Expansiveness of homeomorphisms and dimension

Dedicated to Professor Akihiro Okuyama on his 60th birthday

By Hisao KATO

(Received Jan. 20, 1993)

0. Introduction.

In [8], Mañé proved that if a compact metric space X admits an expansive homeomorphism, then X is finite dimensional. In [6, 7], we introduced the notion of continuum-wise (fully) expansive homeomorphism and investigated the several properties. The class of continuum-wise expansive homeomorphisms is much larger than the class of expansive homeomorphisms. In relation to dimension theory, the following results were proved; (1) if a compact metric space X admits a continuum-wise expansive homeomorphism, then X is finite dimensional $\lceil 6 \rceil$, and (2) if a continuum X admits a positively continuum-wise fully expansive map, then X is 1-dimensional [7]. In this paper, we define the notion of barriers of a homeomorphism $f: X \rightarrow X$ and an index B(f). We are interested in the relation between the index B(f) and the dimension of X. The following theorem is proved; if $f: X \rightarrow X$ is a continuum-wise expansive homeomorphism of a compact metric space X, then dim $X \leq B(f) \leq 2 \cdot \dim X < \infty$. As a corollary, if $f: X \rightarrow X$ is a continuum-wise fully expansive homeomorphism, then dim $X \leq B(f) \leq 2$.

1. Definitions and preliminaries.

By a continuum, we mean a compact metric connected nondegenerate space. A homeomorphism $f: X \rightarrow X$ of a compact metric space X with metric d is *expansive* (e.g., see [1] and [2]) if there is a positive number c > 0 such that if x, $y \in X$ and $x \neq y$, then there is an integer $n=n(x, y) \in \mathbb{Z}$ such that

$$d(f^{n}(x), f^{n}(y)) > c$$
.

A homeomorphism $f: X \rightarrow X$ is continuum-wise expansive [6] if there is a positive number c > 0 such that if A is a nondegenerate subcontinuum of X, then there is an integer $n=n(A) \in \mathbb{Z}$ such that

diam $f^n(A) > c$,

Н. КАТО

where diam B denotes the diameter of a set B. Clearly, every expansive homeomorphism is continuum-wise expansive, but the converse assertion is not true. There are many important continuum-wise expansive homeomorphisms which are not expansive (see [6, 7]). Those homeomorphisms have frequent applications in topological dynamics, ergodic theory and continuum theory (e.g., see the references).

Note that if $f: X \to X$ and $g: Y \to Y$ are (resp. continuum-wise) expansive homeomorphisms, then the product $f \times g: X \times Y \to X \times Y$ is also (resp. continuumwise) expansive. Hence this implies that for each natural number n, there is an expansive homeomorphism $f: X \to X$ of a compact metric space X with dim X=n. In [7], we introduced the notion of (positively) continuum-wise fully expansive and study several properties of continuum-wise fully expansive homeomorphisms, which are contained in the class of continuum-wise expansive homeomorphisms. A homeomorphism $f: X \to X$ of a continuum X is continuumwise fully expansive [7] if for each $\varepsilon > 0$ and $\delta > 0$, there is a natural number $N=N(\varepsilon, \delta)>0$ such that if A is a subcontinuum of X with diam $A \ge \delta$, then either (i) $d_H(f^n(A), X) < \varepsilon$ for each $n \ge N$, or (ii) $d_H(f^{-n}(A), X) < \varepsilon$ for each $n \ge N$, where

$$d_H(A_1, A_2) = \inf \{\eta > 0 | U(A_1, \eta) \supset A_2 \text{ and } U(A_2, \eta) \supset A_1 \},$$

for each closed subsets A_1 , A_2 of X and $U(A_1, \eta)$ denotes the η -neighborhood of A_1 in X. The distance d_H is called the *Hausdorff metric*. A map $f: X \to X$ is positively continuum-wise fully expansive if for each $\varepsilon > 0$ and $\delta > 0$, there is a natural number $N=N(\varepsilon, \delta)>0$ such that if A is a subcontinuum of X with diam $A \ge \delta$, then the above condition (i) is satisfied.

