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   0. Introduction. 

   The strong shape category of metric compacta was introduced in 1973 by 

J. B. Quigley [19], although some notions related to strong shape were already 
considered by D. Christie [6] and T. Porter [18]. In particular, Christie de-
fined the strong shape groups. In 1976 D. A. Edwards and H. M. Hastings [11], 

motivated by work of T. A. Chapman [5], obtained a category isomorphism 
between the strong shape category of compacta K in the pseudo-interior of the 
Hilbert cube, Q, and the proper homotopy category of their complements Q-K. 
Strong shape was extended to arbitrary topological spaces by F. W. Bauer [1] 
and Edwards and Hastings [11]. General information about the strong shape 
category of compacta is contained in the papers [9] by J. Dydak and J. Segal 
and [3] by F. W. Cathey. The first of them presents a geometric study of 
strong shape based on the notion of contractible telescope. The second one 

gives an account of several different approaches. We shall use in this paper 
the approach to strong shape given by J. B. Quigley [19] or, in a more general 
form, that given by Y. Kodama and J. Ono [14], [15] under the name of fine 
shape. 

   All the existing descriptions of the strong shape category of compacta use 
external elements to introduce the basic notion of strong shape. Compacta are 

generally assumed to lie in the Hilbert cube or in a convenient ambient space, 
like a manifold or a polyhedron, and maps take values in neighborhoods of the 

Compacta in the ambient space. In other descriptions, compacta are presented 
as inverse limits of ANR systems and maps are defined between the systems 
and not directly between the compacta themselves. 

   We present in this paper a new description of strong shape. We eliminate 
all the external elements in our approach and obtain an intrinsic description of 
the strong shape category of compacta, completing in this way the program 
that was started in [20] and [21] for standard shape. 

   We use in our approach the theory of multivalued maps. Strong shape 
morphisms are characterized as homotopy classes of fine multivalued maps and 
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476 A. GIRALDO and J. M. R. SANJURJO 

a complete description of the category is given in terms of this notion. A 

topology is introduced on the set M(X, Y) of fine multivalued maps between 

two compacta X and Y. + This allows us to identify the shape morphisms 

from X to Y with the connected components of M(X, Y) and the strong shape 

morphisms with the path components of M(X, Y). By using this representation, 

we prove that every shape morphism is the closure of a strong shape morphism. 
If (X, x0) is a pointed compactum, we define the Steenrod loop space Qs(X, x0) 

as a useful tool to study the strong shape groups J1 (X, x0). We have adopted 

this terminology since Steenrod's name has often been associated with strong 
shape (see [12]). We prove that H (X, xo)=fT n_1(Qs(X, x0), *) and, therefore, 

the calculation of strong shape groups can be reduced to that of the standard 

homotopy groups of the Steenrod loop space. 

   For information about shape theory we recommend the books [2], [7], [8] 

and [17] by K. Borsuk, J. M. Cordier and T. Porter, J. Dydak and J. Segal and 

S. Mardesic and J. Segal respectively. We also recommend the collection of 
open problems [10] by J. Dydak and J. Segal. For earlier results about the 

relationship between shape and multivalued maps see the papers [4], [13] and 

[16] by Z. Cerin and T. Watanabe, Y. Koyama and A. Koyama respectively. 

   1. Fine multivalued maps and strong shape morphisms. 

   Let X and Y be metric spaces. An upper semicontinuous multivalued func-

tion F: X--~Y is a correspondence such that for every x~X, F(x)~ 0 is a 

closed subset of Y and for every neighborhood V of F(x) in Y there is a neigh-
borhood U of x such that F(U)=lJ EU F(y) is contained in V. In the sequel, 

upper semicontinuous multivalued functions will be called multivalued maps for 

short. F is said to be i-small if diameter (F(x))<s for every x~X. Two 
multivalued maps F, G : X-~Y are ~-homotopic if there exists an s-small multi-

valued map H : Xx I--*Y such that H(x, 0)=F(x) and H(x, 1)=G(x) for every 
xEX. 

