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1. Introduction.

Let $D$ be an NTA domain in $R^{N}(N\geqq 2)$ with Green function $G(x, y)$ . Without
loss of generality we may assume that $D$ contains the origin $0$ . It is proved
that the Martin compactification of $D$ is homeomorphic to the Euclidean closure
of $D$ and that every boundary point is minimal ([15]). Thus the ratio

$K(x, y)= \frac{G(x,y)}{g(y)}$ with $g(y)=G(y, 0)$

has a continuous extension on $D\cross\overline{D}$ . By the same symbol we denote the con-
tinuous extension. If $y\in\partial D$ , then $K(\cdot, y)$ is a minimal harmonic function on
$D$ . Sometimes we write $K_{y}$ for $K(\cdot, y)$ . By definition $K_{y}(0)=1$ . For every
nonnegative superharmonic function $u$ on $D$ which is harmonic near the origin,
there is a unique measure $\mu_{u}$ on $D$ such that

$u=K \mu_{u}=\int_{D1\prime\partial D}K(\cdot, y)d\mu_{u}(y)$ .

This measure $\mu_{u}$ is called the representing measure of $u$ . For every nonnega-
tive harmonic function $h$ on $D$ there is a unique measure $\mu_{h}$ concentrated on
$\partial D$ such that $h=K\mu_{h}$ and $||\mu_{h}||=h(0)$ . Here, we say, in general, that a mea-
sure $\mu$ is concentrated on $A$ if any Borel set outside $A$ has $\mu$ measure zero.

Following Beurling [4] and Dahlberg [7], we introduce the notion of de-
termination of a point measure.

DEFINITION A. A set $E\subset D$ is said to determine the point measure at $y\in$

$\partial D$ if for all positive harmonic functions $h$ with representing measure $\mu_{h}$ we
have $\mu(\{y\})=\inf\{h(x)/K(x, y):x\in E\}$ .

Let $B(x, r)$ be the open ball with center at $x$ and radius $r$ . We write $\delta(x)$

for the distance between $x$ and $\partial D$ . For $0<p<1$ let

$E_{\rho}=UB(xx\in E\rho\delta(x))$ .

For a smooth domain the following characterization of sets determining a point
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measure was given by Dahlberg [7] (see also [1, 2], [4], [9], [18] and [20]).

THEOREM A. Let $D$ be a Liapunov-Dini domain. Suppose $E\subset D$ and $y\in\partial D$ .
Then the following are equivalent:

(i) $E$ determines the pmnt measure at $y$ ;
(ii) there is $\rho,$ $0<\rho<1$ , such that

(1) $\int_{E_{\rho}}|x-y|^{-N}dx=\infty$ ;

(iii) (1) holds for all $\rho,$ $0<p<1$ .

A set $E\subset D$ is said to be minimally thin at $y\in\partial D$ if the regularized reduced
function $\hat{R}_{K_{V}}^{E}$ is a Green potential. The minimal thinness is closely related to
the notion of determination of a point measure. In fact, the essential part of
Theorem A is based on the following theorem.

THEOREM B. Let $D$ be a Liapunov-D2ni domain. Suppose $y\in\partial D$ . If $E$ is
a measurable subset of $D$ such that

(2) $\int_{E}|x-y|^{-N}dx=\infty$ ,

then $E$ is not minimally thin at $y$ .

Using Theorems A and $B$ , Gardiner [11] extended some results of $[5, 6]$

and [13] to functions on balls. Ess\’en [10] and Dudeley-Ward [9] also used
Theorems A and $B$ and gave generalizations. They dealt with smooth domains.

The aim of this paper is to consider a generalization to NTA domains.
Hereafter we let $D$ be an NTA domain. Since a general NTA domain may
have wedges, Theorems A and $B$ do not hold for an NTA domain. In [2, Sec-
tion 4] we characterized minimal thinness and obtained integral characteriza-
tions corresponding to (1) and (2). For a Lipschitz domain, see Ancona [3,

Theorem 7.4] and Zhang [21]. However, they are rather complicated (they
depend on the boundary point $y$ ). In this paper, we generalize some results of
[10] and [11] without using integral characterizations like (1) and (2).

