta0 is clearly a continuous semimartingale on 

0 some (Q, if, P, E F) (in fact it is deterministic and absolutely continuous in t), 

and (3.15) is rewritten as 

n 

                  dx(t) = V i(x(t))odMr 
                                                      i=o 

                    x(0) = x. 

Therefore applying Theorem 4 to this SDE, we have 

                                       (_1)e(Q)          x(t, x) _ Exp iE J M`QE~ 2 III--1 V[roa~ (x)•                              .ri III 
e(Q) 

Here we note the following expression : 

    Mc1...zmVCil...timoQ~ = ... [[...[a1a(1}(s6(1))V iv(1), aiQ(2)(S~(2))V lQ(2)J, 
                              o<Si<...<Sm<t 

                                             ... ] , aiv(m)(SQ(m))V ~~(m)]dsl ... dsm. 

Consequently, by combining this with (3.16), the preceding expression equals 
the desired one in Theorem 5, and the proof is complete. •
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