   In the sequel X and Y will always be compact metric spaces. A fine multi-

valued map from X to Y is a multivalued map F : X x R+--Y such that for 

every >0 there is a t0ER+=[0, oo) such that diameter(F(x, t))<~ for every 

x X and every t>_ to. Two fine multivalued maps F, G : X x R+-~Y are said to 
be homotopic if there exists a fine multivalued map H : X x [0, 1] x R+-~Y such 

that H(x, 0, t)=F(x, t) and H(x,1, t)=G(x, t) for every (x, t)~XXR+. F and 
G are said to be weakly homotopic if for every >o there is a t0ER+ such that 

FI XX[t0,o> and G I xx[to,~) are ~-homotopic. Homotopy and weak homotopy of fine 
multivalued maps are equivalence relations. The corresponding equivalence 

classes of F will be denoted by [F] and [F] w respectively. Obviously [F] c 

[F]w.
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   DEFINITION 1. Let F : XxR+--~Y and G : Y x R+--~Z be fine multivalued 
maps. A function a : R+-R+ is said to be a stretching map associated to the 

pair (F, G) if it is an increasing continuous function and there exist null se-
quences {En}, {rln} such that a) diam (G(Kx {t}))<sn for every KCY with 
diam (K)<a~n and every t~ [n, n+1] and b) diam (F(x, t))<i n for every x~X 
and every t>a(n). 

   The next proposition shows that stretching maps always exist. 

   PROPOSITION 1. Let F : XxR+-~Y and G : Y x R+-~Z be fine multivalued 
maps. Then, there exists a stretching map a : R+-R+ associated to (F, G). 

   PROOF. Consider a null sequence {E n } such that diam (G(y, t)) < E n for every 

y Y and every t>_ n and define by induction a null sequence ri 1 > r)2 > • • • > n > • • • 
such that diam (G(Kx {t}))<6 for every KCY with diam (K)<iln and every 
tE [n, n+1]. Since F is a fine multivalued map there is an unbounded sequence 
0=to<t1<t2< <tn< such that diam (F(x, t))<in for every x~X and every 
t> to with n >_ 1. Consider for every n the increasing linear homeomorphism 
an : [n, n+1]-[t, to+1]. Then, the obvious piecewise linear homeomorphism 
a : R+-R+ defined by means of the family {an} is a stretching map for (F, G). 

   As we see in the next proposition, stretching maps can be used to define 

a notion of composition of the homotopy classes [F] and [G]. 

   PROPOSITION 2. Let [F] : X x R+-->Y and [C]: Y x R+->Z be homotopy classes 
of fine multivalued maps and suppose that a : R+-R+ is a stretching map for 

(F, G). Then the function H: XxR+-->Z defined by H(x, t)=G(F(x, a(t)), t) is 
a fine multivalued map and its homotopy class [H] does not depend on the repre-
sentatives of the classes [F] and [G] or on the particular stretching map a. 

   PROOF. The first assertion is obvious. 
   To prove the second one we must show that if we have fine multivalued 
maps F' and G' homotopic to F and G respectively and if a' is a stretching 
map for (F', G'), then the map H': XxR+-~Z defined by 

                     H'(x, t) = G'(F'(x, a'(t)), t) 

is homotopic to H. 
   First observe that if $ : R+-R+ is an increasing map such that 13(t)>__a(t) 
for every tE R+, then jS is also a stretching map for (F, G). Moreover the fine 
multivalued map J given by the expression 

                  1(x, t) = G(F(x, p(t)), t) 

is homotopic to H by means of the fine homotopy ~b: XxR+ x [0, 1]--~Z defined 
by the expression
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              c(x, t, s) = G(F(x, a(t)(1-s)+jS(t)s), t). 

   Consider homotopies F* : XXR+ X [0, 1]-Y and G* : Y X R+ X [0, 1]-Z con-
necting F with F' and G with G' respectively. We denote by 

N 

                  F: XXR+X[o, l] -*YX[o, l] 

the map F(x, t, s)=(F*(x, t, s), s) and select a stretching map a" : R+-R+ for 
the pair (P, G*) such that a"(t)>_max{a(t), a'(t)} for every tER+. Then the 
expression H*(x, t, s)=G*(F*(x, a"(t), s), t, s) defines a homotopy H* : XXR+X 

[0, 1}-Z whose 0-level Ho is homotopic to H and whose 1-level H* is homo-
topic to H'. This completes the proof of the proposition. 

   We are now in a position to state and prove the following result, which 

gives a new description of the strong shape category of compacta. 

   THEOREM 1. If we consider the class of compact metric spaces and the homo-
topy classes of fine multivalued maps with the notion of composition previously 
defined we get a category, MSh, which is isomorphic to the strong shape category 
of corn pacta. 