It is not hard to see that $E\subset D$ is minimally thin at $y\in\partial D$ if and only if
there is a finite measure $\mu$ on $\overline{D}$ such that $\mu(\{y\})=0$ and $K_{y}\leqq K\mu$ on $E$ (see

[5], [8] and [19] $)$ . From this observation, we introduce sets “minimally thin
for harmonic functions” as follows.

DEFINITION 1. A set $E\subset D$ is said to be minimally thin at $y\in\partial D$ for
harmonic functions if there is a finite measure $\mu$ concentrated $m\partial D$ such that
$\mu(\{y\})=0$ and K,$K\mu on $E$ .

REMARK. In view of Definitions 1 and $A$ , it follows that $E$ is minimally
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thin at $y$ for harmonic functions if and only if $E$ does not determine the point
measure at $y$ . Let us remark that Hayman [12, p. 481 and Theorem 7.37]

defined sets “rarefied for harmonic functions”, which correspond to rarefied sets
given first by Lelong-Ferrand [17].

By definition if $E$ is minimally thin at $y$ for harmonic functions, then $E$ is
minimally thin at $y$ . In view of the Harnack principle, more is true. If $E$ is
minimally thin at $y$ for harmonic functions, then $E_{\rho},$ $0<\rho<1$ , is minimally thin
at $y$ for harmonic functions, and hence minimally thin at $y$ . Let us prove that
the converse is true. This is the key theorem for the succeeding argument.

THEOREM 1. Let $y\in\partial D$ and $E\subset D$ . Then the following are equivalent:
(i) $E$ is minimally thin at $y$ for harmonic functions.
(ii) $E_{\rho}$ is minimally thin at $y$ for some $\rho,$ $0<\rho<1$ .
(iii) $E_{\rho}$ is minimolly thin at $y$ for all $p,$ $0<\rho<1$ .

The following theorem is well-known as the minimal fine limit theorem
(see [5], [8] and [19]).

THEOREM C. Let $h=K\mu_{h}$ and $H=K\mu_{H}$ be positive harmonic functions on $D$ .
Let $u$ be a Green potential. Then, for $\mu_{h}$ almost every boundary point $y$ , there
are sets $E$ and $F$ which are minimally thin at $y$ such that

$x \in D\backslash E\lim_{xarrow y}\frac{H(x)}{h(x)}=d\underline{\mu_{H}}d\mu_{h}(y)$ and $\lim_{x\in DE}--\frac{x}{x}xarrow\^{h()}u()=0$ .

Theorem 1 improves the first assertion of Theorem C.

COROLLARY 1. Let $h=K\mu_{h}$ and $H=K\mu_{H}$ be positive harmonic functions on
D. Then, for $\mu_{h}$ almost every boundary point $y$ , there exists a set $E$ minimally
thin at $y$ for harmonic functions such that

$x \in D\backslash E\lim_{xarrow y}Hh^{\frac{(x)}{(x)}=}d_{\frac{\mu_{H}}{d\mu_{h}}(y)}$ .

For two measures $\mu$ and $\nu$ on $\partial D$ we say $\nu\leqq\mu$ if $\nu(A)\leqq\mu(A)$ for every
Borel subset $A$ of $\partial D$ . It is easy to see that $\nu\leqq\mu$ if and only if $d\mu/d\nu\geqq 1$ for
$\nu$ almost every point on $\partial D$ . Since $D$ is not minimally thin at any point $y\in\partial D$ ,
it follows from Theorem $C$ (or Corollary 1) that $\nu\leqq\mu$ if and only if $K\nu\leqq K\mu$

on $D$ .

