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Donaldson’s polynomial invariants ([2]) are powerful tools for studying
smooth 4-manifolds. For example the diffeomorphism types of elliptic surfaces
with positive geometric genus were completely classified by them ([4], [20], [21]).

The examples of smooth closed 1-connected noncomplex 4-manifolds with
infinitely many smooth structures were first given by [9] and then were
constructed by various methods ([6], [13], [16], [26]). In this paper we will
give some examples of infinitely many exotic 4-manifolds whose universal
coverings are mutually diffeomorphic. In fact we will show that the fundamental
group of any spherical 3-manifold other than the 3-sphere acts freely on certain
4-manifolds in infinitely many different ways so that their orbit spaces are
exotic (Main Theorem). Throughout this paper we denote the $K3$ surface by
$K$, and for any finite group $G$ we denote by $|G|$ the order of $G$ . For any
closed oriented 4-manifold $X$ , we denote by $b_{2}^{+}=b_{2}^{+}(X)$ the rank of the maximal
positive subspace $H^{+}=H^{+}(X)$ of the intersection form $q_{X}$ of $X$ , and $nX$ denotes
the connected sum of $n$ copies of $X$ .

MAIN THEOREM. Let $G$ be the fundamental group of any spherical 3-manifold
other than the 3-sphere. Let $X=(2n-1)CP^{2}\#(10n-1)CP^{2}$ or $X=nK\#(n-1)S^{2}\cross S^{2}$ .
Then if $n$ is divided by $|G|$ and $|G|<n$ , there exist infinitely many smooth
orientation-preserving free $G$ -actions on $X$ such that their orbit spaces are mutually
homeomorphic but non-diffeomorphic to each other.

In \S 1 we will construct the manifolds which will be the orbit spaces for
the actions in Main Theorem. These manifolds are connected sums of rational
homology 4-spheres and 1-connected 4-manifolds with $b_{2}^{+}>1$ which are derived
from certain elliptic surfaces. In \S 2 and \S 4 we will describe the simple
invariants for these manifolds to distinguish their diffeomorphism types. In \S 3
the list of $SO(3)$-representations for the above $G$ will be given for the estimates
of the simple invariants in \S 4. In \S 5 we will complete the proof of Main
Theorem. Here we note that the argument in \S 4 is similar to that in [15] in
which the connected sums of $Z_{2}$ homology 4-spheres and some manifolds with



334 M. UE

$b_{2}^{+}=1$ and their Kotscbick invariants are discussed. The author would like to
thank the referee for pointing out some errors in the preliminary draft of this
paper.

\S 1. Constructions.

Let $S_{k}$ be the relatively minimal elliptic surface over $CP^{1}$ with euler
number $12k$ and with a cross section $\Sigma$ , and let $S_{k}(p, q)$ be the relatively
minimal elliptic surface over $CP^{1}$ with euler number $12k$ with two multiple
fibers of multiplicity $p$ and $q$ for $k>0,$ $p\geqq 1$ and $q\geqq 1$ . Here the multiple fiber
of multiplicity 1 means the general fiber and $S_{k}(1,1)$ is identified with $S_{k}$ . We
denote by $f$ the general fiber of any elliptic surface. We start with the
manifolds $S_{k}^{\sigma}$ and $S_{k}^{\sigma}(p, q)$ for $k\geqq 2$ which are the analogues of the examples in
[9] and are constructed as follows. Let $S_{k}^{0}$ (resp. $S_{k}^{0}(p,$ $q)$ ) be the manifold
obtained from $S_{k}$ (resp. $S_{k}(p,$ $q)$) by removing the tubular neighborhood of $f$ .
NOW we fix the diffeomorphism $\sigma$ from $\partial S_{k-1}^{0}$ to $\partial S_{1}^{0}(p, q)=\partial S_{1}^{0}$ which does not
preserve the general fibers of $S_{k-1}^{0}$ and $S?(p, q)$ (or $S_{1}^{0}$), and consider the mani-
folds $S_{k}^{\sigma}$ and $S_{k}^{\sigma}(p, q)$ defined by

$S_{k}^{\sigma}=S_{1}^{0}U_{\sigma}S_{k-1}^{0}$ , $S_{k}^{\sigma}(p, q)=S_{1}^{0}(p, q)U_{\sigma}S_{k-1}^{0}$ .

We note that $S_{k}^{\sigma}$ is diffeomorphic to $S_{k}$ since any diffeomorphism of $\partial S_{1}^{0}$ extends
to that of $S_{1}^{0}([7], [18])$ but we use this symbol for convenience. Next we
construct some rational homology 4-spheres as follows.

DEFINITION 1-1. For any closed oriented smooth 3-manifold $M$, let $s(M)$

and $s’(M)$ be the 4-manifolds defined as follows.

$s(M)=(M \backslash IntD^{3})\cross S^{1}\bigcup_{id}S^{2}\cross D^{2}$

$s’(M)=(M\backslash IntD^{3})\cross S^{1}U_{\tau}S^{2}\cross D^{2}$ .

Here $D^{3}$ is a small 3-ball in $M$ and $\tau:S^{2}\cross\partial D^{2}arrow\partial(M\backslash IntD^{3})\cross S^{1}$ is a self-
diffeomorphism of $S^{2}\cross S^{1}$ defined by $\tau(x, \theta)=(\rho_{\theta}(x), \theta)$ for $x\in S^{2},$ $\theta\in R/2\pi Z=S^{1}$ ,

where $\rho_{\theta}$ is a rotation through angle $\theta$ in a fixed axis on $S^{2}$ . The manifolds
$s(M)$ and $s’(M)$ are called an untwisted spin and a twisted spin of $M$ respectively
(see [24] for example).

REMARK 1-2. If $M$ is a lens space $L(p, q)$ then $s(M)$ is diffeomorphic to
$s’(M)$ . Moreover the diffeomorphism type of $s(M)$ in this case depends only

on $p$ (not depending on $q$ ) $([23])$ .
Hereafter we consider the spins for the spherical 3-manifold $M_{G}$ with

$\pi_{1}M=G$ .
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PROPOSITION 1-3. (1) Both $s(M_{G})$ and $s^{f}(M_{G})$ are rational homology $4$-spheres
with $\pi_{1}s(M_{G})=\pi_{1}s’(M_{G})=G$ . If $M_{G}$ is a $Z_{2}$-homology sphere then so is $s(M_{G})$ (and

so is $s’(M_{G}))$ . (2) The universal covering $s(\tilde{M}_{G})$ of $s(M_{G})$ is diffeomorphic to
$(|G|-1)S^{2}\cross S^{2}$ . The same claim holds for the universal covering $s’(\tilde{M}_{G})$ of $s’(M_{G})$ .

PROOF. The proof of (1) is straightforward. The second claim is proved
in [24], \S 2. The proof goes as follows. The universal covering of $M_{G}\backslash IntD^{3}$

is a $|G|$ -punctured 3-sphere $S_{0}^{3}=S^{3}\backslash U_{i=1}^{|G|}$ Int $D_{i}^{3}$ where $D_{i}^{3}$ is a copy of a small
3-ball in $S^{3}$ . Therefore $s(\tilde{M}_{G})$ (resp. $s’(\tilde{M}_{G})$ ) is the union of $S_{0}^{3}\cross S^{1}$ and $|G|$

copies of $S^{2}\cross D^{2}$ each of which is attached along each boundary component of
$S_{0}^{3}\cross S^{1}$ via the identity (resp. $\tau$). Then $s(\tilde{M}_{G})$ is obtained from $S^{4}$ by untwisted
surgery along $|G|-1$ (unknotted) circles in $S^{4}$ . It follows that $s(\tilde{M}_{G})$ is diffeo-
morphic to $(|G|-1)S^{2}xS^{2}$ . In case of $s’(\tilde{M}_{G})$ the small balls $D_{i}^{3}$ in $S^{3}$ are
located so that a rotation in a fixed circle of $S^{3}$ through angle $\theta$ leaves all
$D_{i}^{3}’ s$ invariant and induces the same rotation on each $D_{i}^{3}$ . Therefore the copies
of the above map $\tau$ on $\partial S_{0}^{3}\cross S^{1}$ extends to the diffeomorphism of $S_{0}^{3}\cross S^{1}$ and
hence $s’(\tilde{M}_{G})$ is diffeomorphic to $s(\tilde{M}_{G})$ . This proves the second claim.

