On dimensions of non-Hausdorff sets for plane homeomorphisms

By Hiromichi NAKAYAMA

(Received Jan. 27, 1994)

§1. Introduction.

A homeomorphism is called *flowable* if there exists a topological flow whose time one map is that homeomorphism. An orientation preserving fixed point free homeomorphism of \mathbb{R}^2 which is not flowable was constructed by Kerékjártó in 1934 ([9]). In order to show the homeomorphism is not flowable, he defined "singular points", at which the family $\{f^n\}_{n\in\mathbb{Z}}$ is not equicontinuous with respect to the elliptic metric.

The set of "singular points" coincides with the following non-Hausdorff set (see [10], [11]): Let f be an orientation preserving fixed point free homeomorphism of \mathbb{R}^2 . Denote by $\pi: \mathbb{R}^2 \to \mathbb{R}^2/f$ the quotient map which maps each orbit of f to a point. Then \mathbb{R}^2/f is a non-Hausdorff manifold because the non-wandering set of f is empty ([1], [5] Corollary 2.3). A point p of \mathbb{R}^2 is called *non-Hausdorff* if $\pi(p)$ is not "Hausdorff" in \mathbb{R}^2/f . We call the set of all non-Hausdorff points the *non-Hausdorff set*, denoted by NH(f).

In this paper, we characterize NH(f) by the limit set of continua and give the dimension of NH(f).

MAIN THEOREM. Let f be an orientation preserving fixed point free homeomorphism of \mathbb{R}^2 . Then NH(f) is one-dimensional unless it is empty.

In the following, we assume that all homeomorphisms of R^2 are orientation preserving and without fixed points, and the topology of R^2 is given by the Euclidean metric.

In §2, we give a precise definition of non-Hausdorff points and characterize NH(f) by the limit sets of continua (Theorem 1). The main theorem is proved in §3 by using Theorem 2 in §2 and Theorem 3 in §3.

The author wishes to thank Professor T. Tsuboi, S. Matsumoto, T. Inaba, L. Guillou and A. Marin for their helpful suggestions and encouragement.

§2. Limit sets of continua.

First we define the non-Hausdorff points precisely. Let f be a homeomorphism of \mathbb{R}^2 . Denote by $O_f(S)$ the orbit $\bigcup_{n=-\infty}^{\infty} f^n(S)$ of a subset S. A point p of \mathbb{R}^2 is called *non-Hausdorff* if there is a point $q \notin O_f(\{p\})$ contained in the closure of $O_f(U)$ for any open neighborhood U of p. We call q a pair of p.

If $NH(f) = \emptyset$, then \mathbb{R}^2/f is a Hausdorff manifold, and is homeomorphic to $S^1 \times \mathbb{R}^1$ because the quotient map is a covering map whose covering transformations are generated by f (*i.e.*, $\pi_1(\mathbb{R}^2/f)$ is isomorphic to \mathbb{Z}). Thus f is topologically conjugate to the translation.

By definition, NH(f) is invariant under f, and $h \cdot NH(f) = NH(hfh^{-1})$ for any homeomorphism h of \mathbb{R}^2 . If a homeomorphism f of \mathbb{R}^2 is the time one map of a flow φ_t $(t \in \mathbb{R})$, then NH(f) is invariant under φ_t for any $t \in \mathbb{R}$. Hence NH(f) consists of 1-dimensional manifolds. Since the non-Hausdorff set of Kerékjártó's homeomorphism has branch points, it is not flowable ([9], [10] and [11]).

Though the orbit of any point is closed because the non-wandering set of f is empty, that of a compact set K is not always closed. The difference between $\overline{O_f(K)}$ and $O_f(K)$ consists of non-Hausdorff points as follows:

LEMMA 1. For any compact set K of \mathbb{R}^2 , $\overline{O_f(K)} - O_f(K)$ is contained in NH(f).

PROOF. Let p be a point of $\overline{O_f(K)} - O_f(K)$. Then there is a point sequence $\{z_n\}_{n=1,2,3,\cdots}$ of $O_f(K)$ converging to p. For each n, we choose an integer m_n such that $z_n \in f^{m_n}(K)$. Since K is compact, we can assume that $\{f^{-m_n}(z_n)\}_{n=1,2,3,\cdots}$ converges to a point q of K by taking a subsequence.

Let U and V be any open sets of \mathbb{R}^2 containing p and q, respectively. For a sufficiently large n, $f^{-m_n}(z_n) \in V$ and $z_n \in U$. Hence q is contained in $\overline{O_f(U)}$.