   PROOF. The identity morphism in MSh(X, X) is the homotopy class of the 
map IX : XXR+-~X defined by IX(x, t)=x, then in order to show that MSh is 
a category it is only necessary to prove that if F : XXR+--~Y, G : Y X R+-~Z, 
and H: ZXR+-->W are fine multivalued maps then [H]([G][F])=([H][G])[F]. 
But [H]([G][F])=[R] with 

                R(x, t) = H(G(F(x, a1(a2(t))), a2(t)), t) 

and ([H] [G]) [F] = [S] with 

                S(x, t) = H(G(F(x,132(t)), 181(t)), t) 

where a1, a2, r2 are suitable stretching maps, and it is easy to see that R 
and S are both homotopic to a common fine multivalued map of the kind 

                   H(G(F(x, 71(t)), 72(t)), t), 

where y' and 72 are large enough stretching maps. 
   To prove that MSh and SSh are isomorphic we shall use the approach to 
strong shape given by Quigley [19] or Kodama and Ono [14] where compacta 
are assumed to lie in the Hilbert cube Q and strong shape morphisms from X 
to Y are homotopy classes of approaching maps (i, e., single-valued maps f : Q X 
R+-~Q such that for every neighborhood V of Y in Q there is a neighborhood 
U of X in Q and a t0ER+ such that f (UX [to, co))CV). 
    Suppose that f : Q X R+--~Q is an approaching map from X to Y. We shall
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prove that there exists a fine multivalued map F : X X R+--~Y such that f is 
asymptotic to F, i. e., for every E>0 there is a to~R+ such that d(f (x, t), 
F(x, t))<~, for every xEX and every t>_to. F is constructed in the following 

way : consider a null sequence E1 > >e> n such that f (x, t) E B E n(Y) (the 
closed ball in Q) for every xEX and every t>_n, then define F(x, t)=BE n(f(x, t)) 
nY if tE (n, n+i]. It is easy to see that in this way we get a fine multi-

valued map F such that f is asymptotic to F. 

   Suppose now that g : Q X R+->Q is an approaching map homotopic to f and 

that G : X X R+--~Y is a fine multivalued map with g asymptotic to G. Consider 

an approaching homotopy h : Q X R+ x [0,1]--~Q connecting f and g. If H : X x 

R+X [0, 1]-~Y is a fine multivalued map asymptotic to h we have 

        d(F(x, t), H0(x, t)) <_ d(F(x, t), f(x, t))+d(f(x, t), H0(x, t)) 

and from this it follows that F and Ho are asymptotic. We can then construct 

a fine homotopy ~5: X X R+ X [0, 1]-~Y connecting F and Ho in the following 

way 

                      F(x, t) if 0<s< 1 
                                     1 2               ~(x, t, s) = F(x, t)UH0(x, t) if s= 2 

                      H0(x, t) if 1 <s<1. 

2 It can be analogously proved that G is homotopic to H1. Hence F and G are 
homotopic. 

   We have proved that there exists a well-defined correspondence 

                    DG(X,Y) : SSh(X, Y) --~ MSh(X, Y) 

such that Q (X, Y) ([ f ]) = [F] where f is asymptotic to F. 
   In order to see that Q(X,Y) is surjective consider a fine multivalued map 

F : X X R+-~Y and select a null sequence s1 > > n > such that diam (F(x, t)) 

< s n for every x X and every t n. Then for every x E X and every tE 

[n, n+1), there exists an open neighborhood U, t) of (x, t) contained in XX 

(n-1, n+1) such that 
                                           ~n-diam (F(x, t))         F

(U(x t') C Bo(x• t)(F(x, t)) where ~(x t) = 2 

Hence diam(F(U(x°t'))<~n. Now, by using the compactness of XX[i, n+1], we 

can define a sequence of open sets U1, U2, U3, and an increasing sequence of 

integers k1, k2, k3, • • such that for every n 

             X X [1, n] C U1UU2U UUkn C XX(0, n+i) 

and for every k with kn<k_<-kn+1 we have UkcXx(n-1, n+2) and diam(F(Uk))
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<en. 

   We consider U0=X x [0, 1) and define for every n >0 a function on : XXR+ 
-->R such that 

                  on(x, t) = d((x, t), (X xR+)-Un)                          ~
k d((x, t), (X xR+)-Uk) 

The sum in the denominator is finite since d((x, t), (XXR+)-Uk)/=0 if and only 

if (x, t)E Uk. 

   We now choose for every n a point ynEF(Un) and define f0: XXR+-Q 

by the expression 

                      f 0(x, t) = on(x, t)yn 

   This is again a finite sum and, since on(x, t)=1 and Q is convex, f 0 is 

a well-defined continuous function. Moreover, for every (x, t) X X R+ consider 

the open sets Ui1, •••, Ui. to which (x, t) belongs. Then if y~F(x, t) and t~ 

[n, n+l) with n>_2 we have 

                d(f 0(x, t), y) = I Uik(x, t)yik-L.r Uik(x, t)y 

                         = t)(yi k-y)I 

                              ~2k(x, t)I yjk-yI 

                         _< max{I yzk-yll } 

                       max{diam(F(Uik))} <~n . 