For later use we choose one of $s(M_{G})$ and $s’(M_{G})$ , and denote it by $W_{G}$ .
(The arguments below do not depend on the choice of $W_{G}.$ ) Let $X_{G}(p, q)=$

$W_{G}\# S_{k}^{\sigma}(p, q)$ where $P$ and $q$ are natural numbers with $gcd(p, q)=1$ . Note that
the last condition on $p$ and $q$ implies that $S_{k}(p, q)$ and $S_{k}^{\sigma}(p, q)$ are l-connected.
TO choose the candidates for the orbit spaces of the actions in Main Theorem
from tbe manifolds of the form $X_{G}(p, q)$ we need some further observations
for them. Recall that the regular neighborhood $N_{k}$ in $S_{k}$ of the union of the
cusp fiber and the cross section $\Sigma$ , and the manifold $N_{k}(p, q)$ obtained from
$N_{k}$ by performing logarithmic transforms of multiplicity $P$ and $q$ at the general
fibers in $N_{k}$ are called nuclei in [7]. Here $N_{k}(p, q)$ is contained in $S_{k}(P, q)$ .
Then $H_{2}(N_{k}, Z)$ is generated by $f$ and $\Sigma$ with

$f\cdot f=0$ , $f\cdot\Sigma=1$ , $\Sigma.\Sigma=-k$

and $H_{2}(N_{k}(p, q),$ $Z)$ is generated by some 2-cycles $\kappa$ and $\Delta$ with

$\kappa\cdot\kappa=0$ , $\kappa\cdot\Delta=1$ , $\Delta\cdot\Delta=-(p+q)^{2}-k(pq)^{2}$ .
Here $\kappa$ is a primitive element which is a positive rational multiple of $f$ (where
$f=pq\kappa)$ . Next note that $S_{k}^{\sigma}$ (resp. $S_{k}^{\sigma}(p,$ $q)$ ) contains $N_{2}$ (resp. $N_{2}(p,$ $q)$ ) and $N_{k}$

which are mutually disjoint. In fact in $S_{k}^{\sigma}$ we have smoothly embedded 2-spheres
$\Sigma^{\sigma}$ and $\Sigma’$ where $\Sigma^{\sigma}$ (resp. $\Sigma’$ ) is a union of the cross sectional 2-disk of $S_{k-1}^{0}$

(resp. $S_{1}^{0}$ ) and a vanishing 2-disk in $S_{1}^{0}$ (resp. $S_{k-1}^{0}$ ) which are attached along
their boundaries via $\sigma$ . Then $N_{k}$ (resp. $N_{2}$ ) in $S_{k}^{\sigma}$ is constructed as a regular
neighborhood of the union of $\Sigma^{\sigma}$ (resp. $\Sigma’$ ) and the cusp fiber in $S_{k-1}^{0}$ (resp. $S_{1}^{0}$).
In case of $S_{k}^{\sigma}(p, q)$ we have only to replace $N_{2}$ by $N_{2}(p, q)$ . Since $\partial N_{k}(p, q)$ is
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the Brieskorn homology 3-sphere ([7]), $H_{2}(S_{k}^{\sigma}(p, q),$ $Z)$ is the direct sum of
$H_{2}(N_{k}, Z)$ (generated by the general fiber $f^{\sigma}$ in $S_{k-1}^{0}$ and $\Sigma^{\sigma}$ ), $H_{2}(N_{2}(p, q),$ $Z)$

(generated by $\kappa’$ and $\Delta’$ corresponding to $\kappa$ and $\Delta$ above), and their orthogonal
complement $\langle f^{\sigma}, \Sigma^{\sigma}\rangle^{\perp}\cap\langle\kappa’, \Delta’\rangle^{\perp}$ on which the intersection form is even. In
case of $S_{k}^{\sigma}$ we can replace $\kappa’$ and $\Delta’$ by the general fiber $f’$ in $S_{1}^{0}$ and the above
$\Sigma’$ respectively. In the remainder of this paper the manifolds $S_{k}(1,1),$ $S_{k}^{\sigma}(1,1)$ ,

and $X_{G}(1,1)$ are identified with $S_{k},$ $S_{k}^{\sigma}$ , and $W_{G}\# S_{k}^{\sigma}$ respectively.

\S 2. Simple invariants for $S_{k}^{\sigma}(p, q)$ .
First we recall the definition of the simple invariants for simply connected

4-manifolds. Let $X$ be an oriented smooth closed 1-connected 4-manifold with
$b_{2}^{+}(X)$ odd and greater than 1. Put $l_{X}=-3(1+b_{2}^{+}(X))/2$ and define $C_{X}$ to be the
set of nonzero elements of $H^{2}(X, Z_{2})$ each of which is a $mod 2$ reduction of
some $c\in H^{2}(X, Z)$ with $q_{X}(c)\equiv l_{X}(mod 4)$ . For any $\eta\in C_{X}$ let $P_{\eta}$ be a Principal
$SO(3)$-bundle over $X$ with $w_{2}=\eta$ and $p_{1}=l_{X}$ (which exists uniquely up to equiv-
alence). Note that there are no flat connections on $P_{\eta}$ since $X$ is l-connected
and $w_{2}$ is nonzero. Then the moduli space $\mathscr{M}_{X}(l_{X}, \eta, g)$ of $g$-ASD connections
on $P_{\eta}$ for a generic Riemann metric $g$ of $X$ consists of finitely many points
with sign $\pm 1$ where the signs are determined by the choice of the integral
lift $c$ of $\eta$ and the orientation of $H^{+}(X)$ .

DEFINITION 2-0 ([2], [9]). For any $\eta\in C_{X}$ the number of the points in
$\mathscr{M}_{X}(l_{X}, \eta, g)$ counted with sign does not depend on $g$ and is denoted by $\gamma_{X}(\eta)$ .
The values $\gamma_{X}(\eta)s$ are called simple invariants for $X$ .

Thus $\gamma_{X}$ is a well defined map on $C_{X}$ up to sign and by its naturality with
respect to the diffeomorphisms the value $\max\{|\gamma_{X}(\eta)||\eta\in C_{X}\}$ is the diffeomor-
phism invariant of $X$ . In [9] the set $\hat{C}_{X}$ of the integral lifts of $\eta\in C_{X}$ modulo
some equivalence is used to define $\gamma_{X}$ But this point is not crucial for our
purpose since we only need the absolute value of $\gamma_{X}$ . In case $X=S_{k}(p, q)$ or
$X=S_{k}^{\sigma}(p, q)$ with $k\geqq 2$ and $gcd(P, q)=1$ , we see that $C_{X}$ consists of the elements
$\eta\in H^{2}(X, Z_{2})$ with $\eta\neq 0$ and with $q_{X}(c)\equiv k$ (mod4) for any integral lift $c$ of $\eta$

NOW the results in [6], [14] show the following.

THEOREM 2-1 (see [6], [14]). The simple invamants for $X=S_{k}(p, q)$ with
$k>2$ and $gcd(p, q)=1$ are given as follows (up to sign).

$|\gamma_{X}(\eta)|=\{$

1 if $\eta\cdot PD_{2}\kappa=1$ and both $P$ and $q$ are odd

$0$ otherwise.

Here $PD_{2}$ denotes the Poincar\’e dual $mod 2$ .
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REMARK 2-2. (1) Proposition2-1 is not true for the cases with $k=2$ which
were completely determined in [9]. (2) The above results are proved in [11],

[12], [26] for some particular $\eta$ and are proved for the general cases by
mutually different methods in [6] and [14].

The above results show that $\gamma_{X}$ is far from sufficient to determine the
diffeomorphism types of $S_{k}(p, q)$ (see [20]). So we choose $S_{k}^{\sigma}(p, q)$ in place of
$S_{k}(p, q)$ for our construction.

THEOREM 2-3. The simPle invariants for $X=S_{k}^{\sigma}(P, q)$ with $k>2$ and $gcd(P, q)$

$=1$ are given as follows (up to stgn).

$|\gamma_{X}(\eta)|=\{$

$Pq$ if $\eta\cdot PD_{2}f^{\sigma}=1$ and $\eta\cdot PD_{2}\kappa’=0$

1 if $\eta\cdot PD_{2}f^{\sigma}=\eta\cdot PD_{2}\kappa’=1$

$0$ otherwise.

REMARK 2-4. We can see from the above propositions tbat $S_{k}^{\sigma}(p, q)$ for
$k>2$ is not diffeomorphic to any $S_{k}(P’, q’)$ (and in fact never diffeomorphic to
a complex surface). But this does not hold if $k=2$ since $S_{2}^{\sigma}(p, q)$ is diffeomor-
phic to $S_{2}(P, q)$ . So further logarithmic transforms are needed to get similar
examples for $k=2([9])$ .

PROOF OF THEOREM 2-3. First note that there is a diffeomorphism $q$) from
$S_{k}^{\sigma}$ to $S_{k}$ which is the identity on the part $S_{k-1}^{0}$ , and maps $\Sigma^{\sigma}$ to $\Sigma$ and $f^{\sigma}$ to $f$

$(\overline{L}9], [18])$ . Therefore the claim for the cases with $p=q=1$ is deduced from
Theorem 2-1. For the general case note that $\eta\in C_{X}$ for $X=S_{k}^{\sigma}(p, q)$ is repre-
sented as

$\eta=PD_{2}(a\Sigma^{\sigma}+bf^{\sigma}+a’\Delta’+b’\kappa’+w)$

where $a,$ $a’,$ $b,$ $b’$ are either $0$ or 1, and $w$ is either $0$ or a primitive element
in $\langle\Sigma^{\sigma}, f^{\sigma}\rangle^{\perp}\cap\langle\Delta’, \kappa’\rangle^{\perp}$ , which satisfies

$-a^{2}k+2ab-a^{\prime 2}((p+q)^{2}+2(pq)^{2})+2a’b’+q_{X}(w)\equiv k$ $(mod 4)$ .