Since q is an element of K, p is not contained in $O_f(\{q\})$ ($\subset O_f(K)$). Thus p is a non-Hausdorff point.

LEMMA 2. Let $\{U_i\}_{i=1,2,3,\dots}$ be a countable base of \mathbb{R}^2 such that each $\overline{U_i}$ is compact. Then $NH(f) = \bigcup_{i=1}^{\infty} (\overline{O_f(\overline{U_i})} - O_f(\overline{U_i}))$.

PROOF. Let p be a point of NH(f), and q, a pair of p. Since the complement of $O_f(\{p\})$ is an open set containing q, there is an open ε -ball $B_{\varepsilon}(q)$ with center q disjoint from $O_f(\{p\})$. We choose an open set U_i from the countable base such that $q \in U_i \subset B_{\varepsilon/2}(q)$. Then p is not contained in $O_f(\overline{U_i})$ because $O_f(\{p\}) \cap \overline{U_i} \subset O_f(\{p\}) \cap B_{\varepsilon}(q) = \emptyset$. On the other hand, by the choice of p and q, $O_f(U_i)$ intersects any open set containing p. Hence $p \in \overline{O_f(U_i)} \subset \overline{O_f(\overline{U_i})}$. Thus NH(f) is contained in $\bigcup_{i=1}^{\infty} (\overline{O_f(\overline{U_i})} - O_f(\overline{U_i}))$. Lemma 1 implies that NH(f) contains $\bigcup_{i=1}^{\infty} (O_f(\overline{U_i}) - O_f(\overline{U_i}))$. Thus Lemma 2 holds.

We define the *limit set* $Lim_f(S)$ of a subset S by $\bigcap_{n\geq 0} \overline{\bigcup_{|i|\geq n} f^i(S)}$. Then $Lim_f(S)$ is a closed invariant set for any subset S. We consider the non-Hausdorff set in terms of this limit set in the following.

LEMMA 3. Let K be a continuum (i.e., a compact connected set) such that $f(K) \cap K = \emptyset$. Then $\lim_{K \to 0} K(K) = \overline{O_f(K)} - O_f(K)$.

PROOF. Let z be an element of $\overline{O_f(K)} - O_f(K)$. Since $\overline{O_f(K)} = \bigcup_{i=-\infty}^{\infty} f^i(K)$ = $(\bigcup_{i \le n-1} f^i(K)) \cup \bigcup_{i \le n} f^i(K)$ for any $n \ge 0$, z is an element of $\bigcup_{i \le n} f^i(K)$. Thus $\overline{O_f(K)} - O_f(K) \subset Lim_f(K)$.

Next suppose that z is an element of $Lim_f(K)$ (*i.e.*, $z \in \overline{\bigcup_{i \in \mathbb{Z}^n} f^i(K)}$ for any $n \ge 0$). Then z is an element of $\overline{\bigcup_{i=-\infty}^{\infty} f^i(K)} = \overline{O_f(K)}$.

In order to show that z is not contained in $O_f(K)$, it suffices to prove that $f^j(K) \cap \overline{\bigcup_{i \neq j} f^i(K)} = \emptyset$ for any integer j because $z \in \overline{\bigcup_{i \neq j \neq j \neq j} f^i(K)} \subset \overline{\bigcup_{i \neq j} f^i(K)}$.

Suppose that $f^{j}(K) \cap \overline{\bigcup_{i \neq j} f^{i}(K)} \neq \emptyset$ for some j. Let U and V be open sets satisfying that $K \subset U$, $f(K) \subset V$ and $U \cap V = \emptyset$. Let $\varepsilon = d(f(K), \mathbb{R}^{2} - V) > 0$, where $d(A, B) = \inf \{ d(x, y) ; x \in A, y \in B \}$. For any point $p \in K$, there is $\delta(p) > 0$ such that $f(B_{\delta(p)}(p)) \subset B_{\varepsilon/2}(f(p))$ and $B_{\delta(p)}(p) \subset U$. Since K is compact, there are finitely many points $p_{1}, p_{2}, \cdots, p_{k} \in K$ such that $\{ B_{\delta(p_{i})}(p_{i}) \}_{i=1, \cdots, k}$ is an open covering of K. Let $W = \bigcup_{i=1}^{k} B_{\delta(p_{i})}(p_{i})$. Then \overline{W} is also a continuum satisfying $K \subset W$ and $\overline{W} \cap f(\overline{W}) \subset \overline{U} \cap \bigcup_{i=1}^{k} f(\overline{B_{\delta(p_{i})}(p_{i})}) \subset \overline{U} \cap V = \emptyset$. Furthermore, $f^{j}(\overline{W}) \cap$ $\bigcup_{i \neq j} f^{i}(\overline{W}) \supset f^{j}(W) \cap \bigcup_{i \neq j} f^{i}(K) \neq \emptyset$ because $f^{j}(W)$ is an open set containing $f^{j}(K)$. However this contradicts Brown's lemma ([3] Lemma 3.1), which implies that, if C is a continuum and $C \cap f(C) = \emptyset$, then $f^{i}(C) \cap f^{j}(C) = \emptyset$ whenever $i \neq j$. Hence $f^{j}(K) \cap \overline{\bigcup_{i \neq j} f^{i}(K)}$ is empty. Therefore $Lim_{f}(K)$ is contained in $\overline{O_{f}(K)}$ $-O_{f}(K)$.