In the above expressions we have used the norm II II of the Hilbert space 12 

where Q is supposed to lie. 
   We have proved that for every > 0 there exists n N verifying that 

d(f 0(x, t), F(x, t))<s for every x~X and every t>_n. An obvious consequence 

of this is that for every neighborhood V of Y in Q there exists a t0 R+ such 

that f 0(XX [t0, oo))CV. It is now easy to see, by repeatedly applying the homo-

topy extension theorem, that f 0 can be extended to an approaching map f : Q X 
R+-Q. Since f is asymptotic to F, we have that Q(x,Y) is surjective. 

   Suppose now that F, G : XXR+-~Y are homotopic fine multivalued maps and 
that f, g : Q X R+-Q are approaching maps asymptotic to F and G respectively. 

Consider a fine multivalued homotopy 

                          H: X x R+ x [0, 1] ----~ Y 

connecting F and G. It can be seen, by using arguments similar to those used 

before, that there is an approaching homotopy h : Q X R+ x [0, 1]-~Q asymptotic 

to H. Obviously h0 is asymptotic to f and hl is asymptotic to g and this im-

plies that f and g are homotopic. This proves that Q(x,Y) is injective.
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   In order to prove that SSh and MSh are isomorphic categories, consider 

fine multivalued maps F: X X R+->Y and G: Y X R+--->Z. Let g: Q X R+--~Q be 

an approaching map asymptotic to G. We are going to find an adequate repre-

sentative of Q~X,y)([F]). Let E1> .•• >En> ••• be a null sequence such that 
diam (G (y, t)) < E n and d (g (y, t), G (y, t)) < E n for every y E Y and every t>_ n. 

Let i 1 > ... > rl n > • • • be another sequence such that diam(G(KX {t}))< for 

every KCY with diam(K)<rln and every tE [n, n+1] and such that d(g(y, t), 

g(y', t))<En for every y, y'EQ with d(y, y')<rln and every tE [n, n+1]. Let 
a : R+->R+ be a stretching map for the pair (F, G) satisfying the condition 

diam(F(x, a(t)))<rln for every t>_n. By the argument given at the beginning 

of this proof there is an approaching map f such that d(f (x, t), F(x, a(t)))<7                                                  ln 

for t>_ n. Obviously Q(X, y)([ f ])=[F]. Let us see now that Q (x, z)([g] [f ])= 

[G] [F]. Since for every t>_n we have that d(F(x, a(t)), f(x, t))<rln, it follows 
that there exists y E F(x, a(t)) such that d (y, f (x, t)) < rl n and, hence, d (g(y, t), 

g(f (x, t), t)) < E n. On the other hand d (g(y, t), G (y, t)) < E n and this implies that 
d(g(y, t), G(F(x, a(t)), t))<En. Hence 

              d(g(f (x, t), t), G(F(x, a(t)), t)) < 2En . 

As a consequence 

            ~cx ,z)([g][f]) = [G][F] = QcY,z)[g]Qcx,Y)[f] 

and SSh and MSh are isomorphic categories. This completes the proof of the 

theorem. 

   If X is a closed subset of a compactum X' and f : X-*Y is a (single-valued) 

map, we say that f is E-extendable to X' if there exists an E-small multivalued 

map F: X'--+Y such that Fl x= f . The following result gives a characterization 

of the inclusions that induce strong shape isomorphisms. The proof is an 

application of the techniques developed in this section and is left to the reader. 

   THEOREM 2. Let X be a closed subset of the compactum X'. Then the in-

clusion i : X-~X' induces a strong shape equivalence i f and only i f for any (single-

valued) map f : X-~Y, where Y is an arbitrary compactum, there exists for every 

E>0 an E-extension F: X'->Y and for any map g : X'X {0, 1}UXX [0, 1]--~Y there 

exists an E-extension G : X' X [0, 1]-~Y.

   2. A topology for the space of fine multivalued maps. 

   DEFINITION 2. Let X and Y be compact metric spaces and by M(X, Y) 

denote the set of all fine multivalued maps from X to Y. If F, G M(X , Y) 

and e is a positive number we say that GE B~(F) if there exists a sequence
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{ E n } such that E k2 _ k < and the following holds : 
   a) For every k N and for every (x, t)E X x [0, k] there exists (x', t')~ 

Xx [0, k] such that d((x, t), (x', t'))<Ek and G(x, t)CBEk(F(x', t')). 
   b) For every (x, t)~ X X R+ there exists (x', t')~ X X R+ such that d ((x, t), 

(x', t'))<E and diam(G(x, t)) <diam (F(x', t'))+ E. 
   We remark that if G~ BE(F) then for every k and for every (x, t)~X x 

[0, k] there exists (x', t')~Xx[0, k] such that d((x, t), (x', t'))<2 and G(x, t) 
CB2ke(F(x', t')). 

