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Introduction.

Let Vo, V4, ---, V, be smooth vector fields on R? (in general may be a
smooth manifold) and we consider the stochastic differential equation (abbr.
SDE) on R“:

dX, = 3 V.(X.)-dB}
0.1) =0

Xo=x

where (Bi, -+, B}) is the n-dimensional Brownian motion starting from 0= R?,
9=t and the symbol - denotes the Stratonovich integral. Let us denote by

X(t, x) the solution to this SDE. (Here let us suppose some appropriate condi-

tion under which the SDE (0.1) has a unique and global solution.) Then as

t10, X(t, x) is expanded as follows:

0.2) Xt )~x+ 3 3 BV, -V, (x).

m=1%ty, ;=0

This is called the stochastic Taylor expansion and has a sense as an asymptotic
expansion, and generally does not converge in probability for given ¢>0. In

the expansion, Bir“im is a multiple stochastic integral for B, ---, Bim defined
by

- t . (sm . - (52 .
(0.3) Birin = So"dB;zzSo °dBimz1 odeSo °dB.

When we study the asymptotic problem of quantity relative to X(¢, x) such
as heat kernel, the expansion (0.2) is basic and there is a routine as follows:
We decompose X(t, x) as X(t, x)=F(t, x)+ R(t, x) such that F(¢, x) is a finite
expansion in (0.2) cut in the m,-th term (m, is chosen large enough in advance)
and R(, x) is the remainder, and then show R(, x) to be actually negligible
in an appropriate sense and hence reduce the problem to that for F(¢, x), i.e.,
a finite system Birim 0<iy, -, in<n, 1Sm<m,.

In this paper, we are interested in an infinite system Birim 0<i,, -, i, <
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n, m=1 and would like to know what it means. Since the expansion (0.2) is
not convergent in a usual sense, we forget that V; is a vector field on R? and
regard it as a variable (or an indeterminate). Then (0.2) is a formal power
series in variables Vo, V4, -+, V,, ie., in (0.2), Vy, - V;, is a monomial of
degree m and X7, ..i,=Bit""mV; -V, is a homogeneous polynomial of degree
m and the expansion (0.2) is the sum of these homogeneous polynomials.

In general let A, be the subspace of homogeneous polynomials of degree
m. Then the algebra A of polynomials is the direct sum X5 -PDA, and the
closure A with respect to a pseudo norm (cf. Section 1.2) is the algebra of
formal power series. Equipped with a bracket product (which is defined as
usual), A is a Lie algebra and so is J (A is a Lie subalgebra of ). Let .£
be a Lie subalgebra of A generated by V,, V,, ---, V, and T be its closure in
A. If £, is the subspace spanned by brackets of order m of V,, V,, -+, V,,
then .£ is the direct sum - PDLn.

In Theorem 1 and 2 below it is stated that 14+X7-; 3%, ... ip=0 BIImVy -
Vi, A is an exponential of an L-valued process U, =25-1Un,: where Uy, E
Ln, ie.,

0.4) 1+3 3 BV, -V, =expl,

m=1iy. - iqm=0

and that each U, . is given explicitly by the formula in terms of Bjrim, 0<
J1, +, Jm<n and brackets of order m of V,, V4, ---, V,. (Here exp is a mapp-
ing of the closure 3 o_,@An into J defined by (1.10).) This is shown alge-
braically by appealing to Friedrichs’ theorem and Specht-Wever theorem, but
the proof is not hard. We remark that the expression (0.4) already appears in
[F-CN], though the explicit formula of U, . is not obtained.

Next we give another description of U,. By means of the Campbell-
Hausdorff formula, a multiplication in I is introduced (cf. (1.16)) and with
this © has a group structure. Although I is of infinite dimension, it is
regarded as a “Lie group” and its “invariant algebra” is itself. Corresponding
to a variable V,, an “invariant vector field” R; on £ can be defined (cf. (1.20)).
Similarly as (0.1), we consider the SDE on [:

dU, = 3 R.(U)-dB;
(0.5)
Uo = 0 .

Then, in Theorem 3 below, it is stated that the preceding U,=3%-,U,.. is
the unique solution of the SDE (0.5). Since . is in fact not a Lie group, the
problem is modified into that of finite dimension and the proof is precisely done
as follows: Let .£[1, m]: =301 DLy L[1, m] is clearly a finite dimensional
subspace of . Moreover a multiplication in I makes it a usual Lie group
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and the restriction R{™ of R, to .L[1, m] is an invariant vector field. Hence
the SDE (0.5) (replacing R; by R{™) is valid and it is shown that 3}~ U, is
the unique solution of the modified SDE. We remark that in [B], Ben Arous
introduces R{™ and considers this SDE.

Finally, as an application of those theorems, we present the representation
formula (abbr. RF) of solutions to SDE’s with nilpotent coefficients, i.e., of the
solution X(t, x) to the SDE (0.1) in which the vector fields V,, V,, ---, V., ge-
nerate a nilpotent Lie subalgebra §. Following Yamato [ Y], we consider the
system of first order partial differential equations on R%:

R{™h(-, x) =V (h(-, x)) 1=0,1,-,n
(0.6)
h(O, X) =X

where m is the order of nilpotency of §), i.e., a positive integer such that §™*!
(=the bracket of order m+1 of §)={0}. This solution is given explicitly by
the formula (3.3). (In [Y], this is only implicitly determined.) In Theorem 4
below, the RF of X(#, x) is obtained from the conclusion of Theorem 3 and the
formula (3.3).

So far we have considered such as (0.1) the SDE’s with respect to Brownian
motions. But, B{ being replaced by a continuous semimartingale M? with M{
=0, the above results remain to hold. In particular M} being deterministic,
the RF mentioned above is just that of solutions to ordinary differential equa-
tions (abbr. ODE) which is stated in Strichartz [S] (cf. Theorem 5).