Case I. $a=a’=1$ . In this case the above equation shows that $(p+q)^{2}$

must be even since $q_{X}(w)$ is even. Since $gcd(p, q)=1$ both $p$ and $q$ must be odd.
Then we use Gompf-Mrowka’s formula in [9], Proposition4.4 twice to get

$|\gamma_{X}(\eta)|=|\gamma_{S_{k}^{\sigma}}(\eta’)|$

where $\eta’\in C_{s_{k}^{\sigma}}$ is the Polncar\’e dual $mod 2$ of the element of the form $\Sigma\sigma+bf^{\sigma}$

$+\Sigma’+b’f^{f}+w$ for $w\in\langle\Sigma^{\sigma}, f^{\sigma}\rangle^{\perp}\cap\langle\Sigma’, f’\rangle^{\perp}$ . Then via the above $\phi$ the left
hand side of the above formula equals $|\gamma s_{k}(\eta’’)|$ for some $\eta’’\in C_{S_{k}}$ with
$\eta’\cdot PD_{2}f=1$ and hence equals 1 by Theorem 2-1.
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Case II. $a=0$ and $a’=1$ . Again using [9], Proposition 4.4 and the above
$\phi$ we see that $|\gamma_{X}(\eta)|$ equals $0$ if one of $P$ and $q$ is even and otherwise equals
$|\gamma_{S_{k}}(\eta’’)|$ for some $\eta’’\in C_{S_{k}}$ with $\eta’’\cdot PD_{2}f=0$ . By Theorem 2-1 the last value
is also $0$ .

Case III. $a=1$ and $a’=0$ . In this case use [9], Corollary 4.3 twice and
the above $\phi$ to get

$|\gamma_{X}(\eta)|=pq|\gamma_{S_{k}}(\eta’)|$

where $\eta’’$ is some element of $C_{S_{k}}$ witb $\eta’’\cdot PD_{2}f=1$ . Therefore the left hand
side of the above formula is $Pq$ .

Case IV. $a=a’=0$ . If either $b=1$ or $w\neq 0$ the same procedure in Case $m$

shows that $|\gamma_{X}(\eta)|=Pq|\gamma_{S_{k}}(\eta’’)|$ for some $\eta’’\in C_{S_{k}}$ with $\eta\cdot PD_{2}f=0$ and hence
this value is $0$ . But if $\eta=\kappa’$ (in this case $k\equiv 0$ (mod4)) we cannot apPeal to
the method in [9]. For, if we put $Y$ to be the manifold obtained from $X$ by
removing the tubular neighborhood of either one of the multiple fibers, then $\kappa’$

may be zero in $H^{2}(Y, Z_{2})$ . However since $k\geqq 4$ in this case we can decompose
$X$ as the torus sum of $S_{2}^{\sigma}(p, q)$ (which contains the support of $\kappa^{f}$ ) and $S_{k-2}$ and
apply the vanishing theorem of $\gamma_{X}([14])$ to them. Then we see that $\gamma_{X}(\eta)=0$

also in this case. This proves Theorem 2-3.

COROLLARY 2-5. Put $\eta_{0}=PD_{2}(\Sigma^{\sigma}-kf^{\sigma})$ . Then $\eta_{0}$ is contained simultaneously
in $c_{s_{k}^{\sigma_{(p,q)}}}$ and $\max\{|\gamma_{S_{k}^{\sigma_{(p.q)}}}(\eta)||\eta\in c_{s_{k}^{\sigma_{(p,q)}}}\}=|\gamma_{s_{k}^{\sigma_{(p,q)}}}(\eta_{0})|=pq$ for any $k,$ $p,$ $q$ .
Hence $pq$ is the diffeomorphism invariant for $S_{k}^{\sigma}(p, q)s$ .

PROOF. The claim for $k=2$ comes from the results in [9]. The other
cases are proved immediately by Theorem 2-3.

\S 3. $SO(3)$-representations for $G$ .
In this section we consider the fundamental group of the spherical 3-manifold

$G=\pi_{1}M_{G}$ and the set $R(G)$ of $SO(3)$-representations for $G$ . Let $\chi(G)$ be the set
of the conjugacy classes of the elements of $R(G)$ by $SO(3)$ . In the next section
any element in $\chi(G)$ will be considered as an equivalence class of a flat $SO(3)-$

connection over the (twisted or untwisted) spin $W_{G}$ of $M_{G}$ . First of all if $M_{G}$

is not a lens space then $M_{G}$ has a Seifert fibration over the 2-orbifold of genus
$0$ with exactly 3 singular Points $S^{2}(p_{1}, p_{2}, p_{3})$ where the set of multiplicities of
the singular points $(p_{1}, p_{2}, p_{3})$ is either (2, 3, 3), (2, 3, 4), (2, 3, 5), or $(2, 2, n)$

for $n\geqq 2([22])$ . Moreover $M_{G}$ is represented by the Seifert invariants of the
form $\{(p_{1}, a_{1}), (p_{2}, a_{2}), (p_{3}, a_{3})\}$ with $gcd(p_{\ell}, a_{i})=1(i=1,2,3)$ and $G$ has the
following representation.

{ $x,$ $y,$ $z,$ $h|x^{p_{1}}h^{a_{1}}=y^{p_{2}}h^{a_{2}}=z^{p_{3}}h^{a_{3}}=xyz=1,$ $h$ is central}.
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Here $h$ corresponds to the general fiber of $M_{G}$ and $x,$ $y,$ $z$ correspond to
the lifts of the meridians for 3 singular points on the base orbifold. Note
that $x,$ $y,$ $z$ can be chosen so that they satisfy $xyz=1$ in $G$ (therefore $a_{i}$ may
be negative in the above representation). Moreover $-M_{G}$ is represented by
$\{(p_{1}, -a_{1}), (p_{2}, -a_{2}), (p_{3}, -a_{3})\}$ . It suffices to consider one of $\pm M_{G}$ . Con-
sequently replacing $x,$ $y,$ $z$ by other lifts if necessary we have only to consider
the following cases. (For example if $M_{G}=\{(2,1), (3,2), (n, b)\}$ then $-M_{G}=$

$\{(2, -1), (3, -2), (n, -b)\}=\{(2,1), (3,1), (n, -b-2n)\}.)$

(1) $M_{G}=L(p, q)$ .
(2) $M_{G}=\{(2,1), (2,1), (n, b)\}$ with $gcd(n, b)=1,$ $n\geqq 2$ .
(3) $M_{G}=\{(2,1), (3,1), (3, b)\}$ with $gcd(3, b)=1$ .
(4) $M_{G}=\{(2,1), (3,1), (4, b)\}$ with $gcd(4, b)=1$ .
(5) $M_{G}=\{(2,1), (3,1), (5, b)\}$ with $gcd(5, b)=1$ .
For the cases (2)$-(5)G/[G, G]=H_{1}(M_{G}, Z)$ is given by the table below

where $x,$ $z$ are the images in $G/[G, G]$ of the corresponding generators of $G$

and $Z_{p}[u]$ denotes the $Z_{p}$-factor generated by $u$ .
(3-0).

$G/[G, G]=|Z_{p}Z|4(n+b)|[x]Z_{|6b+15|}[z+]Z_{|2(n+b)I}[x] \bigoplus_{2x}Z_{2}[z+2x]Z_{|6b+20|[z+2x]}Z_{|6b+25|}[z+2x]forforforforforforCaseCaseCaseCaseCaseCase(1)(4)(3)(2)$

.

$with(5)(2)withnnoddeven$

Note that $M_{G}$ is a $Z_{2}$-homology sphere if and only if $M_{G}$ belongs to (3), (5),

or (1) with $p$ odd. Now we consider $R(G)$ . For any element $\rho\in\underline{R(G)}$ let
Stab $(\rho)$ be the stabilizer of $\rho$ . Moreover for any $\gamma\in G$ we denote by $\rho(\gamma)$ the
lift of $\rho(\gamma)$ to the universal covering $SU(2)$ of $SO(3)$ (determined only up to
sign). Hereafter $SU(2)$ is identified with the set of unit quaternions $S^{3}$ . Note
that $w_{2}(\rho)=0$ if and only if $\rho$ can be lifted to an $SU(2)- representation\tilde{\rho}$ : $\piarrow$

$SU(2)$ . (In this case we can put $\overline{\rho(\gamma)}=\tilde{\rho}(\gamma).$ ) First let us consider the set of
abelian representations $R_{ab}(G)$ (identified with $Hom(G/[G,$ $G],$ $SO(3))$) and the
set of their conjugacy classes $\chi_{ab}(G)$ . Hereafter to determine $\rho\in R(G)$ only the
lift $\overline{\rho(u)}\in S^{3}$ for each generator $u$ of $G$ (or of $G/[G,$ $G]$ if $\rho\in R_{ab}(G)$) will be

given. Note that $\pm\exp(i\theta)\in S^{3}$ projects to $(\begin{array}{lll}cos2\theta -sin2\theta 0sin2\theta cos2\theta 00 0 1\end{array})\in SO(3)$ , and

$\pm i$ and $\pm k$ project to $(\begin{array}{ll}1 000 -1 00 0-1\end{array})$ and $(\begin{array}{lll}-1 0 00 1 00 0 -1\end{array})$ respectively.
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(3-1). Abelian representations for $G$ .
Case (I). $G/[G, G]$ is cyclic (say, of order $r$). $M_{G}$ belongs to this case

unless $M_{G}=\{(2,1), (2,1), (n, b)\}$ with $n$ even. Fix the generator $u$ of $G/[G, G]$ .
Then any $\rho\in R_{ab}(G)$ is conjugate in $SO(3)$ to one of $\rho_{l}$ defined by

$\overline{\rho_{l}(u)}=\pm\exp(\pi il/r)$ $(0\leqq l\leqq[r/2])$ .

