A remark on the exotic free actions in dimension 4

By Masaaki UE

(Received Nov. 11, 1993)
(Revised July 18, 1994)

Donaldson's polynomial invariants ([2]) are powerful tools for studying smooth 4-manifolds. For example the diffeomorphism types of elliptic surfaces with positive geometric genus were completely classified by them ([4], [20], [21]). The examples of smooth closed 1 -connected noncomplex 4 -manifolds with infinitely many smooth structures were first given by [9] and then were constructed by various methods [[6], [13], [16], [26]). In this paper we will give some examples of infinitely many exotic 4 -manifolds whose universal coverings are mutually diffeomorphic. In fact we will show that the fundamental group of any spherical 3 -manifold other than the 3 -sphere acts freely on certain 4 -manifolds in infinitely many different ways so that their orbit spaces are exotic (Main Theorem). Throughout this paper we denote the $K 3$ surface by K, and for any finite group G we denote by $|G|$ the order of G. For any closed oriented 4 -manifold X, we denote by $b_{2}^{+}=b_{2}^{+}(X)$ the rank of the maximal positive subspace $H^{+}=H^{+}(X)$ of the intersection form q_{X} of X, and $n X$ denotes the connected sum of n copies of X.

Main Theorem. Let G be the fundamental group of any spherical 3-manifold other than the 3 -sphere. Let $X=(2 n-1) \boldsymbol{C} \boldsymbol{P}^{2} \#(10 n-1) \overline{\boldsymbol{C P}}^{2}$ or $X=n K \#(n-1) S^{2} \times S^{2}$. Then if n is divided by $|G|$ and $|G|<n$, there exist infinitely many smooth orientation-preserving free G-actions on X such that their orbit spaces are mutually homeomorphic but non-diffeomorphic to each other.

In $\S 1$ we will construct the manifolds which will be the orbit spaces for the actions in Main Theorem. These manifolds are connected sums of rational homology 4 -spheres and 1 -connected 4 -manifolds with $b_{2}^{+}>1$ which are derived from certain elliptic surfaces. In $\S 2$ and $\S 4$ we will describe the simple invariants for these manifolds to distinguish their diffeomorphism types. In §3 the list of $S O(3)$-representations for the above G will be given for the estimates of the simple invariants in §4. In $\S 5$ we will complete the proof of Main Theorem. Here we note that the argument in §4 is similar to that in [15] in which the connected sums of \boldsymbol{Z}_{2} homology 4 -spheres and some manifolds with
$b_{2}^{+}=1$ and their Kotschick invariants are discussed. The author would like to thank the referee for pointing out some errors in the preliminary draft of this paper.

§ 1. Constructions.

Let S_{k} be the relatively minimal elliptic surface over $\boldsymbol{C P} \boldsymbol{P}^{1}$ with euler number $12 k$ and with a cross section Σ, and let $S_{k}(p, q)$ be the relatively minimal elliptic surface over $\boldsymbol{C P} \boldsymbol{P}^{1}$ with euler number $12 k$ with two multiple fibers of multiplicity p and q for $k>0, p \geqq 1$ and $q \geqq 1$. Here the multiple fiber of multiplicity 1 means the general fiber and $S_{k}(1,1)$ is identified with S_{k}. We denote by f the general fiber of any elliptic surface. We start with the manifolds S_{k}^{σ} and $S_{k}^{\sigma}(p, q)$ for $k \geqq 2$ which are the analogues of the examples in [9] and are constructed as follows. Let S_{k}^{0} (resp. $S_{k}^{0}(p, q)$) be the manifold obtained from S_{k} (resp. $S_{k}(p, q)$) by removing the tubular neighborhood of f. Now we fix the diffeomorphism σ from ∂S_{k-1}^{0} to $\partial S_{1}^{0}(p, q)=\partial S_{1}^{0}$ which does not preserve the general fibers of S_{k-1}^{0} and $S_{1}^{0}(p, q)$ (or S_{1}^{0}), and consider the manifolds S_{k}^{σ} and $S_{k}^{o}(p, q)$ defined by

$$
S_{k}^{\sigma}=S_{1}^{0} \cup_{\sigma} S_{k-1}^{0}, \quad S_{k}^{\sigma}(p, q)=S_{1}^{0}(p, q) \cup_{\sigma} S_{k-1}^{0} .
$$

We note that S_{k}^{σ} is diffeomorphic to S_{k} since any diffeomorphism of ∂S_{1}^{0} extends to that of $S_{1}^{0}([7],[18])$ but we use this symbol for convenience. Next we construct some rational homology 4 -spheres as follows.

Definition 1-1. For any closed oriented smooth 3-manifold M, let $s(M)$ and $s^{\prime}(M)$ be the 4 -manifolds defined as follows.

$$
\begin{aligned}
& s(M)=\left(M \backslash \operatorname{Int} D^{3}\right) \times S^{1} \cup_{i d} S^{2} \times D^{2} \\
& s^{\prime}(M)=\left(M \backslash \operatorname{Int} D^{3}\right) \times S^{1} \cup_{\tau} S^{2} \times D^{2} .
\end{aligned}
$$

Here D^{3} is a small 3 -ball in M and $\tau: S^{2} \times \partial D^{2} \rightarrow \partial\left(M \backslash \operatorname{Int} D^{3}\right) \times S^{1}$ is a selfdiffeomorphism of $S^{2} \times S^{1}$ defined by $\tau(x, \theta)=\left(\rho_{\theta}(x), \theta\right)$ for $x \in S^{2}, \theta \in \boldsymbol{R} / 2 \pi \boldsymbol{Z}=S^{1}$, where ρ_{θ} is a rotation through angle θ in a fixed axis on S^{2}. The manifolds $s(M)$ and $s^{\prime}(M)$ are called an untwisted spin and a twisted spin of M respectively (see [24] for example).

Remark 1-2. If M is a lens space $L(p, q)$ then $s(M)$ is diffeomorphic to $s^{\prime}(M)$. Moreover the diffeomorphism type of $s(M)$ in this case depends only on p (not depending on q) ([23]).

Hereafter we consider the spins for the spherical 3-manifold M_{G} with $\pi_{1} M=G$.

Proposition 1-3. (1) Both $s\left(M_{G}\right)$ and $s^{\prime}\left(M_{G}\right)$ are rational homology 4 -spheres with $\pi_{1} s\left(M_{G}\right)=\pi_{1} s^{\prime}\left(M_{G}\right)=G$. If M_{G} is a \boldsymbol{Z}_{2}-homology sphere then so is $s\left(M_{G}\right)$ (and so is $s^{\prime}\left(M_{G}\right)$). (2) The universal covering $s\left(\tilde{M}_{G}\right)$ of $s\left(M_{G}\right)$ is diffeomorphic to $(|G|-1) S^{2} \times S^{2}$. The same claim holds for the universal covering $s^{\prime}\left(\tilde{M}_{G}\right)$ of $s^{\prime}\left(M_{G}\right)$.

Proof. The proof of (1) is straightforward. The second claim is proved in [24], $\S 2$. The proof goes as follows. The universal covering of $M_{G} \backslash \operatorname{Int} D^{3}$ is a $|G|$-punctured 3 -sphere $S_{0}^{3}=S^{3} \backslash \bigcup_{i=1}^{|G|}$ Int D_{i}^{3} where D_{i}^{3} is a copy of a small 3-ball in S^{3}. Therefore $s\left(\tilde{M}_{G}\right)$ (resp. $s^{\prime}\left(\tilde{M}_{G}\right)$) is the union of $S_{0}^{3} \times S^{1}$ and $|G|$ copies of $S^{2} \times D^{2}$ each of which is attached along each boundary component of $S_{0}^{3} \times S^{1}$ via the identity (resp. τ). Then $s\left(\tilde{M}_{G}\right)$ is obtained from S^{4} by untwisted surgery along $|G|-1$ (unknotted) circles in S^{4}. It follows that $s\left(\tilde{M}_{G}\right)$ is diffeomorphic to $(|G|-1) S^{2} \times S^{2}$. In case of $s^{\prime}\left(\tilde{M}_{G}\right)$ the small balls D_{i}^{3} in S^{3} are located so that a rotation in a fixed circle of S^{3} through angle θ leaves all D_{i}^{3} 's invariant and induces the same rotation on each D_{i}^{3}. Therefore the copies of the above map τ on $\partial S_{0}^{3} \times S^{1}$ extends to the diffeomorphism of $S_{0}^{3} \times S^{1}$ and hence $s^{\prime}\left(\tilde{M}_{G}\right)$ is diffeomorphic to $s\left(\tilde{M}_{G}\right)$. This proves the second claim.

For later use we choose one of $s\left(M_{G}\right)$ and $s^{\prime}\left(M_{G}\right)$, and denote it by W_{G}. (The arguments below do not depend on the choice of W_{G}.) Let $X_{G}(p, q)=$ $W_{G} \# S_{k}^{G}(p, q)$ where p and q are natural numbers with $\operatorname{gcd}(p, q)=1$. Note that the last condition on p and q implies that $S_{k}(p, q)$ and $S_{k}^{q}(p, q)$ are 1-connected. To choose the candidates for the orbit spaces of the actions in Main Theorem from the manifolds of the form $X_{G}(p, q)$ we need some further observations for them. Recall that the regular neighborhood N_{k} in S_{k} of the union of the cusp fiber and the cross section Σ, and the manifold $N_{k}(p, q)$ obtained from N_{k} by performing logarithmic transforms of multiplicity p and q at the general fibers in N_{k} are called nuclei in [7]. Here $N_{k}(p, q)$ is contained in $S_{k}(p, q)$. Then $H_{2}\left(N_{k}, \boldsymbol{Z}\right)$ is generated by f and Σ with

$$
f \cdot f=0, \quad f \cdot \Sigma=1, \quad \Sigma \cdot \Sigma=-k
$$

and $H_{2}\left(N_{k}(p, q), \boldsymbol{Z}\right)$ is generated by some 2 -cycles κ and Δ with

$$
\kappa \cdot \kappa=0, \quad \kappa \cdot \Delta=1, \quad \Delta \cdot \Delta=-(p+q)^{2}-k(p q)^{2} .
$$