Note that there is a 2-dimensional continuum X which admits a continuumwise fully expansive homeomorphism. In fact, each hyperbolic toral automorphism $f: T \rightarrow T$ of the torus T is (continuum-wise fully) expansive. Note that dim T=2.

For a compact metric space X, put $C(X) = \{A \mid A \text{ is a nonempty subcontinuum of } X\}$. Then it is well known that C(X) is a compact metric space with the Hausdorff metric d_H .

2. Barriers of a homeomorphism.

Let $f: X \to X$ be a homeomorphism of a compact metric space X. Then $B = \{B^+; B^-\}$, where $B^+ = \{B^+_1, \dots, B^+_k\}$ and $B^- = \{B^-_{k+1}, \dots, B^-_m\}$ are families of closed subsets of X, is said to be a *family of barriers of* f provided that for each $\eta > 0$ there is a natural number $N = N(\eta) > 0$ such that if $A \in C(X)$ and diam $A \ge \eta$, then one of the following two conditions holds:

Expansiveness of homeomorphisms and dimension

(+) For some
$$1 \leq i \leq k$$
, $f^{N}(A) \cap B_{i}^{+} \neq \emptyset \neq f^{N}(A) \cap (X - B_{i}^{+})$.

(-) For some
$$k+1 \leq i \leq m$$
, $f^{-N}(A) \cap B_i \neq \emptyset \neq f^{-N}(A) \cap (X-B_i)$.

Briefly, we write $B = \{B^+; B^-\} = \{B_1^+, \dots, B_k^+; B_{k+1}^-, \dots, B_m^-\}$. Each $B_i^+ (1 \le i \le k)$ is said to be a *positive barrier of* f and each $B_i^- (k+1 \le i \le m)$ is said to be a *negative barrier of* f. Put $B(f) = \min\{m | \text{there is a family } B = \{B^+; B^-\}$ of barriers of f such that $|B| = |B^+| + |B^-| = m\}$, where |A| denotes the cardinality of a set A. If there is no finite family of barriers of f, we define $B(f) = \infty$.

3. Dimension and families of barriers of continuum-wise expansive homeomorphisms.

Let X be a compact metric space. Then X has $dimension \le n$, denoted by $\dim X \le n$, if for any $\eta > 0$ there is a covering U of X by open sets with diameter $<\eta$ such that $\operatorname{ord} U \le n+1$, i.e., every point of X belongs to at most n+1 sets of U. If $\dim X \le n$ and $\dim X \le n-1$ is not true, then $\dim X=n$. Let $f: X \to X$ be a homeomorphism of a continuum X. Put $V^s = \{A \mid A \text{ is a subcontinuum of } X \text{ such that } \lim_{n \to \infty} \operatorname{diam} f^n(A) = 0\}$ and $V^u = \{A \mid A \text{ is a subcontinuum of } X \text{ such that } \lim_{n \to \infty} \operatorname{diam} f^{-n}(A) = 0\}$.

(3.1) PROPOSITION. Let $f: X \to X$ and $g: Y \to Y$ be homeomorphisms of compact metric spaces, respectively, and let $f \times g: X \times Y \to X \times Y$ be a product of f and g, i.e., $(f \times g)(x, y) = (f(x), g(x))$ for each $x \in X$ and $y \in Y$. Then $B(f \times g) \leq B(f) + B(g)$.

PROOF. Let $\{B_1^+, \dots, B_i^+; B_{i+1}^-, \dots, B_m^-\}$ and $\{C_1^+, \dots, C_j^+; C_{j+1}^-, \dots, C_n^-\}$ be families of barriers of f and g, respectively. Then $\{B_1^+ \times Y, \dots, B_i^+ \times Y, X \times C_1^+, \dots, X \times C_j^+; B_{i+1}^- \times Y, \dots, B_m^- \times Y, X \times C_{j+1}^-, \dots, X \times C_n^-\}$ is a family of barriers of $f \times g$. By this fact, we see that $B(f \times g) \leq B(f) + B(g)$.