   In the next proposition we show how to define a topology on the set 
M(X, Y). If F~ M(X, Y) we introduce the notation 

                  ~(F) = {BE(F) i E>0} . 

   PROPOSITION 3. The family { .B(F) I F~ M(X, Y)} is a neighborhood system 

for the set M(X, Y). The corresponding topological space will also be denoted 
by M(X, Y) and is a topological invariant of the pair (X, Y). 

   PROOF. In order to prove the first assertion, the only nontrivial fact is the 
following : If G~ BE(F) then there exists a o>0 such that B~(G)CBE(F). To 
see this, consider a sequence {En} such that Ek2-k<E and such that properties 
a) and b) in the definition hold. Let no be a number such that diam (G(x, t)) 

<E/2 for every xEX and every t? no and select a o>0 such that o < 
min {E/2, E-~ Ek2-k} and such that for every (x, t)~Xx [0, no] there exists a 

(x', t') E X X R+ with d ((x, t), (x', t')) < E-8 and 

               diam (G(x, t)) < diam (F(x', t'))+E-o . 

   Let H~ Bs(G), then there exists a sequence {8n} such that ok2-k <o satis-
fying conditions a) and b) in the definition (with the obvious changes of nota-
tion). Hence ~(ek+bk)2_k<E and for every k and every (x, t)~Xx[0, k] there 
exists (x', t')~XX [0, k] such that d((x, t), (x', t'))<ok and 

                     H(x, t) C Bok(G(x', t')). 

On the other hand, there exists (x", t") X X [0, k ] with d ((x', t'), (x", t")) < E k 
and G(x', t')CBEk(F(x", t")). As a consequence d((x, t), (x", t"))<sk+ok and 
H(x, t)CBEk+bk(F(x", t")) 
   Furthermore, if (x, t) E X X R+, there exists (x', t') X x R+ such that 
d((x, t), (x', t')) <o and diam (H(x, t)) <diam (G(x', t'))+o. Then, if (x', t') E 

[0, no], there exists (x", t")~XXR+ such that d((x', t'), (x", t"))<E-b and 
diam(G(x', t'))<diam(F(x", t"))+E-8 and, as a consequence, d((x, t), (x", t"))<E 
and 

         diam (H(x, t)) < diam (G(x', t'))+o < diam (F(x", t"))+E.
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If (x', t')~[no, oo), then diam(H(x, t))<diam(G(x', t'))+b<E/2+8<E. This shows 

that {. (F) I F~ M(X, Y)} is a neighborhood system for M(X, Y). 
   In order to prove the second assertion, suppose that h : X-~X' is a homeo-

morphism between compacta. There is an induced correspondence 

     7h. M(X', Y) - M(X, Y) defined by yh(F)(x, t)=F(h(x), t). 

We shall show that rh is continuous. Let F~ M(X', Y) and >O. Select a k@ 

such that 

                     < where a> diam (Y)                       k=kQ+1k 2 2 

and, using the uniform continuity of h-1, take a &>0 such that for every pair 
of points x', y'~X' with d(x', y')<81 we have that 

                       d(h-1(x'), h-1(y')) < 4 

Consider now a o>0 such that 2k0o<min {E/4, o1}. We define a sequence {Ek} 

by 

E                            if 1<k<k
o 

                           Ek -                     Z 

a if ko<k. 

We obviously have that E k2- k < E. We shall prove that if G C M(X', Y) and 
G~ B(F) then 7h(G)E B€(rh(F))• 
   Let (x, t)EXx [0, k0], then (h(x), t)~X'x [0, k0] and there exists (x", t')E 
X x [0, k0] such that d((h(x), t), (x", t'))<2koo and 

                   G(h(x), t) C B2koa(F(x", t')) . 

Since d(h(x), x")<2k0o<b1i we have that d(x, x')<E/4 where x'=h-1(x") (ob-
serve that d((x, t), (x', t'))<d(x, x')+d(t, t')<E/4+2k0o<E/2). Hence, if (x, t) 

 X x [0, k0] there exists a (x', t') X x [0, k0] with d ((x, t), (x', t'))</2 Eand 

        rhG(x, t) = G(h(x), t) C B2koa(F(h(x'), t')) C B~,2(rhF(x', t')). 