DEFINITION 2. Let $\nu$ be a finite measure on $\partial D$ . A set $E\subset D$ is said to
determine the measure $\nu$ if for every finite measure $\mu$ concentrated on $\partial D$ , the
inequality $K\nu\leqq K\mu$ on $E$ implies that $\nu\leqq\mu$ , or equivalently $K\nu\leqq K\mu$ on $D$ .

The following theorem is a generalization of [11, Fheorem 2].



302 H. AIKAWA

THEOREM 2. Let $\nu$ be a finite measure on $\partial D$ and $E\subset D$ . Then the follow-
ing are equivalent:

(i) $E$ determines the measure $\nu$ .
(ii) $E$ determines the point measure at $y$ for $\nu$ almost every boundary point $y$ .
(iii) $E$ is not minimally thin at $y$ for harmonic functions for $\nu$ almost every

boundary point $y$ .
(iv) $E_{\rho}$ is not minimally thin at $y$ for $\nu$ almost every boundary point $y$ and

for some (or all) $\rho,$ $0<p<1$ .
(v) $\inf_{x\in E}(H(x)/K\nu(x))=\inf_{x\in D}(H(x)/K\nu(x))$ for all positive harmonlc func-

tions $H$.

Let $\omega(x, A)$ be the harmonic measure at $x\in D$ of $A\subset\partial D$ . We write simply
$\omega$ for the harmonic measure at the origin $0$ . We observe that $K\omega\equiv 1$ on $D$ . In
case $\nu$ is the harmonic measure $\omega$ we can give further equivalent condition to
Theorem 2. Let $\alpha>0$ . For each $y\in\partial D$ we associate the nontangential region
$\Gamma_{\alpha}(y)=\{x\in D:|x-y|<(1+\alpha)\delta(x)\}$ . We say that $\{x_{j}\}$ is a nontangential se-
quence converging to $y$ if $x_{f}arrow y$ and $x_{j}\in\Gamma_{\alpha}(y)$ for some $\alpha>0$ .

COROLLARY 2. Let $E\subset D$ . Then each statement with $\nu=\omega$ in Theorem 2 is
equivalent to

(vi) $E$ includes a nontangential sequence converging to $y$ for $\omega$ almost every
boundary point $y\in\partial D$ .

The above corollary as well as further equivalent conditions are given by
Gardiner [11, Corollary 2] for the unit ball. We observe that the harmonic
measure $\omega$ can be replaced by the surface measure if $D$ is a Lipschitz domain.

DEFINITION 3. Let $A$ be a closed subset of $\partial D$ . A set $E\subset D$ is said to
determine the closed set $A$ if $E$ determines the measure $\nu$ for all measures $\nu$

concentrated on $A$ .

Bonsall and Walsh defined the notion of positive Poisson basic (P.P.B.). In
our situation their definition is generalized as follows.

DEFINITION 4. Let $A$ be a closed subset of $\partial D$ . A set $E\subset D$ is said to be
a positive Martin basic (abbreviated to P.M.B.) set for $A$ if, for every positive
continuous function $f$ on $A$ , there exist sequences $\{\lambda_{j}\}$ and $\{x_{j}\}$ with $\lambda_{j}$ positive
and $x_{j}$ in $E$ such that $f(y)=\Sigma_{j}\lambda_{j}K(x_{j}, y)$ for $y\in A$ .

Let $\mathcal{H}(D, A)$ be the class of functions $h=h_{1}-h_{2}$ , where $h_{j}=K\mu_{h_{j}}$ is a
pOsitive harmonic function with measure $\mu_{h_{f}}$ concentrated on $A$ . Then [6,

Theorem 10] becomes the following form.