The problem finding the RF for SDE’s has been already studied by Yamato
[Y], Kunita [K1], [K2], Fliess and Normand-Cyrot [F-NC], Ben Arous [B],
Hu [H] and Castell [C]. Among them, in [K1], [F-NC], [H] and [C], the RF
for ODE’s is based on first, and then from the transfer principle (due to Mal-
liavin) or from the approximation theorem the stochastic version of the RF is
obtained. In contrast to this we directly derive it without the transfer prin-
ciple. Our approach seems to be sharp and simpler. We remark that in [H]
and [C] the explicit formula of U, . in (0.4) is obtained in finding the RF for
SDE’s

The organization of this paper is as follows: Section 1 is a section for
some preliminaries. There, notion and notations necessary for stating and
proving the above theorems (Theorem 1~5) are presented. Also some facts
(Fact 1~5) which are like as lemmas for these theorems are presented. Although
they can be seen in some standard text books, we give their proofs for the
completeness. In Section 2, our main results (Theorem 1~3) are stated and
proved. By virtue of much efforts in Section 1 the proofs are not hard. As
an application of the results, in Section 3 the RF for SDE’s and ODE’s (Theorem
4 and 5) are obtained.
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1. Some preliminaries.

What we will state in this section can be partly seen in other papers [T1]
and [T2]. We here state them minutely and intelligibly.

In the following (except in the proof of Theorem 5 below) let us fix n&N.

Let E:={0, 1, ---, n}. Let A(E) and .L(E) be the free algebra (over R)
and the free Lie algebra (over R) generated by E, respectively. They are here
interpreted as follows: J(E) is an algebra of polynomials in variables (or
indeterminates) 0, 1, ---, n over R. Thus A(F) DR, 1(cR) is a unit and in
general A(E) is non-commutative. If, for X, Y €A(FE) set the bracket product
[X,Y]:=XY—YX as usual, then A(F) is a Lie algebra over R and .L(FE) is
a Lie subalgebra of A(E) generated by E. Moreover the freeness of L(E)
and A(F) means that

(i) given a Lie algebra .£ over R and y: E—_, vy has a unique homo-
morphic extension of .L(FE) into .,

(ii) given an algebra A over R and a: E—J, a has a unique homomor-
phic extension of A(E) into A such that a((X, Y])=[a(X), a®¥)] for any X,
YeL(E).

1.1. For each b=Z,:=1{0, 1, 2, ---}, set
{1} (where 1eR) if b=0
b:={ {iv - do; 0y, -, 1, E} if beN
and for a, b=Z, such that a<b
Ela, b]:=E,J--UE,
Efla, 0):=E,JVE;.;\J .

E[0, «) form a basis of A(E). Let A, Ala, b] and A[a, =) be the subspaces
spanned by E,, Ela, b] and E[a, <o), respectively.

For I€E[1, =), |I|:= the degree of a monomial I, i.e., |7, ---7,| :=b, and
[I]e.L(FE) is defined as follows:
. ) 7 if b=1
(1.1 Liy - dp]i= o ) _ )
[['”[[Zly ZZ], Za], Tty Zb—l:ly Zb] lf b g 2~

{{I]; I€E[1, <)} belong to a Z-module in A(E) generated by E[1, «). So
cfeZ, I, JeE[l, «) are uniquely determined by [I]=3scgr1.wcfJ(c! is a
coefficient of J in expanding [I], and hence ¢{=0 if |J|+]|I]). Then it is
clear that

( 1) 6{251;_7' Z, ].EEle

(ii) rank(c!)r.yer,=: 121 for each b=N.
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By (ii) we can take a subset G,C E, such that #G,=7, and the row vectors
(¢f)seg, IEG, are linearly independent.

For a, be N such that a<b, let £,, L[a, b]and L[a, =) be the subspaces
of L(FE) spanned by {[I]; I€E,}, {{I]; I€E[a, b]} and {{I]; I E[a, )},
respectively. Then, taken G, above, {{/]; I=G,} form a basis of .£,. Con-
versely if G,CE, has this property, then #G,=r, and it has the preceding
property. Although the choice of such a G, is not unique, we choose one
arbitrarily and fix it in the following.

ExampLE 1. For b=1, G,=E,=E. For b=2, 3, we can take
G, =1{ij; 0=i<j=n}
Gy = {ijk, jhi; 0Si<j<k<nbU{jkj, jhk; 07 <k <n}.
For a, b= N such that a<b, similarly as E[a, b] and E[a, ), set
Gla, b]:=G,\J - UG,
Gla, ©):=G,IGqz.\J .

Since {[1]; I€G[1, )} form a basis of L1, o), there exist (e})rcer1,«), seEr1, )
CZ such that

[J1= Iea%ﬁ);z’,[[] for each J & E[1, )

where e4,=0if |I|=+]|J|. If A is an algebra over R and a: E — 4, then a
homomorphic extension a has the same property as above, i.e.,

(1.2) alJ)D) = zec%.m eha([I)) for each J € E[1, ).

Similarly as [I], define t(I)eL(E) for I€E[1, «) as follows (cf. (1.1)):
i if b=1
Liy, [io, -, [do-e, [F0-1, 20]]--]1] i b= 2.

Clearly 7@;-+45)=(—1)""[7y-7,]. Since A[1, ) is spanned by E[1, ), mappings
of E[1, o) into .L(E): I>[1], I—t(I) are uniquely extended to linear mappings
of J[1, o) into .L(E). We denote them by the same symbols [ ], z. Then
it is known as the Specht-Wever theorem (cf. [J]) that

1.3 T(dy - 2p) 1= {

(1.4) XE.L‘b(-;-f-;)[X:I:bX
i

1.5 Xe .L'b(?) o(X) = bX.
1

1.2. The algebra A(E) is a graded algebra with A, as the subspace of
homogeneous elements of degree b:
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HE) = 5 A
JbJCCJIH.c b, c & Z+.