(3.2) LEMMA ([6, Corollary (2.4)]). Let $f: X \to X$ be a continuum-wise expansive homeomorphism of a compact metric space X. Then there is a positive number $\delta > 0$ such that for each $\eta > 0$ there is a natural number $N = N(\eta) > 0$ such that if $A \in C(X)$ and diam $A \ge \eta$, then diam $f^n(A) \ge \delta$ for each $n \ge N$, or diam $f^{-n}(A) \ge \delta$ for each $n \ge N$.

(3.3) PROPOSITION. Let $f: X \to X$ be a continuum-wise expansive homeomorphism of a compact metric space X and let $\delta > 0$ be a positive number as in (3.2). Then $B(f) \leq 2 \cdot i(\delta) < \infty$, where for each $\varepsilon > 0$,

 $i(\varepsilon) = \min \{m \mid \text{there is a finite family } F = \{F_1, \dots, F_m\} \text{ of closed subsets of } X$ such that for each component C of F_i $(1 \le i \le m)$, diam $C < \varepsilon$, and for each component D of $X - \bigcup_{i=1}^m F_i$, diam $D < \varepsilon\}$. Н. КАТО

PROOF. Let $i(\delta) = m$ and let F be a family of closed subsets of X as in the statement of (3.3). Put $B_i^+ = F_i$ $(1 \le i \le m)$ and $B_j^- = F_j$ $(1 \le j \le m)$. Then the family $\{B_1^+, \dots, B_m^+; B_1^-, \dots, B_m^-\}$ is a family of barriers of f (see (3.2)). Hence $B(f) \le 2 \cdot i(\delta) < \infty$.

(3.4) PROPOSITION. Let X be a compact metric space with dim X=n. Then $\sup\{i(\varepsilon)|\varepsilon>0\}=n$.

PROOF. Note that if $\varepsilon_1 \ge \varepsilon_2 > 0$, then $i(\varepsilon_1) \le i(\varepsilon_2)$. For each $\varepsilon > 0$, there is a finite open cover \mathcal{U} of X with mesh $\mathcal{U} < \varepsilon$ and ord $\mathcal{U} \le n+1$. By [9, p. 213], there are families $\mathcal{V}_1, \dots, \mathcal{V}_{n+1}$ of pairwise disjoint open sets of X, i.e., ord $\mathcal{V}_i \le 1$, such that each \mathcal{V}_i shrinks \mathcal{U} $(1 \le i \le n+1)$ and $\bigcup_{i=1}^{n+1} \mathcal{V}_i$ is a cover of X. Taking a shrinking \mathcal{V}'_i of \mathcal{V}_i $(1 \le i \le n+1)$ such that $\bigcup_{i=1}^{n+1} \mathcal{V}'_i = X$ and each element of \mathcal{V}'_i is a closed subset of X. Put $F_i = \bigcup \mathcal{V}'_i$ $(1 \le i \le n)$. Consider the family $\{F_1, \dots, F_n\}$. Then the family satisfies the desired condition. Hence $i(\varepsilon) \le n = \dim X$. Next, we shall show that $\sup\{i(\varepsilon) | \varepsilon > 0\} \ge \dim X$. Suppose, on the contrary, that for each $\varepsilon > 0$, $i(\varepsilon) < \dim X = n$. Let $\varepsilon > 0$ be a given positive number. Then there is a family $F = \{F_1, \dots, F_m\}$ of closed sets of X such that m < n, for each component C of F_i , diam $C < \varepsilon$ and for each component D of $X - \bigcup_{i=1}^m F_i$, diam $D < \varepsilon$. By considering small neighborhoods of components of $F_i \in F$, we can easily see that there is an open cover \mathcal{U} of X with mesh $\mathcal{U} < \varepsilon$ and ord $\mathcal{U} \le m+1$. Hence dim $X \le m < n$. This is a contradiction.

(3.5) REMARK. In [8], Mañé proved that if $f: X \to X$ is an expansive homeomorphism of a compact metric space X, then dim $X < \infty$. In fact, from his proof, we can see (by [6, Proposition 2.2]) that dim $X \leq (j(\delta))^2 - 1$, where $j(\varepsilon) = \min \{n | \text{there is a finite closed cover } F = \{F_1, \dots, F_n\} \text{ of } X \text{ with mesh } F < \varepsilon\}$. Clearly $i(\varepsilon) < j(\varepsilon)$.