THEOREM D. Let $A$ be a closed subset of $\partial D$ and $E\subset D$ . Then the follow-
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$ing$ are equivalent:
(i) $\sup_{x\in E}h(x)=\sup_{x\in D}h(x)$ for all $h\in \mathcal{H}(D, A)$ .
(ii) $E$ is a P.M.B. set for $A$ .
(iii) For each $x\in D$ there is a measure $\lambda_{x}$ concentrated on $E$ such that $||\lambda_{x}||$

$=1$ and $K(x, y)= \int_{E}K(\xi, y)d\lambda_{x}(\xi)$ for $y\in A$ .

It is easy to see that if $E$ determines $A$ , then $E$ is a P.M.B. set for $A$ .
The converse is not true in general. In fact, let $A$ be a singleton $\{y\}$ with $y$

$\in\partial D$ . Then any nonempty set $E$ (even a compact subset of $D$) is a P.M.B.
set for $A$ . The following theorem shows that this is rather an exceptional case.
For the unit disk the theorem was proved by Ess\’en [10, Theorem 2].

THEOREM 3. Let $A$ be a closed subset of $\partial D$ and assume that $A$ contains at
least two points. Suppose $E \subset\bigcup_{y\in A}\Gamma_{\alpha}(y)$ for some $\alpha>0$ . Then the following are
equivalent:

(i) $\sup_{x\in E}h(x)=\sup_{x\in D}h(x)$ for all $h\in \mathcal{H}(D, A)$ .
(ii) $E$ is a P.M.B. set for $A$ .
(iii) $E$ determines $A$ .
(iv) $E$ determines the point measure at $y$ for $e$ very $y\in A$ .
(v) $E$ is not minimally thin at any $y\in A$ for harmonic functions.
(vi) $E_{\rho}$ is not minimally thin at any $y\in A$ for some (or all) $\rho,$ $0<\rho<1$ .

Let us consider the case when $A=\partial D$ . Since $\bigcup_{y\in oD}\neg\Gamma_{\alpha}(y)$ includes a neigh-
borhood of $\partial D$ , we readily obtain a generalization of [11, Theorem 1].

COROLLARY 3. The following are equivalent:
(i) $\sup_{x\in E}h(x)=\sup_{x\in D}h(x)$ for all $h\in \mathcal{H}(D, \partial D)$ .
(ii) $E$ is a P. M.B. set for $\partial D$ .
(iii) $E$ determines the boundary $\partial D$ .
(iv) $E$ determines the point measure at $y$ for every $y\in\partial D$ .
(v) $E$ is not minimally thin at any $y\in\partial D$ for harmonic functions.
(vi) $E_{\rho}$ is not minimally thin at any $y\in\partial D$ for some (or all) $\rho,$ $0<\rho<1$ .

Finally we add below a further equivalent condition to Theorem 1.

THEOREM 4. Let $y\in\partial D$ and $E\subset D$ . Then $E$ is minimally thin at $y$ for
harmonic functions if and only if there is a positive harmonic function $H$ such
that

$\lim_{x\in}\inf\frac{H(x)}{g(x)}<\lim_{xxarrowarrow,x\in}\inf\frac{H(x)}{g(x)}$ .

If $D$ is the unit ball $B(O, 1)$ , then it is easy to see that $g(x)/(1-|x|)$ has a
positive limit as $xarrow y$ for every boundary point $y$ . Hence, for the unit ball,
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Theorem 3 is the same result given by Gardiner [11, Theorem 3].

So far, we have observed that many results of [5, 6, 10, 11, 13] can be ex-
tended to an NTA domain without Theorems A and B. Therefore We raise

QUESTION. Can one extend these result to a general Martin space?

Our argument here depends on the estimates of the Martin kernel and the
boundary Harnack principle, so it is not applicable to a general Martin space.

I would like to thank Professor Matts Ess\’en and Professor Stephen Gardiner
for showing their preprints. Professor Gardiner also brought the papers of
Ancona and Zhang to my attention.