Here κ is a primitive element which is a positive rational multiple of f (where $f=p q \kappa)$. Next note that S_{k}^{σ} (resp. $S_{k}^{q}(p, q)$) contains N_{2} (resp. $N_{2}(p, q)$) and N_{k} which are mutually disjoint. In fact in S_{k}^{σ} we have smoothly embedded 2 -spheres Σ^{σ} and Σ^{\prime} where Σ^{σ} (resp. Σ^{\prime}) is a union of the cross sectional 2-disk of S_{k-1}^{0} (resp. S_{1}^{0}) and a vanishing 2 -disk in S_{1}^{0} (resp. S_{k-1}^{0}) which are attached along their boundaries via σ. Then N_{k} (resp. N_{2}) in S_{k}^{σ} is constructed as a regular neighborhood of the union of Σ^{σ} (resp. Σ^{\prime}) and the cusp fiber in S_{k-1}^{0} (resp. S_{1}^{0}). In case of $S_{k}^{\sigma}(p, q)$ we have only to replace N_{2} by $N_{2}(p, q)$. Since $\partial N_{k}(p, q)$ is
the Brieskorn homology 3 -sphere ([7]), $H_{2}\left(S_{k}^{o}(p, q), \boldsymbol{Z}\right)$ is the direct sum of $H_{2}\left(N_{k}, \boldsymbol{Z}\right)$ (generated by the general fiber f^{σ} in S_{k-1}^{0} and $\left.\Sigma^{\sigma}\right), H_{2}\left(N_{2}(p, q), \boldsymbol{Z}\right)$ (generated by κ^{\prime} and Δ^{\prime} corresponding to κ and Δ above), and their orthogonal complement $\left\langle f^{\sigma}, \Sigma^{\sigma}\right\rangle^{\perp} \cap\left\langle\kappa^{\prime}, \Delta^{\prime}\right\rangle^{\perp}$ on which the intersection form is even. In case of S_{k}^{σ} we can replace κ^{\prime} and Δ^{\prime} by the general fiber f^{\prime} in S_{1}^{0} and the above Σ^{\prime} respectively. In the remainder of this paper the manifolds $S_{k}(1,1), S_{k}^{q}(1,1)$, and $X_{G}(1,1)$ are identified with S_{k}, S_{k}^{σ}, and $W_{G} \# S_{k}^{\sigma}$ respectively.

§ 2. Simple invariants for $S_{k}^{q}(p, q)$.

First we recall the definition of the simple invariants for simply connected 4 -manifolds. Let X be an oriented smooth closed 1 -connected 4 -manifold with $b_{2}^{+}(X)$ odd and greater than 1. Put $l_{X}=-3\left(1+b_{2}^{+}(X)\right) / 2$ and define \mathcal{C}_{X} to be the set of nonzero elements of $H^{2}\left(X, \boldsymbol{Z}_{2}\right)$ each of which is a $\bmod 2$ reduction of some $c \in H^{2}(X, \boldsymbol{Z})$ with $q_{X}(c) \equiv l_{X}(\bmod 4)$. For any $\eta \in \mathcal{C}_{X}$ let P_{η} be a principal $S O(3)$-bundle over X with $w_{2}=\eta$ and $p_{1}=l_{X}$ (which exists uniquely up to equivalence). Note that there are no flat connections on P_{η} since X is 1-connected and w_{2} is nonzero. Then the moduli space $\mathscr{M}_{X}\left(l_{X}, \eta, g\right)$ of g-ASD connections on P_{η} for a generic Riemann metric g of X consists of finitely many points with sign ± 1 where the signs are determined by the choice of the integral lift c of η and the orientation of $H^{+}(X)$.

Definition 2-0 ([2], [9]). For any $\eta \in \mathcal{C}_{X}$ the number of the points in $\mathscr{H}_{X}\left(l_{X}, \eta, g\right)$ counted with sign does not depend on g and is denoted by $\gamma_{X}(\eta)$. The values $\gamma_{X}(\eta)$'s are called simple invariants for X.

Thus γ_{X} is a well defined map on \mathcal{C}_{X} up to sign and by its naturality with respect to the diffeomorphisms the value $\max \left\{\left|\gamma_{X}(\eta)\right| \mid \eta \in \mathcal{C}_{X}\right\}$ is the diffeomorphism invariant of X. In [9] the set $\hat{\mathcal{C}}_{X}$ of the integral lifts of $\eta \in \mathcal{C}_{X}$ modulo some equivalence is used to define γ_{X}. But this point is not crucial for our purpose since we only need the absolute value of γ_{x}. In case $X=S_{k}(p, q)$ or $X=S_{k}^{q}(p, q)$ with $k \geqq 2$ and $\operatorname{gcd}(p, q)=1$, we see that \mathcal{C}_{X} consists of the elements $\eta \in H^{2}\left(X, \boldsymbol{Z}_{2}\right)$ with $\eta \neq 0$ and with $q_{X}(c) \equiv k(\bmod 4)$ for any integral lift c of η. Now the results in [6], [14] show the following.

Theorem 2-1 (see [6], [14]). The simple invariants for $X=S_{k}(p, q)$ with $k>2$ and $\operatorname{gcd}(p, q)=1$ are given as follows (up to sign).

$$
\left|\gamma_{X}(\eta)\right|= \begin{cases}1 & \text { if } \eta \cdot P D_{2} \kappa=1 \text { and both } p \text { and } q \text { are odd } \\ 0 & \text { otherwise. }\end{cases}
$$

Here $P D_{2}$ denotes the Poincaré dual mod 2.

Remark 2-2. (1) Proposition 2-1 is not true for the cases with $k=2$ which were completely determined in [9]. (2) The above results are proved in [11], [12], [26] for some particular η and are proved for the general cases by mutually different methods in [6] and [14].

The above results show that γ_{x} is far from sufficient to determine the diffeomorphism types of $S_{k}(p, q)$ (see [20]). So we choose $S_{k}^{\sigma}(p, q)$ in place of $S_{k}(p, q)$ for our construction.

Theorem 2-3. The simple invariants for $X=S_{k}^{o}(p, q)$ with $k>2$ and $\operatorname{gcd}(p, q)$ $=1$ are given as follows (up to sign).

$$
\left|\gamma_{x}(\eta)\right|=\left\{\begin{array}{l}
p q \text { if } \eta \cdot P D_{2} f^{\sigma}=1 \text { and } \eta \cdot P D_{2} \kappa^{\prime}=0 \\
1 \text { if } \eta \cdot P D_{2} f^{\sigma}=\eta \cdot P D_{2} \kappa^{\prime}=1 \\
0 \quad \text { otherwise. }
\end{array}\right.
$$

Remark 2-4. We can see from the above propositions that $S_{k}^{\alpha}(p, q)$ for $k>2$ is not diffeomorphic to any $S_{k}\left(p^{\prime}, q^{\prime}\right)$ (and in fact never diffeomorphic to a complex surface). But this does not hold if $k=2$ since $S_{2}^{\sigma}(p, q)$ is diffeomorphic to $S_{2}(p, q)$. So further logarithmic transforms are needed to get similar examples for $k=2$ ([9]).

Proof of Theorem 2-3. First note that there is a diffeomorphism ϕ from S_{k}^{σ} to S_{k} which is the identity on the part S_{k-1}^{0}, and maps Σ^{σ} to Σ and f^{σ} to f ([9], [18]). Therefore the claim for the cases with $p=q=1$ is deduced from Theorem 2-1. For the general case note that $\eta \in \mathcal{C}_{X}$ for $X=S_{k}^{q}(p, q)$ is represented as

$$
\eta=P D_{2}\left(a \Sigma^{\sigma}+b f^{\sigma}+a^{\prime} \Delta^{\prime}+b^{\prime} \kappa^{\prime}+w\right)
$$

where $a, a^{\prime}, b, b^{\prime}$ are either 0 or 1 , and w is either 0 or a primitive element in $\left\langle\Sigma^{\sigma}, f^{\sigma}\right\rangle^{\perp} \cap\left\langle\Delta^{\prime}, \kappa^{\prime}\right\rangle^{\perp}$, which satisfies

$$
-a^{2} k+2 a b-a^{\prime 2}\left((p+q)^{2}+2(p q)^{2}\right)+2 a^{\prime} b^{\prime}+q_{x}(w) \equiv k \quad(\bmod 4) .
$$

Case I. $a=a^{\prime}=1$. In this case the above equation shows that $(p+q)^{2}$ must be even since $q_{X}(w)$ is even. Since $\operatorname{gcd}(p, q)=1$ both p and q must be odd. Then we use Gompf-Mrowka's formula in [9], Proposition 4.4 twice to get

$$
\left|\gamma_{x}(\eta)\right|=\left|\gamma_{s_{k}^{\sigma}}\left(\eta^{\prime}\right)\right|
$$

where $\eta^{\prime} \in \mathcal{C}_{S_{k}^{\sigma}}$ is the Poincare dual $\bmod 2$ of the element of the form $\Sigma^{\sigma}+b f^{\sigma}$ $+\Sigma^{\prime}+b^{\prime} f^{\prime}+w$ for $w \in\left\langle\Sigma^{\sigma}, f^{\sigma}\right\rangle^{\perp} \cap\left\langle\Sigma^{\prime}, f^{\prime}\right\rangle^{\perp}$. Then via the above ϕ the left hand side of the above formula equals $\left|\gamma_{s_{k}}\left(\eta^{\prime \prime}\right)\right|$ for some $\eta^{\prime \prime} \in \mathcal{C}_{S_{k}}$ with $\eta^{\prime \prime} \cdot P D_{2} f=1$ and hence equals 1 by Theorem 2-1.

Case II. $a=0$ and $a^{\prime}=1$. Again using [9], Proposition 4.4 and the above ϕ we see that $\left|\gamma_{X}(\eta)\right|$ equals 0 if one of p and q is even and otherwise equals $\left|\gamma_{s_{k}}\left(\eta^{\prime \prime}\right)\right|$ for some $\eta^{\prime \prime} \in \mathcal{C}_{s_{k}}$ with $\eta^{\prime \prime} \cdot P D_{2} f=0$. By Theorem 2-1 the last value is also 0 .

Case III. $a=1$ and $a^{\prime}=0$. In this case use [9], Corollary 4.3 twice and the above ϕ to get

$$
\left|\gamma_{x}(\eta)\right|=p q\left|\gamma_{s_{k}}\left(\eta^{\prime \prime}\right)\right|
$$

where $\eta^{\prime \prime}$ is some element of $\mathcal{C}_{S_{k}}$ with $\eta^{\prime \prime} \cdot P D_{2} f=1$. Therefore the left hand side of the above formula is $p q$.