If t> k0, then rhG(x, t)CBb(rhF(x, t)). 
   On the other hand, for every (x, t) X x R+ there exists (x", t') X' x R+ 
such that d((h(x), t), (x", t'))<o and 

              diam (G(h(x), t)) < diam (F(x", t'))+b . 

Let x'=h-1(x"). Since d(h(x), x")<o<51i we have that d(x, x')<E/4. Hence 
d ((x, t), (x', t')) < E and
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         diam (1kG(x, t)) = diam (G(h(x), t))<diam (F(h(x'), t'))+o 

                     < diam (yhF(x', t'))+s . 

We conclude from this that 7h(G)E BE(rh(F)) and rh is continuous. 
   Moreover rhrh-1=id,f(x,Y) and this implies that 2'h is a homeomorphism. 

   It can be analogously proved that a homeomorphism g : Y-~Y' induces a 
homeomorphism rg : M(X, Y)-~M(X, Y') and from this readily follows the proof 
of the proposition. 

   REMARK 1. Condition b) in the definition of the topology for M(X, Y) re-
flects the fact that close fine multivalued maps have comparable diameters. 
Condition a) is a reminiscence of the compact-open topology on spaces of multi-
valued maps between compacta. This can be made precise in the following 
way: 

   If I'(X, Y) represents the set of all upper semicontinuous multivalued maps 
from X to Y and by c'E BE(c) (~, c'EI'(X, Y)) we mean that . for every xEX 
there is a x'EX with d(x, x')<E and c'(x)cBE(c(x')), then the family {BE(c5)I 

cl F(X, Y) and E>O} defines a neighborhood system which induces exactly the 
compact-open topology on F(X, Y). 

   The next theorem is a key result in this section. It refers to properties of 
exponential type in the space M(X, Y) and the main results in this section and 
the next one will be derived from it. 

   THEOREM 3. Let X, Y and Z be compact metric spaces and suppose that 
F: X X Z X R+-->Y is a fine multivalued map. Then, the function F': Z--*M(X, Y) 

defined by F'(z)(x, t)=F(x, z, t) is continuous. Conversely, if F': Z--*M(X, Y) 
is a map, then the associated function F: X XZXR+-~Y defined by F(x, z, t)= 
F'(z)(x, t) is a fine multivalued map. As a consequence, there exists a natural 
bijection between the sets C(Z, M(X, Y)) and M(XXZ, Y), where C(Z, M(X, Y)) 
represents the set of maps from Z to M(X, Y). 

   PROOF. Let z0E Z. We shall prove that if F : X X Z X R+-~Y is a fine 
multivalued map then F' is continuous at z0. For a given >O, select ko such 
that 

               k= +14 < 2' where D>diam(Y), 
and such that diam (F(x, z, t))<E for every t>_ ko. For every (x, t)EXX [0, k0], 

there exists o(x, t) <~/2 such that F(Bo(x , t)(x, z0, t))CBE,2(F(x, z0, t)), and using 
the compactness of XX {z0} X [0, k0], we can find a finite family of points 

(x1, ti), , (xn, tn) and a o>0 such that
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n 

               XXB5(zo)X[O, ko] C ,UBo(x2,ti)(xi, zo, ti) 
and such that for every (x, z, t)EX X Bo(z0) X [0, k] with k <_ ko, there exists 

(x2, ti)EX X [0, k] such that (x, z, t) B3(xt,t.)(xt, zo, ti). Now we define a 
sequence { k } , verifying E k2_ k < ~, in the following way 

                                if 1_<k<ko 
                           Ek = 2 

                            if ko<k. 

Suppose that zEZ and d(z, zo)<o. Then if k<ko, for every (x, t)EXX[0, k] 
there exists (x', t')~BEk(x, t) such that 

                   F'(z)(x, t) C BE k (F'(zo)(x', t')) 

If k>ko then for every (x, t)Xx [0, k], F'(z)(x, t)CB~(F'(zo)(x, t)). It can 
also be readily shown that for every (x, t)E X X R+ there exists (x', t')~ X X R+ 

such that d ((x, t), (x', t')) < E and 

              diam (F'(z)(x, t)) < diam (F'(zo)(x', t'))-FE . 

As a consequence F'(z)E BE(F'(zo)) and this proves the continuity of F' at zo. 