So it can be extended to the algebra A(E) of formal power series in variables
0,1, -, n over R. More specifically the elements of _I(E) are the expressions
S Xo=Xo+ X+ Xo+--, Xy, such that 35,X,=>52,Y, if and only if X,=
Y, be Z,.. The algebraic structure (i.e., addition, scalar multiplication and
multiplication) in A(E) is defined as follows:

i X+ i Y,:= i (Xp+Y0)
b=0 b=0 b=0

A

4
b

X,:= g} iX, iR
( S X,,)( 3 Y,,> = 37, where Z,:=X,Yo+ - +X.7.
b=0 b=0 b=0

Let A[b, o) be the subset of all elements of the form X,+X,,,+--. Itis a
two-sided ideal in A(E). We introduce a pseudo norm || in A(E) by

|X| 1= Q-max(h;Xedd[b. )}

It is clear that

(1.6) X € JA[b, ) <—_f?> | X| £ 2°°
i
1.7) [X+Y| < [ XIVIY]
(1.8) [AX] £ | X]| AER
1.9 | XY | = | X|]Y].
Then JA(E) is complete as a linear space equipped with a pseudo norm || and

the subalgebra JA(FE) is dense in it.
Now, for XJ[1, ) we define exp X, log(1+X)=A(E) by

(1.10) expXi=1+ B2 log4X):= 5 Ty,
m=1 Mm! m=1 m

The series converge with respect to |-|. Clearly

1.11) exp log(1+X) = 1+ X, logexpX =X

(1.12) lexpX—expY |, |log(14+X)—log(14+Y)| < | XY |.

Let £(E) and L[a, ) be the closures of £(E) and L[a, o) in A(E), res-
pectively. Then Z(E) is a Lie subalgebra of A(E) and Z[a, o) is an ideal
of Z(E). Also L[a, ) is the subset of all elements of the form X,+X,.,+
-+, Xy Ly, and thus L[a, «o)CAla, ). Moreover the following holds:
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Fact 1. For X,Y=_L(F), logexpX expY)=L(E) and it is given by the
Campbell-Hausdor ff formula:

(1.13) log(expX expY) = bi (X, V)

where ¢(X,Y)EL[b, o) is defined by

Cb<X> y)
1 ﬁ: (=™ (adX)Pi(adY )u---(ad X)?m(adY )im
- b m=1 P1,91 " PmsAm 205 m pl‘Ql‘pm!Qm! )

P1+q1, 5 Pmtam=zl
P1+qy++Pmtam=b

Here (adX)Y :=[X,Y] and adX:= X.

PRrROOF. For details see [J]. Let § be the diagonal mapping of A(E), i.e.,
the homomorphism of A(E) into A(E)RA(E) such that 6¢)=1Q:+:X1. Then
XeJA(E) belongs to .L(E) if and only if 6(X)=1QRX+X®1. This criterion is
known as Friedrichs’ theorem. Similarly as A(E), A(E)QRAE) is a graded
algebra with (A(E)QAE))s:= QA+ -+ + A QA as the subspace of homo-
geneous elements of degree b. Thus we can construct the algebra JA(E)QAE)
as JA(E). Then the diagonal mapping § has an extension to a homomorphism
of A(E) into A(E)RA(E). Indeed, if, for X=3p,X,(X,=4,;), we define

300) 1= 336(Xy)

then this 0 is the desired one. Here note that 6(X)= (A(E)RQAE)), if XEA,.
By the definition of ¢ and Friedrichs’ theorem it is clear that for XeA(E)

(1.14) XeZE = 8(X) = IQX+XRL.
1

We proceed to the proof of Fact 1. First of all note that [1QX, Y ®1]=0
for X, YeA(FE) and
exp(X®1) = (expX)®1,  exp(1RX) = 1Q(expX)
log(1+X)®1) = log(1+X)@1,  log(1Q(1+X)) = IR®log(1+X).
Let X, Y= (E). Then by the above note and (1.14)
d(expX expY) = d(expX)o(expY)
= expd(X)expdo(Y)
= exp(10X+X@1)exp(1QY +Y ®1)
= exp(1QX) exp(X®1) exp(1QY ) exp(Y @1)
(1QexpX) (expX 1) (1QexpY ) (expY Q1)

Il
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= (1QexpX) (1QexpY ) (expXQ)1) (expY 1)
= (1RexpX expY) (expX expY ®X1).
Hence
o(log expX expY) = logd(expX expY)
= log(1QexpX expY) (expX expY ®1)
= log(1RexpX expY)+log(expX expY Q1)
= 1®log expX expY +log expX expY 1.
By (1.14) this shows that log expX expY € Z(E).

Next we show the formula (1.13). For X, Y&U4[1, «), a direct calculation
shows

log expX expY = EZ 5

where

» m-t XP1iYa.. XPmY dm —_—
= 5 Py T — € ALb, =0).
m=1 m Py Pmeam2% D1l qy L ! qm

P1+q1. s Pm+amEL
P11+t +Pm+am =0

In particular, if X,YeE, Z,=4,(b=N). In this case, since X5, Z,=L(E),
Zy=.Ls, and hence by (1.5)

1
Zy= —b—r(Z b) .
This suggests that for two indeterminates X, ¥
1m-1 X1y ... XPnY im
pEv

m P1,41 " Pms ¢1m=° p1!Q1!"'pm!qm!
P1+4q1 - Pmtam
P1+qy+ +Pm+lIm—b

1 (—=I)m- 5 (adX)?i(adY)u---(ad X)?m(adY )im
bmn=1 m P1.41 s Pmr Am 20 pitgt o pnlgn! .
Py+qy e+ Pm+Im=b

Consequently, applying this formula for X, Y=_£(FE) and substituting it into
the preceding expression, we obtain the formula (1.13). ]

REMARK 1. By the same reason as above, it can be verified that for X,
Yer(E)

XPrYy« b1
(1.15) 2 =2 2 X Y), X, Y).
pgz0; plg! me=1m ! by, rbmzl * m
p+g=b by+-+bm=b

By virtue of Fact 1, we introduce a multiplication - in .L(E) by
(1.16) XY := log(expX expY) X, Ye rFE).
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Then £(E) has a group structure equipped with this multiplication, that is, it
holds that

(i) X-N-z=X-(Y-2),

(ii) the unit element=0, i.e., 0- X=X -0=X,

(iii) the inverse element of X=—X, i.e., (—X)-X=X-(—X)=0.

For Xe£(E) and I€E[1, «), X-{[I]=.L(E)(t=R). By differentiating it
at 0 component wise, (d/d)X -t[I1]|:-o=-L(F) and it is computed as follows:

FACT 2. For each X L(E) and I=E[1, )

d

1.17) 4

—X- t[:I] - =[I]+ Zlﬁ(ad/—X)) [r].

