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$0$ . Introduction.

Let $M$ be a complete noncompact Riemannian manifold of dimension $m$ .
For a nonnegative number $d$ , we denote by $\mathcal{H}_{d}(M)$ the space of harmonic func-
tions $h$ of polynomial growth of order $d$ , namely, $|h|\leqq Ar^{f}(+B$ for some posi-
tive constants $A$ and $B$ , where $r$ stands for the distance function to a fixed
point, say $0$ , of $M$ . In this paper, we say that $M$ has the strong Liouville pro-
perty if the dimension of $\mathcal{H}_{(f}(M)$ is finite for any $d$ (cf. [19]). It is known that
the strong Liouville property holds on $M$ , for example, if $M$ is so called an
asymptotically (locally) Euclidean space (cf. [2], [3], [19], [22] and the refer-
ences therein), or if $m=2$ and the total curvature is finite (cf. [14], [21]). The
purpose of this paper is to give some geometric conditions under which $M$ has
the strong Liouville property.

Our first result is stated in the following

THEOREM I. Let $M$ be a Hadamard manifold of dimension $m$ . Suppose that
$M$ has minimal volume growth, that is,

$V_{m}(B(t))SAt^{m}$

for some posrtive constant $A$ , where $V_{m}(B(t))$ denotes the volume of the metnc
ball $B(t)$ of radius $t$ around a point $0$ of M. Then $M$ has the strong Liouville
property, if in addition, the sectional curvature $K_{M}$ of $M$ decays to zero at a
quadratic rate, namely,

$K_{M} \geqq-\frac{B}{r^{2}}$

for some positive constant $B$ .

This work was supported by Grant-in-Aid for Scientific Research, The Ministrv of
Education, Science and Culture.
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The condition on volume growth is sharp in this theorem (cf. Remark 1.4),

but it is not clear whether the latter on curvature can be deleted or not.
We shall prove secondly the following

THEOREM II. Let $M$ be a complete noncompact Riemannian manifold of non-
negative sectional curvature. Then $M$ has the strong Liouville property, if in
addition,

(i) $M$ has maximal volume growth, that is,

$V_{m}(B(t))\geqq At^{m}$

for some $po\alpha$ tive constant $A$ , where $m=\dim M$ ;
(ii) the sectional curvature $K_{M}$ of $M$ decays to zero quadratically.

In these theorems, we impose the decay condition on curvature of the
manifold in consideration. Although this condition might be deleted in the
theorems, our method of this paper depends heavily on it, because our approach
to the problem is based on the convergence theory of Riemannian manifolds of
bounded curvature. It would be worth noting that a class of complete mani-
folds with curvature of quadratic decay may contain a variety of manifolds
with respect to the problem discussed in this paper (see Examples in Section 1).

Complete flat manifolds are typical examples which enjoy the strong Liou-
ville property in our sence. Unfortunately, Theorem II does not cover these
important cases (except Euclidean space), because of the condition on volume
growth. In this regard, we shall attempt to replace this condition with those
which all complete flat spaces satisfy (see Theorems III and IV in Sections 4
and 5, respectively).

We would like to mention here some earlier results related to this paper.
A theorem by Yau [28] says that on a complete manifold $M$ of nonnegative
Ricci curvature, there are no nonconstant positive harmonic functions. More-
over according to a result due to S. Y. Cheng [6], any harmonic function $h$ of
sublinear growth, $|h|=o(r)$ , must be constant on such a manifold (see also [26]).

More recently, under the same assumption, Li and Tam [20] showed that
$\dim \mathcal{H}_{1}(M)$ is less than or equal to $n+1$ if the volume of the metric ball of
radius $t$ is bounded by $Ct^{n}$ for some positive constant $C$ and an integer $n$ ,

O<n$m$=\dim M$ . We note that there exist complete manifolds of positive Ricci
curvature which admit nonconstant harmonic functions of linear growth (cf.

[18] $)$ . TO the contrary, in case that a complete manifold has nonnegative sec-
tional curvature of quadratic decay, any closed harmonic one form of bounded
length must be parallel, and hence it vanishes if in addition, the Ricci curva-
ture is positive somewhere (cf. [14]). Finally, for a complete Riemannian
manifold $M$ , if we denote by $\kappa(M)$ the infimum of the nonnegative number $d$
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such that the space $\mathcal{H}_{d}(M)$ contains nonconstant harmonic functions, then we
have a lower bound for this number $\kappa(M)$ in terms of a lower bound of the
Ricci curvature and an upper bound for the diameter at infinity of $M$ in a cer-
tain sense (cf. [14], [15]). Wu [27] on the other hand discussed closely the
interactions between the growth rate of the volume of a geodesic ball and the
growth rate of the maximum modulas of a nonconstant subharmonic function
and its differential.

The author would like to thank T. Shioya for his letter on the compacti-
fication of complete manifolds with nonnegative curvature.

1. Weighted Sobolev spaces.

In this section, we shall introduce weighted Sobolev spaces of a complete
Riemannian manifold in relation with the problem to be discussed.

Let $M$ be a complete Riemannian manifold of dimension $m$ , and let $r$ be
the distance function to a fixed point $0$ of $M$ . For a smooth function $f$ with
compact support, $f\in C_{o}^{\infty}(M)$ , the weighted $L^{p}$ norm $||f||_{p.\delta},$ $1<P<+\infty$ , with
weight $\delta\in R$ is defined by

$||f||_{p.\delta}=( \int_{M}|f|^{p}(1+r)^{-p\delta-m}dvol)^{\iota/p}$

The weighted Sobolev norms $||f||_{n.p.\delta},$ $n\in Z^{+}$ , are defined in the usual manner:

$||f||_{n.p.\delta}= \sum_{t=0}^{n}||D^{i}f||_{p.\delta-i}$ .

We denote by $W_{n,p.\delta}(M)$ the closure of $C_{o}^{\infty}(M)$ with respect to this norms
$||*||_{n.p.\delta}$ .

Given $p,$ $1<P<\infty$ , and a weight $\delta\in R$ , we want to know whether the fol-
lowing estimate holds or not:

(1.1) $||f||_{2.p.\delta} \leqq C_{1}||\Delta_{M}f||_{p.\delta-2}+C_{2}(\int_{B(R)}|f|^{p}dvol)^{1/p}$

for some positive constants $C_{1},$ $C_{2}$ and $R$ , and for all $f\in W_{2,p,\delta}(M)$ , where $B(R)$

stands for the metric ball of radius $R$ around $0$ , and $\Delta_{M}$ denotes the Laplace
operator of $M$ . This estimate is equivalent to the following:

(1.2) $||f||_{2.p.\delta}\leqq C||\Delta_{M}f||_{p.\delta-2}$

for some positive constants $C$ and $R$ , and for all $f\in W_{2,p.\delta}(M)$ with $suppf\subset$

$M\backslash B(R)$ . If (1.1) (or equivalently (1.2)) holds, then it is clear that the kerneI
of $\Delta_{M}\cdot W_{2,p.\delta}arrow W_{p.\delta-2}$ is of finite dimensional. See $e$ . $g.$ , [3], [22] for details
and further topics.
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NOW we restrict our attention first to a special class of Riemannian mani-
folds, for which estimate (1.1) (or equivalently (1.2)) holds except the case that
the weight $\delta$ belongs to some discrete subset of $R$ .

Let $M$ be a complete Riemannian manifold the end of wbich is isometric to
that of a cone. Namely, the complement of a compact subset $K$ in $M$ is iso-
metric to the product of a half line $[R, \infty)$ and a compact manifold $N$ with
cone metric $dt^{2}+t^{2}ds^{2}$ , where $ds^{2}$ is a Riemannian metric of $N$. For simplicity,
we identify $M\backslash K$ with $[R, \infty)\cross N$ equipped with the metric $dt^{2}+t^{2}ds^{2}$ . In this
case, it is known that (1.2) holds for those weights $\delta$ which do not belong to
some discrete subset of $R$ . More generally, let us consider an elliptic differ-
ential operator of second order $\mathcal{L}$ in the form:

$\mathcal{L}f=\frac{1}{\chi}div(\chi\nabla f)$ ,

where $\chi$ is a positive smooth function on $M$ . We would like to restrict our-
selves to simple cases and assume that $\chi(t, x)=t^{l}\theta(x)$ on $[R, \infty)\cross N$, where
$l\in R$ and $\theta$ is a positive smooth function on $N$. Then we have the following

LEMMA 1.1. If $\delta$ is nonexceptional, namely, it does not belong to some dis-
crete subset of $R$ , then

$||f||_{2.p.\delta}\leqq C||\mathcal{L}f||_{p,\delta- 2}$

for some constant $C>0$ , and for all $f\in W_{2,p,\delta}(M)$ with $suppf\subset M\backslash K$.
See $e$ . $g.,$ $[22]$ for this lemma.

REMARK 1.2. Lemma 1.1 still holds for the case that the metric $ds^{2}$ and
the density function $\chi$ are of class $C$ “ $a(0<a<1)$ .

EXAMPLES.
Simple manifolds considered as above are typical examples of complete

manifolds having the strong Liouville property. We observe that they also have
the sectional curvature of quadratic decay. This curvature condition itself,
however, never implies the strong Liouville property. Let us show simple ex-
amples of complete manifolds whose sectional curvature goes to zero at a rate
$O(r^{-2})$ .

We choose a metric $g$ on $R^{4}$ by setting

$g=dr^{2}+u^{2}(\sigma_{1}^{2}+\sigma_{2}^{2})+v^{2}\sigma_{3}^{2}$ ,

where $\sigma_{i}(i=1,2,3)$ are the standard left invariant coframing of $S^{3}$ with $\sigma_{3}$

tangent to the Hopf fibers. The warping functions $u,$ $v$ are chosen to be func-
tions of the distance $r$ and assume the initial conditions: $u(O)=v(O)=0,$ $u’(O)=$

$v’(O)=1$ . NOW we take $u,$ $v$ so that



Harmonic functions of polynomial growth on complete manifolds II 41

$u(r)=Ar^{a}$ , $v(r)=Br^{b}$

for large $r$ . Then we have the following assertions.

(i) For $a<1,$ $\kappa(M)=+\infty$ , namely, any harmonic function of polynomial
growth must be constant.

(ii) In case $a>1$ and $-2a+b\leqq-1$ , the sectional curvature of $M$ decays to
zero at a rate $O(r^{-2})$ .