2. Proof of Theorem 1 and Corollary 1.

By the symbol $M$ we denote an absolute positive constant whose value is
unimportant and may change from line to line. We shall say that two positive
functions $f_{1}$ and $f_{2}$ are comparable, written $f_{1}\approx f_{2}$ , if and only if there exists a
constant $M\geqq 1$ such that $M^{-1}f_{1}\leqq f_{2}\leqq Mf_{1}$ . The constant $M$ will be called the
constant of comparison. First we recall the well-known Harnack inequality.

LEMMA 1. For $0<\rho<1$ there exists a positive constant $M(\rho)$ with the follow-
ing properties:

(i) $M(\rho)\downarrow 0$ as $\rho\downarrow 0$ .
(ii) Suppose $x\in D$ and $x’\in B(x, \rho\delta(x))$ . Then for any positive harmonic

functions $h$ and $H$ on $D$

$(1-M( \rho))-H_{\frac{(x}{x’}}’)\overline{h}()\leqq\inf_{B(x,\rho\delta_{(}x))}\frac{H}{h}\leqq\sup_{B(x.\rho\delta(x))}\frac{H}{h}\leqq(1+M(\rho))\frac{H(x}{h(x’}’))$ .

For the proof of Theorem 1 we use the following estimate of the Martin
kernel, whose proof will be given in Section 5.

LEMMA 2. Let $0<\rho<1<\gamma$ . Suppose $x,$ $y\in D$ . If $|x-\gamma|\geqq\rho\delta(x)$ , then

$K(x, y)\leqq MK(x, z)$ for all $z\in B(y, \gamma\delta(y))\cap\partial D$

with $M$ depending only on $D,$
$\rho$ and $\gamma$ .

The following lemma includes the crucial part of the proof of Theorem 1.
For the lemma we are motivated by the argument of Sj\"ogren [20, Proof of
Theorem 2].

LEMMA 3. Let $h$ be a Positive harmonic function on D. Suppose $E\subset D$ ,
$0<\rho<1$ and there is a Green potential $u$ such that $u\geqq h$ on $E_{\rho}$ . SuPPose $F$ is a
subset of $\partial D$ and there is $\eta>1$ such that

(3) $B(x, \eta\delta(x))\cap F\neq\emptyset$ for $x\in E$ .
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Then there exists a finite measure $\mu$ concentrated on a countable subset of $F$

such that $K\mu\geqq h$ on $E_{\rho}$ .

REMARK. Let $F$ be a dense subset of $\partial D$ . Then (3) holds for any $E\subset D$

and $\eta>1$ .

PROOF OF LEMMA 3. By the covering lemma ([16, Lemma 3.2] and [22,

Theorem 1.3.5]) we can find sequences $\{x_{j}^{i}\}_{j}\subset E,$ $i=1$ , , $N$, such that $N$

depends only on the dimension, $\{B(x_{j}^{i}, \rho\delta(x_{j}^{i}))\}_{j}$ is mutually disjoint and

(4) $E\subset i\Rightarrow 1UNUB(x_{f}^{i}j\rho\delta(x_{j}^{i}))$ .

Obviously, the right hand side is included in $E_{\rho}$ and hence the Green potential
$u$ majorizes $h$ on $E_{\rho}^{i}= \bigcup_{j}B(x_{j}^{i}, \rho\delta(x_{f}^{i}))$ . Therefore $\hat{R}_{h}^{E_{\rho}^{i}}$ is a Green potential,
which is represented as $K\nu_{i}$ with finite measure $\nu_{i}$ concentrated on $\partial E_{\rho}^{i}\cap D$ .
Note that

(5) $K\nu_{i}\geqq h$ on $E_{\rho}^{i}$ .

Since $\{B(x_{j}^{i}, \rho\delta(x_{j}^{\ell}))\}_{j}$ do not accumulate in $D$ for each $i=1$ , , $n$ , it follows
that

$\partial E_{\rho}^{\ell}\cap D=\bigcup_{j}\partial B(x_{j}^{i}, \rho\delta(x_{j}^{\ell}))$ .