Case IV. $a=a^{\prime}=0$. If either $b=1$ or $w \neq 0$ the same procedure in Case III shows that $\left|\gamma_{X}(\eta)\right|=p q\left|\gamma_{s_{k}}\left(\eta^{\prime \prime}\right)\right|$ for some $\eta^{\prime \prime} \in \mathcal{C}_{S_{k}}$ with $\eta \cdot P D_{2} f=0$ and hence this value is 0 . But if $\eta=\kappa^{\prime}$ (in this case $\left.k \equiv 0(\bmod 4)\right)$ we cannot appeal to the method in [9]. For, if we put Y to be the manifold obtained from X by removing the tubular neighborhood of either one of the multiple fibers, then κ^{\prime} may be zero in $H^{2}\left(Y, \boldsymbol{Z}_{2}\right)$. However since $k \geqq 4$ in this case we can decompose X as the torus sum of $S_{2}^{\sigma}(p, q)$ (which contains the support of κ^{\prime}) and S_{k-2} and apply the vanishing theorem of $\gamma_{x}([14])$ to them. Then we see that $\gamma_{x}(\eta)=0$ also in this case. This proves Theorem 2-3.

Corollary 2-5. Put $\eta_{0}=P D_{2}\left(\Sigma^{\sigma}-k f^{\sigma}\right)$. Then η_{0} is contained simultaneously in $\mathcal{C}_{S_{k}^{\sigma}(p, q)}$ and $\max \left\{\left|\gamma_{S_{k}^{\sigma}(p, q)}(\eta)\right| \mid \eta \in \mathcal{C}_{S_{k}^{\sigma}(p, q)}\right\}=\left|\gamma_{S_{k}^{\sigma}(p, q)}\left(\eta_{0}\right)\right|=p q$ for any k, p, q. Hence $p q$ is the diffeomorphism invariant for $S_{k}^{q}(p, q)$'s.

Proof. The claim for $k=2$ comes from the results in [9]. The other cases are proved immediately by Theorem 2-3.

§ 3. $S O(3)$-representations for G.

In this section we consider the fundamental group of the spherical 3-manifold $G=\pi_{1} M_{G}$ and the set $R(G)$ of $S O(3)$-representations for G. Let $\chi(G)$ be the set of the conjugacy classes of the elements of $R(G)$ by $S O(3)$. In the next section any element in $\chi(G)$ will be considered as an equivalence class of a flat $S O(3)$ connection over the (twisted or untwisted) spin W_{G} of M_{G}. First of all if M_{G} is not a lens space then M_{G} has a Seifert fibration over the 2 -orbifold of genus 0 with exactly 3 singular points $S^{2}\left(p_{1}, p_{2}, p_{3}\right)$ where the set of multiplicities of the singular points $\left(p_{1}, p_{2}, p_{3}\right)$ is either $(2,3,3),(2,3,4),(2,3,5)$, or $(2,2, n)$ for $n \geqq 2$ ([22]). Moreover M_{G} is represented by the Seifert invariants of the form $\left\{\left(p_{1}, a_{1}\right),\left(p_{2}, a_{2}\right),\left(p_{3}, a_{3}\right)\right\}$ with $\operatorname{gcd}\left(p_{i}, a_{i}\right)=1(i=1,2,3)$ and G has the following representation.

$$
\left\{x, y, z, h \mid x^{p_{1}} h^{a_{1}}=y^{p_{2}} h^{a_{2}}=z^{p_{3}} h^{a_{3}}=x y z=1, h \text { is central }\right\} .
$$

Here h corresponds to the general fiber of M_{G} and x, y, z correspond to the lifts of the meridians for 3 singular points on the base orbifold. Note that x, y, z can be chosen so that they satisfy $x y z=1$ in G (therefore a_{i} may be negative in the above representation). Moreover $-M_{G}$ is represented by $\left\{\left(p_{1},-a_{1}\right),\left(p_{2},-a_{2}\right),\left(p_{3},-a_{3}\right)\right\}$. It suffices to consider one of $\pm M_{G}$. Consequently replacing x, y, z by other lifts if necessary we have only to consider the following cases. (For example if $M_{G}=\{(2,1),(3,2),(n, b)\}$ then $-M_{G}=$ $\{(2,-1),(3,-2),(n,-b)\}=\{(2,1),(3,1),(n,-b-2 n)\}$.)
(1) $M_{G}=L(p, q)$.
(2) $M_{G}=\{(2,1),(2,1),(n, b)\}$ with $\operatorname{gcd}(n, b)=1, n \geqq 2$.
(3) $M_{G}=\{(2,1),(3,1),(3, b)\}$ with $\operatorname{gcd}(3, b)=1$.
(4) $M_{G}=\{(2,1),(3,1),(4, b)\}$ with $\operatorname{gcd}(4, b)=1$.
(5) $\quad M_{G}=\{(2,1),(3,1),(5, b)\}$ with $\operatorname{gcd}(5, b)=1$.

For the cases (2)-(5) $G /[G, G]=H_{1}\left(M_{G}, \boldsymbol{Z}\right)$ is given by the table below where x, z are the images in $G /[G, G]$ of the corresponding generators of G and $\boldsymbol{Z}_{p}[u]$ denotes the \boldsymbol{Z}_{p}-factor generated by u.
(3-0).

$$
G /[G, G]= \begin{cases}\boldsymbol{Z}_{p} & \text { for Case (1) } \\ \boldsymbol{Z}_{12(n+b)}[x] \oplus \boldsymbol{Z}_{2}[z+2 x] & \text { for Case (2) with } n \text { even } \\ \boldsymbol{Z}_{14(n+b)}[x] & \text { for Case (2) with } n \text { odd } \\ \boldsymbol{Z}_{16 b+161}[z+2 x] & \text { for Case (3) } \\ \boldsymbol{Z}_{16++20 \mid}[z+2 x] & \text { for Case (4) } \\ \boldsymbol{Z}_{16 b+261}[z+2 x] & \text { for Case (5). }\end{cases}
$$

Note that M_{G} is a \boldsymbol{Z}_{2}-homology sphere if and only if M_{G} belongs to (3), (5), or (1) with p odd. Now we consider $R(G)$. For any element $\rho \in R(G)$ let $\operatorname{Stab}(\rho)$ be the stabilizer of ρ. Moreover for any $\gamma \in G$ we denote by $\widetilde{\rho(\gamma)}$ the lift of $\rho(\gamma)$ to the universal covering $S U(2)$ of $S O(3)$ (determined only up to sign). Hereafter $S U(2)$ is identified with the set of unit quaternions S^{3}. Note that $w_{2}(\rho)=0$ if and only if ρ can be lifted to an $\operatorname{SU}(2)$-representation $\tilde{\rho}: \pi \rightarrow$ $S U(2)$. (In this case we can put $\widetilde{\rho(\gamma)}=\tilde{\rho}(\gamma)$.) First let us consider the set of abelian representations $R_{a b}(G)$ (identified with $\operatorname{Hom}(G /[G, G], S O(3))$) and the set of their conjugacy classes $\chi_{a b}(G)$. Hereafter to determine $\rho \in R(G)$ only the lift $\widetilde{\rho(u) \in S^{3}}$ for each generator u of G (or of $G /[G, G]$ if $\rho \in R_{a b}(G)$) will be given. Note that $\pm \exp (i \theta) \in S^{3}$ projects to $\left(\begin{array}{ccc}\cos 2 \theta & -\sin 2 \theta & 0 \\ \sin 2 \theta & \cos 2 \theta & 0 \\ 0 & 0 & 1\end{array}\right) \in S O(3)$, and $\pm i$ and $\pm k$ project to $\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right)$ and $\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$ respectively.
(3-1). Abelian representations for G.
Case (I). $G /[G, G]$ is cyclic (say, of order r). M_{G} belongs to this case unless $M_{G}=\{(2,1),(2,1),(n, b)\}$ with n even. Fix the generator u of $G /[G, G]$. Then any $\rho \in R_{a b}(G)$ is conjugate in $S O(3)$ to one of ρ_{l} defined by

$$
\widetilde{\rho_{l}(u)}= \pm \exp (\pi i l / r) \quad(0 \leqq l \leqq[r / 2])
$$

(3-1-1). The case when r is odd. In this case $\chi_{a b}(G)$ consists of the conjugacy classes of the trivial representation ρ_{0} (with stabilizer $S O(3)$), and $(r-1) / 2$ nontrivial abelian representations $\rho_{l}(1 \leqq l \leqq(r-1) / 2)$ (with stabilizer $S O(2))$. In either case ρ_{l} is lifted to the $S U(2)$-representation $\tilde{\rho}_{l} \quad\left(\tilde{\rho}_{l}(u)=\right.$ $\left.(-1)^{l} \exp (\pi i l / r)\right)$, so $w_{2}\left(\rho_{l}\right)=0$.
(3-1-2). The case when r is even. In this case $H^{2}\left(G, \boldsymbol{Z}_{2}\right)=\boldsymbol{Z}_{2}$ and $w_{2}\left(\boldsymbol{\rho}_{l}\right)=0$ if and only if l is even. If $r \equiv 0(4)$, then $\chi_{a b}(G)$ consists of the conjugacy classes of the trivial representation ρ_{0}, the representation $\rho_{r / 2}$ with $\operatorname{Im}\left(\rho_{r / 2}\right)=\boldsymbol{Z}_{2}$ (with $\operatorname{Stab}\left(\rho_{r / 2}\right)=O(2)$, which is covered by $S^{1} \amalg S^{1} j$ and with $\left.w_{2}\left(\rho_{r / 2}\right)=0\right)$, and $(r / 2-1)$ representations ρ_{l} with stabilizer $S O(2)(1 \leqq l \leqq r / 2-1)$. The number of ρ_{l} $(1 \leqq l \leqq r / 2-1)$ with $w_{2}\left(\rho_{l}\right)=0$ is just $r / 4-1$.

If $r \equiv 2$ (4), then $\chi_{a b}(G)$ consists of the conjugacy classes of ρ_{0}, the representation $\rho_{r / 2}$ with stabilizer $O(2)$ and with $w_{2}\left(\rho_{r / 2}\right) \neq 0$, and ($r / 2-1$) representations $\rho_{l}(1 \leqq l \leqq r / 2-1)$ with stabilizer $S O(2)$. The number of $\rho_{l}(1 \leqq l \leqq$ $r / 2-1)$ with $w_{2}\left(\rho_{l}\right)=0$ is $(r-2) / 4$.