Here {bn}s-1 are the Bernoulli numbers, i.e., it is a sequence determined by the
Taylor expansion:

L= i—b—m |z| < 2=
e*—1 m=1m

and

(adX)™Y : —[X[ [X [X,Y1l--11 X, YeLE).

Proor. By the Campbell-Hausdorff formula (1.13)

X-I]= é

5 e AO@ALT D @dX)Pn(ad T

P1,41 % Pmy Am 205 Px'lhlpm!(Im!
P1+41e s Pmt+qm =l
PrHattPm+am =b

and so, by differentiating it at 0

d oo 1 b m
I — X1 ] =[1]+ 2 DHPY
=0 b=2 b m=1k=1
(=™ (@dX)Pr**Pr(ad[ I ])(adX)?e+1*+Pm
Pyl D12l Pp+12L 4 Pmzls M pile P! ’

P+ Pppm=b-1

In the right expression, note that if either 2<m—2, or k=m—1 and p,=2,
(adX)Pe+1++*Pm=(0, Hence this is further computed as follows:

d _ 510 5 (=D (adX)?1+om[ ] ]
E‘X.ttl] =0 [1]+1§2 b<1s§sb m P121-“'§m—121? .Dl! pm!
Dit+pm=b—1

(=nm-t 5 (adX)Pr++Pm-1(ad[ ] ])X)

2smsb M P1EL - Pm—gzl, Py =1; Pile pa!
Pr+ Dy =b—1
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P —um 1
=1 ]+z§2 <1§msbp1;1,---, Pm—12l; M Dl pa!
P1ttPpm=b—1
(=D ! b-1
25%1’9 P11, pmggzl,pm=l; m Dl bl )(adX) L]
D+t Dy =61

Here the last equality is due to the fact: (ad[I})X=—(adX)[I]. Thus, setting
{cm}m=1 Dy

_ (=Dmml ma (DR 1
(1.18) e Tl (k=1 k Z’121,"§k—121;p1!"‘pk!
Pyttt Pp=m
_m+1 (—l)k“ 1 )
k=2 k P12l Pg-22l, Dp=1; Pile pr! ’
P cTPRp=m

we have

d _ & Cm m
XA =0+ B R ad(— X)L .

To obtain (1.17), it remains to show that ¢, is the Bernoulli number. But this
is done in Lemma 1 below, so that the proof is complete. ]
LEMMA 1. A sequence {cn}sm-1 defined by (1.18) is the Bernoulli numbers.

PRrOOF. Note the Taylor expansion of (e?*—1)*~'e? (k= N):

(e—Der = 3 ( zecC.

1
> —)z"‘
=o\py21,-Lppogzl; Pyl Pl
D+t Dp=m

By this and Cauchy’s integral formula, we observe

m+1 (__ )k 1 1
; k P1 El,"'-pk_lgl;m
171+---+pk=m
_ 1 m+1 ( l)k 1 ; ot tpmes
ab e I e S G S
m+1 (__l)k—1 _—1*
k=2 k p,;]p Pk pz:l pp=1; pr!- pp!
_ 1 mat (— l)k 1 oo trm
T 2zv/—1 S —r ; (e*—=1)* 2 L ™dL
= 1 Sh (—l)k_l 1 - E=1\rp-m J#
T 2av—1 gc= k=zT<k—_1 er—=1) 1)5 dg

3

. m +1(—_1)k——1 c kerrmos
- Zﬁ\/TS‘ICIZT =2 k(k—1) (e D*'¢ dg
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— m mal (“Dk—l (_l)k -1F-m-1

- ZnVZ'TS':,:M:z( -1 Tk >(ec'1)k e

_ m mel(—1)* z E-1,2 (=pmt 4 m+1\p-m-1

= TV (B D e S
m+1 (— k

= anjl—gmﬂk:l( kl) (ec_l)k—leCC—m—xdc'

Here (0, log2). Hence (1.18) is simplified:

(=hmm !S mat (— 1)+t

(1.19) Cm = 2/ —1 Jigi=r 4 k

(et —1)k-1etgm™1dL.
But note that

SC E—DF1eirm1de =0 if k=m+2,
ISi=7

(e*—1)k =loge*=¢ on {|&|<log2}.

Therefore (1.19) is further simplified:

_(=D™m! et
fm = Zﬂ\/:l—g|C\=rCec—lC dq
_(=D™m! 1 I
- 27!.‘\/—1 S|C|=r 1—8_CC dc
__m! § poma
B th\/jl‘&txfr ec—lc dc
and this shows that ¢,=b,, m&N. [ ]

Before concluding this subsection, we present the following definition :

DEFINITION 1. For each /= FE, define a mapping R; of L(F) into itself by

45
(1.20) R(X):= - Xoti]_ .
By Fact 2
1.21) R(X) =i+ él%'—(ad(—X))”‘i (cf. [BY).

1.3. Throughout this subsection let b= N be fixed. A[b+1, ) was a two-
sided ideal of A(E) and L[b+1, o) was an ideal of .L(E). Clearly

ALL, o0)/ALb+1, o0) = A[1, b],
1.22)

L(E)/LIb+1, o) = L1, b].
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E[1,b] and {[I]; I=G[1, b]} are bases of JA[1, b] and L1, b], respectively.
Thus, on A[1, b] and .£[1, b] the global coordinates are naturally introduced,
so that they become smooth manifolds. Let us here denote the coordinates by
(9D 1eprre; on A[1, b] and (u”)egrrey On L[1, b].

Let X—X', Y —Y' € Jd[b+1, «) (where X, X', Y,Y’€ Jd[1, ). Then, by
1.6), 1.7, (1.9) and (1.12), so are XY —X'Y’, expX—expX’ and log(1+X)—
log(1+X’), and hence log expX expY —log expX’ expY’ & A[b+1, ). In par-
ticular, if X, X, Y, Y’ € ZT(E), X-Y—X'Y' = L[b+1, ) and thus R,(X)—
Ri(X"NeI[b+1, =) (= E). By these observations, we define the following:

DEFINITION 2. (i) For X, Y & .£[1,b], a product Z of X and Y is a
unique element of .£[1, b] such that

(1.23) XY—Z & Llb+1, «)

where X-Y is a product in .L(E) of X and Y. We denote Z by the same
symbol X.Y.