(iii) For $a=1,$ $M$ has the strong Liouville property. Moreover

$\kappa(M)=\frac{1}{2}\{-(1+b)+\backslash /\overline{(1+b)^{2}+32A^{-2}\}}$

if $b<1$ , and

$\kappa(M)=\frac{1}{2}\{-(1+b)+\sqrt{(1+b)^{2}+8A^{-2}\}}$

if $b\geqq 1$ .
(iv) In case $a>1$ , the strong Liouville property does not hold for M. $Mo^{r}e$

precrsely, setting $c=-2a-b+l$ , we have the following assertions:
(1) $dm\mathcal{H}_{0}(M)=+\infty$ and $V_{m}(B(r))\sim r^{2-C}$ if $c<0$ ;
(2) $\dim \mathcal{H}_{0}(M)=1,$ $\dim\{h:\Delta_{M}h=0, |h|\sim\log r\}=+\infty$ , and $V_{m}(B(r))\sim r^{2}$ if

$c=0$ ;
(3) $\kappa(M)=c,$ $\dim \mathcal{H}_{i}((M)=+\infty$ for any $d>c$ , and $V_{m}(B(r))\sim r^{2-C}$ if $0<c<2$ ;
(4) $\kappa(M)=c,$ $\dim \mathcal{H}_{d}(M)=+\infty$ for any $d>c$ , and $V_{m}(B(r))\sim\log r$ if $c=2$ ;
(5) $\kappa(M)=c,$ $\dim \mathcal{H}_{d}(M)=+\infty$ for any $d>c$ , and $M$ has finite volume if

$c>2$ .
These assertions also show that some results by Wu [27] are sharp in a

sense.

REMARK 1.3. Let us take $u,$ $v$ in such a way that

$u(r)=Ar^{a}$ , $v(r)=Be^{br}$

for large $r$ . Then $\kappa(M)=+\infty$ if $b<0$ , and $\dim \mathcal{H}_{0}(M)=1$ if $a=0$ and $b>0$ . In
the former case, the intrinsic diameter of the geodesic sphere $S(t)$ grows like
$t^{a}$ when $a>0$ . On the other hand, in the latter case, the volume $V_{m}(B(t))$ of
the geodesic ball $B(t)$ grows like $e^{bf}$ if $b>0$ .

REMARK 1.4. Let us take $u=v$ and assume that $u’\geqq 1$ and $u’\geqq 0$ . Then
the sectional curvature $K_{H}$ is nonpositive. Moreover if $u(r)=Ar^{a}$ for large $r$

and $a>1$ , then $\dim \mathcal{H}_{0}(M)=+\infty$ . In this case, $V_{m}(B(t))\sim t^{3a+1}$ and $K_{M}$ decays
to zero at a quadratic rate. On the other hand, if $u(r)=Ar\log r$ for large $r$ ,

then $\dim \mathcal{H}_{0}(M)=1$ and $\dim \mathcal{H}_{a}(M)=+\infty$ for any $d>0$ . In this case, $V_{m}(B(t))$

$\sim t^{4}(\log t)^{3}$ and $K_{M}$ decays at a rate $0(\log r/r^{2})$ .
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See [15] for the proofs of these assertions and remarks.

NOW we shall prove the following

LEMMA 1.5. Let $M$ be a complete Riemannian manifold of dimension $m$ .
Suppose the sectional curvature decays in its absolute values at a rate $O(r^{-2})$ .
Then there is a Posztive constant $\beta$ such that for any $d\geqq 0$ , the space $\mathcal{H}_{\dot{a}}(M)$ is
included in the sPace $W_{2,p,\delta}(M)$ , if $\delta>d-(m-1-\beta)/p$ . In particular, $M$ has the
strong Liouville ProPerty, provided that estimate (1.1) or (1.2) holds for every
nonexceptional weight $\delta$ .

TO prove this lemma, we recall here the following fact on harmonic coordi-
nates.

LEMMA 1.6. Let $N$ be a Riemannian manifold of dimenston $n$ . Suppose the
sectional cumature of $N$ is bounded in its absolute values by a $po\alpha tive$ constant
$\Lambda$ , and the injectivity radius at a point $x$ is bounded from below by a Posrtive
constant $\zeta$ . Then given a, $0<\alpha<1$ , there exist posrtive constants $a=a(n, \Lambda, c)$

$(<c),$ $b=b(n, \Lambda, c),$ $c=c(n, \Lambda, f\alpha)$ and a coordinate system $H=(h_{1}, , h_{n})$ defined
on the metnc ball $B(x, a)$ around $x$ with radius $a$ such that each comPonent $h_{t}$

$(i=1, \cdots , n)$ is a harmonic function and the metnc tensor

$g= \sum_{i,j}g_{i,j}dh_{i}\otimes dh_{j}$

in terms of this coordinates satisfies
$e^{-b}| \xi|^{2}\leqq\sum_{t,j}g_{ij}\xi^{i}\xi^{j}\leqq e^{b}|\xi|^{2}$

for all $\xi=(\xi_{1}, \cdots , \xi_{n})$ , and

$||g_{tj}||_{C^{1},a}\leqq C$ .

See e. g., [11] for details.

PROOF OF LEMMA 1.5. Let $f$ be a harmonic function of $\mathcal{H}_{d}(M)$ . We want
to show that $|df|$ (resp. $|Ddf|$ ) grows at a rate $O(r^{(}f-1)$ (resp. $O(r^{d-2})$). For
a point $x$ of $M$, we scale the metric $g_{M}$ of $M$ and consider the metric $g_{t}$ de-
fined by $g_{t}=g_{M}/t^{2}$ with $t=r(x)$ . Then we take a sufficiently small positive
constant $a$ in such a way that the exponential mapping at $x$ with respect to
the scaled metric $g_{t}$ has maximal rank on the ball $B^{*}(a)$ of radius $a$ around
the origin in the tangent space $T_{x}M$ . Let us denote by $g_{t}^{*}$ the pull-back of
the metric on $B^{*}(a)$ via the exponential mapping. Then the sectional curvature
of $g_{t}^{*}$ is bounded uniformly in $x$ by a positive constant. Hence by taking
smaller $a$ if necessarily, we have a harmonic coordinate system around the
origin with the properties discribed in Lemma 1.6. Therefore we can apply the
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standard elliptic regularity estimates to the pull-back $f*off$ (cf. $e$ . $g.,$ $[8]$).

In fact, $f^{*}$ satisfies

$\sum_{ij=1}\ldots$ ngl $\frac{\partial^{2}f^{*}}{\partial h_{i}\partial h_{f}}=0$ ,

and in particular
$||f^{*}||_{C2(B*(a/2))} \leqq C\sup_{B*(a)}|f^{*}|$

for some positive constant $C$ . Since

$|If^{*}||_{C2(B*(a/2))}=$ I $f||_{C0(B(x,at/2))}+t||df||_{C0(B(x.at/2))}+t^{2}||Ddf||_{C0(B(x,at/2))}$ ,

we see that $|df|=O(r^{d-1})$ and $|Ddf|=O(r^{tx-2})$ .
NOW it follows from the Rauch’s comparison theorem and the (lower) bound

for the sectional curvature that, in terms of the polar coordinate around a re-
ference point $0$ , the volume element of $M$ grows at most like $r^{\gamma}$ for some posi-
tive constant $\gamma$ (depending on $A$). Thus the assertion of the lemma is clear.

The scaling argument as above together with Lemma 1.6 will be often
used in the subsequent sections.

2. Proof of Theorem I.

Let $M$ be a Hadamard manifold of dimension $m$ and $g_{M}$ the metric of $M$ .
We shall consider the equivalence classes of rays on $M$ , denoted by $M(\infty)$ ,

equipped with the Tits metric $Td$ (cf. [1]). For a point $z=(\tau, q)$ of the pro-
duct $[0, \infty)\cross M(\infty)$ and a positive number $t$ , it is convenient to write $tz$ for
$(t\tau, q)$ and also we shall identify $M(\infty)$ with $\{1\}\cross M(\infty)$ if there is no confusion.
Let us fix a point, say $0$ , of $M$ and denote by $S(t)$ and $B(t)$ , respectively, the
metric sphere and the metric ball around $0$ of radius $t$ . We write $r$ for the
distance function to the point $0$ . We first observe from the Rauch’s comparison
theorem that

(2.1) $V_{m-1}( \frac{1}{t}S(t))\geqq\omega_{m-1}>0$ ,

where $\omega_{m-1}$ stands for the volume of Euclidean unit sphere of dimension $m-1$ .
For a point $x$ of $M\backslash \{0\}$ , we take a unique ray $\sigma_{x}$ of $M$ starting at $0$ and go-
ing through $x$ , and we set

$\Phi_{0}(x)=r(x)[\sigma_{x}]$ , or $(r(x), [\sigma_{x}])$ ,

where $[\sigma]$ denotes the equivalence class of a ray $\sigma$ .
We suppose first that the diameter of $M(\infty)$ is finite, namely,

(2.2) diam $(M(\infty))$ $ $D$
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for some constant $D>0$ . Then as $t$ goes to infinity, the scaled metric sphere
$S(t)/t$ converges to $M(\infty)$ with respect to the Gromov-Hausdorff distance (cf.

[1], [10] $)$ . In fact, in this case, we see that

(2.3) $Td( \frac{1}{t}\Phi_{0}(x),$ $\frac{1}{t}\Phi_{0}(y))\geqq d_{t}(x, y)\geqq Td(\frac{1}{t}\Phi_{0}(x),$ $\frac{1}{t}\Phi_{0}(y))-\epsilon(t)$

for all $x,$ $y$ of $S(t)/t$ , where $d_{t}$ denotes the intrinsic distance on $S(t)/t$ and $\epsilon(t)$

is a positive constant which tends to zero as $t$ goes to infinity.
We suppose next the sectional curvature $K_{M}$ of $M$ satisfies

(2.4) $K_{K} \geqq-\frac{B}{r^{2}}$

for some constant $B>0$ . Then for any $t>0$ , the second fundamental form $\Pi_{t}$

of the metric sphere $S(t)$ satisfies

1 ;Ill $t\Pi_{t}\leqq C_{1}$

for some positive constant $C_{1}$ . Hence if $m\geqq 3$ , the sectional curvature $K_{t}$ of
$S(t)/t$ is pinched as follows:

(2.5) $1-B\leqq K_{t}\leqq B’$

for all $t$ and some constant $B’>0$ . Therefore we can apply the $C^{1,a}$ convergence
theorem to this family $\{S(t)/t\}$ and the limit $M(\infty)$ (cf. [13], [9], [25]), and we
can assert that $M(\infty)$ is a smooth manifold of dimension $m-1$ and there is a
Riemannian metric $ds_{\infty}^{2}$ of class $C^{1,a}$ (for any $\alpha\in(0,1)$ ) which induces the dis-
tance $Td$ on $M(\infty)$ . We write CM$(\infty)$ for the cone over $M(\infty)$ , namely,

CM$(\infty)=([0, \infty)\cross M(\infty),$ $g_{\infty}=dt^{2}+t^{2}ds_{\infty}^{2})$ .
We remark here that under the assumption (2.4), $M$ has minimal volume

growth, $V_{m}(B(t))\leqq At^{m}$ , if and only if (2.2) holds. In fact, it follows from (2.4)

that for some positive constants $L$ and $C_{2}$ , and for any $t$ and every smooth
curve $\gamma$ in $S(t)$ joining two points $x$ and $y$ ,

Length $(\gamma)$ ;$ $C_{2}dis_{M}(x, y)$

if 7 is a geodesic with respect to the intrinsic metric of $S(t)$ and the length is
bounded by $Lt$ . We can also deduce from (2.2) and (2.4) that if $m=2$ , then $M$

has finite total curvature, and actually,

$1= \frac{1}{2\pi}\int_{M}K_{M}+\frac{1}{2\pi}$ Length $(M(\infty))$

(cf. $e$ . $g.$ , the arguments in [13: \S 3]).
$\dim M\geqq 3$ .