THEOREM 1. Let f be an orientation preserving fixed point free homeomorphism of \mathbb{R}^2 . For any countable base $\{U_i\}_{i=1,2,3,\dots}$ of \mathbb{R}^2 satisfying that $\overline{U_i} \cap f(\overline{U_i}) = \emptyset$ and each $\overline{U_i}$ is a continuum, the following equations hold;

$$NH(f) = \bigcup_{i=1}^{\infty} Lim_f(\overline{U_i}) = \bigcup_{i=1}^{\infty} (\overline{O_f(\overline{U_i})} - O_f(\overline{U_i})).$$

PROOF. By Lemma 2, $NH(f) = \bigcup_{i=1}^{\infty} (\overline{O_f(U_i)} - O_f(\overline{U_i}))$. Since $Lim_f(\overline{U_i}) = \overline{O_f(U_i)} - O_f(\overline{U_i})$ by Lemma 3, $NH(f) = \bigcup_{i=1}^{\infty} Lim_f(\overline{U_i})$.

REMARK. For any foliation of \mathbb{R}^2 , there is a leaf preserving homeomorphism, and foliations of \mathbb{R}^2 are given by 1-dimensional non-Hausdorff manifolds ([7]). Since many kinds of 1-dimensional non-Hausdorff manifolds have already

Η. ΝΑΚΑΥΑΜΑ

been given ([7]), we can make various homeomorphisms of \mathbb{R}^2 . For example, we obtain a homeomorphism whose non-Hausdorff set is dense in \mathbb{R}^2 .

THEOREM 2. NH(f) has no interior points.

PROOF. By taking sufficiently small balls, we choose a countable base $\{U_i\}$ of \mathbb{R}^2 such that $\overline{U_i} \cap f(\overline{U_i}) = \emptyset$ and $\overline{U_i}$ are continua. By definition, $\lim_f (\overline{U_i})$ is closed. Furthermore, $\lim_f (\overline{U_i})$ has no interior points because $\lim_f (\overline{U_i}) = \overline{O_f(U_i)} - O_f(\overline{U_i})$. Since $NH(f) = \bigcup_{i=1}^{\infty} \lim_f (\overline{U_i})$ by Theorem 1, NH(f) is a countable union of closed sets without interior points. By Baire's theorem, NH(f) has no interior points.

§3. Proof of the main theorem.

First we prove the connectivity of $NH(f) \cup \{\infty\}$ in $\mathbb{R}^2 \cup \{\infty\}$ in order to consider the dimension of NH(f).

THEOREM 3. $NH(f) \cup \{\infty\}$ is connected in $\mathbb{R}^2 \cup \{\infty\}$.

PROOF. It is enough to prove that NH(f) is not contained in the union of any disjoint open sets U_1 and U_2 of $\mathbb{R}^2 \cup \{\infty\}$ satisfying that $NH(f) \cap U_1 \neq \emptyset$ and $\infty \in U_2$.

Let p be an element of $NH(f) \cap U_1$ and let q be a pair of p. Since $O_f(\{p\})$ is closed, we can choose an $\varepsilon > 0$ such that $\overline{B_{\varepsilon}(q)} \cap O_f(\{p\}) = \emptyset$ and $\overline{B_{\varepsilon}(q)} \cap f(\overline{B_{\varepsilon}(q)}) = \emptyset$. Denote by K the closed ball $\overline{B_{\varepsilon}(q)}$. Then p is contained in $\overline{O_f(K)}$ because $O_f(B_{\varepsilon}(q))$ intersects any neighborhood of p. In particular, U_1 intersects $O_f(K)$.