(ii) Smooth mappings @® of .£[1, b]XJ[1, b] into A[1, b] and ¢® of
L1, b] into A[1, b] are defined as follows: For X=.£[1, b] and Y ed[1, b],
O™(X,Y) and ¢™(X) are unique elements of A[1, b] such that

1+ 02X, Y)—(expX)(1+Y) € A[b+1, o)
(1.24) __
14+¢o®(X)—expX € A[b+1, ).

(iii) For each /= E, a smooth mapping R of £[1, b] into itself is defined
as follows: For Xe.r[1, b], R{®(X) is a unique element of £[1, b] such that

(1.25) R(X)—R®»(X) € L[b+1, o).

By definition, it is clear that

(1.26) X)) = 0™ (X, 0)

DOX, OO, 2) = ON(X.Y, Z)
(1.27)

in particular @ (X, oY) = o™ (X-Y)
(1.28) R®M(X) = —%X-tz' i€ E.

Moreover the following holds:

FACT 3. For each IS E[1, b), Xe.L[1, b] and i€ E

(1.29) ye(l+pPX)i= X —iy’°¢‘°’(X)u’°R§”’(X).

Je6r1. b1 0u’

PROOF. For X, Y € J(FE) let us write X~Y if and only if X—Y €A[b+1, o).
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By (1.27) and (1.24)
14+¢®@ (X -t7) ~ expX expt: .

Note that (d/dt) expX expti | -o=(expX)i~(1+¢®(X)) and that by (1.28)
d .
RHS of (1.29) = —Ey"’(p"”(X'l‘l) o

Hence combined these we obtain (1.29). n
We may think of R{»=C=(.L[1, b]—.L[1, b)) as a vector field on .L[1, b]
by setting

(1.30) RO = 5 wleR®

JEET1. b ou’’

Here we use the same symbol R{ to denote the vector field. Equipped with
a multiplication - introduced in Definition 2, (i), .£[1, b] has a group structure.
By (1.13) it is easy to check that a mapping (X, Y)—X-Y'=X-(—Y) is smooth.
Hence (.£[1, b], -) becomes a Lie group. Let Ly be the left translation by
X(e.L[1, b]) and §, be the left invariant Lie algebra of .£[1, b]. Then

.30 (R = Low(pae), X LIL 0]
and hence R{®<Y,. Because by (1.28) and (1.30)
:
Low( ) f = (52r),f L

d .
= G f&-,

— S W RPX) A f(X)

T seénin ou
=RMxf  fe C(LLL b)),

By the freeness of .£(E) the mapping E=i—R{® <), is extended to a homo-
morphism 7y of .L(E) into §,. It is clear that

7l in]) = [0 [[RY, RP], RY], -, R, RDT.

3 im-1
Let us denote it by R{%.:,:. Then the following fact holds:
FACT 4. For 1€G[1, b]

(1.32) (R&)y = <1LX)*(82,)0 X e r[1, b)
and for 1€ E[b+1, =)

(1.33) R =0.
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ProoOF. First of all note that (1.32) is equivalent to (1.32) or (1.32)":

d
’ ) — J o
(1.32) Rm T s dt wle(X- il ])’
(l 32)// (R(D)) ___< a )
. 13’0 auI 0-
For convenience set a smooth function RY)7 on L[1, b] (JEG[1, b]) b
(130 RO ()= L ut (X101
dt t=0

We show (1.32) by induction on the degree of I. When I=G,, (1.32) is
obvious because it is just (1.31). Next let 1<¢<b—1 and suppose that (1.32)
(so (1.32) or (1.32)”) is true for any I=G[1, ¢]. Let JeE . and jeE. By (1.2)

R = > el R{p.
IcG,
By this and the assumption of induction, we observe
Rs = (R, RP]

_ Irp® PG
= 3 ef[R{, RP]

1€G,
(1.35) = 3 el"l: R®. K 0 R, L_a_]
: 1&, lredtion Y GuF T Leétiey T out

= e 3 {
IEG, ' K.LEGL.b]

By (1.34) and (1.17)

5 9 E 9
R R ) = RS e R ™) -

(1.36) S RBEOK T~ T+ 3 22 (ad(— X[ 1]

KeGl1,b]
and this implies that

R #O) =of, R0 =067

£ Ry 0) = uFe (017, 117

u

0 .
o RPO) = ube 2 [[K ], 5.

Hence a tangent vector (R{%,), at 0 is computed:

(RZpo= 2 er 2 {5KuL°_[[K] ]]<6uL>

€6, = K.LEGL1.0]

_Bfu"'"%[[[l]’ [”3<>6u7>0}

=X X u"o[U](;ST)O

IEG, * KeGl1.b]
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= (B e i) e,

— K
R eE
Keczc)l,b] Ti\ouk /o

Here the last equality is seen from the expression:

S ehuRo[I)[K]1= B b 3 @Xe[IDIK]

Kega,m(leac IEG, ~KeGr1.b]
= X éillj]
IEG,

=[ 3 e[I], j]
IEG,

=[Js]

—_ K

- KEGZEl.b]er[K] :

Thus we obtain that for JeFE.,,

0
Y — K
(RP)e = Ke?.a[l‘b]el/ ( Juk )0

and, in particular, for J=G,.,

since e¥=0%. This is just (1.32)” and so we see that (1.32) holds for any I &
G..,. Consequently we have (1.32).
Next we show (1.33). By (1.36), it is easy to see that for /=G, and i€ F

REKOO=8F, SO RPEX) =0 K< G[Lb].

By this, (1.35) implies that R(?;=0 for /€ E, and jeE, and hence (1.33)
follows. ]

1.4. We start this subsection with the following definition:

DErFINITION 3. Let g be a Lie algebra over R and g™, m& N be a decreas-
ing sequence of ideals in g defined by g':=g, g™ :=[g, g™ '] (m=2). Then we
say that g is b-nilpotent if and only if g°*'={0}.

Fact 4 tells us that the left invariant Lie algebra b, of .£[1, b] is b-nilpotent.

Let b= N be fixed as the preceding subsection. Let G be a connected Lie
group and R be the right invariant Lie algebra of G. Suppose that we are
given A, R, i€ FE and that a Lie subalgebra g generated by them is b-nilpo-
tent. Let y: .L(E)—g be a homomorphic extension of the mapping E =i— A;
eg. Then the following fact holds:
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Fact 5. For X, YeL[1, b]
1.37) expy(X-Y) = (expr(Y))(expy(X)).
Here exp is the exponential mapping of R into G.