Thus the measure $\nu_{i}$ is concentrated on the union of spheres $\partial B(x_{j}^{t}, \rho\delta(x_{j}^{l}))$ .
By (3) we can take a point $z_{j}^{i}\in F\cap B(x_{f}^{t}, \eta\delta(x_{j}^{i}))$ . Define the measure $\mu_{i}$

by the summation of point masses at $z_{j}^{i}$ of magnitude $\nu_{i}(\partial B(x_{j}^{i}, \rho\delta(x_{j}^{i})))$ . Then
$||\mu_{\iota}||=||\nu_{i}||<\infty$ , and hence $K\mu_{i}$ is a positive harmonic function. Let $x$ be one
of $\{x_{j}^{i}\}_{j}$ , say $x_{j}^{i}$ . If $y\in\partial B(x_{j}^{i}, \rho\delta(x_{j}^{i}))$ , then $|x-y|\geqq\rho\delta(x)$ and

$|y-z_{j}^{i}|$ $ $|y-x_{j}^{l}|+|x_{j}^{i}-z_{j}^{i}|\leqq(\rho+\eta)\delta(x_{f}^{i})$ $ $\frac{\rho+\eta}{1-\rho}\delta(y)$ .

Hence Lemma 2 with $\gamma=(\rho+\eta)/(1-\rho)>1$ yields

$K(x, y)\leqq MK(x, z_{f}^{\ell})$

with $M>0$ independent of $x,$ $y$ and $z_{j}^{i}$ . By the definition of the integration
we have $K\nu_{i}(x)\leqq MK\mu_{i}(x)$ . Therefore (5) and Lemma 1 show that

$K\mu_{i}\geqq Mh$ on $E_{\rho}^{i}$ .
Hence, by (4), the finite measure $\mu=M^{-1}\Sigma_{i=1}^{N}\mu_{i}$ satisfies

$K\mu\geqq h$ on $E$ .
Moreover $\mu$ is concentrated on $\bigcup_{i.j}\{z_{i}^{j}\}$ , which is a countable subset of $F$. The
lemma is proved.
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PROOF OF THEOREM 1. We have only to prove $(ii)\Rightarrow(i)$ . Suppose $E_{\rho}$ is
minimally thin at $y$ , in other words there is a Green potential which majorizes
the harmonic function $K_{y}$ on $E_{\rho}$ . Observe that $F=\partial D\backslash \{y\}$ is a dense subset
of $\partial D$ . Hence, it follows from Lemma 3 and its remark that there is a finite
measure $\mu$ concentrated on $F$ such that $K\mu\geqq K_{y}$ on $E_{\rho}$ . This implies that $E_{\rho}$

is minimally thin at $y$ for harmonic functions. Thus (i) follows.

The following lemma follows easily from Theorem 1 (cf. [5, Theorem II,
9 and Theorem XV, 9]).

LEMMA 4. Let $y\in\partial D$ . Suppose $E_{j}\subset D$ are mimmally thin at $y$ for harmonic
functions for $J^{=1},$ $\cdots$ Then there is a sequence of $po\alpha tive$ numbers $r_{j}$ such that
$E= \bigcup_{i}E_{j}\cap B(y, r_{j})$ is minimally thin at $y$ for harmmic functims.

PROOF OF COROLLARY 1. By Theorem $C$ , it is sufficient to show that if
$\lim_{x,x\in\vec{D}\backslash F}{}_{y}H(x)/h(x)=\alpha$ with a set $F$ minimally thin at $y$ , then there is a set $E$

minimally thin at $y$ for harmonic functions such that $\lim_{xarrow y ,x\in D\backslash E}H(x)/h(x)=\alpha$ .
For $0<\rho<1$ we let $F(\rho)=\{x\in F:B(x, \rho\delta(x))\subset F\}$ . We observe that if $x\in$

$D\backslash F(\rho)$ , then there is a point $x’\in B(x, \rho\delta(x))\backslash F$. Hence Lemma 1 yields

$\alpha(1-M(\rho))\leqq\lim_{xarrow,x\in D\backslash }\inf\frac{H(x)}{h(x)}\leqq$$\lim_{x,\#(\rho’arrow\oint_{(\rho)}}\sup\frac{H(x)}{h(x)}\leqq\alpha(1+M(\rho))$ .