   In order to prove the converse statement, consider a map F': Z--M (X, Y) 

and let F : X X Z X R+--Y be its associated function. First we shall see that F 
is upper semicontinuous. Let (xo, zo, to)EXXZXR+ and let E>0. Since F'(zo) 

is upper semicontinuous at (xo, to), there exists U1>0 such that 

                 F'(zo)(Bol(xo, to)) C BE12(F(xo, zo, to)) 

Select now a ko verifying that (to-o1, to+o1)C[0, ko]. Then there exists o2< 

min {o1/2, E} such that for every z~Z with d(z, zo)<o2 we have F'(z)E 

Bat12ko+1(F'(zo)). Hence for every (x, t)~X X [0, ko] there exists (x', t')E Bb1/2(x, t) 

such that F(x, z, t)CBs112(F(x', zo, t')). Consequently, for every (x, z, t)Xx 

ZXR+ with d((x, z, t), (xo, zo, to))<o2 there exists (x', t')~B5112(x, t) such that 

F(x, z, t)CBo112(F(x', zo, t')) and, since d((x', t'), (xo, to))<U1/2+o2<o1, we have 

that F(x', zo, t')CBE12(F(xo, zo, to)). Hence 

     F(x, z, t) C Bo112(F(x', zo, t')) c Ba112+E12(F(xo, zo, to)) C BE(F(xo, zo, to)) 

and F is upper semicontinuous at (xo, zo, to). 
   Moreover, if E>0 then for every zE Z there exists a o>0 such that for 

every z'E Z with d(z, z')<o we have that F'(z')E BE12(F'(z)). By the compact-

ness of Z there exists a finite family of points z1, z2, , zn~ Z such that for 

every zEZ there exists iE {1, •.., n} with F'(z)~BE12(F'(zi)) and from this it 

follows that for every (x, t) E X x R+ there exists (x', t') E X X R+ such that
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d((x, t), (x', t'))</2 and 

             diam (F'(z)(x, t)) < diam (F'(z1)(x', t')) + . 2 

Since F'(zi) is a fine multivalued map there exists to~R+ verifying that 

diam (F'(zi)(x, t)) < E/2 for every x E X, t>_ to and i {1, • • , n } . Hence for every 

(x, z, t)~X x ZX [t0+E/2, oo) there exists (x', zi, t')~X X ZX [to, oo) such that 

   diam (F(x, z, t)) = diam (F'(z)(x, t)) < diam (F'(zi)(x', t'))+ < + = .                                        2 2 2 

Therefore F is a fine multivalued map and this completes the proof of the 

theorem. 

   As a consequence of Theorem 3 we obtain the following result, which gives 

a representation of a strong shape morphisms as a certain subset of M(X, Y). 

   COROLLARY 1. Two fine multivalued maps F, G : X XR+--~Y are homotopic 

if and only if they lie in the same path-component of M(X, Y). As a consequence, 
the strong shape morphisms from X to Y can be identified with the path-com-

ponents of M(X, Y). 

   PROOF, F and G are homotopic if and only if there exists a fine multivalued 

map H: X X I X R+-~Y such that H(x, 0, t)=F(x, t) and H(x, 1, t)=G(x, t) for 

every (x, t)~ X X R+ but according to Theorem 3 this is equivalent to the exist-
ence of a map h : I->M(X, Y) with h(0)=F and h(1)=G. 

   Two fine multivalued maps F, G : X X R+-*Y are said to be weakly homo-

topic if for every s>0 there is a to~R+ such that Fl XX[to,~, is homotopic to 

G I Xx[ta,~,. In [20], the shape morphisms from X to Y are characterized as 

weak homotopy classes of fine multivalued maps F : X X R+-~Y. We denote by 

[F]w the weak homotopy class of F. Obviously [F]C[F]w. 
   Our next result gives a new representation of shape morphisms and estab-

lishes a relationship between shape and strong shape morphisms. 

    THEOREM 4. Two fine multivalued maps F, G : X X R+--~Y are weakly homo-

topic if and only if they lie in the same connected component of M(X, Y). As a 
consequence, the shape morphisms from X to Y can be identified with the con-

nected components of M(X, Y). Moreover [F]w=cl[F], i.e., every shape mor-

phism is the closure of a strong shape morphism. 

    PROOF. The proof will proceed in several steps. We first claim that if F 

is weakly homotopic to G then for every >0 there is F'~ BE(F) such that F' 

is homotopic to G. An obvious consequence of this is that [F]wCcl[F] and 

[F] w is connected.
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   In order to prove our claim consider for a given >0 a ko such that 

                  k= +1 2k < E , where a> diam (Y) , 

and F xx[k0,oo) is 6-homotopic to G xx[ko ~). Consider an E-small multivalued 
map ~S : Xx[0,1]--+Y such that co=F(xxck o} and ~S1=G xx(k~+1}• We define 
F' : X x R+--~Y by : 
                      F(x, t) if 0<t<ko 

                F'(x, t) = c(x, t-k0) if ko<_t<_ko+1 

                     G(x, t) if ko+1<t. 