Case (II). $G /[G, G]$ is non-cyclic. In this case $G /[G, G]=H_{1}\left(M_{G}, \boldsymbol{Z}\right)=$ $\boldsymbol{Z}_{2|n+b|} \oplus \boldsymbol{Z}_{2}$ where $M_{G}=\{(2,1),(2,1),(n, b)\}$ with n even, $n \geqq 2$, and $\operatorname{gcd}(n, b)=1$. Put $p=|n+b|$ and fix the generators u and v of $\boldsymbol{Z}_{2 p}$ and \boldsymbol{Z}_{2} respectively (note that p is odd and $p \geqq 1$ since b must be odd). For $\rho \in R_{a b}(G)$ put $U=\rho(u)$, $V=\rho(v)$ and let \tilde{U}, \tilde{V} be the lifts of U, V respectively. Then we can assume (up to conjugacy) that

$$
U=\left(\begin{array}{cc}
R(2 \pi i l / 2 p) & 0 \\
0 & 1
\end{array}\right), \quad \tilde{U}= \pm \exp (\pi i l / 2 p) \quad(0 \leqq l \leqq p)
$$

On the other hand \tilde{V} must satisfy $\tilde{V}^{2}= \pm 1$ and $\tilde{V} \tilde{U} \tilde{V}^{-1}= \pm \tilde{U}$. Therefore if $l=0$ then by further conjugation we can assume that $\tilde{U}= \pm 1$, and $\tilde{V}= \pm 1$ or $\pm i$. Likewise if $l=p$ then we can assume that $\tilde{U}= \pm i$ and $\tilde{V}= \pm 1, \pm i$, or $\pm j$. If $1 \leqq l \leqq p-1$ then $\tilde{V}= \pm 1$ or $\pm i$. Consequently $\chi_{a b}(G)$ consists of the conjugacy classes of the following representations.
(3-1-3).
(1) the trivial representation ρ_{0}.
(2) $\rho_{0,1}: \tilde{U}= \pm 1, \tilde{V}= \pm i$. In this case $w_{2}\left(\rho_{0,1}\right) \neq 0$ and $\operatorname{Stab}\left(\rho_{0,1}\right)=O(2)$.
(3) $\rho_{1,0}: \tilde{U}= \pm i, \tilde{V}= \pm 1$. In this case $\operatorname{Stab}\left(\rho_{1,0}\right)=O(2)$ and $w_{2}\left(\rho_{1,0}\right) \neq 0$ since p is odd.
(4) $\rho_{1,1}: \tilde{U}=\tilde{V}= \pm i$. In this case $\operatorname{Stab}\left(\rho_{1,1}\right)=O(2)$ and $w_{2}\left(\rho_{1,1}\right) \neq 0$.
(5) $\rho_{\delta}: \tilde{U}= \pm i, \tilde{V}= \pm j$. In this case $\operatorname{Stab}\left(\rho_{\tilde{\delta}}\right)=\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}$ (covered by $\{ \pm 1, \pm i, \pm j, \pm k\})$ and $w_{2}\left(\rho_{\delta}\right) \neq 0$.
(6) $\rho_{l, 0}(1 \leqq l \leqq p-1): \tilde{U}= \pm \exp (\pi i l / 2 p), \tilde{V}= \pm 1$. In this case $\operatorname{Stab}\left(\rho_{l, 0}\right)=S O(2)$, and $w_{2}\left(\rho_{l, 0}\right)=0$ if and only if l is even.
(7) $\rho_{l, 1}(1 \leqq l \leqq p-1): \tilde{U}= \pm \exp (\pi i l / 2 p), \tilde{V}= \pm i$. In this case $\operatorname{Stab}\left(\rho_{l, 1}\right)=S O(2)$ and $w_{2}\left(\rho_{l, 1}\right) \neq 0$.
In Case (II) $H^{2}\left(G, \boldsymbol{Z}_{2}\right)$ is identified with $\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2}$ so that $w_{2}(\rho)=\left(\varepsilon_{1}, \varepsilon_{2}\right)$ if and only if $\tilde{U}^{2 p}=(-1)^{\varepsilon_{1}}, \tilde{V}^{2}=(-1)^{\varepsilon_{2}}$ where $\varepsilon_{1}, \varepsilon_{2}$ is 0 or $1 \bmod 2$.

(3-2). Nonabelian representations.

Put $R^{*}(G)=R(G) \backslash R_{a b}(G)$ and $\chi^{*}(G)=\chi(G) \backslash \chi_{a b}(G)$. Note that $R^{*}(G)$ may be nonempty only when M_{G} belongs to the cases (2)-(5) where G has the representation of the form

$$
G=\left\{x, y, z, h \mid x^{2} h=y^{q} h=z^{n} h^{b}=x y z=1, h \text { is central }\right\}
$$

for $q=2$ or 3. We look for the representatives for the elements of $\chi *(G)$. For $\rho \in R^{*}(G)$ put $X=\rho(x), Y=\rho(y), Z=\rho(z), H=\rho(h)$, and let $\tilde{X}, \tilde{Y}, \tilde{Z}, \widetilde{H}$ be the lifts in S^{3} of X, Y, Z, H respectively. Up to conjugation we may assume that $\tilde{H} \in S^{1}$. Since $\tilde{U} \tilde{H} \tilde{U}^{-1}= \pm \tilde{H}$ for any lift \tilde{U} of $\rho(u)$ for any $u \in G$ and ρ is nonabelian, either $\tilde{H}= \pm 1$, or $\tilde{H}= \pm i$ and $\tilde{X}, \tilde{Y}, \tilde{Z} \in S^{1} \amalg S^{1} j$. In the second case since $\tilde{X} \tilde{Y} \tilde{Z}= \pm 1$ and since ρ is non-abelian, two of $\tilde{X}, \tilde{Y}, \tilde{Z}$ belong to $S^{1} j$ and the rest belongs to S^{1}. On the other hand $u^{2}=-1$ for any $u \in S^{1} j$. Since $\tilde{X}^{2}= \pm i$ and $\tilde{Y}^{q}= \pm i$ for $q=2$ or 3 this is a contradiction. Therefore only the first case can occur. Then $\tilde{H}= \pm 1$ and none of $\tilde{X}, \tilde{Y}, \tilde{Z}$ is ± 1 since otherwise ρ would be abelian. By the relation $\tilde{X}^{2}= \pm 1$ we may assume that $\tilde{X}= \pm i$. By further conjugation by some elements in S^{1} we can assume that $\tilde{Y}= \pm(u+t j)$ with $u \in \boldsymbol{C}, t \in \boldsymbol{R},|u|^{2}+t^{2}=1$. On the other hand since $\tilde{Y}^{q}= \pm 1, \tilde{Y}$ is conjugate to $\pm \exp (\pi i l / q)$ for $1 \leqq l \leqq[q / 2]$. Therefore we must have $\tilde{Y}= \pm(s i+t j)$ for $s, t \in \boldsymbol{R}, s^{2}+t^{2}=1$ if $q=2$, and $\tilde{Y}= \pm(1 / 2+s i+t j)$ for $s, t \in \boldsymbol{R}, s^{2}+t^{2}=3 / 4$ if $q=3$. Since $\tilde{Z}= \pm \tilde{Y}^{-1} \tilde{X}^{-1}$ we have $\tilde{Z}= \pm(s+t k)$ if $q=2$, and $\tilde{Z}= \pm(s+i / 2+t k)$ if $q=3$. By conjugation by i, j, or k we can replace (s, t) by any of $(s,-t),(-s, t)$, and $(-s,-t)$. Moreover \tilde{Z} is conjugate to $\pm \exp (\pi i l / n)$ for some $l(1 \leqq l \leqq[n / 2])$. Hence we can assume that $s=\cos (\pi l / n)$, and $t=\sin (\pi l / n)$ if $q=2$ or $t=$ $\left(3 / 4-\cos ^{2}(\pi l / n)\right)^{1 / 2}$ if $q=3$. Now we can give all the representatives for $\chi *(G)$ for each case. In each representation below $\varepsilon_{i}(0 \leqq i \leqq 3)$ is ± 1 and moreover

$$
\tilde{H}=\varepsilon_{0}, \quad \tilde{X}=\varepsilon_{1} i
$$

(and so only the images of the remaining generators will be written).

The list of representatives for $\chi^{*}(G)$.
$(3-2-1) . \quad M_{G}=\{(2,1),(2,1),(n, b)\}$.

$$
\rho_{l}^{*}: \tilde{Y}=\varepsilon_{2}(\cos (\pi l / n) i+\sin (\pi l / n) j), \quad \tilde{Z}=\varepsilon_{3}(\cos (\pi l / n)+\sin (\pi l / n) k)
$$

for $1 \leqq l \leqq[(n-1) / 2]$. Note that if $l=0$ or $l=n / 2$ (in this case n is even) ρ_{l}^{*} would be abelian and so these cases must be removed. ρ_{l}^{*} can be lifted to the $S U(2)$-representation if and only if we can choose ε_{i} so that

$$
\varepsilon_{0}=-1, \quad \varepsilon_{3}^{n}=(-1)^{l+b}, \quad \varepsilon_{1} \varepsilon_{2} \varepsilon_{3}=-1
$$

Thus $w_{2}\left(\rho_{l}^{*}\right) \neq 0$ if and only if both n and l is even (note that b is odd in this case). In either case $\operatorname{Stab}\left(\rho_{i}^{*}\right)=\boldsymbol{Z}_{2}$ (covered by $\{ \pm 1, \pm k\}$).
$(3-2-2) . \quad M_{G}=\{(2,1),(3,1),(3, b)\}$.

$$
\rho_{\mathrm{II}}^{*}: \quad \tilde{Y}=\varepsilon_{2}(1 / 2+i / 2+j / \sqrt{2}), \quad \tilde{Z}=\varepsilon_{3}(1 / 2+i / 2+k / \sqrt{ } 2) .
$$