Since $\bigcup_{x\in F(\rho)}B(x, \rho\delta(x))\subset F$, it follows from Theorem 1 that $F(\rho)$ is minimally
thin at $y$ for harmonic functions. From Lemma 4 we can find $r_{j}arrow 0$ such that

$E= UjF(\frac{1}{j})\cap B(y, r_{j})$

is minimally thin at $y$ for harmonic functions. By the construction of $E$ we
see that $\lim {}_{xarrow y}H(x)/h(x)=\alpha x\in D\backslash E$ The corollary is proved.

3. Proof of Theorem 2 and Corollary 2.

We shall show Theorem 2. The essential part will be $(i)\Rightarrow(iii)$ . For the
proof we shall invoke Lemma 3.

PROOF OF THEOREM 2. The equivalence (ii) $\Leftrightarrow(iii)\Leftrightarrow(iv)$ follows from
Theorem 1. Let us prove $(iii)\Rightarrow(i)$ , $(i)\Leftarrow(v)$ and $(i)\Rightarrow(iii)$ .

$(iii)\Rightarrow(i)$ : Suppose (iii) holds, $i.e.,$ $E$ is not minimally thin at $y$ for har-
monic functions for $\nu$ almost every $y\in\partial D$ . Let $\mu$ be a finite measure on $\partial D$

and suppose $K\nu\leqq K\mu$ on $E$ . Then Corollary 1 yields

$\frac{d\mu}{d\nu}\geqq 1\nu- a.e$ . on $\partial D$ .

Thus v$\mu and (i) follows.
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(i) $\langle\Rightarrow(v)$ : Suppose (i) holds. Take a positive harmonic function $H=K\mu_{H}$

on $D$ and let $\alpha=1nf_{E}H/K\nu$ . Then $\alpha K\nu\leqq K\mu_{H}$ on $E$ . Since $E$ determines the
measure $\nu$ , it follows that $\alpha K\nu\leqq K\mu_{H}$ on $D$ , which implies that $\alpha=\inf {}_{D}H/K\nu$ .
Thus (v) follows.

Next suppose(v) holds. Take a finite measure $\mu$ on $\partial D$ such that $K\nu\leqq K\mu$

on $E$ . Theorem $C$ says that the ratio $K\mu/K\nu$ has minimal fine limit $d\mu/d\nu$ for
$\nu$-almost every boundary point. This limit is greater than or equal to 1 since

$1 \leqq\inf_{E}\frac{K\mu}{K\nu}=\inf_{D}\frac{K\mu}{K\nu}$ .
Hence \nu ;$\mu and (i) follows.

$(i)\Rightarrow(iii)$ : Suppose (iii) does not hold, $i.e.$ , there is $A\subset\partial D$ with $\nu(A)>0$

such that $E$ is minimally thin at any $y\in A$ for harmonic functions, or equiv-
alently $E_{\rho}$ is minimally thin at any $y\in A$ .