PrROOF. Fix X, Ye.r[1, b]. Note that expr(tX-tY) and expy(tY) expy(tX)
are analytic functions in ¢. Thus it suffices to show that for any feC=(G)
and meN

(1.38) dt’" f(expr(tX )|, dtm f(eXpr(tY)expr<tX))
By (1.13)
X1V ~ Dtrc X, V).
p=1

By the b-nilpotency of g, this implies that

(1.39) HX1V) = S tve,(r(X), 7Y
Here, for A, BeR, ¢ (A, B)ER is defined by
c.(A4, B)
1 & (—1)m? (ad A)P1(ad B)‘“ .-+ (ad A)pm(ad B)qm
= > 1 ]
pm=1 m D1, a1 Py Am 205 Pitqil - polgm!

P1+q1 - PptamEl
PrartetPatam=p

Since ¢, (7(X), y¥))=0 for p=b+1 (by the b-nilpotency of g), RHS of (1.39) is
a finite sum.

Let fC>(G). In general we know that for A= R, gG, teR and IeZ,

(1.40) f((exptA)g) = (Apf X&)

t t
+| an|dt, - ar S (A f)(€xp i A)g)dt s .
0 0

Let A=y(tX 1Y), g=e and t=1 in (1.40). Then, by (1.39), we have that for
each leZ.,

flexp (X 1Y)
- z’; 1 = trree(e, (1(X), 1Y) - e (r(X), T Xe)+0E )

=0 p !y ppz

and hence, for meN

1 dn
1 g JEXPTaX-tY))|
= é % .2 (Cm,(r(X), 7T(Y)) = €, (r(X), YD) S )e).

Myt mp=m
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By the same way as above (this time the formula (1.40) is used twice), we have

that for each /eZ*
f(expy(tY)exp r(tX)) = % v (r(X)”r(Y)"f)(eHO(t“‘)

and hence, for meN
i dtm f(eXpr(tY>expr(tX)) o= 2 p,

This suggests that as a dlfferentlal operator on G
e, (r(X), 1Y),

T (rX)Pr Y )e).

Here recall (1.15).
T X)Pr ) m
p,qz(!’;n ;[) 'q ‘ g

prg=
Consequently combining all the above, we obtain (1.38) immediately

1
My, Mg 2
m1+ +mk m
i . |

2. Main results.
Let (2, &, P, &,) be a filtered probability space. For each i E let (M)z
be a continuous (&,)-local semimartingale such that M{=0.
DEFINITION 4. We define a system (M}),.,, I€ E[1, ) of continuous (,)-
For I=i, - in€ E[1, )

local semimartingales successively
Mi if m=1

Mi:= 1 StMﬁl'”im—lodM;'m if m=2.
0

|

Here the symbol - denotes the Stratonovich stochastic integral
This plays important roles in

First of all we note the following formula.
The proof is easily done by using the chain rule (It

the following theorems.
formula). (Here we remark that this formula appears in appendix of [B].)
myeN be such that m;+ -+ +my=m. Then for

LEMMA 2. Let m, my, -,
in€ E[1, o)
M:.l"'imefmﬁl“'im1+"L2.. M§m1+~~+m(,_1+1'“fm1+ tmy
- Mia-1mia=1cmy |

0EG ;0 (1)<<a(my)
a(m,+1)< <a(m1+m2)

o(my+ +mb 1+1)< <o'(m1+ “+mp)

each 1y -+

Here S, is the symmetric group of degree m
THEOREM 1. log (l‘i‘zleg[x,w)M{])E.f(E) for eacn t=0

For simplicity set

PROOF.
Y. :=14+ X MiledlE),
I€EL1, )

XL:lOg YLEJI[l, OO) .

For the proof, it suffices to show that
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(2-1) 5(Yt) = Yt®yt

where 8 is the diagonal mapping of A(E). Indeed, since Y,=exp X,
oY) = expo(X.)
Y. QY ., = exp X:Qexp X,
= (1&) exp Xo)(exp X))
= exp (1QX,) exp (X.Q1)
= exp (IQX,+X:R1) .

Hence by (1.14), (2.1) is equivalent to that X,e_L(FE).
Now 4(Y',) is computed as follows:

oYy=01+ = M)

I€E[1, )

=1R1+ X3 M)

I€E[1, )

=1Q14+ 3 = Miind(i,) - 6(n)

m=1 tyipy

=11+ Wi‘x igi Mm@, @1+1R0i) -+ ((n@1+1Rin)

S IR S B Mirin(y - i)@1HIRG, i)

m=1 1

m=1
+ 2 2 lg(1) **° Za(p)®lo(p+l) Za(m))
p=1 0ESy ;
g (1)<+<a(p)
G (p+ LI (M)

—1QI+ S S Miin(Gy - i)@L+1QG, -+ i)

m=1 t1ipy

ad ; . m-1 - . . .
+ E Z le ”’LE lg(1) "'Zo(p)®la(p+1) tle(m -
p=1

m=2 iyipy 0EG

a(1)<-<a(p)
o(p+1)<<a(m)

By Lemma 2, the last expression is further computed:

. . m-—1 . . . .
) 2 M?.”tm Z 2 lo(ry " la(p)®zo'(p+1) tlo(my

i1im p=1 oSy ;
(1)< <o (p)
g(p+1)<~<a(m)
m-1 . .
i -1 i 1 . . .
= 2 E MLG(U (e te (m))la(l)"'er(p)®lo(p+l)
p=1 €Sy ; 1tm

a(1)<+<a (D)
g (p+1)<<g(m)

m-1 . .
. tg-1(1yig=1(m) ), . . .
= 2 ( 2@: Mt ))Zl"'lp®lp+1"'lm
0ECy;
o (1)<<a(p)
g(p+1)< <o (m)

tlgm)
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m-1 L . P . . .

=3 X MpaMip+rimg o 1,041 i
p=1 ti3ipy

> MIMIIQJT .