(3-1-1). The case when $r$ is odd. In this case $\chi_{ab}(G)$ consists of the con-
jugacy classes of the trivial representation $\rho_{0}$ (with stabilizer $SO(3)$), and
$(r-1)/2$ nontrivial abelian representations $\rho_{l}$ (l$l\leqq (r--1)/2) (with stabilizer
$SO(2))$ . In either case $\rho_{l}$ is lifted to the $SU(2)$-rePresentation $\tilde{\rho}_{l}$ $(\tilde{\rho}_{l}(u)=$

$(-1)^{\iota}\exp(\pi il/r))$ , so $w_{2}(\rho_{l})=0$ .
(3-1-2). The case when $r$ is even. In this case $H^{2}(G, Z_{2})=Z_{2}$ and $w_{2}(\rho_{l})=0$

if and only if $l$ is even. If $r\equiv 0(4)$ , then $\chi_{ab}(G)$ consists of the conjugacy classes
of the trivial rePresentation $\rho_{0}$ , the rePresentation $\rho_{r/2}$ with ${\rm Im}(\rho_{r/z})=Z_{2}$ (with

Stab$(\rho_{r/2})=O(2)$ , which is covered by $S^{1}IIS^{1}j$ and with $w_{2}(\rho_{r/z})=0)$ , and $(r/2-1)$

representations $\rho_{l}$ with stabilizer $SO(2)$ (l$l\leqq r/2--1). The number of $\rho_{l}$

$(1\leqq l\leqq r/2-1)$ with $w_{2}(\rho_{l})=0$ is just $r/4-1$ .
If $r\equiv 2(4)$ , then $\chi_{ab}(G)$ consists of the conjugacy classes of $\rho_{0}$ , the repre-

sentation $\rho_{r/2}$ with stabilizer $O(2)$ and with $w_{2}(\rho_{r/z})\neq 0$ , and $(r/2-1)$ repre-
sentations $\rho_{l}(1\leqq 1\leqq r/2-1)$ with stabilizer $SO(2)$ . The number of $\rho_{l}(1\leqq 1\leqq$

$r/2-1)$ with $w_{2}(\rho_{l})=0$ is $(r-2)/4$ .
Case (II). $G/[G, G]$ is non-cyclic. In this case $G/[G, G]=H_{1}(M_{G}, Z)=$

$Z_{2|n+b|}\oplus Z_{2}$ where $M_{G}=\{(2,1), (2,1), (n, b)\}$ with $n$ even, $n\geqq 2$ , and $gcd(n, b)=1$ .
Put $p=|n+b|$ and fix the generators $u$ and $v$ of $Z_{2p}$ and $Z_{2}$ respectively (note

that $P$ is odd and $p\geqq 1$ since $b$ must be odd). For $\rho\in R_{ab}(G)$ put $U=\rho(u)$ ,
$V=\rho(v)$ and let $\hat{U}$ , fi be the lifts of $U,$ $V$ respectively. Then we can assume
(up to conjugacy) that

$U=(\begin{array}{l}R(2\pi il/2p)00 1\end{array})$ , $\tilde{U}=\pm\exp(\pi il/2p)$ $(0 1\leqq p)$ .

On the other hand fi must satisfy $V^{2}=\pm 1$ and $VUV-1=\pm 0$ . Therefore if
$l=0$ then by further conjugation we can assume that $\hat{U}=\pm 1$ , and $V=\pm 1$ or $\pm i$.
Likewise if $l=p$ then we can assume that $0=\pm i$ and $V=\pm 1,$ $\pm i$ , or $\pm j$ . If
$1\leqq l\leqq p-1$ then $V=\pm 1$ or $\pm i$ . Consequently $\chi_{ab}(G)$ consists of the conjugacy
classes of the following representations.

(3-1-3).

(1) the trivial representation $\rho_{0}$ .
(2) $\rho_{0,1}$ : $0=\pm 1,\hat{V}=\pm i$ . In this case $w_{2}(p_{0.1})\neq 0$ and Stab $(\rho_{0,1})=O(2)$ .
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(3) $\rho_{1.0}$ : $o_{-}\pm i,\hat{V}=\pm 1$ . In this case Stab $(\rho_{1,0})=O(2)$ and $w_{2}(\rho_{1.0})\neq 0$

since $P$ is odd.
(4) $\rho_{1,1}$ : $\tilde{U}=\hat{V}=\pm i$ . In this case Stab$(\rho_{1.1})=O(2)$ and $w_{2}(\rho_{1.1})\neq 0$ .
(5) $\rho_{\delta}$ : $0=\pm i,$ $\nabla=\pm j$ . In this case Stab $(\rho_{\delta})=Z_{2}\cross Z_{2}$ (covered by

$\{\pm 1, \pm i, \pm j, \pm k\})$ and $w_{2}(\rho_{\delta})\neq 0$ .
(6) $\rho_{l,0}(1\leqq l\leqq p-1):\tilde{U}=\pm\exp(\pi il/2p),\tilde{V}=\pm 1$ . In this case

Stab $(\rho_{l.0})=SO(2)$ , and $w_{2}(\rho_{l.0})=0$ if and only if 1 is even.
(7) $\rho_{l,1}$

$($ 1\leqq 1;$ $p-1):\hat{U}=\pm\exp(\pi il/2p),$ $V=\pm i$ . In this case
Stab $(\rho_{l,1})=SO(2)$ and $w_{2}(\rho_{l.1})\neq 0$ .

In Case (II) $H^{2}(G, Z_{2})$ is identified with $Z_{2}\oplus Z_{2}$ so that $w_{2}(\rho)=(\epsilon_{1}, \epsilon_{2})$ if
and only if $\tilde{U}^{2p}=(-1)^{\epsilon_{1}},$ $V^{2}=(-1)^{\epsilon_{2}}$ where $\epsilon_{1},$ $\epsilon_{2}$ is $0$ or 1 $mod 2$ .

(3-2). Nonabelian representations.
Put $R^{*}(G)=R(G)\backslash R_{ab}(G)$ and $\chi*(G)=x(G)\backslash x_{ab}(G)$ . Note that $R^{*}(G)$ may be

nonempty only when $M_{G}$ belongs to the cases (2) $-(5)$ where $G$ has the repre-
sentation of the form

$G=$ { $x,$ $y,$ $z,$ $h|x^{2}h=y^{q}h=z^{n}h^{b}=xyz=1,$ $h$ is central}

for $q=2$ or 3. We look for the representatives for the elements of $\chi*(G)$ . For
$\rho\in R^{*}(G)$ put $X=\rho(x),$ $Y=\rho(y),$ $Z=p(z),$ $H=\rho(h)$ , and let $\tilde{X},\tilde{Y},\tilde{Z},\tilde{H}$ be the
lifts in $S^{3}$ of $X,$ $Y,$ $Z,$ $H$ respectively. Up to conjugation we may assume that
$\tilde{H}\in S^{1}$ . Since $\tilde{U}\tilde{H}0^{-1}=\pm\tilde{H}$ for any lift $\tilde{U}$ of $p(u)$ for any $u\in G$ and $\rho$ is non-
abelian, either $\tilde{H}=\pm 1$ , or $\tilde{H}=\pm i$ and $\tilde{X},\tilde{Y},\tilde{Z}\in S^{1}\Pi S^{1}j$ . In the second case
since $\tilde{X}\tilde{Y}\tilde{Z}=\pm 1$ and since $\rho$ is non-abelian, two of $X,$ $Y,$ $Z$ belong to $S^{1}j$ and
the rest belongs to $S^{1}$ . On the other hand $u^{2}=-1$ for any $u\in S^{1}j$ . Since
$\tilde{X}^{2}=\pm i$ and $\tilde{Y}^{q}=\pm i$ for $q=2$ or 3 this is a contradiction. Therefore only the
first case can occur. Then $\tilde{H}=\pm 1$ and none of $\tilde{X},\tilde{Y},\tilde{Z}$ is $-1$ since otherwise
$\rho$ would be abelian. By the relation $\tilde{X}^{2}=\pm 1$ we may assume that $\tilde{X}=\pm i$ . By
further conjugation by some elements in $S^{1}$ we can assume that $\tilde{Y}=\pm(u+tj)$

with $u\in C,$ $t\in R,$ $|u|^{2}+t^{2}=1$ . On the other hand since $\tilde{Y}^{q}=\pm 1,\tilde{Y}$ is conjugate
to $\pm\exp(\pi il/q)$ for $1\leqq 1\leqq[q/2]$ . Therefore we must have $\tilde{Y}=\pm(si+t_{j})$ for
$s,$ $t\in R,$ $s^{2}+t^{2}=l$ if $q=2$, and $\tilde{Y}=\pm(1/2+si+tj)$ for $s,$ $r\in R,$ $s^{2}+t^{2}=3/4$ if $q=3$ .
Since $\tilde{Z}=\pm\tilde{Y}^{-1}\tilde{X}^{-1}$ we have $\tilde{Z}=\pm(s+tk)$ if $q=2$ , and $\tilde{Z}=\pm(s+i/2+tk)$ if $q=3$ .
By conjugation by $i,$ $j$, or $k$ we can replace $(S, t)$ by any of $(s, -t),$ $(-s, t)$ ,

and $(-s, -t)$ . Moreover $\tilde{Z}$ is conjugate to $\pm\exp(\pi il/n)$ for some $l(1\leqq l\leqq[n/2])$ .
Hence we can assume that $s=\cos(\pi l/n)$ , and $t=\sin(\pi l/n)$ if $q=2$ or $t=$

$(3/4-\cos^{2}(zl/n))^{1/2}$ if $q=3$ . Now we can give all the representatives for $\chi*(G)$

for each case. In each representation below $\epsilon_{i}$ (O$i\leqq 3) is +1 and moreover
$\tilde{H}=\epsilon_{0}$ , $\tilde{X}=\epsilon_{1}i$

(and so only the images of the remaining generators will be written).
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The list of representatives for $\chi*(G)$ .
(3-2-1). $M_{G}=\{(2,1), (2,1), (n, b)\}$ .