It is easy to see, and we leave it to the reader, that F' Be(F) and F' G. 

   It can also be readily seen that if F~M(X, Y) and >0 then there exists 
a b> 0 and a k o such that for every F' E B,,(F), we have that Fl x x[ k 0, ~) is 6-
homotopic to F' I x x[ ko, ~). A consequence of this is that the shape morphism 
[F] w is closed in M(X, Y) and, since [F] C [F] w C cl [F], we deduce that cl [F] 
=[F]w, 

   Finally, we must show that if ACM(X, Y) is connected and F, G~ A then 
F and G are weakly homotopic. Consider for a given >0 the set 

                KE = {H~ A I F is E-homotopic to H}. 

Suppose that H' E KE (the closure of KE in A). Select a o>0 such that if H" 
Ba(H') then H" is E-homotopic to H'. Since BS(H')nK~ * 0, we deduce that 
H' is e-homotopic to F. This shows that KE is closed in A and it can be easily 
shown that KE is also open. As a consequence A=KE and GK, for every 
s>0. Hence F is weakly homotopic to G. This completes the proof of the 
theorem. 

   3. Strong shape groups and Steenrod loop spaces. 

   If (X, x0) is a pointed compact metric space, the nth strong shape group 
Hn(X, x0) can be viewed as the set of homotopy classes of fine multivalued 
maps F : (In, aI n) x R+->(X, x0) with the group structure given by [F]*[G] = [H], 
where 

                            F (2t1, • . • , tn, t) if 0t11                                                              <_ 
H (t1, ..., tn, t) = 1 2 

                            G(2t1-1, t,, t) if -t11                                   <. 

   The proof of this fact is an easy consequence of the techniques developed 
in this paper, since all the approximation results admit relative versions for fine 
multivalued maps of the kind F : (1 n, aI n) x R+--~(X, x0).
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   We define the Steenrod loop space of (X, x0) as the set QS(X, x0) of all the 
fine multivalued maps F : (1, al) X R+--~(X, x0) endowed with the subspace topol-
ogy of M(1, X). We denote by Co : (1, al )XR+--> (X, x0) the constant loop 
C0(s, t)=xo. We also define Q2(X, xo)=Q(QS(X, x0), C0) and, inductively, 
Qn(X, xo)=Q(Q~_1(X, x0), *) (where Q( ) denotes the classical loop space). 

   We close our paper with a result that allows us to reduce the calculus of 
strong shape groups to that of standard homotopy groups. 

   THEOREM 5. 111(X, x0) can be identified in a natural manner with the path 
components of the Steenrod loop space QS(X, x0). If n>_2, IIn(X, x0) is iso-
morphic to 11 n_1(QS(X, x0), C0) and, hence, to H(Qn_1(X, x0), *). 

   PROOF. We shall only prove the second half of the statement, the first 
being easier. If [F] E 11 n(X, x0), then F: (110=1'01X1, -al n) X R+-~(X, x0) induces 
by Theorem 3 a map F': I121-M(1, X) defined by 

                     F'(tl, ... , to-1)(t, r) = F(t1, ... , to-1, t, r) 

Obviously F'(aln-1)={C0} and, hence, [F']~IIn_1(SlS(X, x0), C0). 
   If G : (1', 01 n) X R}--*(X, x0) is homotopic to F and H : (1 n, 01 n) X R+ X I--~ 

(X, x0) is a homotopy connecting F and G then the associated function H': In-1 
X J--M(1, X) defined by 

                    H~ltl, ... to-1, s)(t, r) = H (t0, ... to-1, t, r, s) 

is continuous and Im H'CQS(X, x0) and H'(a1n-1 X 1)= {Co}. Hence H' connects 
in {Q8(X, x0), C0} F' and the map G' associated to G. This shows that the homo-

topy class [F'] does not depend on the representative of the homotopy class 

[F] and we have defined a function 

     a : Hn(X, x0) -> H10-103(X, x0), CO) 

that is clearly a group homomorphism. 
   We shall see that a is surjective, the injectivity is left to the reader. If 

[F']E11n_1(Q(X, x0), C0) then by Theorem 3, the function F:1 nxR+-~X defined 
by F(t1, ••• , tn, r)=F'(t1, ••• , tn_1)(tn, r) is a fine multivalued map. Moreover, if 

(t1, , tn)E6I n then (t1, , tn_1)~al n-1 or tonal and, in both cases F'(tl, ••• , 
tn_1)(tn, r)=xo. Hence F: (1 n, al n) X R+ --~ (X, x0) defines an element [F] 
H O(X, x0) such that a([F])=[F']. This completes the proof of the theorem.
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