For this reason, we may assume tbat
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NOW we want to construct an asymptotically isometry between the end of
$M$ and that of the tangent cone at infinity CM $(\infty)$ , which approximates the
canonical map $\Phi_{0}$ : $Marrow CM(\infty)$ at infinity. For this, we first fix a large number
$R$ and a small one $c$ , in such a way that for any point $x$ of $M\backslash B(R)$ , we can
take a harmonic coordinate system $H_{x}$ : $B(x, 10c)/tarrow R^{m}$ defined on the scaled
metric ball $B(x, 10c)/t$ around $x$ of radius $10c$ with respect to the scaled metric
$g_{t}=g_{M}/t$ with $t=r(x)$ . Here the coordinates $H_{x}$ are assumed to have the same
properties as discribed in Lemma 1.6. Let $B_{\infty}(q_{x}, 10c)$ be the metric ball in
CM $(\infty)$ around $q_{x}=\Phi_{0}(x)/t$ of radius $10c$ . We shall now consider the following
Dirichlet problem in the metric ball $B_{\infty}(q_{x}, 2c)$ of CM $(\infty)$ :

$\Delta_{\infty}F=0$ in $B_{\infty}(q_{x}, 2c)$

$F=H_{x} \circ(\frac{1}{t}\Psi_{0})$ on $\partial B_{\infty}(q_{x}, 2c)$ .

Here we set

$\frac{1}{t}\Psi_{0}(\tau, q)=\Phi_{0}^{-1}(t\tau, q)$ .

Let $F_{x}=(F_{x}^{1}, \cdots, F_{x}^{m})$ be the solution of the above equation. Then since
$\Psi_{0}/t$ is a Lipschitz map with dilatation ;Slll because of (2.3), it turns out from
the standard elliptic regularity estimates that for any $\alpha\in(0,1)$ ,

(2.6) $|F_{x}|_{C3.\alpha(B(q_{\mathfrak{r}}.c))}\infty\leqq C_{3}$ ,

where $C_{3}$ is a positive constant independent of $x$ . If we set

$\Psi_{x}(\tau, q)=H_{x}^{-1}(F_{x}(\frac{\tau}{t},$ $q))$ $(t=r(x))$ ,

then we obtain a map $\Psi_{x}$ of $B_{\infty}(\Phi_{0}(x), tc)$ into $B(x, tc)$ which coincides with
$\Phi_{0}^{-1}$ on the boundary $\partial B_{\infty}(x, tc)$ . It is not hard to deduce from (2.3) and (2.6)

that for some positive constant $\delta(t)$ independent of $x$ with $\lim_{tarrow\infty}\delta(t)=0$ ,

$\max\{\frac{1}{t}dis_{M}(\Psi_{x}(z), \Phi_{0}^{-1}(z)):z\in B_{\infty}(\Phi_{0}(x), tc)\}\leqq\delta(t)$ ,

$\max\{\frac{1}{t^{2}}|\Psi_{x}^{*}g_{M}-g_{\infty}|(z):z\in B_{\infty}(\Phi_{0}(x), tc)\}$ $ $\delta(t)$ ,

$\max\{t|Dd\Psi_{x}|(z):z\in B_{\infty}(\Phi_{0}(x), tc)\}$ $ $\delta(t)$ ,

where $Dd\Psi_{x}$ denotes the second fundamental form of the map $\Psi_{x}$ .
NOW taking a sufficiently large $R$ and a positive constant $c’<c$ , we may

assume that for any $x\in M\backslash B(R),$ $\Psi_{x}$ is a diffeomorphism of $B_{\infty}(\Phi_{0}(x), tc)$ into
$B(x, tc)$ and the image $\Psi_{x}(B_{\infty}(\Phi_{0}(x), tc))$ contains the metric ball $B(x, tc’)$ . Hence
we have a diffeomorphism $\Phi_{x}$ of $B(x, tc’)$ into $B_{\infty}(\Phi_{0}(x), tc)$ by setting $\Phi_{x}=\Psi_{x}^{-1}$ .
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Then $\Phi_{x}$ enjoys the following properties:

$\max\{\frac{1}{t}dis_{CM(\infty)}(\Phi_{x}(y), \Phi_{0}(y)):y\in B(x, tc’)\}$ $ $\delta’(t)$

(2.7) $\max\{\frac{1}{t^{2}}|\Phi_{x}^{*}g_{\infty}-g_{M}|(y):y\in B(x, tc’)\}\leqq\delta’(t)$

$\max\{t|Dd\Phi_{x}|(y):y\in B(x, tc’)\}\leqq\delta’(t)$ ,

where $t=r(x)$ and $\delta’(t)$ is as before a positive constant independent of the choice
of $x$ with $\lim_{tarrow\infty}\delta’(t)=0$ . Thus we have obtained local approximations $\{\Phi_{x}\}$

$(x\in M\backslash B(R))$ as above for the canonical map $\Phi_{0}$ .
NOW let us choose a finite number of points of $M(\infty),$

$q_{1}$ , $\cdot$ .. , $q_{\nu}$ , and a suf-
ficiently small constant $\epsilon$ in such a way that if we put $d=1+\epsilon,$ $q_{j\mu}=(d^{j}, q_{\mu})$ ,

and $x_{j,\mu}=\Phi_{0}^{-1}(q_{j,\mu})$ , then

$B(d^{j+1}) \backslash B(d^{j-1})\subset\bigcup_{1\leqq\mu\leqq\nu}B(x_{j,\mu}, c’d^{j})\subset B(d^{j+2})\backslash B(d^{j-2})$ .

Taking a sufficient large $Jo$ we may assume that $x_{J,\mu}\in M\backslash B(R)$ for any $J\geqq]_{0}$ ,

and
$M\backslash B(2R)\subset$ $\cup$ $B(x_{j}\mu’ c’d^{j})$ .

$j\geqq j_{0’}1\leqq\mu\leqq\nu$

Let us write $\Phi_{j,\mu}$ for the maps $\Phi_{x_{f,\mu}}$ of $B(x_{j.\mu}, c’d^{j})$ into $B_{\infty}(q_{J.\mu}, cd^{j})$ satisfy-
ing (2.7) with $r=d^{j}$ . Making use of these maps $\{\Phi_{j,\mu}\}$ , we can take a partition
of unity $\{\xi_{j.\mu}\}$ on $M\backslash B(2R)$ subordinate to the covering $\{B(x_{j,\mu}, c’d^{j})\}$ so that

$|\xi_{j.\mu}|+d^{j}|d\xi_{j,\mu}|+d^{2j}|Dd\xi_{j,\mu}|$ $ $C_{4}$

for some positive constant $C_{4}$ which is independent of $j$ and $\mu$ . We shall as-
sume here that the limit metric $ds_{\infty}^{2}$ on $M(\infty)$ is smooth, and hence so is the
metric $g_{\infty}$ . Then we have uniquely a smooth map $\Phi$ of $M\backslash B(2R)$ into CM $(\infty)$ ,

called a center of mass of $\{\Phi_{j,\mu}\}$ with weights $\{\xi_{j.\mu}\}$ , which is given by

$\Sigma$ $\xi_{j,\mu}(x)\exp_{\Phi(x)^{-1}}\Phi_{j,\mu}(x)=0$

$j\geqq j_{0},1\leqq\mu\leqq\nu$

for each $x$ of $M\backslash B(2R)$ . In view of (2.7), it is not hard to see that for suffici-
ently large $R$ , this map $\Phi$ induces a diffeomorphism of $M\backslash B(2R)$ into the cone
CM $(\infty)$ such that

$\lim_{xarrow\infty}\frac{1}{r(x)}dis_{CM(\infty)}(\Phi(x), \Phi_{0}(x))=0$ ;

(2.8) $\lim_{xarrow\infty}\frac{1}{r(x)^{2}}|\Phi^{*}g_{\infty}-g_{M}|(x)=0$ ;

$\lim_{xarrow\infty}r(x)|Dd\Phi|(x)=0$
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(cf. [16: Appendix]). Obviously the image $\Phi(M\backslash B(2R))$ is contained in $[R’, \infty)$

$xM(\infty)$ for some $R’$ with $\lim_{Rarrow\infty}R’/R=1$ .
For the construction of the above map $\Phi$ , we have assumed that the metric

$ds_{\infty}^{2}$ is smooth. When ds& is not smooth, we can employ smooth approximations
of the metric in the above argument. Namely, we have a sequence of smooth
metrics, $ds_{n}^{2}$ , which converges to $ds_{\infty}^{2}$ in the $C^{1,a}$ topology for any $\alpha\in(0,1)$ .
Using the exponential maps with respect to these smooth approximations step
by step as $j$ goes to infinity, we can obtain the map $\Phi$ as above. We refer
the reader to [16] for similar arguments.

We are now in a position to complete the proof of Theorem I. In what
follows, we denote by $\epsilon_{*}(R)s$ positive constants which tend to zero as $R$ goes
to infinity. For any smooth function $f$ on $M$ whose support is compact and
lies in $M\backslash B(2R)$ , we set $f^{*}=f\circ\Phi^{-1}$ . Then in view of (2.8), we can compare
the weighted Sobolev norms of $f$ and $f^{*}$ . To be precise, given $p>1$ and $\delta\in R$ ,

it follows from (2.8) that

(2.9) $e^{-s(R)}1||f||_{2.p,\delta}\leqq||f^{*}||_{2,p,\delta}$ ;:$ $e^{s_{1}(R)}||f||_{2,p,\delta}$ .

We note also that

(2.10) $e^{-\epsilon_{2}(R)}||\Delta_{\infty}f^{*}||_{p,\partial-2}\leqq||(\Delta_{\infty}f^{*})\circ\Phi||_{p,\delta- 2}\leqq e^{\epsilon_{2}(R)}||\Delta_{\infty}f^{*}||_{p}\delta- 2$ .

Moreover we observe from (2.8) that

$|\Delta_{M}f-(\Delta_{\infty}f^{*})\circ\Phi|=|df^{*}(tr. Dd\Phi)+tr.(Ddf^{*}(d\Phi, d\Phi))-(\Delta_{\infty}f^{*})\circ\Phi|$

$\leqq\epsilon_{3}(R)(\frac{1}{r}|df^{*}|\circ\Phi+|Ddf^{*}|\circ\Phi)$ .

This implies that

$||\Delta_{M}f-(\Delta_{\infty}f^{*})\circ\Phi||_{p,\delta- 2}\leqq\epsilon_{4}(||df^{*}||_{p,\delta- 1}+||Ddf^{*}||_{p,\delta- 2})$

$\leqq\epsilon_{4}(R)||f^{*}||_{2,p,\delta}$ .
Hence we have by (2.9)

(2.11) $||\Delta_{M}f-(\Delta_{\infty}f^{*})\circ\Phi||_{p.\delta-2}$ ;:$ $\epsilon_{5}(R)||f||_{2,p.\delta}$ .