$\rho f:\tilde{Y}=\epsilon_{2}(\cos(\pi l/n)i+\sin(\pi l/n)])$ , $\tilde{Z}=\epsilon_{3}(\cos(\pi l/n)+\sin(\pi l/n)k)$

for $1\leqq 1\leqq[(n-1)/2]$ . Note that if $1=0$ or $l=n/2$ (in this case $n$ is even) $p_{l}^{*}$

would be abelian and so these cases must be removed. $\rho_{l}^{*}$ can be lifted to the
$SU(2)$-representation if and only if we can choose $\epsilon_{i}$ so that

$\epsilon_{0}=-1$ , $\epsilon_{3}^{n}=(-1)^{l+b}$ , $\epsilon_{1}\epsilon_{2}\epsilon_{3}=-1$ .
Thus $w_{2}(\rho f)\neq 0$ if and only if both $n$ and $l$ is even (note that $b$ is odd in this
case). In either case Stab $(\rho_{l}^{*})=Z_{2}$ (covered by $\{\pm 1,$ $\pm k\}$ ).

(3-2-2). $M_{G}=\{(2,1), (3,1), (3, b)\}$ .

$\rho_{II}^{*}$ : $\tilde{Y}=\epsilon_{2}(1/2+i/2+j/\mathcal{F}2)$ , $\tilde{Z}=\epsilon_{3}(1/2+i/2+k/\sqrt{2})$ .

Putting $\epsilon_{0}=-1,$ $\epsilon_{1}=(-1)^{b},$ $\epsilon_{2}=1,$ $\epsilon_{3}=(-1)^{b-1}$ we can lift $\rho_{II}^{*}$ to the $SU(2)$-repre-
sentation and hence $w_{2}(pI*)=0$. Moreover Stab $(\rho_{II})=1$ .

(3-2-3). $M_{G}=\{(2,1), (3,1), (4, b)\}$ .
$\rho_{1\Pi}^{*}$ : $\tilde{Y}=\epsilon_{2}(1/2+i/\sqrt{}^{-}2^{-}+]/2)$ , $\tilde{Z}=\epsilon_{3}(1/\sqrt{}^{-}2^{-}+i/2+k/2)$ .

$\rho_{m’}^{*}$ : $\tilde{Y}=\epsilon_{2}(1/2+\sqrt 3^{-}j/2)$ , $\tilde{Z}=\epsilon_{3}(i/2+\sqrt{}^{-}\overline{3}k/2)$ .
We have the $SU(2)$-lift of $\rho_{111}^{*}$ by putting $\epsilon_{0}=-1,$ $\epsilon_{2}=1,$ $\epsilon_{1}\epsilon_{3}=-1$ and hence
$w_{2}(p_{III}^{*})=0$ . On the other hand to get the $SU(2)$-lift for $\rho_{III’}^{*}$ we must have
$(-1)^{b}=1$ from the relation $\tilde{Z}^{4}\tilde{H}^{b}=1$ . But this contradicts the fact that $b$ must
be odd. Hence $w_{2}(\rho_{I1I’}^{*})\neq 0$ . Easy computation shows that Stab $(\rho_{III}^{*})=1$ and
Stab $(\rho_{III’}^{*})=Z_{2}$ (covered by $\{\pm 1,$ $\pm j\}$ ).

(3-2-4). $M_{G}=\{(2,1), (3,1), (5, b)\}$ .
$\rho f_{v_{n}}$ : $\tilde{Y}=\epsilon_{2}(1/2+s_{n}i+t_{nJ})$ , $\tilde{Z}=\epsilon_{3}(s_{n}+i/2+t_{n}k)$ $(n=1,2)$

where $s_{1}=\cos\pi/5=(\sqrt{5}+1)/4,$ $t_{1}=\sqrt{3/4-\cos^{2}\pi/5}=\sqrt{6-2\sqrt{}\overline{5}}/4$ and $s_{2}=\cos 2\pi/5$

$=(\sqrt{}\overline{5}-1)/4$ , $t_{2}=\sqrt{3/4-\cos^{2}2\pi/5}=\sqrt{}\overline{6+2\sqrt 5}/4$ . We have Stab $(\rho_{IV_{n}}^{*})=1$ and
$w_{2}(\rho i*V.)=0$ in either case (put $\epsilon_{0}=-1,$ $\epsilon_{2}=1,$ $\epsilon_{1}=(-1)^{b},$ $\epsilon_{3}=(-1)^{b-1}$ if $n=1$ and
reverse the signs of $\epsilon_{1}$ and $\epsilon_{3}$ if $n=2$).

\S 4. Simple invariants for $X_{G}(p, q)$ .
In this section we consider $X_{G}(P, q)=W_{G}\#S_{k}^{\sigma}(p, q)$ with $gcd(p, q)=1$ . Put

$X=X_{G}(p, q)$ and $S=S_{k}^{\sigma}(p, q)$ for the moment. To get the well defined invariants
for $X$ we define $C_{X}$ as the set of the elements $\eta\in H^{2}(X, Z_{2})$ satisfying
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(1) $\eta$ is a $mod 2$ reduction of some element $c\in H^{2}(X, Z)$ whose image in
$H^{2}(X, Z)/Torsion$ is not divisible by 2,

(2) $q_{X}(c)\equiv l_{X}$ (mod4)

where $l_{X}=-3(1+b_{2}^{+}(X))/2$ as before. Then $C_{X}$ is preserved by diffeomor-
phisms of $X$ . Moreover $H^{2}(X, Z)=H^{2}(W_{G}, Z)\oplus H^{2}(S, Z)$ whose torsion part is
$H^{2}(W_{G}, Z)$ . Note that the class $C_{S}$ for $S$ is defined as in \S 2 and $l_{S}=l_{X}=-3k$ .
We denote the set of $mod 2$ reductions of the elements of $H^{2}(W_{G}, Z)$ in
$H^{2}(W_{G}, Z_{2})$ by ${\rm Im}(H^{2}(W_{G}, Z)arrow H^{2}(W_{G}, Z_{2}))$ .

PROPOSITION 4-1. (1) Let $c:W_{G}arrow K(G, 1)$ be the classifying map for the
universal covering $p:\pi_{G}arrow W_{G}$ . Then $c^{*}$ induces the isomorphisms between
$H^{2}(G, Z_{2})$ and ${\rm Im}(H^{2}(W_{G}, Z)arrow H^{2}(W_{G}, Z_{2}))$ . Moreover $\eta=\eta_{1}+\eta_{2}$ for $\eta_{1}\in$

$H^{2}(W_{G}, Z_{2})$ and $\eta_{2}\in H^{2}(S, Z_{2})$ belongs to $C_{X}$ if and only if $\eta_{1}\in c^{*}(H^{2}(G, Z_{2}))$

and $\eta_{2}\in C_{S}$ . (2) For any $\eta=\eta_{1}+\eta_{2}\in C_{X}$ with $\eta_{1}\in H^{2}0V_{G},$ $Z_{2}$) and $\eta_{2}\in H^{2}(S, Z_{2})$ ,

there is a unique PnnciPal $SO(3)$-bundle $P_{\eta}$ over $X$ with $w_{2}=\eta$ and $P_{1}=l_{X}$ (uP

to equivalence) which is a fiber sum of the flat $SO(3)$ bundle $P_{1}=^{\pi_{G}\chi_{\rho}SO(3)}$

over $W_{G}$ for some $SO(3)$-rePresentation $p:Garrow SO(3)$ with $c^{*}w_{2}(p)=\eta_{1}$ , and a
PrinciPal $SO(3)$ bundle $P_{2}$ over $S$ with $w_{2}=\eta_{2}$ and $P_{1}=l_{S}=l_{X}$ .

PROOF. The spectral sequence for the universal covering $p:\tilde{W}_{G}arrow W_{G}$ yields
the exact sequence of the form

$c^{*}$ $p^{*}$

$0arrow H^{2}(G, Z)arrow H^{2}(W_{G}, Z)arrow H^{2}(\tilde{W}_{G}, Z)$ .

Since $H^{2}(W_{G}, Z)$ is torsion and $H^{2}(\tilde{W}_{G}, Z)$ is torsion-free, $c^{*}$ gives an
isomorphism. Then $mod 2$ reduction yields the required isomorphism $c^{*}$ in (1).

It follows that for any $\eta_{1}\in{\rm Im}(H^{2}(W_{G}, Z)arrow H^{2}(W_{G}, Z_{2}))$ there is a principal flat
$SO(3)$ bundle over $W_{G}$ with $w_{2}=\eta_{1}$ The otber claims follows easily from
these results.