Putting $\varepsilon_{0}=-1, \varepsilon_{1}=(-1)^{b}, \varepsilon_{2}=1, \varepsilon_{3}=(-1)^{b-1}$ we can lift $\rho_{\text {II }}^{*}$ to the $S U(2)$-representation and hence $w_{2}\left(\rho_{\text {II }}^{*}\right)=0$. Moreover $\operatorname{Stab}\left(\rho_{\text {II }}^{*}\right)=1$.
$(3-2-3) . \quad M_{G}=\{(2,1),(3,1),(4, b)\}$.

$$
\begin{aligned}
& \rho_{\mathrm{III}}^{*}: \quad \tilde{Y}=\varepsilon_{2}(1 / 2+i / \sqrt{2}+j / 2), \quad \tilde{Z}=\varepsilon_{3}(1 / \sqrt{2}+i / 2+k / 2) . \\
& \rho_{\mathrm{III}}^{*}: \quad \tilde{Y}=\varepsilon_{2}(1 / 2+\sqrt{ } 3 j / 2), \quad \tilde{Z}=\varepsilon_{3}(i / 2+\sqrt{3} k / 2) .
\end{aligned}
$$

We have the $S U(2)$-lift of $\rho_{\text {III }}^{*}$ by putting $\varepsilon_{0}=-1, \varepsilon_{2}=1, \varepsilon_{1} \varepsilon_{3}=-1$ and hence $w_{2}\left(\rho_{\text {III }}^{*}\right)=0$. On the other hand to get the $S U(2)$-lift for $\rho_{\text {III }}^{*}$ we must have $(-1)^{b}=1$ from the relation $\widetilde{Z}^{4} \widetilde{H}^{b}=1$. But this contradicts the fact that b must be odd. Hence $w_{2}\left(\rho_{\text {III }}^{*}\right) \neq 0$. Easy computation shows that $\operatorname{Stab}\left(\rho_{\text {III }}^{*}\right)=1$ and $\operatorname{Stab}\left(\rho_{\mathrm{III}}^{*}\right)=\boldsymbol{Z}_{2}$ (covered by $\{ \pm 1, \pm j\}$).
$(3-2-4) . \quad M_{G}=\{(2,1),(3,1),(5, b)\}$.

$$
\rho_{\mathbb{I v}_{n}}^{*}: \quad \tilde{Y}=\varepsilon_{2}\left(1 / 2+s_{n} i+t_{n} j\right), \quad \tilde{Z}=\varepsilon_{3}\left(s_{n}+i / 2+t_{n} k\right) \quad(n=1,2)
$$

where $s_{1}=\cos \pi / 5=(\sqrt{5}+1) / 4, t_{1}=\sqrt{3 / 4-\cos ^{2} \pi / 5}=\sqrt{6-2 \sqrt{5}} / 4$ and $s_{2}=\cos 2 \pi / 5$ $=(\sqrt{5}-1) / 4, t_{2}=\sqrt{3 / 4-\cos ^{2} 2 \pi / 5}=\sqrt{6+2 \sqrt{5}} / 4$. We have $\operatorname{Stab}\left(\rho_{\mathrm{N}_{n}}^{*}\right)=1$ and $w_{2}\left(\rho_{\text {IV }}^{*}\right)=0$ in either case (put $\varepsilon_{0}=-1, \varepsilon_{2}=1, \varepsilon_{1}=(-1)^{b}, \varepsilon_{3}=(-1)^{b-1}$ if $n=1$ and reverse the signs of ε_{1} and ε_{3} if $n=2$).

§4. Simple invariants for $X_{G}(p, q)$.

In this section we consider $X_{G}(p, q)=W_{G} \# S_{k}^{q}(p, q)$ with $\operatorname{gcd}(p, q)=1$. Put $X=X_{G}(p, q)$ and $S=S_{k}^{q}(p, q)$ for the moment. To get the well defined invariants for X we define \mathcal{C}_{X} as the set of the elements $\eta \in H^{2}\left(X, \boldsymbol{Z}_{2}\right)$ satisfying
(1) η is a $\bmod 2$ reduction of some element $c \in H^{2}(X, Z)$ whose image in $H^{2}(X, \boldsymbol{Z}) /$ Torsion is not divisible by 2 ,
(2) $q_{X}(c) \equiv l_{X}(\bmod 4)$
where $l_{X}=-3\left(1+b_{2}^{+}(X)\right) / 2$ as before. Then \mathcal{C}_{X} is preserved by diffeomorphisms of X. Moreover $H^{2}(X, \boldsymbol{Z})=H^{2}\left(W_{G}, \boldsymbol{Z}\right) \oplus H^{2}(S, \boldsymbol{Z})$ whose torsion part is $H^{2}\left(W_{G}, \boldsymbol{Z}\right)$. Note that the class \mathcal{C}_{S} for S is defined as in $\S 2$ and $l_{S}=l_{X}=-3 k$. We denote the set of $\bmod 2$ reductions of the elements of $H^{2}\left(W_{G}, \boldsymbol{Z}\right)$ in $H^{2}\left(W_{G}, \boldsymbol{Z}_{2}\right)$ by $\operatorname{Im}\left(H^{2}\left(W_{G}, \boldsymbol{Z}\right) \rightarrow H^{2}\left(W_{G}, \boldsymbol{Z}_{2}\right)\right)$.

Proposition 4-1. (1) Let $c: W_{G} \rightarrow K(G, 1)$ be the classifying map for the universal covering $p: \widetilde{W}_{G} \rightarrow W_{G}$. Then c^{*} induces the isomorphisms between $H^{2}\left(G, \boldsymbol{Z}_{2}\right)$ and $\operatorname{Im}\left(H^{2}\left(W_{G}, \boldsymbol{Z}\right) \rightarrow H^{2}\left(W_{G}, \boldsymbol{Z}_{2}\right)\right)$. Moreover $\eta=\eta_{1}+\eta_{2}$ for $\eta_{1} \in$ $H^{2}\left(W_{G}, \boldsymbol{Z}_{2}\right)$ and $\eta_{2} \in H^{2}\left(S, \boldsymbol{Z}_{2}\right)$ belongs to $\mathcal{C}_{\boldsymbol{X}}$ if and only if $\eta_{1} \in c^{*}\left(H^{2}\left(G, \boldsymbol{Z}_{2}\right)\right)$ and $\eta_{2} \in \mathcal{C}_{S}$. (2) For any $\eta=\eta_{1}+\eta_{2} \in \mathcal{C}_{X}$ with $\eta_{1} \in H^{2}\left(W_{G}, \boldsymbol{Z}_{2}\right)$ and $\eta_{2} \in H^{2}\left(S, \boldsymbol{Z}_{2}\right)$, there is a unique principal $S O(3)$-bundle P_{η} over X with $w_{2}=\eta$ and $p_{1}=l_{X}$ (up to equivalence) which is a fiber sum of the flat $S O(3)$ bundle $P_{1}=\widetilde{W}_{G} \times{ }_{\rho} S O(3)$ over W_{G} for some $S O(3)$-representation $\rho: G \rightarrow S O(3)$ with $c^{*} w_{2}(\rho)=\eta_{1}$, and a principal $S O(3)$ bundle P_{2} over S with $w_{2}=\eta_{2}$ and $p_{1}=l_{S}=l_{X}$.

Proof. The spectral sequence for the universal covering $p: \widetilde{W}_{G} \rightarrow W_{G}$ yields the exact sequence of the form

$$
0 \longrightarrow H^{2}(G, \boldsymbol{Z}) \xrightarrow{c^{*}} H^{2}\left(W_{G}, \boldsymbol{Z}\right) \xrightarrow{p^{*}} H^{2}\left(\widetilde{W}_{G}, \boldsymbol{Z}\right)
$$

Since $H^{2}\left(W_{G}, \boldsymbol{Z}\right)$ is torsion and $H^{2}\left(\widetilde{W}_{G}, \boldsymbol{Z}\right)$ is torsion-free, c^{*} gives an isomorphism. Then mod 2 reduction yields the required isomorphism c^{*} in (1). It follows that for any $\eta_{1} \in \operatorname{Im}\left(H^{2}\left(W_{G}, \boldsymbol{Z}\right) \rightarrow H^{2}\left(W_{G}, \boldsymbol{Z}_{2}\right)\right)$ there is a principal flat $S O(3)$ bundle over W_{G} with $w_{2}=\eta_{1}$. The other claims follows easily from these results.

Proposition 4-2. For any $\eta \in \mathcal{C}_{\boldsymbol{X}}$ for above X there are no flat connections on any principal $S O(3)$ bundle P over X with $w_{2}(P)=\eta$.

Proof. For any $\eta=\eta_{1}+\eta_{2} \in \mathcal{C}_{X}$ represented as above we can assume that η_{2} is the Poincare dual $\bmod 2$ of some primitive element $\xi \in H_{2}\left(S_{k}^{q}(p, q), \boldsymbol{Z}\right)$ (since $\left.\eta_{2} \in \mathcal{C}_{S}\right)$. Therefore there is $\delta \in H_{2}\left(S_{k}^{\sigma}(p, q), \boldsymbol{Z}\right)$ (which is a spherical element since $S_{k}^{o}(p, q)$ is 1 -connected) with $\xi \cdot \delta=1$ and hence $\langle\eta, \delta(\bmod 2)\rangle=1$. It follows that η does not come from $H^{2}\left(\pi_{1} X, \boldsymbol{Z}_{2}\right)$ and hence there are no flat connections on P.