Here we recall that (1.2) holds for CM $(\infty)$ if $\delta$ is nonexceptional. Therefore
for such a weight $\delta$ , we can derive that

$||f^{||_{2,p,\delta}}\leqq C_{5}||f^{*}||_{2.p.\delta}$ by (2.9)

$\leqq C_{6}||\Delta_{\infty}f^{*}||_{p,\delta-2}$ by (1.2)

$\leqq C_{7}||(\Delta_{\infty}f^{*})\circ\Phi||_{p.\delta-2}$ by (2.10)

$\leqq C_{8}(||\Delta_{M}f-(\Delta_{\infty}f^{*})\circ\Phi||_{p.\delta-2}+||\Delta_{M}f||_{p.\delta-2})$

$\leqq\epsilon_{6}(R)||f||_{z.p.\delta}+C_{9}||\Delta_{M}f||_{p.\delta-2}$ by (2.11).
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Here $C_{*}’ s$ are some positive constants. Thus if we take $R$ so large that $\epsilon_{6}(R)$

$\leqq 1/2$ , then we obtain

$||f|_{12}|p.\delta\leqq 2C_{10}||\Delta_{M}f||_{p}\delta-2$

for all $f\in C_{0}^{\infty}(M\backslash B(2R))$ . This proves that $M$ has the strong Liouville property.

REMARKS. Let $M$ be a Hadamard manifold of dimension $m$ .
(i) The strong Liouville property does not follow from condition (2.2) only.

For example, the Riemannian product of hyperbolic space form and Iuclidean
space satisfies (2.2) (with $D=\pi$).

(ii) Suppose $m\geqq 3$ and condition (2.4) is satisfied with $B<1$ . Then by (2.5),

the (intrinsic) diameter of the scaled metric sphere $S(t)/t$ is bounded from above
by $\pi/\sqrt{1-B}$ and hence so is the diameter of $M(\infty)$ . Thus in this case, $M$

has the strong Liouville property.

3. Proof of Theorem II.

In this section, we shall first recall the counter part to the Tits’ geometry
for complete manifold of nonnegative sectional curvature and then carry out
the proof of Theorem II, using the same idea as in the preceding one for
Theorem I.

Let $M$ be a complete noncompact manifold with a Riemannian metric $g\Pi$ of
nonnegative sectional curvature. To begin with, we shall recall the counter
part to the Tits’ geometry for $M$ introduced in [1, pp. 58-59]. Let us first fix
a point, say $0$ , of $M$ as before, and consider the set $R_{0}$ of all rays starting at
$0$ . Given two elements $\gamma,$

$\sigma$ of $\ovalbox{\tt\small REJECT}_{o}$ , let $\Delta(s, t),$ $0<s<t$ , be the triangle sketched
on $R^{2}$ whose edge length are $s,$

$t$ and $dis_{M}(r(s), \sigma(t))$ , and denote by $\angle\sim\gamma(s)0\sigma(i)$

the angle of $\Delta(s, t)$ opposite to the edge of length $dis_{M}(7(s), a(t))$ . Then the
Toponogov’s theorem says that $(s, t)^{\sim}arrow\angle\gamma(s)0\sigma(t)$ is monotone nonincreasing in
the sense that $\angle\sim 7(s’)0\sigma(t’)\leqq\angle\sim\gamma(s)0\sigma(t)$ if $s\leqq s’$ and $t\leqq t’$ . Hence we have the
limit

$\lim_{\partial tarrow\infty}\angle\sim\gamma(s)0\sigma(t)$

for all $\gamma,$
$\sigma$ of $\Re_{o}$ . Let us introduce an equivalent relation $\sim$ on $R_{o}$ by setting

$\gamma\sim\sigma$ when the above limit is equal to zero. Now on the set of all equivalence
classes of such rays is defined naturally a distance $\angle_{\infty}$ by

$\angle_{\infty}([7], [\sigma])=\lim_{tarrow\infty}\angle\sim 7(t)0\sigma(t)$ ,

where $[\gamma]$ stands for the equivalence class of a ray 7. Then we have a metric
space $M(\infty)=(\Re_{o}/\sim, \angle_{\infty})$ . The tangent cone at infinity CM $(\infty)$ of $M$ is given
by the product of $[0, \infty)$ and $M(\infty)$ equipped with the distance
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$dis_{CM(\infty)}((s, q),$ $(t, p))=\sqrt{s^{2}+t^{2}+2stcoe\angle\sim(q,P)}$ .

Moreover if we set $M_{0}=\{\gamma(t):\gamma\in R_{0}, t\geqq 0\}$ , we have a natural map $\Phi_{0}$ of $M_{\alpha}$

onto CM $(\infty)$ defined by
$\Phi_{0}(\gamma(t))=(t, [\gamma])$ .

When $M(\infty)$ consists of only one point, we know that $\kappa(M)=+\infty$ , namely, there
are no nonconstant harmonic functions of polynomial growth (cf. [14], [15]).

For this reason, we assume that the diameter of $M(\infty)$ is positive.
NOW we suppose that the sectional curvature $K_{M}$ of $M$ satisfies

(3.1) $K_{M} S\frac{B}{r^{2}}$

for some positive constant $B$ . Then for fixed numbers $a,$
$b$ with $0<a<b$ , we

have a family of compact Riemannian manifolds with boundary $\{A(at, bt)/t\}$ of
uniformly bounded curvature and diameter. Here and after $A(s, t)$ denotes the
annular domain $B(t)\backslash \overline{B(s)}$ in $M$ , and also we write $A_{\infty}(s, t)$ for $(s, t)\cross M(\infty)$ .
Via the natural map $\Phi_{0}/t$ , we know that as $t$ goes to infinity, $A(at, bt)/t$ con-
verges to $A_{\infty}(a, b)$ with respect to the Gromov-Hausdorff distance. It should
be noted that the limit space $A_{\infty}(a, b)$ is the quotient space of a smooth mani-
fold with $C$ “ $a$ metric by an isometric action of $O(m)$ (see [7]) and hence it
may not be a smooth manifold. In order to construct a smooth approximation
of the map $\Phi_{0}$ , we suppose that $A_{\infty}(a, b)$ is a smooth manifold, or equivallently,
$M(\infty)$ is a smooth manifold. Let us denote by $ds_{\infty}^{2}$ the metric of class $C^{1,a}$ ,
$0<\alpha<1$ , which induces the distance $\angle_{\infty}^{\sim}$ of $M(\infty)$ . In addition, we write as
before $g_{\infty}$ for the metric of the tangent cone at infinity CM $(\infty)$ , namely, $g_{\infty}=$

$dt^{2}+t^{2}ds_{\infty}^{2}$ .
We would like to employ the same method as in the preceding section.

However in the present case, the map $\Phi_{0}$ is defined only on the subset $M_{0}$ of
$M$ . For this reason, we need first to approximate the map $\Phi_{0}$ by a smooth
one defined on an end of $M$ . In fact, by virtue of the assumption of $M(\infty)$

being smooth, we can apply the method of smoothing Hausdorff approximations
developed in [4: \S 2], and we see that for large $R$ , there is a smooth submer-
sion $\Phi_{1}$ of $M\backslash B(R)$ mapping over the outside of a compact set of CM $(\infty)$ which
satisfies

$Mx arrow\infty\lim_{0\ni}\frac{1}{r(x)}dis_{CM(\infty)}(\Phi_{0}(x), \Phi_{1}(x))=0$ ;

(3.2) $\lim_{xarrow\infty}\frac{1}{r(x)^{2}}|\Phi_{1}^{*}g_{\infty 1ff_{x}}-g_{M1\mathcal{H}_{x}}|=0$ ;

$\lim\sup_{xarrow\infty}r(x)|Dd\Phi_{1}|(x)<+\infty$ ,
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where $\mathcal{H}_{x}$ denotes the horizontal subspace of $T_{x}M$ , namely the orthogonal com-
plement of the vertical subspace consisting of vectors tangent to the fibre
$\Phi_{1}^{-1}(\Phi_{1}(x))$ over the point $\Phi_{1}(x)$ of CM $(\infty)$ .

PROOF OF THEOREM II. Let $M$ be a complete noncompact manifold of non-
negative sectional curvature which satisfies (3.1) and further which has maximal
volume growth, namely,

(3.3) $V_{m}(B(t))\geqq At^{m}$

for some positive constant $A$ , where $m=\dim M$ . Then for some positive con-
stants $C$ and $D$ , the injectivity radius of $M$ at a point $x$ is bounded from below
by $Cr(x)+D$ (cf. [6]). Hence as in the case of Theorem I, we can apply the
$C^{1.a}$ convergence theorem and deduce that $A_{\infty}(a, b)$ is a smooth manifold of
dimension $m$ , to which $A(at, bi)/t$ converges in the $C^{1.a}$ topology as $t$ goes to
infinity. Therefore taking $R$ sufficiently large, we may assume that the map $\Phi_{1}$

is actually a diffeomorphism between $M\backslash B(R)$ and CM $(\infty)\backslash K$. Moreover
repeating the same arguments as in the proof of Theorem I, we are able to
obtain a diffeomorphism $\Phi$ of $M\backslash B(R)$ onto the outside of a compact set in
CM $(\infty)$ such that

$\lim_{M_{0}\ni xarrow\infty}\frac{1}{r(x)}dis_{CM(\infty)}(\Phi_{0}(x), \Phi(x))=0$ ;

$\langle$3.4) $\lim_{xarrow\infty}\frac{1}{r(x)^{2}}|\Phi^{*}g_{\infty}-g_{M}|=0$ ;

$\lim_{xarrow\infty}r(x)|Dd\Phi|=0$ .

Thus by the same reasons as in the proof of Theorem I, we can conclude that
$M$ has the strong Liouville property. This completes the proof of Theorem II.

4. Measured Hausdorff convergence at infinity.

Let $M$ be a complete noncompact Riemannian manifold of nonnegative sec-
tional curvature. Throughout this section, we assume that the sectional curva-
ture of $M$ decays at a rate $O(r^{-2})$ and further the points at infimty $M(\infty)$ is
smooth. Our concern is the case $M$ does not have maximal volume growth, that
is, $V_{m}(B(t))/t^{m}$ tends to zero as $t$ goes to inPnity, where $m=\dim M$ . At this
stage, it is unclear whether $M$ satisfies the strong Liouville property, even if
$M(\infty)$ is assumed to be smooth. The purpose of this section is to introduce a
notion of measured Hausdorff convergence at infinity and show that the strong
Liouville property holds if $M$ satisfies such an additional condition.