PROPOSITION 4-2. For any $\eta\in C_{X}$ for above $X$ there are no flat connections
on any principal $SO(3)$ bundle $P$ over $X$ with $w_{2}(P)=\eta$

PROOF. For any $\eta=\eta_{1}+\eta_{2}\in C_{X}$ represented as above we can assume that
$\eta_{2}$ is the Poincar\’e dual $mod 2$ of some primitive element $\xi\in H_{2}(S_{k}^{\sigma}(p, q),$ $Z)$

(since $\eta_{2}\in C_{S}$). Therefore there is $\delta\in H_{2}(S_{k}^{\sigma}(p, q),$ $Z)$ (which is a spherical
element since $S_{k}^{\sigma}(p, q)$ is 1-connected) with $\xi\cdot\delta=1$ and hence $\langle\eta, \delta(mod 2)\rangle=1$ .
It follows that $\eta$ does not come from $H^{2}(\pi_{1}X, Z_{2})$ and hence there are no flat
connections on $P$.

Hence for any $\eta\in C_{X}$ we can define the set $\mathscr{M}_{X}(l_{X}, \eta, g)$ of $g$-ASD con-
nections on $P_{\eta}$ (defined in Proposition 4-1) modulo Aut $P_{\eta}$ for a generic metric
$g$ on $X$ . Moreover $\mathscr{M}_{X}(l_{X}, \eta, g)$ consists of finitely many points with sign $\pm 1$
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as in \S 2 (which is fixed once the integral lift of $\eta$ and the orientation of $H^{+}(X)$

is fixed, and does not depend on $g$ since $b_{X}^{+}=b_{S}^{+}>1$). So we can define $\gamma_{X}(\eta)$

for $\eta\in C_{X}$ as the number of points in $\mathscr{M}_{X}(l_{X}, \eta, g)$ counted with sign as in
Definition 2-0 so that $\max\{|\gamma_{X}(\eta)||\eta\in C_{X}\}$ is a diffeomorphism invariant for
X. In particular the element $\eta_{0}\in c_{s_{k}^{\sigma_{(p.q)}}}$ in Corollary 2-5 is also contained
simultaneously in $C_{X}$ for any $X=X_{G}(p, q)$ . We also note that ${\rm Im}(H^{2}(W_{G}, Z)arrow$

$H^{2}(W_{G}, Z_{2}))\cong c^{*}(H^{2}(G, Z_{2}))$ is given by

$c^{*}(H^{2}(G, Z_{2}))=\{$

$0$ if $G/[G, G]=Z_{r}$ with $r$ odd
$Z_{2}$ if $G/[G, G]=Z_{r}$ with $r$ even
$Z_{2}\oplus Z_{2}$ if $G/[G, G]=Z_{zp}\oplus Z_{2}$ with $P$ odd.

According to the result in \S 3 the above list covers all the possible cases.

PROPOSITION 4-3. There is a constant $c_{G}$ such that $|\gamma_{x_{G^{(p.q)}}}(\eta)|=$

$c_{G}|\gamma s_{k}^{\sigma}(p.q)(\eta_{2})|$ for any $\eta=\eta_{1}+\eta_{2}\in c_{x_{G^{(p.q)}}}$ with $\eta_{1}\in{\rm Im}(H^{2}(W_{G}, Z)arrow H^{2}(W_{G}, Z_{2}))$

and $\eta_{2}\in c_{s_{k}^{\sigma_{(p.q)}}}$ . In particular for $\eta_{0}$ in Corollary 2-5 we have $|\gamma_{X_{G^{(p,q)}}}(\eta_{0})|=$

$pqc_{G}$ . The constant $c_{G}$ depends only on $G$ and is defined as follows.

$c_{G}=\{$

$r$ if $G/[G, G]=Z_{r}$ with $r$ odd
$r/2$ if $G/[G, G]=Z_{r}$ with $r$ even
$P$ if $G/[G, G]=Z_{2p}\oplus Z_{2}$ with $P$ odd.

PROOF. Let $X_{1}=W_{G},$ $X_{2}=S_{k}^{\sigma}(P, q)$ , and $X=X_{G}(P, q)$ . Let $D_{j}(r)$ be the
geodesic ball in $X_{j}$ with respect to the fixed metric $g_{j}$ on $X_{j}$ of radius $r$ centered
at the base point $x_{j}(]=1,2)$ . Fix a large $N>0$ and choose $\lambda>0$ so that $N\sqrt{}\overline{\lambda}$

is small. Then identifying the annuli $\Omega_{j}=D_{j}(N\sqrt{\lambda})\backslash D_{j}(N^{-1}\sqrt{}\overline{\lambda})(j=1,2)$ by
some map $f_{\lambda}$ we can construct a connected sum $X=X_{1}\# X_{2}$ as $X=$

$(X_{1} \backslash D_{1}(N^{-1}\sqrt{\lambda}))\bigcup_{f_{\lambda}}(X_{2}\backslash D_{2}(N^{-1}\mathcal{F}\lambda))$ with a metric $g_{\lambda}$ on $X$ such that $g_{\lambda}$ is
conformally equivalent to $g_{j}$ over $X_{j}\backslash D_{j}(4N\sqrt{\lambda})$ for $j=1,2([2]$ , \S 7.2.1$)$ . We
can choose $g_{2}$ and $g_{\lambda}$ so that they are generic if $\lambda$ is sufficiently small. For
any element $\eta=\eta_{1}+\eta_{2}\in C_{X}$ with $\eta_{1}\in{\rm Im}(H^{2}(X_{1}, Z)arrow H^{2}(X_{1}, Z_{2}))$ and $\eta_{2}\in C_{X_{2}}$ we
have an $SO(3)$-bundle $P_{\eta}$ over $X$ with $w_{2}(P_{\eta})=\eta$ and $p_{1}(P_{\eta})=-3k$ . Note that
there are no flat connections on any bundle over $X_{2}$ with $w_{2}=\eta_{2}$ since $\eta_{2}\neq 0$

and $X_{2}$ is 1-connected. Consider a sequence $\lambda_{t}$ with $\lambda_{i}arrow 0$ as $iarrow\infty$ and $A_{\lambda_{i}}\in$

$\mathscr{M}_{X}(-3k, \eta, g_{\lambda_{i}})$ . Then by Uhlenbeck criterion and dimension counting argu-
ment we have a flat connection $A_{1}$ on the bundle $P_{1}$ over $X_{1}$ with $w_{2}=\eta_{1}$ and
$p_{1}=0$ , and a $g_{2}$-ASD connection $A_{2}$ on the bundle $P_{2}$ over $X_{2}$ with $w_{2}(P_{2})=\eta_{2}$

and $p_{1}(P_{2})=-3k$ , such that (by passing to subsequences) $[A_{\lambda_{i}}]$ converges
smoothly to $[A_{j}]$ over $X_{j}\backslash D_{j}(\sqrt{\lambda}/2)(]=1,2)$ . Here $[A]$ means the gauge
equivalence class of $A$ . If $\lambda_{i}$ is small enough, $[A_{\lambda_{i}}]$ has the neighborhood Su
of the following form ([2], Theorem 7.2.62 and Theorem 7.3.2). For any
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connection $A_{i}$ on $P_{i}$ , let $\Gamma_{A_{i}}$ be the stabilizer of $A_{i}$ in the associated gauge
group and $H_{A_{i}}^{k}$ be the k-th cohomology group of the deformation complex

$d_{A_{i}}$ $d_{A_{i}}^{+}$

$\Omega_{x_{i}}^{0}(AdP_{i})arrow\Omega_{x_{i}}^{1}(AdP_{i})arrow\Omega_{X_{i}.+}^{2}(AdP_{i})$ .

Then there is a $\Gamma_{A_{1}}\cross\Gamma_{A_{2}}$ equivariant map $\Psi$ of the form

$\Psi:SO(3)\cross H_{A_{1}}^{1}xH_{A_{2}}^{1}arrow H_{A_{1}}^{2}\cross H_{A_{2}}^{2}$

such that En is homeomorphic to $\Psi^{-1}(0)/\Gamma_{A_{1}}x\Gamma_{A_{2}}$ . Since $\mathscr{M}_{X}(-3k, \eta, g_{\lambda_{i}})$ con-
sists of finitely many points we can assume that every point in $\mathscr{M}_{X}(-3k, \eta, g_{\lambda_{i}})$

for small $\lambda_{i}$ belongs to one of $\Re$ of the above form. Conversely every element
in such an $\Re$ corresponds to the unique element in $\mathscr{M}_{X}(-3k, \eta, g_{\lambda_{i}})([2]$ , Theo-
rem 7.2.62. The construction of the ASD connections in [2], \S 7.2.2 is valid
even when $\pi_{1}X\neq 1$ ). So we will check the contribution of su to the moduli
space over $X$ for fixed $[A_{2}]$ and $[A_{1}]$ separately according to the type of $A_{1}$ .
Note that $\mathscr{M}_{X_{2}}(-3k, \eta_{2}, g_{2})$ consists of finitely many points and $H_{A_{2}}^{1}=0,$ $H_{A_{2}}^{2}=0$ ,

and $\Gamma_{A_{2}}=1$ for any $[A_{2}]\in \mathscr{M}_{X_{2}}(-3k, \eta_{2}, g_{2})$ since $g_{2}$ is generic (and $b^{+}(X_{2})>1$).