Hence for any $\eta \in \mathcal{C}_{X}$ we can define the set $\mathscr{M}_{X}\left(l_{X}, \eta, g\right)$ of g-ASD connections on P_{η} (defined in Proposition 4-1) modulo Aut P_{η} for a generic metric g on X. Moreover $\mathcal{M}_{X}\left(l_{X}, \eta, g\right)$ consists of finitely many points with sign ± 1
as in $\S 2$ (which is fixed once the integral lift of η and the orientation of $H^{+}(X)$ is fixed, and does not depend on g since $b_{x}^{+}=b_{S}^{+}>1$). So we can define $\gamma_{x}(\eta)$ for $\eta \in \mathcal{C}_{X}$ as the number of points in $\mathscr{M}_{X}\left(l_{X}, \eta, g\right)$ counted with sign as in Definition $2-0$ so that $\max \left\{\left|\gamma_{X}(\eta)\right| \mid \eta \in \mathcal{C}_{X}\right\}$ is a diffeomorphism invariant for X. In particular the element $\eta_{0} \in \mathcal{C}_{S_{k}^{\sigma}(p, q)}$ in Corollary $2-5$ is also contained simultaneously in \mathcal{C}_{X} for any $X=X_{G}(p, q)$. We also note that $\operatorname{Im}\left(H^{2}\left(W_{G}, \boldsymbol{Z}\right) \rightarrow\right.$ $\left.H^{2}\left(W_{G}, \boldsymbol{Z}_{2}\right)\right) \cong c^{*}\left(H^{2}\left(G, \boldsymbol{Z}_{2}\right)\right)$ is given by

$$
c^{*}\left(H^{2}\left(G, \boldsymbol{Z}_{2}\right)\right)= \begin{cases}0 & \text { if } G /[G, G]=\boldsymbol{Z}_{r} \text { with } r \text { odd } \\ \boldsymbol{Z}_{2} & \text { if } G /[G, G]=\boldsymbol{Z}_{r} \text { with } r \text { even } \\ \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} & \text { if } G /[G, G]=\boldsymbol{Z}_{2 p} \oplus \boldsymbol{Z}_{2} \text { with } p \text { odd. }\end{cases}
$$

According to the result in $\S 3$ the above list covers all the possible cases.
PROPOSITION 4-3. There is a constant c_{G} such that $\left|\gamma_{X_{G}(p, q)}(\eta)\right|=$ $c_{G}\left|\gamma_{S_{k}^{\sigma}(p, q)}\left(\eta_{2}\right)\right|$ for any $\eta=\eta_{1}+\eta_{2} \in \mathcal{C}_{X_{G}(p, q)}$ with $\eta_{1} \in \operatorname{Im}\left(H^{2}\left(W_{G}, \boldsymbol{Z}\right) \rightarrow H^{2}\left(W_{G}, \boldsymbol{Z}_{2}\right)\right)$ and $\eta_{2} \in \mathcal{C}_{S_{k}^{\sigma}(p, q)}$. In particular for η_{0} in Corollary 2-5 we have $\left|\gamma_{x_{G}(p, q)}\left(\eta_{0}\right)\right|=$ $p q c_{G}$. The constant c_{G} depends only on G and is defined as follows.

$$
c_{G}= \begin{cases}r & \text { if } G /[G, G]=\boldsymbol{Z}_{r} \text { with } r \text { odd } \\ r / 2 & \text { if } G /[G, G]=\boldsymbol{Z}_{r} \text { with } r \text { even } \\ p & \text { if } G /[G, G]=\boldsymbol{Z}_{2 p} \oplus \boldsymbol{Z}_{2} \text { with } p \text { odd. } .\end{cases}
$$

Proof. Let $X_{1}=W_{G}, X_{2}=S_{k}^{\sigma}(p, q)$, and $X=X_{G}(p, q)$. Let $D_{j}(r)$ be the geodesic ball in X_{j} with respect to the fixed metric g_{j} on X_{j} of radius r centered at the base point $x_{j}(j=1,2)$. Fix a large $N>0$ and choose $\lambda>0$ so that $N \sqrt{\lambda}$ is small. Then identifying the annuli $\Omega_{j}=D_{j}(N \sqrt{\lambda}) \backslash D_{j}\left(N^{-1} \sqrt{\lambda}\right)(j=1,2)$ by some map f_{λ} we can construct a connected sum $X=X_{1} \# X_{2}$ as $X=$ $\left(X_{1} \backslash D_{1}\left(N^{-1} \sqrt{\lambda}\right)\right) \cup_{f_{\lambda}}\left(X_{2} \backslash D_{2}\left(N^{-1} \sqrt{\lambda}\right)\right)$ with a metric g_{λ} on X such that g_{λ} is conformally equivalent to g_{j} over $X_{j} \backslash D_{j}(4 N \sqrt{\lambda})$ for $j=1,2$ ([2], §7.2.1). We can choose g_{2} and g_{λ} so that they are generic if λ is sufficiently small. For any element $\eta=\eta_{1}+\eta_{2} \in \mathcal{C}_{\boldsymbol{X}}$ with $\eta_{1} \in \operatorname{Im}\left(H^{2}\left(X_{1}, \boldsymbol{Z}\right) \rightarrow H^{2}\left(X_{1}, \boldsymbol{Z}_{2}\right)\right)$ and $\eta_{2} \in \mathcal{C}_{X_{2}}$ we have an $S O(3)$-bundle P_{η} over X with $w_{2}\left(P_{\eta}\right)=\eta$ and $p_{1}\left(P_{\eta}\right)=-3 k$. Note that there are no flat connections on any bundle over X_{2} with $w_{2}=\eta_{2}$ since $\eta_{2} \neq 0$ and X_{2} is 1 -connected. Consider a sequence λ_{i} with $\lambda_{i} \rightarrow 0$ as $i \rightarrow \infty$ and $A_{\lambda_{i}} \in$ $\mathscr{M}_{X}\left(-3 k, \eta, g_{\lambda_{i}}\right)$. Then by Uhlenbeck criterion and dimension counting argument we have a flat connection A_{1} on the bundle P_{1} over X_{1} with $w_{2}=\eta_{1}$ and $p_{1}=0$, and a g_{2}-ASD connection A_{2} on the bundle P_{2} over X_{2} with $w_{2}\left(P_{2}\right)=\eta_{2}$ and $p_{1}\left(P_{2}\right)=-3 k$, such that (by passing to subsequences) $\left[A_{\lambda_{i}}\right]$ converges smoothly to $\left[A_{j}\right]$ over $X_{j} \backslash D_{j}(\sqrt{\lambda} / 2)(j=1,2)$. Here $[A]$ means the gauge equivalence class of A. If λ_{i} is small enough, $\left[A_{\lambda_{i}}\right]$ has the neighborhood Ω of the following form ([2], Theorem 7.2.62 and Theorem 7.3.2). For any
connection A_{i} on P_{i}, let $\Gamma_{A_{i}}$ be the stabilizer of A_{i} in the associated gauge group and $H_{A_{i}}^{k}$ be the k-th cohomology group of the deformation complex

$$
\Omega_{X_{i}}^{0}\left(A d P_{i}\right) \xrightarrow{d_{A_{i}}} \Omega_{X_{i}}^{1}\left(A d P_{i}\right) \xrightarrow{d_{A_{i}}^{+}} \Omega_{X_{i},+}^{2}\left(A d P_{i}\right) .
$$

Then there is a $\Gamma_{A_{1}} \times \Gamma_{A_{2}}$ equivariant map Ψ of the form

$$
\Psi: S O(3) \times H_{A_{1}}^{1} \times H_{A_{2}}^{1} \longrightarrow H_{A_{1}}^{2} \times H_{A_{2}}^{2}
$$

such that \mathscr{N} is homeomorphic to $\Psi^{-1}(0) / \Gamma_{A_{1}} \times \Gamma_{A_{2}}$. Since $\mathscr{M}_{X}\left(-3 k, \eta, g_{\lambda_{i}}\right)$ consists of finitely many points we can assume that every point in $\mathscr{M}_{X}\left(-3 k, \eta, g_{\lambda_{i}}\right)$ for small λ_{i} belongs to one of η of the above form. Conversely every element in such an \Re corresponds to the unique element in $\mathscr{M}_{\boldsymbol{X}}\left(-3 k, \eta, g_{\lambda_{i}}\right)$ ($[2]$, Theorem 7.2.62. The construction of the ASD connections in [2], $\S 7.2 .2$ is valid even when $\pi_{1} X \neq 1$). So we will check the contribution of π to the moduli space over X for fixed $\left[A_{2}\right]$ and [$\left.A_{1}\right]$ separately according to the type of A_{1}. Note that $\mathscr{M}_{X_{2}}\left(-3 k, \eta_{2}, g_{2}\right)$ consists of finitely many points and $H_{A_{2}}^{1}=0, H_{A_{2}}^{2}=0$, and $\Gamma_{A_{2}}=1$ for any $\left[A_{2}\right] \in \mathscr{M}_{X_{2}}\left(-3 k, \eta_{2}, g_{2}\right)$ since g_{2} is generic (and $b^{+}\left(X_{2}\right)>1$). On the other hand since A_{1} is a flat connection over P_{1}, it corresponds to a representation $\rho: G \rightarrow S O(3)$ with $w_{2}(\rho)=\eta_{1}$ (via the isomorphism c^{*} in Proposition $4-1)$. We denote by $\chi^{\eta_{1}(G)}$ the conjugacy classes of such representations. As is listed in $\S 3$, the stabilizer $\operatorname{Stab}(\rho)$ of ρ (which corresponds to $\left.\Gamma\left(A_{1}\right)\right)$ is either $1, \boldsymbol{Z}_{2}, \boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}, S O(2), O(2)$, or $S O(3)$ (up to conjugacy). For any such ρ we can see that $H_{\rho}^{1}=H^{1}(G, a d \rho)=0$ by direct computation using the list in $\S 3$ or by the method as in [5]. Also we can see that the dimension of $H_{\rho}^{0}=H^{0}(G, a d \rho)$ is 3 if $\operatorname{Stab}(\rho)=S O(3), 1$ if $\operatorname{Stab}(\rho)=S O(2)$ or $O(2)$ (up to conjugacy), and is 0 otherwise. On the other hand index computation shows that $\operatorname{dim} H_{\rho}^{0}-\operatorname{dim} H_{\rho}^{1}+$ $\operatorname{dim} H_{\rho}^{2}=3$ for any ρ. Hence we have

$$
\pi=\Psi^{-1}(0) / \operatorname{Stab}(\rho) \text { for } \Psi: S O(3) \rightarrow H_{\rho}^{2}
$$