Let $M$ be as above, and let $\Phi_{0}$ be the canonical map of $M_{o}$ into the tangent
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cone at infinity CM $(\infty)$ defined in Section 3. Then by virtue of $M(\infty)$ being
smooth, we have shown that for large $R$ , there is a smooth submersion $\Phi_{1}$ of
$M\backslash B(R)$ over the outside of a compact set in CM $(\infty)$ , which satisfies the pro-
perties described in (3.2). We fix two positive numbers $a$ and $b$ with $a<b$ as
before. Let $\mu_{t}$ be the push-forward of the normarized Riemannian measure
$dvol/V_{m}(A(at, bt))$ by the map $\Phi_{1}/t$ . The density of $\mu_{t}$ with respect to the
Riemannian measure $dvol_{\infty}$ of $A_{\infty}(a, b)$ is given by

$\chi_{t}(\tau, q)=\underline{t^{k}V}_{m}V^{\frac{-k(\Phi_{1}^{-1}(t\tau,q))}{m(A(at,bt))}}$

where $k=\dim M(\infty)+1$ , and $t$ is assumed to be sufficiently large. Then $\chi_{t}$ con-
verges almost everywbere on $A_{\infty}(a, b)$ as $t$ goes to infinity if and only if
$A(at, bt)/t$ converges to $A_{\infty}$ with respect to the measure Hausdorff topology via
the map $\Phi_{1}/t$ of $A(at, bt)/t$ into the tangent cone CM $(\infty)$ at infinity, namely,

(4.1) $\mu_{t}:=\frac{1}{t}\Phi_{1*}(dvol/V_{m}(A(at, bt)))arrow\mu_{\infty}$

in the $weak*$ topology. We note that (4.1) does not depend on the choice of
an approximation $\Phi_{1}$ as above of $\Phi_{0}$ nor the choice of positive constants $a$ and
$b$ (cf. the proof of Lemma 4.1). For this reason, we shall say that $M$ is tangent
at infinity to the cone CM $(\infty)$ with respect to the measured Hausdorff topology,
if the condition (4.1) holds. It is not clear that this is true for the manifold
$M$ in consideration.

NOW our result is stated in the following

THEOREM III. A complete noncompact Riemannian manifold $M$ of nonnega-
tive sectional curvature has the strong Liouville property, if in addition,

(i) the sectional curvature of $M$ decays at a quadratic rate;
(ii) the points at infinity $M(\infty)$ of $M$ is a smooth manifold;
(iii) $M$ is tangent at infinity to the cone CM $(\infty)$ over $M(\infty)$ with respect to

the measured Hausdorff topology.

REMARK. This theorem is a generalization of Theorem II, since under the
condition (i), the others (ii) and (iii) are satisfied automatically if $M$ has maximal
volume growth.

PROOF OF THEOREM III.
STEP 1. We begin with recalling that the limit measure $\mu_{\infty}$ has the posi-

tive density $\chi_{\infty}$ of class $C^{1.a},$ $0<\alpha<1$ (cf. [16: \S 1]). Since the length of the
gradient of $\chi_{t}$ is uniformly bounded in $t$ by (3.2), $\chi_{t}$ converges to $\chi_{\infty}$ uniformly

in the annular domain $A_{\infty}(a, b)$ . Moreover we have the following

LEMMA 4.1. The density $\chi_{\infty}(\tau, q)$ of the limit measure $\mu_{\infty}$ can be written as
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$\chi_{\infty}(\tau, q)=\tau^{\iota}\theta(q)$

for a constant $l$ and a positi $\iota$) $e$ function $\theta$ on $M(\infty)$ of class $C^{1}$ ’.

The proof of this lemma will be given after Lemma 4.3 in the next step.
NOW we define an elliptic differential operator $\mathcal{L}_{\infty}$ of divergent form on

$A_{\infty}(a, b)$ by

f..h $= \frac{1}{\chi_{\infty}}div(x_{\infty}\nabla h)=\Delta_{\infty}h+\nabla\log x_{\infty}\cdot h$ .

By virtue of Lemma 4.1, this operator $X_{\infty}$ is defined on $C^{*}M(\infty)(:=(0, +\infty)$

$xM(\infty))$ , which can be written as

$\mathcal{L}_{\infty}=\frac{\partial^{2}}{\partial\tau^{2}}+\frac{k-1+l\partial}{\tau\partial\tau}+\frac{1}{\tau^{2}}\hat{\mathcal{L}}_{\infty}$ ,

where $\hat{X}_{\infty}$ is the operator on $M(\infty)$ given by

$\hat{\mathcal{L}}_{\infty}u=\frac{1}{\theta}div(\theta\nabla u)$ .

Therefore as mentioned in Lemma 1.1, we have the following

LEMMA 4.2. Given $p>1$ , a nonexceptional weight $\delta$ , and $R>0$ , there is a
constant $C$ such that

$||h||_{2}p\delta$ ;Il! $C||\mathcal{L}_{\infty}h||_{p}\delta-2$

for any $h\in C_{0}^{\infty}(C^{*}M(\infty))$ with $supph\subset A_{\infty}(R, \infty)$ .

STEP 2. In this stage, we want to construct a smooth approximation $\Phi$ for
$\Phi_{1}$ and hence for $\Phi_{0}$ , so that we can investigate more closely the Laplace
operator of $M$ .

We first fix sufficiently small positive constants $c,$
$c’$ and $c^{n}$ with $c’<c’<c$

$<1$ . Let $q=(1, q)$ be a point of CM$(\infty)$ , and $H=(h_{1}$ , $\cdot$ .. , $h_{k})$ be a coordinate
system around $q$ defined on the metric ball $B_{\infty}(q, c)$ in CM $(\infty)$ such that

$\mathcal{L}_{\infty}H=0$ .

For large $t$ , we take a point $x$ of $M$ so that $\Phi_{1}(x)=tq$ . We may assume that

$B_{\infty}(q, c’) \subset\frac{1}{t}\Phi_{1}(B(x, tc’))\subset B_{\infty}(q, c)$ ,

because of (3.2). We write $\tilde{B}(x, tc’)$ for the inverse image of $B_{\infty}(tq, c’t)$ by
$\Phi_{1}$ . Let $F=(f_{1}, \cdots , f_{k})$ be the solution of the Dirichlet problem:

$\Delta_{M}F=0$ in $B_{(x},$ $tc^{m}$ )
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$F=H \circ\frac{1}{t}\Phi_{1}$ on $\partial\tilde{B}(x, tc’’)$ .

Then we have a smooth map $\Phi_{x}$ of $\tilde{B}(x, tc’)$ into $B^{\infty}(tq, ct)$ defined by

$\Phi_{x}=t(H^{-1}\circ F)$ .
NOW we choose a finite number of points $\{q_{\mu}\}$ of $M(\infty)$ and a sufficiently

small positive constant $\epsilon$ in such a way that if we put $d=1+\epsilon$ , and if we take
points $x_{j.\mu}$ of $M$ with $\Phi_{1}(x_{j.\mu})=d^{j}q_{\mu}$ , then

$A(d^{j-1}, d^{j+1}) \subset\bigcup_{\mu}\tilde{B}(x_{j.\mu}, c’d^{j})\subset A(d^{j-2}, d^{j+2})$

for all large $j$ . Let us write $\Phi_{J.\mu}$ for the map $\Phi_{x_{!,\mu}}$ of $\tilde{B}(x_{j.\mu}, c’’d^{j})$ into
$B_{\infty}(d^{j}q_{\mu}, cd^{j})$ . Then using the center-of-mass technique and repeating the same
arguments as in the proof of Theorem I, we can obtain a smooth submersion
$\Phi$ of an end of $M$, say $M\backslash B(R)$ , over an end of CM$(\infty)$ , say CM $(\infty)\backslash K$. Fol-
lowing [16], we want to describe some imPortant ProPerties of this submersion
$\Phi:M\backslash B(R)arrow CM(\infty)\backslash K$. For this, it is convenient to fix several notations (cf.

[24] $)$ . For a point $x$ of $M\backslash B(R)$ and a tangent vector $E\in T_{x}M$ , we denote
by $\subset\nu_{x},$ $\mathcal{H}_{x},$ $c\nu E$ and $\mathcal{H}E$ , respectively, the subspace of $T_{x}M$ which consists of
vectors tangent to the fiber $\Phi^{-1}(\Phi(x))$ through $x$ , the orthogonal complement of
$Cy$ . in $T_{x}M$, the $c_{V}$-component of $E$ and the $\mathcal{H}$ -component of $E$ . Also $\subset\nu$ and
$\mathcal{H}$ denote the projections onto them. For a vector field $X$ on an open subset
$U$ of CM $(\infty)\backslash K$, we write $\hat{X}$ for the vector field on $\Phi^{-1}(U)$ satisfying

$\hat{X}_{x}\in \mathcal{H}_{x}$ , $d\Phi(\hat{X}_{x})=X_{\Phi(x)}$

for $x\in\Phi^{-1}(U)$ . We define $(2, 1)$ tensor fields $A(\Phi)$ and $T(\Phi)$ on $M\backslash B(R)$ whose
values on vector fields $E_{1}$ and $E_{2}$ are resPectively given by

$A(\Phi)(E_{1}, E_{2})=\mathcal{H}D_{\mathcal{H}E_{1}}\subset vE_{2}+^{c}\nu D_{\mathcal{H}E_{1}}\mathcal{H}E_{2}$ ,

$T(\Phi)(E_{1}, E_{2})=\mathcal{H}D_{\subseteq\nu E_{1}}\subseteq vE_{2}+\varphi D_{cvE_{1}}\mathcal{H}E_{2}$ .
Moreover let us introduce a $(2, 1)$ tensor field $B(\Phi)$ on $M\backslash B(R)$ by setting

$B(\Phi)(E_{1}, E_{2})=\mathcal{H}D_{E_{1}}E_{2}-(D_{d\Phi(E_{1})}d\Phi(E_{2}))^{\wedge}$ ,

so that
$d\Phi(B(\Phi)(E_{1}, E_{2}))=-Dd\Phi(E_{1}, E_{2})$ .

Then by the construction of $\Phi$ and the same arguments as in [16: \S 2], we can
deduce the following

LEMMA 4.3. (i) $\Phi$ aPProximates $\Phi_{0}$ in the sense that
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$\lim_{M_{0}\ni xarrow\infty}\frac{1}{r(x)}dis_{CM(\infty)}(\Phi_{0}(x), \Phi(x))=0$ .

(ii) $\Phi$ is an asymptoiically Riemannian submersion, that is,

$\lim_{M\ni xarrow\infty}\min_{X\in \mathcal{H}_{x}}\frac{|d\Phi(X)|}{|X|}=\lim_{M\ni xarrow\infty}\max_{X\in \mathcal{H}_{x}}\frac{|d\Phi(X)|}{|X|}=1$ .

(iii) If $\eta$ stands for the mean curvature vector field along the fibers of $\Phi$ ,
then

$\lim_{M\ni xarrow\infty}r(x)|d\Phi_{x}(\eta)+\nabla$ Iog $\chi_{\infty}(\Phi(x))|=0$ .

(iv) The second fundamental form $Dd\Phi$ of $\Phi$ satisfies
$\lim\sup_{M\ni xarrow\infty}r(x)|Dd\Phi|(x)<+\infty$ ,

and hence we have in particular

$\lim\sup_{M\ni xarrow\infty}r(x)|A(\Phi)|(x)<+\infty$ ,

$\lim\sup_{M\ni xarrow\infty}r(x)|T(\Phi)|(x)<+\infty$ .