1I1+1J1=m

Il

Hence substituting it into the expression of d(Y,), we see

oY )=101+ X MUQ+IRQNH+3 X MIMIIQ]

I€E[1,x) mz2 | I+|J|=m
=11+ I MUQI+IQ~N)+ X MIMIIQ]
I€E[1, ) I1,J€E[1, )
= Y£®Yt

and (2.1) is obtained.

By Theorem 1, we can take X,(t).L., m&N such that

R
2.2) log (1+I€E§_m)M,1) = S Xn(®).
This LHS can be written down as follows:
0 m __1 b—1
log(l—I- P! M{]): S (2 ( b) o Mir-..
I€E[1, ) m=1 I€Ep \b=1 Iy, Ip€E[1,0);
I=Iy-1p

Hence combined these it is obtained that

5 (=0

Xonlt) = 2 ( » M ...M{b)]’
13, IpEE[1, )3
I=Iqy-Ip

and thus by (1.4) we have

1 m (=1

Xult) = — M MI)IT.

© m 1 (g b I],m}leZE[l,oo); ‘ t>[ ]
=Iy+Ip

Now let us apply Lemma 2 to this RHS. Then

1 » (— )b 1
Xat)= — 2 )
m =1 i
Gimg N imyrtimymy L N imptetmp +1 impet mp \ L
> M M, M; o7,
L mpz1;
Myt +My=m
_ 1 % (—1)-
m b=1 b i
Mmoo, i
(ml,---, mpz1; d€Gp ;0(1)<<a(my) [: "
Mmyi+--+mp=m o(m+1)<<o(mi+my)

O(my+tmpyo1+1)< <O (My++mp)

85
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=> 3 5 (%

M iyig 0€EG, \bd=1

( )bl

d(m, b, o))M“’ trto-tomg g

where d(m, b, ¢) is the number of (m,, ---, m;)&N® such that m,+ --- +m,=m,
o< - <o(my), alm+1)< - <a(myi+my), -, o(m+ - +mp 1 +1)< - <olmy
+ -+ +m,). This value is computed by Strichartz [S]:

. m—e(o)—1
2.3) dm, b, )= Lz sy 0 1).
Here a(b) is introduced in Definition 5 below. From (2.3), it is easy to see
m 1)e-t —1)e@
5 om0, 0= ET et 150
m( e(a) )
Thus, substituting it into the preceding expression, we conclude that
_ (_1)e(o) lg=-1(y~ig~1(m)\[; ...,
@4 x0=3 (3, WM , )i ]
e(o)
- (=1)eer | .
—_ 1 m AN S .o
= il-‘?i‘th 0626”1 mz(m—l) Liocy = Taemy] -
e(o)

We return to (2.2). By this

1+ % 3 MiI= exp {mi:]le(t)}

m=1 I€Enp

00

1+ 5 (5 x00)"

5=1 p!
o0 m 1
=1+ 3 2 w1 2 Xm‘(t)"'Xm,(t)-

m=t p=1 P! z1;

m1+ +mp=m
and hence
MiI=3%-1 S X0 Xa )
IcE p=1 p' mp, o, Mpzl; 1 /

Myt mp=m

Summarizing all the above, we obtain the following formulas as a by-product

of Theorem 1. Before stating them, we introduce the following notations for
simplicity:

DEFINITION 5. Let meN. For ¢€&,, and I=¢, - i, E ,, define
log:= z.a(l) ia(m) S

e(o):= #{l=7<m—1; a())>a(j+1)}.
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THEOREM 2. Define Xn(t)ELn, meN as follows:

2.5) Xa0:= 3 (3 () My
. (—1) .
2 - BME, S )
e(a)
Then
@7 log (14,3 Mil)= 3 Xa)
E€E[1, ) m=1
2.8) I+, 5 M= exp{ m2=le(t)}
2.9) S MiI=32 S Xo®)Xa() meN.
IEEn =1 pl myimpz1; T Y ?

Next we give another characterization of this X(t)=3m=1Xn(0).
For this recall a mapping R; of L(E) into itself defined by (1.20) (€ E).
We consider the following SDE on .L(FE):

dX; - EERi(Xt)°dM}
e
Xo = 0.

This SDE can be solved as follows: Written Xe L(E) as X=33-1Xn(XnE
L), (1.21) tells us that

(2.10)

R(X) =i+ 3 %% 3 ad—Xa) - ad—X

Hence we see that the solution of (2.10) =35_.X,() where X,,()ELn, mEN
are given by the recursion formula:

X)) =X Ml
i€E

oS 2_
Q1) Xau0= F8 7

5 | ad= X )ad(— X (Vi dME mz2.
ml""-mp=1; 0
Mmytee+mp=m—1
THEOREM 3. The solution (2.10) coincides with Xm-y Xn(t) where X,()&
Ln, meN are in Theorem 2. In other words, two definitions (2.5) (or (2.6))

and (2.11) of X (t), me N agree with the other.
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We distinguish two definitions: Let XL (¢) and X%(t) be defined by (2.5)
(or (2.6)) and (2.11) respectively. Clearly by (2.8)

exp{ S xh®} =1+ % Ml
m=1 I€E[1, )
It is easy to check that the right expression is characterized by the SDE on
A(E):
dYt = 2 Yﬂ‘"de
i€E

YO:1.

(2.12)

Thus in order to prove Theorem 3, it suffices to show that exp{3i;-. X%}
satisfies the SDE (2.12).

PROOF OF THEOREM 3. Write X,(t)=X%(#) and let X(t) :=> =1 Xn(t). X(@)
is the solution of (2.10). Fix b N arbitrarily. Let X9 () :=>% . X)) .L[1, b].
Recall p®eC>(L[1, b]—A[1, b)) and RPC=(L[1, b]—.L[1, b]) (or eX(L[1,
b)). Since XE)~X®(f) (this notation is in the proof of Fact 3),
(2.13) 1+ @ (XD (@) ~ expX(t)
(2.14) RP(X® (@) ~ Ri(X(®)).
By (2.10) and (2.14), X (¢) is a solution of the SDE on .£[1, b]:
dX®@F) = 3 RP(XO(1)dM}
(2.15) ik
X®W0)=0.
Hence from this and (1.29) it follows that for each /I E[1, b]
dyleso(b)(X(b)(t)) — _EZER§b)(y1°90(b))(x(b)(t))°dMg
= ,Z—IEy’°(1+90(b’(X"”(t)))i°dM§.
S

This together with (2.13) implies that expX(f) satisfies the SDE (2.12) up to the
first b-th component. Finally letting b | o we obtain the conclusion. |

3. Applications to the SDE’s with nilpotent coefficients.

In this section, as a consequence of our main results we present the re-
presentation formulas of solutions to SDE’s and ODE’s with nilpotent coefficients.