where $\operatorname{dim} H_{\rho}^{2}$ is 0 if $\operatorname{Stab}(\rho)=S O(3), 2$ if $\operatorname{Stab}(\rho)=S O(2)$ or $O(2)$, and 3 otherwise. If ρ is the trivial connection then $\operatorname{Stab}(\rho)=S O(3)$ and so the contribution of Ω to the moduli space over X is 1 . For any ρ with $\operatorname{Stab}(\rho)=S O(2)$ or $O(2)$ we can assume that $\operatorname{Im} \rho \subset S O(2)$ (see the list of the $S O(3)$-representations in §3) and $A d P_{1}$ is a sum $L \oplus \varepsilon$ of a complex line bundle L (on which $S O(2)$ acts as rotations) and the trivial bundle ε of dimension 1. If $\operatorname{Stab}(\rho)=S O(2)$ we have $H_{\rho}^{2}=H_{+}^{2}\left(X_{1}, L\right)=\boldsymbol{C}$ on which $\operatorname{Stab}(\rho)$ acts as rotations. Therefore π coincides with the zero of some section of the bundle $S O(3) \times{ }_{\text {SO(2) }} \boldsymbol{C}$ over S^{2} associated with the natural bundle $S O(3) \rightarrow S O(3) / S O(2)$ for each [A_{2}] (cf. [1], Proposition 2.13). Therefore the contribution of such η to the moduli space over X is 2 . If $\operatorname{Stab}(\rho)=O(2)$ then also we have $H_{\rho}^{2}=H_{+}^{2}\left(X_{1}, L\right)=\boldsymbol{C}$. In this case $S O(2)$ acts
on the fiber of L (and on H_{ρ}^{2}) as rotations as before, whereas $J=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right)$ (which is a representative of $O(2) / S O(2)$) acts as the complex conjugation on them. Hence the contribution of Ω in this case is the same as half of the euler number of the above bundle $S O(3) \times{ }_{S O(2)} \boldsymbol{C} \rightarrow S^{2}$ (which is the same as the euler number of the twisted bundle over $S O(3) / O(2)=\boldsymbol{R} \boldsymbol{P}^{2}$) and hence equals 1 . If $\operatorname{Stab}(\rho)=1, \boldsymbol{Z}_{2}$, or $\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}$ then the contribution of $\boldsymbol{\pi}$ is the same as the euler class of the bundle over $S O(3) / \operatorname{Stab}(\rho)$ with fiber $H_{\rho}^{2}=\boldsymbol{R}^{3}$, since $\operatorname{Stab}(\rho)$ acts freely on $S O(3)$. (In fact the lift $\widetilde{\operatorname{Stab}(\rho)}$ in S^{3} of $\operatorname{Stab}(\rho)$ is generated by $k \in S^{3}$ if $\operatorname{Stab}(\boldsymbol{\rho})=\boldsymbol{Z}_{2}$, and is generated by $i, j, k \in S^{3}$ if $\operatorname{Stab}(\rho)=\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}$. So $S O(3) /$ $\operatorname{Stab}(\rho)=S^{3} / \widehat{\operatorname{Stab}(\rho)}$ is $S O(3)$ if $\operatorname{Stab}(\rho)=1$, the lens space $L(4,1)$ if $\operatorname{Stab}(\rho)=\boldsymbol{Z}_{2}$, and the quaternionic space if $\operatorname{Stab}(\rho)=\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}$.) Since the euler number of the \boldsymbol{R}^{3}-bundle over the 3 -manifold is zero, the contribution for this case is zero ([2], [15]). Note that the orientation of the total moduli space is determined once the integral lift of η and the orientation of $H^{+}(X)$ are fixed (in fact, only $H^{+}(X)=H^{+}\left(X_{2}\right)$ and the integral lift of η_{2} is essential since η_{1} is a torsion [1]). Moreover the lists (3-1-1)-(3-1-3) in $\S 3$ show that for any η_{1} we can choose a common decomposition $A d P_{1}=L \oplus \varepsilon$ above such that each element of $\chi^{\eta_{1}(G)}$ with stabilizer $S O(2)$ or $O(2)$ has a representative ρ with $\operatorname{Im}(\rho) \in S O(2)$ and with $\operatorname{Stab}(\rho)=S O(2)$ or $O(2)$ which acts on the fiber of the common L (or $H_{+}^{2}\left(X_{1}, L\right)$) as defined above. Hence the contributions of $\chi^{\eta_{1}(G)}$ are of the same sign, and their total amount for each $\left[A_{2}\right]$ is the sum (which we denote by $c_{G}^{\eta_{1}}$) of the number of the elements in $\chi \eta_{1}(G)$ with stabilizer $S O(3)$ or $O(2)$ and twice the number of the elements in $\chi_{\eta_{1}(G)}$ with stabilizer $S O(2)$. It follows that the number of points in $\mathscr{M}_{X}\left(-3 k, \eta, g_{\lambda_{i}}\right)$ counted with sign is $c_{G}^{\eta_{1}}$-times that of $\mathscr{M}_{X_{2}}\left(-3 k, \eta_{2}, g_{2}\right)$. According to the lists (3-1-1) and (3-1-2) in § 3 we can see that $c_{G}^{\eta_{1}}=r$ if $G /[G, G]=\boldsymbol{Z}_{r}$ with r odd and $c_{G}^{\eta_{1}}=r / 2$ if $G /[G, G]=\boldsymbol{Z}_{r}$ with r even for any η_{1}. If $G /[G, G]=\boldsymbol{Z}_{2 p} \oplus \boldsymbol{Z}_{2}$ then the elements of $\chi^{\eta_{1}(G)}$'s except for ρ_{δ} with stabilizer $\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}$ (whose contribution is zero) are divided into the following groups according to the 4 choices of η_{1} (we use the notation in $\S 3$. (3-1-3)).
(1) ρ_{0} and $\rho_{l, 0}$ with l even, $1 \leqq l \leqq p-1$,
(2) $\rho_{1,0}$ and $\rho_{l, 0}$ with l odd, $1 \leqq l \leqq p-1$,
(3) $\rho_{0,1}$ and $\rho_{l, 1}$ with l even, $1 \leqq l \leqq p-1$,
(4) $\rho_{l, 1}$ and $\rho_{l, 1}$ with l odd, $1 \leqq l \leqq p-1$.

These facts show that $c_{G}^{\eta_{1}}=p$ in any case. Consequently in either case $c_{G}^{\eta_{1}}$ depends only on G and we can denote it by c_{G}. We also deduce that $\left|\gamma_{x}\left(\eta_{0}\right)\right|$ $=c_{G}\left|\gamma_{S_{k}^{\sigma}(p, q)}\left(\eta_{0}\right)\right|=c_{G} p q$ by Corollary 2-5. This proves Proposition 4-3.

Corollary 4-4. For any G we have infinitely many pairs $\left\{p_{i}, q_{i}\right\}(i \in N)$ such that the above $X_{G}\left(p_{i}, q_{i}\right)$'s are non-diffeomorphic to each other. In fact $X_{G}(p, q)$ and $X_{G}\left(p^{\prime}, q^{\prime}\right)$ can be diffeomorphic only when $p q=p^{\prime} q^{\prime}$.

Proof. Proposition 4-3 and Corollary 2-5 show that $\max \left\{\left|\gamma_{x_{G}(p, q)}(\eta)\right| \mid\right.$ $\left.\eta \in \mathcal{C}_{X_{G}(p, q)}\right\}=c_{G} \max \left\{\left|\gamma_{S_{k}^{\sigma}(p, q)}\left(\eta_{2}\right)\right| \mid \eta_{2} \in \mathcal{C}_{S_{k}^{\sigma}(p, q)}\right\}=c_{G} p q$. Since c_{G} is nonzero we obtain the desired result.

§5. Proof of Main Theorem.

First we discuss the homeomorphism types of $X_{G}(p, q)=W_{G} \# S_{k}^{a}(p, q)$ for $k \geqq 2$ and $\operatorname{gcd}(p, q)=1$.

Proposition 5-1. $X_{G}(p, q)$ is homeomorphic to $W_{G} \#(k / 2) K \#(k / 2-1) S^{2} \times S^{2}$ if k is even and both p and q are odd, and is homeomorphic to $W_{G} \#(2 k-1) \boldsymbol{C} \boldsymbol{P}^{2} \#$ $(10 k-1) \overline{\boldsymbol{C P}}^{2}$ otherwise.

Proof. First note that there is a homeomorphism from $N_{2}(p, q)$ to N_{2} (resp. to $N_{2}(2,1)$) which is the identity on the boundaries if both p and q are odd (resp. one of p and q is even) (7]]. Since $N_{2}(p, q)$ is contained in $S_{k}^{q}(p, q)$ (and hence also in $X_{G}(p, q)$) such a homeomorphism extends to that from $X_{G}(p, q)$ to either $W_{G} \# S_{k}^{\sigma}$ (if p and q are odd) or $W_{G} \#_{k}^{\sigma}(2,1)$ (otherwise) which is the identity on the complement of $N_{2}(p, q)$ in $X_{G}(p, q)$. On the other hand $S_{k}^{q}(p, q)$ is a 1 -connected manifold with euler number $12 k$, with signature $-8 k$, and it is spin if and only if k is even and both p and q are odd. Then applying Freedman's theorem [3] to $S_{k}^{G}(p, q)$ and using the smoothability of 0 -handles in dimension 4 ([25]) we obtain the desired results.

Next we consider the universal covering $\tilde{X}_{G}(p, q)$ of $X_{G}(p, q)$. By Proposition 1-2 $\tilde{X}_{G}(p, q)$ is diffeomorphic to $(|G|-1) S^{2} \times S^{2} \#|G| S_{k}^{\sigma}(p, q)$. The following propositions are essentially contained in [7], [8], [9].

Proposition 5-2 ([7], [8], [9]). (1) $N_{2}(p, q) \# S^{2} \times S^{2}$ is diffeomorphic to $N_{2} \#$ $S^{2} \times S^{2}$ if both p and q are odd, and is diffeomorphic to $N_{2} \# C \boldsymbol{P}^{2} \sharp \overline{\boldsymbol{C P}^{2}}$ otherwise by a diffeomorphism which induces the identity on the boundary. (2) $S_{k}^{q}(p, q) \# S^{2} \times S^{2}$ is diffeomorphic to $k / 2 K \# k / 2\left(S^{2} \times S^{2}\right)$ if k is even and both p and q are odd, and is diffeomorphic to $2 k \boldsymbol{C} \boldsymbol{P}^{2} \# 10 k \overline{\boldsymbol{C P}}{ }^{2}$ otherwise.