(v) Finally, given constants $p>1$ , and a, $b$ with $0<a<b$ .
$\lim\sup_{tarrow\infty}\int_{A(at,bt)}r^{p}|D\eta|^{p}\frac{dvol}{V_{m}(A(at,bt))}<+\infty$ ,

$\lim\sup_{tarrow\infty}\int_{A(at}bf)r^{p}|DDd\Phi|^{p}\frac{dvol}{V_{m}(A(at,bt))}<+\infty$ .

Making use of this lemma, we shall verify Lemma 4.1.

PROOF OF LEMMA 4.1. We shall first define a positive smooth function 2,
on $A_{\infty}(a, b)$ by

$\hat{\chi}_{t}(\tau q)=\frac{t^{k}V_{m-k}(\Phi^{-1}(t\tau q))}{V_{m}(A(at,bt))}$

Since $\Phi$ approximates $\Phi_{0}$ as in Lemma 4.3 (i), $\hat{\chi}_{t}(\tau q)$ converges uniformly to $\chi_{\infty}$ .
In view of the identity

$\hat{\chi}_{t}(\tau q)=\tau^{-k}\frac{V_{m}(A(at\tau,bt\tau}{V_{m}(A(at,bt))}\hat{\chi}_{t\tau}(q)$ ,

we see that

$\lim_{tarrow\infty}\tau^{-k}\frac{V_{m}(A(at\tau,bt\tau))}{V_{m}(A(at,bt))}=\frac{\chi_{\infty}(\tau q)}{\chi_{\infty}(q)}$ .

The left-hand side is clearly independent of points $q$ of $M(\infty)$ , and hence we
may put
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$\xi(\tau)=\frac{\chi_{\infty}(\tau q)}{\chi_{\infty}(q)}$

$\theta^{j}(q)=x_{\infty}(q)$ ,

so that $\chi_{\infty}(\tau q)=\xi(\tau)\theta’(q)$ . We claim that $\xi(\tau)=\tau^{\iota}$ for some $l\in R$ . To show this,
we set

$r_{\infty}(tq)=t$

and
$S(t)=\{x\in M\backslash B(R):r_{\infty}\circ\Phi(x)=t\}$ .

Then it is not hard to derive from Lemma 4.3 that

$\lim_{tarrow\infty}\frac{d}{d\tau}\log\frac{V_{m-1}(\tilde{S}(t\tau))}{V_{m-1}(\tilde{S}(t))}=\frac{k-1}{\tau}+\frac{\xi’(\tau)}{\xi(\tau)}$ .

The convergence is uniform on $[a, b]$ . This shows that

$\lim_{tarrow\infty}\frac{V_{m-1}(\tilde{S}(t\tau))}{V_{m-1}(\tilde{S}(t))}=\tau^{k-1}\xi(\tau)$ .

In particular, $\xi(\tau)$ does not depend on $a$ and $b$ . Moreover on account of Lemma
4.3 (i) and (ii), we have

$\lim_{tarrow\infty}\frac{V_{m}(A(at,bt))}{tV_{m-1}(\tilde{S}(t))}=\lim_{tarrow\infty}\int_{a}^{b}\frac{V_{m-1}(\tilde{S}(t\sigma))}{V_{m-1}(S(t))}d\sigma$

$= \int_{a}^{b}\sigma^{k-1}\xi(\sigma)d\sigma$ .

Hence it follows that

$\xi(\tau)=\lim_{tarrow\infty}\tau^{-k}\frac{V_{m}(A(at\tau,bt\tau))}{V_{m}(A(at,bt))}$

$= \tau^{-k}\frac{\int_{a\tau}^{b\tau}\sigma^{k-1}\xi(\sigma)d\sigma}{\int_{a}^{b}\sigma^{k-1}\xi(\sigma)d\sigma}$

$=\underline{\int_{a}^{b}\sigma^{k-1}\xi(\tau\sigma)d\sigma}$

$\int_{a}^{b}\sigma^{k-1}\xi(\sigma)d\sigma$

.

NOW it is easy to see that $\xi(\tau)=\tau^{\iota}$ for some $l$ .

STEP 3. In order to complete the proof of Theorem III, we shall introduce
modiPed weighed Sobolev norms. For a point $\tau q$ of the image $\Phi(M\backslash B(R))$ , we
denote by $w’(\tau q)$ the volume of the fibre $\Phi^{-1}(\tau q)$ over $\tau q$ . We set $w=w’\circ\Phi$ and
extend this to a positive function on $M$ for our convenience. As noted in the
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proof of Lemma 4.1, by the assumption (iii) of the theorem, we have

$\langle$4.2) $\lim_{tarrow\infty}\frac{t^{k}w’(t\tau q)}{V_{m}(A(at,bt))}=\tau^{l}\theta(q)$

for all $\tau\in[a, b]$ and $q\in M(\infty)$ . The convergence is uniform.
Let $f$ be a smooth function on $M$ . Given $p>1$ and a weight $\delta\in R$ , we put

$||f||_{p.\delta}’=( \int_{M}|f|(1+r)^{-p\delta-k}\frac{dvol}{w})^{1/p}$ ,

$||f||_{n.p.\delta}’= \sum_{j=0}^{n}||D^{j}f||_{p,\delta-j}’$

(if they are finite). Moreover for a smooth function $f$ with $suppf\subset M\backslash B(R)$ ,

we define a function $\Theta f$ on $C^{*}M(\infty)$ by

$\Theta f(\tau q)=\frac{1}{w’(\tau q)}\int_{\Phi-l_{(\tau q)}}f$ .

Recall here that for $h\in C_{0}^{\infty}(C^{*}M(\infty))$ , the weighted Sobolev norms are given by

$||h||_{n,p.\delta}= \sum_{j=0}^{n}(\int|D^{j}h|^{p}(1+r_{\infty})^{-p(\delta-j)-k}dvol_{\infty})^{1/p}$

Then we have the following

LEMMA 4.4. For some Positive constant $\epsilon(R)$ with $\lim_{Rarrow\infty}\epsilon(R)=0$ , the follow-
ing estimates hold for all smooth functions $f$ on $M$ such that $suppf\subset M\backslash B(R)$

and $||f||_{p.\delta}’+||\Delta_{M}f||_{p.\delta-2}’$ is finite:
(i) $e^{-\epsilon(R)}||\Theta f||_{1.p.\delta}\leqq||\Theta f\circ\Phi||_{1,p.\delta}’\leqq e^{\text{\’{e}}(R)}||\Theta f||_{1.p,\delta;}$

(ii) $||\Theta f||_{p.\delta}\leqq e^{\epsilon(R)}||f||_{p.\delta}’$ ;
(iii) $||f-\Theta f\circ\Phi||_{1.p.\delta}’\leqq\epsilon(R)(||f||_{p.\delta}’+||\Delta_{M}f||_{p,\delta-2}’)$ ;
(iv) $||\mathcal{L}_{\infty}\Theta f-\Theta\Delta_{M}f||_{p.\delta-2}\leqq\epsilon(R)(||f||_{p.\delta}’+||\Delta_{M}f||_{p.\delta-2}’)$ .
Here it is assumed that $p>m$ for the last two estimates.

PROOF. The first two estimates are direct consequences from Lemma 4.3
$\langle$ $ii)$ . TO prove (iii), we shall fix two positive constants $a’$ and $b’$ with $a<a’<$

$b’<b$ . We observe that for large $t$ and all $x\in A(a’t, b’t)$ ,

$|f-\Theta f\circ\Phi|^{p}(x)+t^{p}|d(f-\Theta f\circ\Phi)|^{p}(x)$

$\leqq\epsilon_{1}(t)\int_{A(at.bt)}(|f|^{p}+t^{2p}|\Delta_{M}f|^{p})\frac{dvol}{V_{m}(A(at,bt))}$ .

Here and after $s_{*}(t)s$ stand as before for some positive constants depending on
$t$ in such a way that $\lim_{tarrow\infty}\epsilon_{*}(t)=0$ . The above estimate can be verified by
the standard elliptic regularity estimates (cf. [8] and Lemma 1.3 in [16]) and
further the properties of the submersion $\Phi$ described in Lemma 4.3 (cf. Theorem
$B$ (iv) in [16] $)$ . Hence we have
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$\int_{A(a’t,b’t)}(|f-\Theta f\circ\Phi|^{p}+r^{p}|d(f-\Theta f\circ\Phi)|^{p})r^{-p\delta-k_{\frac{dvol}{w}}}$

$S\epsilon_{2}(t)\int_{A(at.bt)}(|f|^{p}+t^{2p}|\Delta_{M}f|^{p})\frac{dvol}{V_{m}(A(at,bt))}\cross\int_{A(a’t,b’t)}r^{-p\delta-k_{\frac{dvol}{w}}}$

$\leqq\epsilon_{3}(t)(\int_{A(at,bt)}|f|^{p}r^{-p\delta-k}\frac{dvol}{w}+\int_{A(at,bt)}|\Delta_{M}f|^{p}r^{-p(\delta-2)-k}\frac{dvol}{w})$ ,

where we have used the fact that $t^{k}w’(t\tau q)/V_{m}(A(at, bt))$ is uniformly bounded
from above and also away from zero by (4.2). Clearly the above inequality
leads to the estimate (iii).

It remains to show the estimate (iv). From Lemma 4.3 and the same argu-
ments as in the proof of Theorem $B$ (iv) in [16], we can derive that

$\int_{A_{\infty}(at.bt)}|x_{\infty}\Theta f-\Theta\Delta_{M}f|^{p}r_{\infty}^{-p(\delta-2)-k}dvol_{\infty}$

$\leqq\epsilon_{4}(i)\int_{A(at,bt)}(|f|^{p}+t^{2p}|\Delta_{M}f|^{p})r^{-p\delta+k}\frac{dvol}{V_{m}(A(at,bt))}$ .

Hence by (4.2), we have

$\int_{A_{\infty}(at.bt)}|\mathcal{L}_{\infty}\Theta f-\Theta\Delta_{M}f|^{p}r_{\infty}^{-p(\delta-2)-k}dvol_{\infty}$

$\leqq\epsilon_{5}(t)(\int_{A(at.bt)}|f|^{p}\gamma^{-p\delta-k}\frac{dvol}{w}+\int_{A(at.bt)}|\Delta_{M}f|^{p}r^{-p(\delta-2)-k}\frac{dvol}{w})$ .