(3.6) EXAMPLE. Let A be a 2×2 matrix satisfying (i) all entries of A are integers, (ii) det $(A) = \pm 1$ and (iii) A is hyperbolic, i.e., none of its eigenvalues have absolute one. Then the eigenvalues λ_1, λ_2 are real and we may assume that $|\lambda_1| > 1$, $|\lambda_2| < 1$. For example, let $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$. Let $p: \mathbb{R}^2 \to T$ be the natural covering projection from the plane \mathbb{R}^2 to the torus $T = S^1 \times S^1$, and let $L_A: T \to T$ be the homeomorphism of T induced by A, i.e., $p \cdot A = L_A \cdot p$. Then L_A is called a hyperbolic toral automorphism. The dynamical properties of L_A is well known. By $[7, (2.4)], L_A$ is continuum-wise fully expansive. Let V_i (i=1, 2) be the eigenvector space corresponding to λ_i in \mathbb{R}^2 . Consider the subset D in \mathbb{R}^2 as in the Figure 1. Put $B = p(D) \subset T$, and $B^+ = B$ and $B^- = B$. Since $T \supseteq B \supset \operatorname{Int} B \neq \emptyset$ and L_A is continuum-wise fully expansive, $\{B^+; B^-\}$ is

586

a family of barriers of L_A . Then $B(L_A)=2$ (see (3.7) below).

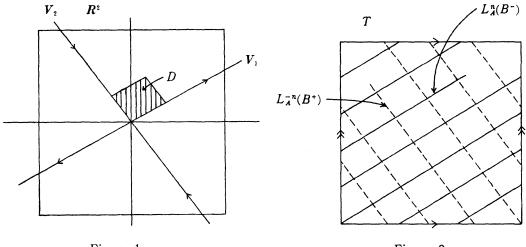


Figure 1.

Figure 2.

The following is the main theorem of this paper.

(3.7) THEOREM. If $f: X \to X$ is a homeomorphism of a compact metric space X, then dim $X \leq B(f)$. In particular, if f is a continuum-wise expansive homeomorphism, then dim $X \leq B(f) \leq 2 \cdot i(\delta) \leq 2 \cdot \dim X < \infty$, where δ is a positive number as in (3.2).

PROOF. We may assume that $B(f)=m<\infty$. Let $\{B^+; B^-\}=\{B_1^+, \dots, B_k^+; B_{k+1}^-, \dots, B_m^-\}$ be a family of barriers of f. For each $n=0, 1, \dots$, and $i=1, 2, \dots, m$, consider the following subsets of X;

$$M(i, n) = f^{-n}(B_i^+), \quad \text{for } 1 \leq i \leq k, \quad \text{and}$$
$$M(i, n) = f^n(B_i^-), \quad \text{for } k+1 \leq i \leq m.$$

Let $\eta > 0$ be a given positive number. Since $\{B^+; B^-\}$ is a family of barriers of f, we can choose a natural number $N=N(\eta)$ such that if $A \in C(X)$ and diam $A \ge \eta$, then one of the following two conditions is satisfied;

$$(+) \quad f^{N}(A) \cap B_{i}^{+} \neq \emptyset \neq f^{N}(A) \cap (X - B_{i}^{+}) \quad \text{for some } 1 \leq i \leq k, \qquad \text{or}$$

$$(-) \quad f^{-N}(A) \cap B_i^- \neq \emptyset \neq f^{-N}(A) \cap (X - B_i^-) \quad \text{for some } k + 1 \leq i \leq m.$$