Let Λ denote the non-empty set $\{n \in \mathbb{Z}; U_1 \cap f^n(K) \neq \emptyset\}$. Suppose that Λ is a finite set. Then there is a positive integer N_1 such that U_1 is disjoint from $f^n(K)$ for any $|n| \ge N_1$. Hence p is not contained in $\overline{\bigcup_{1 \le N_1} f^n(K)}$. However this contradicts that $p \in \overline{O_f(K)} = (\bigcup_{1 \le N_1} f^n(K)) \cup \overline{\bigcup_{1 \le N_1} f^n(K)}$ and $p \notin O_f(K)$. Thus Λ is an infinite set. We denote the elements of Λ by n_1, n_2, n_3, \cdots where $\lim_{i \to \infty} |n_i| = \infty$.

Let z be an element of K. Since $\lim_{n\to\pm\infty} f^n(z)=\infty$, there is a positive integer N_2 such that $f^n(z) \in U_2$ for any $|n| \ge N_2$. In particular, U_2 intersects $f^n(K)$ for any $|n| \ge N_2$. By taking a sufficiently large I such that $|n_i| \ge N_2$ for any $i \ge I$, $f^{n_i}(K)$ intersects both U_1 and U_2 for any $i \ge I$. Since $f^{n_i}(K)$ is connected, there exists an element x_i of $f^{n_i}(K) - (U_1 \cup U_2)$ for $i \ge I$.

By taking a subsequence of $\{x_i\}_{i\geq I}$, we can assume that $\{x_i\}$ converges to a point $z \notin U_1 \cup U_2$ because $(\mathbb{R}^2 \cup \{\infty\}) - (U_1 \cup U_2)$ is compact. For any integer $m \geq 0$, there is a positive integer I_m $(I_m \geq I)$ such that $|n_i| \geq m$ for any $i \geq I_m$. Since $x_i \in f^{n_i}(K) \subset \bigcup_{1 \neq 1 \geq m} f^j(K)$ for any $i \geq I_m$, z is an element of $\overline{\bigcup_{1 \neq 1 \geq m} f^j(K)}$. Thus z is a point of $Lim_f(K)$. By Lemmas 1 and 3, z is a non-Hausdorff point,

792

which is not contained in $U_1 \cup U_2$.

REMARK. $NH(f) \cup \{\infty\}$ is not always arcwise connected (see [4], Example 3).

PROOF OF THE MAIN THEOREM. Since $NH(f) \cup \{\infty\}$ is connected in $\mathbb{R}^2 \cup \{\infty\}$ by Theorem 3, the dimension of $NH(f) \cup \{\infty\}$ is not zero if NH(f) is not empty. By [8], the dimension of NH(f) is not zero, either. On the other hand, the dimension of NH(f) is less than two by Theorem 2. Thus NH(f) is one-dimensional.

References

- [1] L.E.J. Brouwer, Beweis des ebenen Translationssatzes, Math. Ann., 72 (1912), 37-54.
- [2] M. Brown, A new proof of Brouwer's lemma on translation arcs, Houston J. Math., 10 (1984), 35-41.
- [3] M. Brown, Homeomorphisms of two-dimensional manifolds, Houston J. Math., 11 (1985), 455-469.
- [4] M. Brown, Fundamental regions of planar homeomorphisms, Contemp. Math., 117 (1991), 49-56.
- [5] A. Fathi, An orbit closing proof of Brouwer's lemma on translation arcs, Enseign. Math., 33 (1987), 315-322.
- [6] L. Guillou, Théorème de translation plane de Brouwer et généralisations du théorème de Poincaré-Birkhoff, preprint.
- [7] A. Haefliger and G. Reeb, Variétés (non séparées) à une dimension et structures feuilletées du plan, Enseign. Math., 3 (1957), 107-126.
- [8] W. Hurewicz and H. Wallman, Dimension Theory, Princeton Univ. Press, Princeton, N. J., 1948.
- [9] B. de Kerékjártó, Sur le groupe des transformations topologiques du plan, Ann. Scuola Norm. Sup. Pisa CI. Sci., (1934), 393-400.
- [10] B. de Kerékjártó, Über die fixpunktfreien Abbildungen der Ebene, Acta Sci. Math. (Szeged), 6 (1934), 226-234.
- [11] S. Matsumoto, Flows of the solid torus and fixed point free homeomorphisms of the plane, unpublished.

Hiromichi NAKAYAMA Department of Mathematics Hiroshima University Higashi-Hiroshima 724 Japan 793