This implies (iv). The proof of Lemma 4.4 is now completed.
By Lemmas 4.2 and 4.4, we have the following

LEMMA 4.5. Given $p>m$ and a nonexceptional weight $\delta$ , there are $po\alpha tive$

constants $R$ and $C$ such that

$|1$ fll\’i, $p.\delta\leqq C||\Delta_{M}f||_{p.\delta- 2}’$

for all smooth functions $f$ on $M$ with $suppf\subset M\backslash B(R)$ and $||f||_{p.\delta}’+||\Delta_{M}f||_{p.\delta- 2}’$

$<+\infty$ .
PROOF. We have by Lemma 4.4 (i) and (iii)

$11fl1\text{\’{i}}_{p.\delta}\leqq||f-\Theta f\circ\Phi|\rceil_{1.p.\delta}’+||\Theta f\circ\Phi||_{1.p.\delta}’$

$\leqq\epsilon(R)(||f||_{p.\delta}’+||\Delta_{M}f||_{p.\delta- 2}’)+e^{\epsilon(R)}||\Theta f||_{1,p.\delta}$ .
In view of Lemma 4.2, we see that

$||\Theta f||_{1.p.\delta}\leqq C_{1}||X_{\infty}\Theta f||_{p.\delta-2}$

for some positive constant $C_{1}$ , if $\delta$ is nonexceptional. Moreover it follows from
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Lemma 4.4 (ii) and (iv) that

$||x_{\infty}\Theta f||_{p.\delta-2}\leqq||\mathcal{L}_{\infty}\Theta f-\Theta\Delta_{M}f||_{p.\delta-2}+||\Theta\Delta_{M}f||_{p.\delta-2}$

$\leqq\epsilon(R)(||f||_{p.\delta}’+||\Delta_{M}f||_{p,\delta-2}’)+e^{\epsilon(R)}||\Delta_{M}f||_{p,\delta-2}’$ .
Therefore we obtain

$||f||_{1,p.\delta}’\leqq\epsilon_{6}(R)||f||_{p.\delta}’+C_{2}||\Delta_{M}f||_{p.\delta-2}’$

for some positive constants $\epsilon_{6}(R)$ as before and $C_{2}$ . Thus by taking $R$ so large
that $\epsilon_{6}(R)<1/2$ , we get the required estimate. This completes the proof of
Lemma 4.5.

STEP 4. We are now in a position to complete the proof of Theorem III.
We fix large $R$ as in Lemma 4.5 and choose a smooth function $\eta$ on $M$ in such
a way that $|\eta|\leqq 1,$ $\eta\equiv 1$ outside $B(2R)$ , and $\eta\equiv 0$ in $B(R)$ . Let $h$ be a har-
monic function on $M$ with $||h||_{p.\delta}’<+\infty$ . Suppose $\delta$ is nonexceptional. Then
it follows from Lemma 4.5 that

$||h||_{p.\delta}’\leqq||\eta h||_{p.\delta}’+||(1-\eta)h||_{p.\delta}’$

$\leqq C||\Delta_{M}(\eta h)||_{p.\delta-2}+||(1-\eta)h||_{p.\delta}’$ .

Hence applying the elliptic regularity estimates to $h$ on $B(3R)$ , we obtain

(4.3) $||h||_{p.\delta}’ \leqq C’(\int_{B(3R)}|h|^{p}dvol)^{1/p}$

for some positive constant $C’$ . This implies that the space of harmonic func-
tions $h$ with $||h||_{p.\delta}’<+\infty$ is of finite dimension. In fact, let $\{h_{i}\}$ be a sequence
of harmonic functions with $||h_{i}||_{p.\delta}’=1$ . Then there is a subsequence $\{h_{j}\}$ which
forms a Cauchy sequence in $L^{p}(B(3R))$ . Hence by (4.3), it is also a Cauchy
sequence with respect to the norm $||*||_{p.\delta}’$ . This shows that $h_{j}$ converges to a
function $h$ on $M$ with respect to the norm. Obviously $h$ is harmonic.

NOW since $V_{m}(A(at, bt))\geqq C^{p}t$ for some positive constant $C’’$ , we observe
from (4.2) that for any $f\in L_{p.\delta}(M)$ , and for some positive constant $C’’’$ ,

I $f||_{p.\delta+(m- 1)/p}’\leqq$ “II $f11_{p,\delta}$ .

Hence for any $h\in \mathcal{H}_{d}(M),$ $||h||_{p.\delta+(m-1)/p}’$ is finite if $\delta$ is greater than $d-$

$(m-1-\beta)/p$ , where $\beta$ is as in Lemma 1.4. Therefore $\mathcal{H}_{d}(M)$ is of finite dimen-
sion for any $d$ . This completes the proof of Theorem III.

5. Further discussions.

AS mentioned in Introduction, complete flat spaces are typical examples of
manifolds possessing the strong Liouville property. This class is unfortunately
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not coverd by the results in the preceding sections. For example, in Theorem
III, we imposed a regularity condition at infinity on the manifolds in considera-
tion. In this section, we shall study a class of complete Riemannian manifolds
which satisfy certain additional conditions other than that on curvature decay.
The conditions are rather restrictive, but all of complete flat spaces satisfy
them.

Let $M=(M, g_{M})$ be a complete noncompact Riemannian manifold of dimen-
sion $m$ . We suppose first that the sectional curvature $K_{M}$ of $M$ satisfies:

(5.1) $- \frac{B}{r^{2+\epsilon}}\leqq K_{M}\leqq\frac{B’}{r^{2}}$

for some positive constants $B,$ $B’$ and $\epsilon$ . Let $D$ be a bounded domain with
smooth boundary $\Sigma$ and $\nu^{+}$ the outer unit normal to the boundary $\Sigma$ . Secondly
we suppose that the normal exponential map of $\Sigma$ induces a diffeomorphism
between $[0, \infty)\cross\Sigma$ and the outside of $D$ , that is, if we put

$E(t, x)=\exp tv^{+}(x)$

for $(t, x)\in[0, \infty)\cross\Sigma$ , then

(5.2) $E:[0, \infty)\cross\Sigmaarrow M\backslash D$ is diffeomorphic.

For each $t>0$ , we set $\Sigma_{t}=E(\{t\}\cross\Sigma)$ and define a map $E_{t}$ : $\Sigmaarrow\Sigma_{t}$ by $E_{t}(x)=$

$E(t, x)$ . Let us consider a one-parameter family of Riemannian metrics $ds_{t}^{2}$ on
$\Sigma$ which are given by

$ds_{t}^{2}= \frac{1}{(1+t)^{2}}E_{t^{*}}(g_{M1\Sigma_{t}})$ .

We write $d_{t}(x, y)$ for the distance between two points $x,$ $y$ of $\Sigma$ measured by
the metric $ds_{t}^{2}$ . Then it is not hard to see that $d_{t}$ converges to a pseudo-
distance $d_{\infty}$ on $\Sigma$ , namely, for all $x,$ $y\in\Sigma$ , the limit

$\lim_{tarrow\infty}d_{t}(x, y)=d_{\infty}(x, y)$

exists. In fact, we may assume that the sectional curvature $K_{M}$ satisfies

$K_{M} \geqq-\frac{B’’}{(1+\rho)^{2+-}\vee\wedge}$

for some positive constant $B^{r}$ , where $\rho$ stands for the distance to $D$ . Let $\xi$

be a unique solution of the classical Jacobi equation:

$\xi’(t)-\frac{B^{r}}{(1+t)^{2+g}}\xi(t)=0$ ,

subject to the initial conditions: $\xi(0)=1,$ $\xi’(0)=\lambda$ , where a constant $\lambda$ is chosen in
such a way that the maximal eigenvalue of the second fundamental form of $\Sigma$
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is not greater than $\lambda$ . Then $\{\xi(t)^{-2}E_{t}^{*}(g_{M1\Sigma_{t}})\}$ forms a monotone nonincreasing
family of metrics on $\Sigma$ (cf. $e$ . $g.,$ $[12]$). Since $\xi(t)/(1+t)$ converges to a posi-
tive constant as $t$ goes to infinity, we see that $d_{t}$ converges to a pseudo-distance
$d_{\infty}$ . NOW we introduce an equivalence relation $\sim$ on $\Sigma$ by putting $x\sim y$ if
$d_{\infty}(x, y)=0$ . We write $M(\infty)$ for the metric space of all equivalence classes
equipped with the induced distance, denoted by the same letter $d_{\infty}$ . Moreover
we denote by $\phi$ the natural projection of $\Sigma$ onto $M(\infty)$ . The metric space
$(\Sigma, d_{t})$ converges to $M(\infty)$ with respect to the Gromov-Hausdorff distance via
the map $\phi$ . In fact we have

$d_{\infty}(\phi(x), \phi(y))\leqq e^{\epsilon(t)}d_{t}(x, y)$

for all $x,$ $y\in\Sigma$ , where a positive constant $\epsilon(t)$ goes to zero as $t$ tends to infinity.
We observe here that the sectional curvature of $ds_{t}^{2}$ is bounded uniformly

in $t$ , because of the assumption (5.1). Hence according to a result by Fukaya
[7], there is a smooth manifold $N$ of $C^{1,a}$ Riemannian metric $ds_{N}^{2}$ on which
the orthogonal group $O(m-1)$ acts as isometries, and $M(\infty)$ is isometric to the
quotient space $N/O(m-1)$ . Therefore we have the cone CM $(\infty)$ over $M(\infty)$ as
the quotient space of the cone $CN=([O, \infty)\cross N,$ $dt^{2}+i^{2}ds_{N}^{2})$ over $N$ by the ac-
tion $O(m-1)$ .

TO give a condition which we need, we shall define a canonical map $\Phi_{0}$ of
$M\backslash D$ onto the cone CM $(\infty)$ by

$\Phi_{0}(\exp t\nu^{+}(x))=t\phi(x)(=(t, \emptyset(x)))$ .

Given two positive constants $a$ and $b$ with $a<b$ , we set $A_{\rho}(at, bt)=\{x\in M$ : at
$<\rho(x)<bt\}$ and consider the push-forward $\mu_{t}$ of the normalized Riemannian
measure on $A_{\rho}(at, bt)$ by the scaled map $\Phi_{0}/t:A_{\rho}(at, bt)/tarrow A_{\infty}(a, b)$ , namely,

$\mu_{t}:=\frac{1}{t}\Phi_{0*}(\frac{dvol}{V_{m}(A_{\rho}(at,bt))})$ .

The last condition states now

(5.3) $\mu_{t}$ converges to a measure $\mu_{\infty}$ in the weak* topology.

AS mentioned at the begining of this section, complete flat spaces enjoy all
of these conditions (5.1), (5.2) and (5.3). In fact, let $K$ be a compact flat mani-
fold of dimension $s$ and $\sigma$ an orthogonal representation on $R^{n+1}$ of the funda-
mental group $\Gamma$ of $K$ . Then $\Gamma$ acts diagonally on the product space $R^{S}\cross R^{n+1}$

and we obtain a complete flat manifold $M=R^{S}\cross rR^{n+1}$ . That is, $M$ is a flat
vector bundle over $K$ with fibre $R^{n+1}$ . Set $D=R^{s}\cross rB^{n+1}$ , where $B^{n+1}$ denotes
the unit ball around the origin in $R^{n+1}$ . Then $D$ satisfies condition (5.2). In
this case, $M(\infty)$ is just the quotient space of the unit sphere $S^{n}$ by the action
of the closure $\overline{\sigma(\Gamma}$) of the subgroup $\sigma(\Gamma)$ in $O(n+1)$ . Then the projection
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$\phi:\Sigma(=\partial D)arrow M(\infty)$ is given by

$\emptyset([x, v])=\phi’(v)$ ,

where $[x, v]$ stands for the equivalence class of a point $(x, v)$ of $R^{s}\cross R^{n+1}$ and
also $\phi’$ denotes the projection of $S^{n}$ onto $M(\infty)=S^{n}/\overline{\sigma(\Gamma})$ . Since the measure
$\mu_{t}$ as above is given by

$\mu_{t}=\frac{(\tau+1/t)^{n+1-k}}{b^{n+1}-a^{n+1}}\phi_{*}’(dvol_{Sn})$ ,

where $k=\dim M(\infty)+1$ and $dvol_{Sn}$ stands for the Riemannian measure of the
unit sphere $S^{n}$ , condition (5.3) is clearly satisfied. Actually, $\mu_{t}$ converges
weakly to a measure $\mu_{\infty}$ defined by

$\mu_{\infty}=\frac{\tau^{n+1-k}}{b^{n+1}-a^{n+1}}\phi_{*}’(dvol_{Sn})$ .