For each $i=1, 2, \dots, m$, put $A_i = \{E \mid E \subset \{1, 2, \dots, m\} \text{ and } |E|=i\}$. For each $j=1, 2, \dots, m$, put

$$L_j = \bigcup_{E \in A_j} (\cap \{ M(i, N) | i \in E \})$$

Note that $L_m \subset L_{m-1} \subset \cdots \subset L_1$ and $L_m = \bigcap_{i=1}^m M(i, N)$, and $L_1 = \bigcup_{i=1}^m M(i, N)$. Now, we shall show that there is a family U' of open sets of X such that U' Η. ΚΑΤΟ

covers L_1 , i.e., $\bigcup U' \supset L_1$, and ord $U' \leq m$. First, consider the set L_m . If C is a component of L_m , we see that $f^N(C) \subset B_i^+$ for each $1 \leq i \leq k$, and $f^{-N}(C) \subset B_i^$ for each $k+1 \leq i \leq m$. Since $\{B^+; B^-\}$ is a family of barriers of f, by the choice of N we see that diam $C < \eta$ (see Figure 2). By considering small neighborhoods of components of L_m , we can choose a family U_m of open sets of X such that \mathcal{U}_m covers L_m , ord $\mathcal{U}_m \leq 1$ and mesh $\mathcal{U}_m < \eta$. Next, consider the set; $P_{m-1} = L_{m-1} - \bigcup U_m$. If C is a component of P_{m-1} , we see that diam $C < \eta$, because that $\{B^+; B^-\}$ is a family of barriers of f. By considering small neighborhoods of components of P_{m-1} , we can choose a family \mathcal{U}_{m-1} of open sets of X such that \mathcal{U}_{m-1} covers P_{m-1} , ord $\mathcal{U}_{m-1} \leq 1$ and mesh $\mathcal{U}_{m-1} < \eta$. If we continue this procedure, we obtain a sequence \mathcal{U}_m , \mathcal{U}_{m-1} , \cdots , \mathcal{U}_1 of families of open sets of X, and a sequence $P_m = L_m$, P_{m-1} , \cdots , P_1 of closed sets of X such that $P_{i-1} = L_{i-1} - \bigcup (\mathcal{U}_m \cup \mathcal{U}_{m-1} \cup \cdots \cup \mathcal{U}_i), \ \bigcup \mathcal{U}_{i-1} \supset P_{i-1}, \text{ and } \text{ ord } \mathcal{U}_{i-1} \leq 1$ and mesh $\mathcal{U}_{i-1} < \eta$ $(i=m+1, \dots, 2)$. Put $\mathcal{U}' = \mathcal{U}_m \cup \mathcal{U}_{m-1} \cup \dots \cup \mathcal{U}_1$. Then \mathcal{U}' covers L_1 , mesh $\mathcal{U}' < \eta$ and ord $\mathcal{U}' \leq m$. Finally, consider the set $Y = X - \bigcup \mathcal{U}'$. If C is a component of Y, then diam $C < \eta$. Hence we can choose a family \mathcal{U}'' of open sets of X such that ord $\mathcal{U}'' \leq 1$, mesh $\mathcal{U}'' < \eta$ and \mathcal{U}'' covers Y. Put \mathcal{U} $=\mathcal{U}'\cup\mathcal{U}''$. Then \mathcal{U} is an open cover of X such that $\operatorname{ord} \mathcal{U} \leq m+1$ and mesh \mathcal{U} $<\eta$. Hence we can conclude that dim $X \leq m = B(f)$. If $f: X \rightarrow X$ is a continuum-wise expansive homeomorphism, by (3.3) and (3.4) $B(f) \leq 2 \cdot i(\delta) \leq 2 \cdot dim X$ $<\infty$. This completes the proof.

(3.8) COROLLARY. If a continuum X admits a continuum-wise fully expansive homeomorphism $f: X \rightarrow X$, then

- (a) $B(f) \leq 2$, and hence X is at most 2-dimensional, and
- (b) if $A \in V^{\sigma}$ ($\sigma = s$ and u), then dim $A \leq 1$.

PROOF. (a): Choose a proper closed subset B of X with $\operatorname{Int} B \neq \emptyset$. Put $B^+=B$, $B^-=B$. Then the family $\{B^+; B^-\}$ is a family of barriers of f. Hence dim $X \leq B(f) \leq 2$. (b): We prove the case $\sigma = u$. The family $\{B^+; \phi\}$ is a family of "barriers" of $f \mid A$, where the notion of barriers of the restriction $f \mid A : A \to X$ of f to A is similarly defined. Hence dim $A \leq 1$ (see the proof of (3.7)).