For this we first state the following fact: Let M be a smooth manifold,
V., i€ E be smooth vector fields on M and % be a Lie subalgebra of (M)
generated by them. Suppose that

3.1) V. is a complete vector field for each ;= E
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(3.2 § is b-nilpotent.

Let B: L(E)—4 be the homomorphic extension of the mapping /—V,;. By (3.2)
h is of finite dimension and hence, by Palais [P], the statement of (3.1) is
strengthened as follows: B(X)eh is complete for any X £(E). By virtue of
this, we can define a smooth mapping & of .L[1, b]XM into M by

3.3 h(X, x):= Exp(B(X))(x).
Then the following fact holds:

FACT 6. For each x&M, h(-, x) satisfies the following system of first order
partial differential equations on M:

(3.4) R®h(-, x) = Vi(h(-, x)) e E,
or more precisely for feC=(M)
3.5) ROF((, x) = (Vif)h(-, x)) i€ E.

PrROOF. By Palais [P], we can take a connected Lie group G and a smooth
mapping ¢ of GXM into M such that

3.6) (g, oth, x)) =¢(gh,x) g, heG xeM
3.7 ple, x) =x
(3.8) ¢* is an isomorphism of ® onto §.

Here R is the right invariant Lie algebra of G and ¢* is defined by the foll.w-
ing way: For Le® and xeM

d
(L), = d—tgo(exptL, X) | t=0-
For simplicity write gx:=¢(g, x) for g€G, xM. By definition
3.9 Exp(p*(L))(x) = (expL)x Le® xe M.

By (3.8) ® is b-nilpotent. Moreover there exists a homomorphism y of .L(E)
into R such that ¢*(7(X))=8(X) for any Xe.£(E). Hence by this and (3.9)

(3.10) h(X, x) = (expr(X)x XesL[1,b], xe M.

Here we recall Fact 5. From this and (3.10), it follows that for X, Y L1, b]
and xeM

h(X.Y, x) = (exprY)HrX, x).
In particular, letting Y =#; in the above we have

h(X-ti, x) = Exp(tV )(h(X, x)).
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Consequently differentiating it at =0, we obtain (3.4) at once. |

As in the preceding section let (2, &, P, .) be a filtered probability space
and (MY, i E be a system of continuous (ZF.)-local semimartingales with
Mi=0.

Let V,ex (M), icE be as above and we consider the following SDE on M:

dXz = _Zvi(Xt)°dM§
3.11) ek
Xo==x.

As for the solution to the SDE (3.11), we have the following:

THEOREM 4. The SDE (3.11) has a unique solution X, x) and it is given
explicitly by the formula:

___ (_1)8(6) I°0-1
X(t, x) = exp{lel%l.b]aeé“ |1]? lI(]—)—l)Mg V[I]}(x)
e(og
_ (=D
- eXp{IeEZE]LbJMf"EgiII |]]2(11(|—31)V“°M}(x>.
e(o

Here, as R, we set Vi:=B([1]) for IEE[1, ).

PROOF. Let X®(f) be the solution of the SDE (2.15) on .£[1, b]. Then
from (3.4) it is easy to see that h(X™®(¢), x) satisfies the SDE (3.11). Also, as
we saw in the proof of Theorem 3, X (#)=3%_,X(t) where X,() is given
by (2.5) or (2.6). Hence by (3.3) A(X™®(#), x) equals the above formulas. This
shows the existence of solutions. By the general theory of SDE’s the uni-
queness is obvious. Consequently we complete the proof. [ ]

As a corollary to Theorem 4, we can state the following: Let g be a Lie
subalgebra of 2(M) such that

3.12) g is of finite dimension
3.13) every V&g is complete
(3.14) g is b-nilpotent.

Suppose we are given an Ll°°-function A of [0, ) into g. This means that
every component of A with respect to some (and so every) basis of g is in Ll°°
as a real function on [0, «0). We now consider the following ODE on M:

15 40 = A¢, x)

x(0) = x.
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Here A(t, x) denotes a tangent vector of A®)eX(M) at x&M. Then we have
the following:

THEOREM 5. The ODE (3.15) has a unique solution x(t, x) and it is given
explicitly by the formula:

x(@t, x) = Exp(z(®))(x)

where
b __1\e(o)
Z(t):: P _(__2__
m=10E€m 2 m—l)
e(o)

XS S[["'[A(Sa(n), A(ss@)], 5 ASom-1)], AlSomy)]dsy-dsm.

081 <8<t
Proor. Let n+1:=dimg where n=0. When n=0, i.e., dimg=1, it is
easily seen that

X, %) = EXp(S:A(s)ds)(x)

satisfies the ODE (3.15). Hence we may suppose that n>=1.
Let Vo, V4, ---, V, be a basis of g. Then we can find an a< LP[0, co)—
R™*') such that

(3.16) Al = go aiQv,.

. t : . . . . .
We set M}::S a'(s)ds. This (M}).;, is clearly a continuous semimartingale on
0

some (R, F, P, &,) (in fact it is deterministic and absolutely continuous in t),
and (3.15) is rewritten as

dx)) = 2 Vi(x(t)odMi
x(0) = x.
Therefore applying Theorem 4 to this SDE, we have

xt,0=Exp{ 3 Mi 3 D"
’ = &Xp I€ET1,b] tae@,“ I”z(”((_)l>
e(o

VEIeo]}(x>-

Here we note the following expression:

iyt i i
Mi MV ipimeo1 = \ o \[[-[a d(l)(sv(l))vig(l): Gl””(h(z))viu(z)],
081 st

]7 aia(M)(Sa(m))V ]d31 dSm.

ig(m)y

Consequently, by combining this with (3.16), the preceding expression equals
the desired one in Theorem 5, and the proof is complete. [ ]
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