NOW we shall prove the following

THEOREM 1V. Let $M$ be a comPlete Riemannian manifold of dimension $m$

satisfying (5.1). Then $M$ has the strong Liouville property, if in addition, there
exists a bounded domain $D$ for which (5.2) holds, and further (5.3) is satisfied.

Before going into the proof of the theorem, we note that the same argu-
ments as in the proof of Theorem III are valid for the case $M(\infty)$ is smooth.
However if this is not the case, we can not expect to have an appropriate
smooth approximation for the map $\Phi_{0}$ as before. To overcome such difficulty,
we shall make use of the frame bundle $FM$ over $M$ endowed with a suitable
$0(m)$ invariant metric.

PROOF OF THEOREM IV. Let us denote by $g_{FM}$ a canonical metric of $FM$

such that the orthogonal group $O(m)$ acts on $(FM, g_{FM})$ as isometries and the
projection $\pi:FMarrow M$ is a Riemannian submersion with totally geodesic fibres.
For our purpose, we shall modify the metric as follows. We choose first an
auxiliary positive function $\zeta$ on $[0, \infty)$ with $\zeta(t)=t$ for $t\geqq 1$ . Set $\overline{\rho}=\pi(\zeta(\rho))$ and
define a metric $\overline{g}$ on $FM$ by

$\overline{g}(\overline{X},\overline{Y})=g_{FM}(\mathcal{H}\overline{X}, \mathcal{H}\overline{Y})+\overline{\rho}^{2}gF1t(^{C}V\overline{X}, \subset\nu\overline{Y})$

for tangent vectors $\overline{X},\overline{Y}$ of $FM$ . Here as before, $\mathcal{H}\overline{X}$ (resp., $\subset\nu\overline{X}$ ) denotes the
horizontal (resp., vertical) component of $\overline{X}$ with respect to the metric $g_{FM}$ . In
what follows, $FM$ is assumed to be endowed with this metric $\overline{g}$ , unless other-
wise stated. Clearly the action of $0(m)$ on $FM$ is still isometric and the pro-
jection $\pi$ is a Riemannian submersion. Moreover if we put $D^{\neg}=\pi^{-1}(D)$ and
$\overline{\Sigma}_{t}=\pi^{-1}(\Sigma_{t})$ , and define a map $\overline{E}_{t}$ of $\overline{\Sigma}$ onto $\overline{\Sigma}_{t}$ by
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$\overline{E}_{t}(\overline{x})=\exp t\overline{\nu}^{+}(\overline{x})$ ,

where $\overline{L^{I^{+}}}$ stands for the outer unit normal to $\overline{\Sigma}$ , the boundary of $\overline{D}$ , then $\overline{E}_{t}$

induces a diffeomorphism between 2 and $\overline{\Sigma}_{t}$ . Hence we have a one-parameter
family of metrics $d\overline{s}_{t}^{2}$ on 2 given by

$d \overline{s}_{t}^{2}=\frac{1}{(1+t)^{2}}\overline{E}_{\iota^{*}}(\overline{g}_{1\overline{\Sigma}_{t}})$ .

We observe that $O(m)$ acts on $(\overline{\Sigma}, d\overline{s}_{t}^{2})$ as isometries and $(\Sigma, ds_{t}^{2})$ is just the
quotient space (for large $t$). Let $\overline{d}_{t}$ be the distance measured by the metric
$d\overline{s}_{t}^{2}$ . Then $\overline{d}_{t}$ converges to a pseudo-distance $\overline{d}_{\infty}$ , and we obtain as before a
compact metric space $\overline{M}(\infty)$ with the distance, denoted by the same letter $\overline{d}_{\infty}$ .
The metric space (X, $\overline{d}_{t}$ ) converges to $\overline{M}(\infty)$ with respect to the Gromov-
Hausdorff distance and moreover we have the $O(m)$ action on $\overline{M}(\infty)$ in such a
way that the quotient space $\overline{M}(\infty)/O(m)$ coincides with $M(\infty)$ . We write $\pi(\infty)$

for the projection of $\overline{M}(\infty)$ onto $M(\infty)$ and set $id.\cross\pi(\infty)(\tau\overline{q})=\tau\pi(\infty)(\overline{q})$ .
NOW by the definition of the metric $\overline{g}$ and the assumption (5.1), we see

that the sectional curvature of $FM$ decays at a rate $O(\overline{\rho}^{-2})$ . Hence it turns out
from the same reasons as in [7] that $\overline{M}(\infty)$ is a smooth manifold of $C^{l,a}$ metric
$d\overline{s}_{\infty}^{2}$ . In fact, the frame bundle $FA_{\rho}(at, bt)$ over $A_{\rho}(at, bt)$ with the scaled
metric $\overline{g}/t$ , say as before $FA_{\rho}(at, bt)/t$ , converges to a smooth manifold with
$C^{1,a}$ metric. Thus for $FM$ itself, we are able to repeat the arguments in Sec-
tion 4. However we note that the pull-back of a harmonic function on $M$ by
the projection $\pi$ is not harmonic on $FM$ . Hence we need some modification,
which will be explained below.

Let us denote as before by $C\overline{M}(\infty)$ the cone over $\overline{M}(\infty)$ and define a
canonical map $\overline{\Phi}_{0}$ : $FMarrow C\overline{M}(\infty)$ by

$\overline{\Phi}_{0}(\exp t\overline{\nu}^{+}(\overline{x}))=t\overline{\phi}(\overline{x})$ ,

where $\overline{\phi}:\overline{\Sigma}arrow\overline{M}(\infty)$ stands for the projection. Then $(id.\cross\pi(\infty))\circ\overline{\Phi}_{0}=\Phi_{0}\circ\pi$ .
The measure $\Omega$ on $FM$ which corresponds to the Riemannian measure on

$M$ via the projection $\pi$ is given by

$\Omega=\frac{1}{v_{0}\overline{\rho}^{m’}}$ dvol,

where $v_{0}$ stands for the volume of the fibres of $FM$ with respect to the canonical
metric $g_{FM}$ and $m’=m(m-1)/2$ . We observe that the operator $\overline{\mathcal{L}}$ associated

with the Dirichlet form $\int|df|^{2}\Omega$ is given by

$\overline{\mathcal{L}}f=v_{0}\overline{\rho}^{m}$

‘
$div( \frac{1}{v_{0}\overline{\rho}^{m}’}\nabla f)=\Delta_{FM}f-m’\nabla\log\overline{\rho}\cdot f$ .



Harmonic functions of polynomial growth on complete manifolds II 63

We set

$\overline{\mu}_{t}$ $:= \frac{1}{t}\Phi_{0*}(\frac{\Omega}{\Omega(FA_{\rho}(at,bt))})$ .

Then we have
$\mu_{t}=(id.\cross\pi(\infty))_{*}(\overline{\mu}_{t})$ ,

and hence by (5.3), there is a measure $\overline{\mu}_{\infty}$ on $(a, b)\cross\overline{M}(\infty)$ such that $\overline{\mu}_{t}$ con-
verges to $\overline{\mu}_{\infty}$ as $tarrow\infty$ in the weak* topology. Moreover replacing the Laplace
operator in Section 3 with the operator $f$ and repeating the same arguments
there, we can deduce that Lemmas 4.1 and 4.3 are valid. (In this case, the
density $\overline{\chi}_{\infty}(\tau,\overline{q})$ of the limit measure $\overline{\mu}_{\infty}$ can be written as

$\overline{\chi}_{\infty}(\tau,\overline{q})=\tau^{\iota}\overline{\theta}(\overline{q})$

for a constant 1 and a positive function $\overline{\theta}$ on $\overline{M}(\infty)$ of class $C^{1.a}$ which is $0(m)$

invariant.) Therefore we can assert that for every $d$ , the space

$\mathcal{H}_{d}(FM, \Omega)=$ { $h\in C^{\infty}(FM):\overline{\mathcal{L}}h=0,$ $|h|\leqq A\overline{p}(L+B$ for some constants $A,$ $B>0$}

is of finite dimension. Since $\pi^{*}$ maps the space $\mathcal{H}_{d}(M)$ into the space $\mathcal{H}_{cl}(FM, \Omega)$ ,
we can conclude that $M$ has the strong Liouville property. This completes the
proof of Theorem IV.

REMARK. Let $M$ be a complete Riemannian manifold of dimension $m$ and
assume there is a domain $D$ of $M$ satisfying condition (5.2). Then we have a
smooth family of metrics $ds_{t}^{2}$ on $\Sigma$ as we mentioned at the begining of this
section. When condition (5.1) is satisfied, we have a compact metric space
$M(\infty)$ and a map $\phi:\Sigmaarrow M(\infty)$ such that $(\Sigma, ds^{2})$ converges to $M(\infty)$ with re-
spect to the Gromov-Hausdorff distance via the map $\phi$ . Moreover if condition
(5.3) holds, and it we write $\xi_{t}$ for the normalized Riemannian measure
$dvol/V_{m-1}((\Sigma, ds_{t}^{2}))$ of $(\Sigma, ds^{2})$ , then the push-forward measure $\phi_{*}\xi_{t}$ converges
weakly to a measure $\xi_{\infty}$ on $M(\infty)$ . Since the sectional curvature of $ds_{t}^{2}$ is uni-
formly bounded in $t$ , we can assert that $(\Sigma, ds_{t}^{2})$ converges to $(M(\infty), ds_{t}^{2})$ with
respect to the spectral distance in the sense of [17]. In particular, we have
the convergence of the eigenvalues and eigenfunctions of $(\Sigma, ds_{t}^{2})$ (cf. [17] for
details).

NOW we suppose instead of (5.1) and (5.3) that the metric $ds_{t}^{2}$ converges to
a positive semidefinite symmetric tensor on the manifold $\Sigma$ with respect to the
$C^{0}$ topology. Then we may ask when $M$ has the strong Liouville property.
In general, this condition does not imply the convergence of $(\Sigma, ds_{t}^{2})$ with
respect to the spectral distance, or even the Gromov-Hausdorff distance. See
[23] for a related topic.
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