In case of a map $f: X \to X$, we can define the index $B^+(f)$ as follows: Let $f: X \to X$ be a map of a compact metric space X. Suppose that there is a family $B^+ = \{B_1^+, \dots, B_m^+\}$ of *positive barriers* of f, i.e., for each $\eta > 0$ there is a natural number N such that if $A \in C(X)$ and diam $A \ge \eta$, then there is $1 \le i \le m$ such that

 $(+) \quad f^{N}(A) \cap B_{i}^{+} \neq \emptyset \neq f^{N}(A) \cap (X - B_{i}^{+}).$

Put $B^+(f) = \min \{m | \text{there is a family } B^+ \text{ of positive barriers of } f \text{ such that } |B^+| = m \}$. If there is no finite family of positive barriers of f, we define

 $B^+(f) = \infty$.

(3.9) COROLLARY ([7, (4.3)]). If a continuum X admits a positively continuumwise fully expansive map, then dim $X=B^+(f)=1$.

PROOF. Let B be a proper closed subset of X with $\operatorname{Int} B \neq \emptyset$. Then $\{B^+=B\}$ is a family of positive barriers of f. Hence dim $X \leq 1$ (see the proof of (3.7)).

(3.10) COROLLARY. If $f: X \rightarrow X$ is a positively continuum-wise expansive map of a compact metric space X, then dim $X=B^+(f)$.

PROOF. Let $m = \dim X$. By (3.4), we can choose a family $\{B_1, B_2, \dots, B_m\}$ of positive barriers of f. Hence dim $X = B^+(f)$ (see the proof of (3.7)).

We have the following problems.

PROBLEM 1. Is it true that if $f: X \rightarrow X$ is a continuum-wise fully expansive homeomorphism of a 1-dimensional continuum X, then f or f^{-1} is positively continuum-wise fully expansive?

PROBLEM 2. Is it true that for each continuum-wise expansive homeomorphism $f: X \rightarrow X$ of a compact metric space X, dim X=B(f)?

In relation to the above problems, we have the following fact.

(3.11) PROPOSITION ([7, (3.3)]). Let $f: X \rightarrow X$ be a continuum-wise fully expansive homeomorphism of a continuum. Then neither f nor f^{-1} is positively continuum-wise fully expansive if and only if for each $x \in X$, there are two nondegenerate subcontinua A, B of X such that $x \in A \cap B, A \in V^s$ and $B \in V^u$. In particular, dim $(A \cap B)=0$ and dim $A=1=\dim B$.

References

- [1] N. Aoki, Topological dynamics, In: Topics in general topology, (eds. K. Morita and J. Nagata), Elsevier Science Publishers B. V., 1989, pp. 625-740.
- [2] W. Gottschalk and G. Hedlund, Topological dynamics, Amer. Math. Soc. Colloq. Publ., 34, 1955.
- [3] R. Engelking, Dimension Theory, PWN Warszawa, 1978.
- [4] H. Kato, Expansive homeomorphisms in continuum theory, Topology Appl., 45 (1992), 223-243.
- [5] H. Kato, Expansive homeomorphisms and indecomposability, Fund. Math., 139 (1991), 49-57.
- [6] H. Kato, Continuum-wise expansive homeomorphisms, Canad. J. Math., 45 (1993), 576-598.
- [7] H. Kato, Concerning continuum-wise fully expansive homeomorphisms of continua, Topology Appl., 53 (1993), 239-258.

Η. ΚΑΤΟ

- [8] R. Mañé, Expansive homeomorphisms and topological dimension, Trans. Amer. Math. Soc., 252 (1979), 313-319.
- [9] P. Ostrand, Covering dimension in general spaces, Gen. Topology and Appl., 1 (1971), 209-221.
- [10] P. Walter, An Introduction to Ergodic Theory, Graduate Texts in Math., 79, Springer.

Hisao Kato

Faculty of Integrated Arts and Sciences Hiroshima University 1-7-1 Kagamiyama, Higashi-Hiroshima Hiroshima 724 Japan

Current Address Institute of Mathematics University of Tsukuba Ibaraki 305 Japan

590