Proof. (1) is proved in [9], $\S 23$ by applying Mandelbaum's lemma ([17]) to a fiber sum of N_{2} and a manifold obtained from $T^{2} \times S^{2}$ by performing logarithmic transforms of multiplicity p and q along two fibers and by the fact that $N_{2}(p, q)$ is spin if and only if both p and q are odd (7]]. Using the natural extension of the diffeomorphism in (1) and the diffeomorphism between
S_{k} and S_{k}^{σ} we see that $S_{k}^{o}(p, q) \# S^{2} \times S^{2}$ is diffeomorphic to either $S_{k} \# S^{2} \times S^{2}$ or $S_{k} \# C^{2} \boldsymbol{P}^{2} \overline{\boldsymbol{C P}}{ }^{2}$. On the other hand the results in [17] and [19] show that $S_{k} \# S^{2} \times S^{2}$ and $S_{k} \# C P^{2}$ are diffeomorphic to either connected sums of copies of K 's and $S^{2} \times S^{2}$, or connected sums of copies of $\boldsymbol{C P}{ }^{2}$'s and $\overline{\boldsymbol{C P}}^{2}$'s. Then the computation of the euler number, the signature, and the type of the intersection form of $S_{k}^{q}(p, q)$ show (2).

Proposition 5-3. $\quad \tilde{X}_{G}(p, q)$ is diffeomorphic to $(|G| k / 2) K \#(|G| k / 2-1) S^{2} \times S^{2}$ if k is even and p and q are odd, and is diffeomorphic to $(2 k|G|-1) \boldsymbol{C P}^{2} \#$ $(10 k|G|-1) \overline{\boldsymbol{C P}^{2}}$ otherwise.

Proof. By Proposition 5-2 we can replace one copy of $S_{k}^{\sigma}(p, q) \# S^{2} \times S^{2}$ in $\tilde{X}_{G}(p, q)=(|G|-1) S^{2} \times S^{2} \#|G| S_{k}^{\sigma}(p, q)$ by a connected sum of K 's and $S^{2} \times S^{2}$'s, or a connected sum of $\boldsymbol{C P ^ { 2 }}$, s and $\overline{\boldsymbol{P P}}^{2}$,s to reduce the number of the copies of $S_{k}^{\sigma}(p, q)$ by 1. Note that if $S_{k}^{\sigma}(p, q)$ is nonspin then $S_{k}^{o}(p, q) \# \boldsymbol{C P} \boldsymbol{P}^{2} \# \overline{\boldsymbol{P}}^{2}$ can be replaced by $S_{k}^{q}(p, q) \# S^{2} \times S^{2}$ since these two manifolds are diffeomorphic. Thus we can repeat this process on $\tilde{X}_{G}(p, q)|G|$ times to obtain the desired result.

Proof of Main Theorem. Let $X=n K \#(n-1) S^{2} \times S^{2}$ where n is divided by $|G|$ with $1<|G|<n$. Put $k=2 n /|G|$. Then by Proposition 4-3, Corollary 4-4 we can choose the pair of integers $\left(p_{i}, q_{i}\right)$ for each $i \in \boldsymbol{N}$ satisfying
(1) $\operatorname{gcd}\left(p_{i}, q_{i}\right)=1$,
(2) both p_{i} and q_{i} are odd,
(3) $\max \left\{\left|\gamma_{x_{i}}(\eta)\right| \mid \eta \in \mathcal{C}_{x_{i}}\right\}$ for $X_{i}=W_{G} \# S_{k}^{a}\left(p_{i}, q_{i}\right)$ are strictly increasing as i tends to ∞.

Then X_{i} 's are mutually homeomorphic by Proposition 5-1, their universal coverings \tilde{X}_{i} are diffeomorphic to X by Proposition $5-3$, and X_{i} 's are not diffeomorphic to each other by (3). Therefore the covering translations for such \tilde{X}_{i} 's give the desired G actions. Suppose that $X=(2 n-1) \boldsymbol{C} \boldsymbol{P}^{2} \#(10 n-1) \overline{\boldsymbol{C P}^{2}}$ where n is divided by $|G|$ with $1<|G|<n$. Then put $k=n /|G|$. If k is odd choose p_{i}, q_{i} as in the first case. If k is even we can also choose $\left\{p_{i}, q_{i}\right\}$ satisfying the above conditions (1) and (3) so that p_{i} is even and q_{i} is odd by Proposition 4-3. Then in either case Proposition 5-1, Proposition 5-3, and Proposition 5-2 show that the covering translations for \tilde{X}_{i} give the desired action as in the first case. This completes the proof.

Remark 5-4. Consider $X_{i}=W_{G} \# S_{k}^{a}\left(p_{i}, q_{i}\right)$ satisfying (1), (2), (3) in the proof of Main Theorem equipped with a generic metric g_{i}. Let P_{i} be the $S O(3)$ bundle over X_{i} with $p_{1}=-3 k$ and $w_{2}=\eta_{0}$ where η_{0} is the element in Corollary 2-5. Next consider the pullback \widetilde{P}_{i} of P_{i} over the universal covering $\tilde{X}_{i}=\widetilde{W}_{G} \#$
$|G| S_{k}^{o}\left(p_{i}, q_{i}\right)$ of X_{i} with the metric \tilde{g}_{i} induced by g_{i}. Then $w_{2}\left(\tilde{P}_{i}\right)$ is the Poincaré dual mod 2 of the union of the lifts of $\Sigma^{\sigma}-k f^{\sigma}$ contained in $|G|$ copies of the complement S^{0} of $N_{2}(p, q)$ in $S_{k}^{o}(p, q)$ and the virtual dimension of the moduli space of ASD connections on \widetilde{P}_{i} is also 0 . Moreover applying Mandelbaum's lemma on \tilde{X}_{i} as in the proof of Proposition 5-2 we have a diffeomorphism between \tilde{X}_{i} and \tilde{X}_{j} which is the identity on the common $|G|$ copies of S^{0} for any i and j. Hence \tilde{P}_{i} 's are mutually isomorphic. The number of \tilde{g}_{i}-ASD connections on \widetilde{P}_{i} which are the pullbacks of g_{i}-ASD connections tends to ∞ as $i \rightarrow \infty$ by Proposition 4-3. On the other hand \tilde{X}_{i} is completely decomposable (Proposition 5-3) and the support of $w_{2}\left(\tilde{P}_{i}\right)$ lies in different $|G|$ copies of S^{0}. So if we choose a metric g on \tilde{X}_{i} so that \tilde{X}_{i} has one thin neck which separates one copy of $S_{k}^{\sigma}\left(p_{i}, q_{i}\right)$ from the other summands of the connected sum decompositions of \tilde{X}_{i}, and so that g is generic on both of the separated regions, then the moduli space of g-ASD connections on \tilde{P}_{i} is empty [2], Proposition 9.3.7). This implies that such g cannot be G-invariant. (In fact \tilde{X}_{i} with G-invariant metric must have at least two neck regions invariant under the G-action and equivariant transversality theorem for the moduli spaces with G-actions fails in naive sense [10].)

References

[1] S. K. Donaldson, The orientation of Yang-Mills moduli spaces and 4-manifold topology, J. Differential Geom., 24 (1987), 397-428.
[2] S. K. Donaldson and P.B. Kronheimer, The Geometry of Four Manifolds, Oxford Math. Monographs, 1990.
[3] M. Freedman, The topology of four-dimensional manifolds, J. Differential Geom., 17 (1982), 357-453.
[4] R. Friedman and J. Morgan, Smooth four-manifolds and complex surfaces, Ergeb. Math. Grenzgeb., Band 27, Springer, 1994.
[5] R. Fintushel and R. Stern, Instanton homology of Seifert fibered homology three spheres, Proc. London Math. Soc., 61 (1990), 109-137.
[6] R. Fintushel and R. Stern, Surgery on cusp neighborhoods and the geography of irreducible 4-manifolds, Invent. Math., 117 (1994), 455-523.
[7] R. Gompf, Nuclei of Elliptic Surfaces, Topology, 30 (1991), 479-512.
[8] R. Gompf, Sums of Elliptic Surfaces, J. Differential Geom., 34 (1991), 93-114.
[9] R. Gompf and T. Mrowka, Irreducible Four Manifolds need not be complex, Ann. of Math., 138 (1993), 61-111.
[10] I. Hambleton and R. Lee, Perturbation of equivariant moduli spaces, Math. Ann., 293 (1992), 17-37.
[11] Y. Kametani and Y. Sato, 0-dimensional moduli spaces of stable rank 2 bundles and differentiable structures on regular elliptic surfaces, Tokyo J. Math., 17 (1994), 253-267.
[12] Y. Kametani, Torus sum formula of simple invariants for 4-manifolds, Kodai Math. J., 16 (1993), 138-170.
[13] Y. Kametani, The simple invariant and differentiable structures on the Horikawa surface, Tôhoku Math. J., 47 (1995), 541-553.
[14] Y. Kametani, A vanishing theorem of Donaldson invariants for torus sum, in preparation.
[15] D. Kotschick, On connected sum decompositions of algebraic surfaces and their fundamental groups, Internat. Math. Res. Notices, 6 (1993), 179-182.
[16] P. Lisca, On simply connected noncomplex 4-manifolds, J. Differential Geom., 38 (1993), 217-224.
[17] R. Mandelbaum, Decomposing analytic surfaces, Proc. Georgia Topology Conference 1979, In Geometric Topology, pp. 147-218.
[18] T. Matsumoto, Extension problem of diffeomorphisms of a 3-torus over some 4-manifolds, Hiroshima Math. J., 14 (1984), 189-201.
[19] B. Moishezon, Complex surfaces and connected sums of complex projective planes, Lecture Notes in Math., 603, Springer, 1977.
[20] J. M. Morgan and T.S. Mrowka, On the diffeomorphism classification of regular elliptic surfaces, Internat. Math. Res. Notices, 6 (1993), 183-184.
[21] J. Morgan and K. O’Grady, Elliptic surfaces with $p_{g}=1$: Smooth Classification, Lecture Notes in Math., 1545, Springer, 1993.
[22] P. Orlik, Seifert manifolds, Lecture Notes in Math., 291, Springer, 1972.
[23] P.S. Pao, The topological structure of 4-manifolds with effective torus actions I, Trans. Amer. Math. Soc., (1977), 279-317.
[24] S. P. Plotnick, Equivariant intersection forms, knots in S^{4}, and rotations in 2-spheres, Trans. Amer. Math. Soc., 296 (1986), 543-574.
[25] F. Quinn, Ends of maps III : dimensions 4 and 5, J. Differential Geom., 17 (1982), 353-424.
[26] M. Ue, A remark on the simple invariants for elliptic surfaces and their exotic structures not coming from complex surfaces, preprint (1991).

Masaaki UE
Institute of Mathematics
Yoshida College
Kyoto University
Kyoto 606
Japan