On the other hand since $A_{1}$ is a flat connection over $P_{1}$ , it corresponds to a
representation $\rho$ : $Garrow SO(3)$ with $w_{2}(\rho)==:\eta_{1}$ (via the isomorphism $c^{*}$ in Proposition
4-1). We denote by $\chi\eta_{1(G)}$ the conjugacy classes of such representations. As
is listed in \S 3, the stabilizer Stab $(\rho)$ of $p$ (which corresponds to $\Gamma(A_{1})$ ) is either
1, $Z_{2},$ $Z_{2}\cross Z_{2},$ $SO(2),$ $O(2)$ , or $SO(3)$ (up to conjugacy). For any such $\rho$ we can
see that $H_{\rho}^{1}=H^{1}(G, ad\rho)=0$ by direct computation using the list in \S 3 or by the
method as in [5]. Also we can see that the dimension of $H_{\rho}^{0}=H^{0}(G, adp)$ is 3
if Stab$(p)=SO(3)$ , 1 if Stab$(\rho)=SO(2)$ or $O(2)$ (up to conjugacy), and is $0$

otherwise. On the other hand index computation shows that $\dim H_{\rho}^{0}-\dim H_{\rho}^{1}+$

$\dim H_{\rho}^{2}=3$ for any $\rho$ . Hence we have

$\mathfrak{N}=\Psi^{-1}(0)/Stab(p)$ for $\Psi:SO(3)arrow H_{\rho}^{2}$

where $\dim H_{\rho}^{2}$ is $0$ if Stab$(\rho)=SO(3),$ $2$ if Stab$(p)=SO(2)$ or 0(2), and 3 other-
wise. If $\rho$ is the trivial connection then Stab$(\rho)=SO(3)$ and so the contribution
of $Tl$ to the moduli space over $X$ is 1. For any $\rho$ with Stab$(p)=SO(2)$ or $O(2)$

we can assume that ${\rm Im} p\subset SO(2)$ (see the list of the $SO(3)$-representations in \S 3)
and $AdP_{1}$ is a sum $L\oplus\epsilon$ of a complex line bundle $L$ (on which $SO(2)$ acts as
rotations) and the trivial bundle $\epsilon$ of dimension 1. If Stab$(\rho)=SO(2)$ we have
$H_{\rho}^{2}=H_{+}^{2}(X_{1}, L)=C$ on which Stab $(\rho)$ acts as rotations. Therefore Su coincides
with the zero of some section of the bundle $SO(3)\cross_{S0(2)}C$ over $S^{2}$ associated
with the natural bundle $SO(3)arrow SO(3)/SO(2)$ for each $[A_{2}]$ (cf. [1], Proposition
2.13). Therefore the contribution of such $\backslash en$ to the moduli space over $X$ is 2.
If Stab$(\rho)=O(2)$ then also we have $H_{\rho}^{2}=H_{+}^{2}(X_{1}, L)=C$ . In this case $SO(2)$ acts
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on the fiber of $L$ (and on $H_{\rho}^{2}$) as rotations as before, whereas $J=(\begin{array}{lll}1 0 00-1 O0-01 \end{array})$

(which is a representative of $O(2)/SO(2)$) acts as the complex conjugation on
them. Hence the contribution of STZ in this case is the same as half of the
euler number of the above bundle $SO(3)\cross_{S0(2)}Carrow S^{2}$ (which is the same as the
euler number of the twisted bundle over $SO(3)/O(2)=RP^{2})$ and hence equals 1.
If Stab $(\rho)=1,$ $Z_{2}$ , or $Z_{2}\cross Z_{2}$ then the contribution of $\Re$ is the same as the euler
class of the bundle over $SO(3)/Stab(\rho)$ with fiber $H_{\rho}^{2}=R^{3}$ , since Stab $(\rho)$ acts
freely on $SO(3)$ . (In fact the lift $\overline{Stab(\rho}$) in $S^{3}$ of Stab $(\rho)$ is generated by $k\in S^{3}$

if Stab $(\rho)=Z_{2}$ , and is generated by $i,$ $j,$ $k\in S^{3}$ if Stab $(\rho)=Z_{2}xZ_{2}$ . So $SO(3)/$

$Stab(\rho)=S^{3}/\overline{Stab(p})$ is $SO(3)$ if Stab $(\rho)=1$ , the lens space $L(4,1)$ if Stab $(p)=Z_{2}$ ,
and the quaternionic space if Stab(p) $=Z_{2}XZ_{2}.)$ Since the euler number of the
$R^{3}$-bundle over the 3-manifold is zero, the contribution for this case is zero ([2],
[15] $)$ . Note that the orientation of the total moduli space is determined once
the integral lift of $\eta$ and the orientation of $H^{+}(X)$ are fixed (in fact, only
$H^{+}(X)=H^{+}(X_{2})$ and the integral lift of $\eta_{2}$ is essential since $\eta_{1}$ is a torsion [1] $)$ .
Moreover the lists $(3-1-1)-(3-1-3)$ in \S 3 show that for any $\eta_{1}$ we can choose a
common decomposition $AdP_{1}=L\oplus\epsilon$ above such that each element of $\chi\eta_{1(G)}$ with
stabilizer $SO(2)$ or $O(2)$ has a representative $\rho$ with ${\rm Im}(\rho)\in SO(2)$ and with
Stab$(\rho)=SO(2)$ or $O(2)$ which acts on the fiber of the common $L$ (or $H2+(X_{1},$ $L)$ )

as defined above. Hence the contributions of $\chi\eta_{1(G)}$ are of the same sign, and
their total amount for each $[A_{2}]$ is the sum (which we denote by $c_{G^{1}}^{\eta}$ ) of the
number of the elements in $\chi\eta_{1(G)}$ with stabilizer $SO(3)$ or $O(2)$ and twice the
number of the elements in $\chi\eta_{1(G)}$ with stabilizer $SO(2)$ . It follows that the
number of points in $\mathscr{M}_{X}(-3k, \eta, g_{\lambda_{i}})$ counted with sign is $c_{G^{1}}^{\eta}$-times that of
$\mathscr{M}_{X_{2}}(-3k, \eta_{2}, g_{2})$ . According to the lists (3-1-1) and (3-1-2) in \S 3 we can see
that $c_{G^{1}}^{\eta}=r$ if $G/[G, G]=Z_{r}$ with $r$ odd and $c_{G}^{\eta_{1}}=r/2$ if $G/[G, G]=Z_{r}$ with $r$

even for any $\eta_{1}$ If $G/[G, G]=Z_{2p}\oplus Z_{2}$ then the elements of $\chi\eta_{1(G)s}$ except
for $\rho_{\delta}$ with stabilizer $Z_{2}xZ_{2}$ (whose contribution is zero) are divided into the
following groups according to the 4 choices of $\eta_{1}$ (we use the notation in \S 3.
(3-1-3) $)$ .

(1) $\rho_{0}$ and $\rho_{l.0}$ with 1 even, $1\leqq l\leqq p-1$ ,
(2) $p_{1,0}$ and $\rho_{l.0}$ with $l$ odd, $1\leqq l\leqq p-1$ ,
(3) $\rho_{0.1}$ and $\rho_{l_{\rangle}1}$ with 1 even, 1S $l\leqq p-1$ ,
(4) $\rho_{1.1}$ and $\rho_{l.1}$ with 1 odd, $1\leqq l\leqq p-1$ .
These facts show that $c_{G^{1}}^{\eta}=P$ in any case. Consequently in eitber case $c_{G^{1}}^{\eta}$

depends only on $G$ and we can denote it by $c_{G}$ . We also deduce that $|\gamma_{X}(\eta_{0})|$

$=c_{G}|\gamma s_{k}^{\sigma}(p.q)(\eta_{0})|=c_{G}pq$ by Corollary 2-5. This proves Proposition 4-3.
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COROLLARY $4\frac{4}{}$ . For any $G$ we have infinitely many pairs $\{p_{i}, q_{t}\}(i\in N)$

such that the above $X_{G}(p_{i}, q_{i})s$ are non-diffeomorphic to each other. In fact
$X_{G}(p, q)$ and $X_{G}(p’, q’)$ can be diffeomorphic only when $pq=p’q’$ .

PROOF. Proposition 4-3 and Corollary 2-5 show that $\max\{|\gamma_{x_{G^{(p.q)}}}(\eta)||$

$\eta\in C_{X_{G}(p.q)}\}=c_{G}\max\{|\gamma_{S_{k}^{\sigma_{(p,q)}}}(\eta_{2})||\eta_{2}\in c_{s_{k}^{\sigma_{(p,q)}}}\}=c_{G}pq$ . Since $c_{G}$ is nonzero we
obtain the desired result.

\S 5. Proof of Main Theorem.

First we discuss the homeomorphism types of $X_{G}(p, q)=W_{G}\# S_{k}^{\sigma}(p, q)$ for
$k\geqq 2$ and $gcd(p, q)=1$ .

PROPOSITION 5-1. $X_{G}(P, q)$ is homeomorphic to $W_{G}\#(k/2)K\#(k/2-1)S^{2}xS^{2}$

$lfk$ is even and both $p$ and $q$ are odd, and is homeomorphic to $W_{G}\#(2k-l)CP^{2}\#$

$(10k-1)\overline{CP}$ otherwise.

PROOF. First note that there is a homeomorphism from $N_{2}(P, q)$ to $N_{2}$

(resp. to $N_{2}(2,1)$) which is the identity on the boundaries if both $P$ and $q$ are
odd (resp. one of $p$ and $q$ is even) ([7]). Since $N_{2}(P, q)$ is contained in $S_{k}^{\sigma}(p, q)$

(and hence also in $X_{G}(p,$ $q)$) such a homeomorphism extends to that from $X_{G}(p, q)$

to either $W_{G}\# S_{k}^{\sigma}$ (if $p$ and $q$ are odd) or $W_{G}\# S_{k}^{\sigma}(2,1)$ (otherwise) which is the
identity on the complement of $N_{2}(p, q)$ in $X_{G}(p, q)$ . On the other hand $S_{k}^{\sigma}(p, q)$

is a 1-connected manifold with euler number $12k$ , with signature $-8k$ , and it
is spin if and only if $k$ is even and both $p$ and $q$ are odd. Then applying
Freedman’s theorem [3] to $S_{k}^{\sigma}(p, q)$ and using the smoothability of $0$-handles in
dimension 4 ([25]) we obtain the desired results.

Next we consider the universal covering $\tilde{X}_{G}(P, q)$ of $X_{G}(P, q)$ . By Proposi-
tion 1-2 $\tilde{X}_{G}(P, q)$ is diffeomorphic to $(|G|-1)S^{2}\cross S^{2}\#|G|S_{k}^{\sigma}(p, q)$ . The following
propositions are essentially contained in [7], [8], [9].

PROPOSITION 5-2 ([7], [8], [9]). (1) $N_{2}(P, q)\# S^{2}\cross S^{2}$ is diffeomorphic to $N_{2}\#$

$S^{2}\cross S^{2}$ if both $P$ and $q$ are odd, and is diffeomorphic to $N_{2}\# CP^{2}\#\overline{CP^{2}}$ otherwise
by a diffeomorphism which induces the identity on the boundary. (2) $S_{k}^{\sigma}(p, q)\# S^{2}\cross S^{2}$

is diffeomorphic to $k/2K\# k/2(S^{2}\cross S^{2})$ if $k$ is even and both $P$ and $q$ are odd, and
$\iota s$ diffeomorphic to $2kCP^{2}\# 10k\overline{CP^{2}}$ otherwise.

PROOF. (1) is proved in [9], \S 23 by applying Mandelbaum’s lemma ([17])

to a fiber sum of $N_{2}$ and a manifold obtained from $T^{2}\cross S^{2}$ by performing
logarithmic transforms of multiplicity $P$ and $q$ along two fibers and by the fact
that $N_{2}(P, q)$ is spin if and only if both $p$ and $q$ are odd ([7]). Using the
natural extension of the diffeomorphism in (1) and the diffeomorphism between
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$S_{k}$ and $S_{k}^{\sigma}$ we see that $S_{k}^{\sigma}(p, q)\# S^{2}\cross S^{2}$ is diffeomorphic to either $S_{k}\# S^{2}\cross S^{2}$ or
$S_{k}\# CP^{2}\#\overline{CP^{2}}$ . On the other hand the results in [17] and [19] show that
$S_{k}\# S^{2}\cross S^{2}$ and $S_{k}\# CP^{2}$ are diffeomorphic to either connected sums of copies of
$K’ s$ and $S^{2}XS^{2}$ , or connected sums of copies of $CP^{2}s$ and $CP^{2}’ s$ . Then the
computation of the euler number, the signature, and the type of the intersection
form of $S_{k}^{\sigma}(p, q)$ show (2).

PROPOSITION 5-3. $\tilde{X}_{G}(P, q)$ is diffeomorphic to $(|G|k/2)K\#(|G|k/2-1)S^{2}\chi S^{2}$

if $k$ is even and $P$ and $q$ are odd, and is diffeomorphic to $(2k|G|-1)CP^{2}\#$

$(10k|G|-1)\overline{CP^{2}}$ otherwise.

PROOF. By Proposition 5-2 we can replace one copy of $S_{k}^{\sigma}(p, q)\# S^{2}xS^{2}$ in
$\tilde{X}_{G}(P, q)=(|G|-1)S^{2}\cross S^{2}\#|G|S_{k}^{\sigma}(p, q)$ by a connected sum of $K’ s$ and $S^{2}\cross S^{2}’ s$ ,

or a connected sum of $CP^{2}’ s$ and $\overline{CP}^{2}’ s$ to reduce the number of the copies
of $S_{k}^{\sigma}(p, q)$ by 1. Note that if $S_{k}^{\sigma}(p, q)$ is nonspin then $S_{k}^{\sigma}(p, q)\# CP^{2}\#\overline{CP}^{2}$ can
be rePlaced by $S_{k}^{\sigma}(p, q)\# S^{2}\cross S^{2}$ since these two manifolds are diffeomorphic.
Thus we can repeat this process on $\tilde{X}_{G}(p, q)|G|$ times to obtain the desired
result.

PROOF OF MAIN THEOREM. Let $X=nK\#(n-1)S^{2}XS^{2}$ where $n$ iS dlvided by
$|G|$ with $1<|G|<n$ . Put $k=2n/|G|$ . Then by Proposition4-3, Corollary 4-4
we can choose the pair of integers $(p_{i}, q_{i})$ for each $i\in N$ satisfying

(1) $gcd(p_{i}, q_{i})=1$ ,
(2) both $p_{i}$ and $q_{i}$ are odd,
(3) $\max\{|\gamma_{X_{\ell}}(\eta)||\eta\in C_{X_{i}}\}$ for $X_{i}=W_{G}\#S_{k}^{\sigma}(p_{i}, q_{i})$ are strictly increasing as

$i$ tends to $\infty$ .
Then $X_{t}’ s$ are mutually homeomorphic by Proposition 5-1, their universal
coverings $\tilde{X}_{i}$ are diffeomorphic to $X$ by Proposition 5-3, and $X_{i}’ s$ are not
diffeomorphic to each other by (3). Therefore the covering translations for
such $\tilde{X}_{i}’ s$ give the desired $G$ actions. Suppose that $X=(2n-l)CP^{2}\#(10n-l)^{2}CP$

where $n$ is divided by $|G|$ with $1<|G|<n$ . Then put $k=n/|G|$ . If $k$ is odd
choose $p_{i},$ $q_{i}$ as in the first case. If $k$ is even we can also choose $\{P_{i}, q_{i}\}$

satisfying the above conditions (1) and (3) so that $p_{i}$ is even and $q_{i}$ is odd by
Proposition 4-3. Then in either case Proposition 5-1, Proposition5-3, and
Proposition5-2 show that the covering translations for $\tilde{X}_{i}$ give the desired
action as in the first case. This completes the proof.

REMARK 5-4. Consider $X_{i}=W_{G}\# S_{h}^{\sigma}(p_{i}, q_{i})$ satisfying (1), (2), (3) in the proof
of Main Theorem equipped with a generic metric $g_{i}$ . Let $P_{i}$ be the $SO(3)$

bundle over $X_{i}$ with $p_{1}=-3k$ and $w_{2}=\eta_{0}$ where $\eta_{0}$ is the element in Corollary
2-5. Next consider the pullback $\tilde{P}_{i}$ of $P_{i}$ over the universal covering $\tilde{X}_{i}=^{\varphi_{G}\#}$
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$|G|S_{k}^{\sigma}(p_{i}, q_{i})$ of $X_{i}$ with the metric $\tilde{g}_{i}$ induced by $g_{t}$ . Then $w_{2}(P_{i})$ is the
Poincar\’e dual $mod 2$ of the union of the lifts of $\Sigma^{\sigma}-kf^{\sigma}$ contained in $|G|$

coPies of the complement $S^{0}$ of $N_{2}(p, q)$ in $S_{k}^{\sigma}(p, q)$ and the virtual dimension
of the moduli space of ASD connections on $\tilde{P}_{i}$ is also $0$ . Moreover applying
Mandelbaum’s lemma on $\tilde{X}_{i}$ as in the proof of Proposition 5-2 we have a
diffeomorphism between $\tilde{X}_{i}$ and $\tilde{X}_{j}$ which is the identity on the common $|G|$

copies of $S^{0}$ for any $i$ and $j$ . Hence $\tilde{P}_{i}’ s$ are mutually isomorphic. The number
of $\tilde{g}_{i}$-ASD connections on $\tilde{P}_{i}$ which are the pullbacks of $g_{i}$-ASD connections
tends to $\infty$ as $iarrow\infty$ by Proposition 4-3. On the other hand $\tilde{X}_{i}$ is completely
decomposable (Proposition 5-3) and the support of $w_{2}(\tilde{P}_{i})$ lies in different $|G|$

copies of $S^{0}$ . So if we choose a metric $g$ on $\tilde{X}_{i}$ so that $\tilde{X}_{i}$ has one thin neck
which separates one copy of $S_{k}^{\sigma}(p_{i}, q_{i})$ from the other summands of the connected
sum decompositions of $\tilde{X}_{i}$ , and so that $g$ is generic on both of the separated
regions, then the moduli space of $g$-ASD connections on $\tilde{P}_{i}$ is empty ([2],

Proposition 9.3.7). This implies that such $g$ cannot be $G$-invariant. (In fact $\tilde{X}_{i}$

with $G$-invariant metric must have at least two neck regions invariant under
the $G$-action and equivariant transversality theorem for the moduli spaces with
$G$ -actions fails in naive sense [10].)
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