Suppose first that there is $y\in A$ with $\nu(\{y\})>0$ . Since $E$ is not minimally
thin at $y$ for harmonic functions, we can find a measure $\mu_{y}$ on $\partial D$ such that
$\mu_{y}(\{y\})=0$ and $K\mu_{y}\geqq K_{y}$ on $E$ . Observe that the measure

$\mu=v|_{aD\backslash \{y\}}+p(\{y\})\mu_{y}$

satisfies v$\mu and $K\mu\geqq K\nu$ on $E$ . Thus $E$ does not determine the measure $\nu$ .
Suppose next that $\nu(\{y\})=0$ for any $y\in A$ . Let $\nu’=\nu|_{A}$ . Then $\hat{R}^{E}A$ , is a

Green potential ([5, Corollary to Theorem XV, 11]); in other words there is a
Green potential which majorizes the harmonic function $K\nu’$ on $E_{\rho}$ . By Lemma
3 we can find a finite measure $\nu^{*}$ concentrated on a countable subset $A^{*}$ of $\partial D$

such that $K\nu^{*}\geqq K\nu’$ on $E$ . Then the measure $\mu=\nu^{*}+\nu|_{\partial D\backslash A}$ satisfies $K\mu\geqq K\nu$

on $E$ . Observe that

$\nu(A\backslash A^{*})=\nu(A)>0$ ,

$\mu(A\backslash A^{*})=\nu^{*}(A\backslash A^{*})=0$ .

This implies $\nu\leqq\mu$ Thus $E$ does not determine the measure $\nu$ . Therefore (i)

does not hold. Thus $(i)\Rightarrow(iii)$ follows.

In view of [2, Theorem 4], we obtain the following lemma. Actually, this
lemma is not so difficult. For a Lipschitz domain, Hunt and Wheeden [14] used
this fact as the property of $n$ . $t$ . $S$ sets.

LEMMA 5. Let $y\in\partial D$ . Then a nontangential sequence converging to $y$ is
not minimally thin at $y$ for harmonic functions.

PROOF OF COROLLARY 2. By Lemma 5 we readily have $(vi)\Rightarrow(iii)$ . We
prove the corollary by showing $(v)\Rightarrow(vi)$ . Suppose (vi) does not hold. Then
there is $\alpha>0$ and $r>0$ such that $\omega(A)>0$ with $A=\{y\in\partial D:\Gamma.(y)\cap B(y, r)\cap E$
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$=\emptyset\}$ . Let

$H(x)= \omega(x, \partial D\backslash A)=\int_{\partial D\backslash A}K(x, y)d\omega(y)$ .

We observe from the minimal fine limlt theorem (Theorem C) that for $\omega$ a.e.
$y\in A$ there is a set $F$ minimally thin at $y$ such that $\lim {}_{xarrow y}H(x)=0x\in D\backslash F$ Since
$\omega(A)>0$ , it follows, in particular, that

$\inf_{x\in D}H(x)=0$ .
Hence, it is sufficient to show that $\inf {}_{x\in E}H(x)>0$ .

For $x\in D$ we let $P_{\alpha}(x)=\{y\in\partial D:x\in\Gamma_{\alpha}(y)\}$ . Let $D_{0}=\{x\in D:\delta(x)<r/(1+\alpha)\}$ .
By definition if $x\in E\cap D_{0}$ , then $P_{\alpha}(x)\subset\partial D\backslash A$ . Hence $H(x)\geqq\omega(x, P_{\alpha}(x))$ . On the
other hand, in view of the definition of $\Gamma_{\alpha}(y),$ $P.(x)=B(x, (1+\alpha)\delta(x))\cap\partial D$ , and
hence one of the Carleson estimates reads

$\omega(x, P_{\alpha}(x))\geqq M$ for $x\in D_{0}$ ,

where $M$ is a positive constant independent of $x$ (cf. [15, Lemma 4.2]).

Therefore,

$\inf_{x\in E}H(x)\geqq\min$ $\{ \inf_{x\in E\cap D_{0}}H(x),\inf_{x\in D\backslash D_{0}}H(x)\}\geqq\min\{M,\inf_{x\in D\backslash D_{0}}H(x)\}>0$ .

Thus the corollary is proved.

REMARK. Let $E\subset D$ and $A\subset\partial D$ . Then $E$ determines the point measure
at $y$ for $\omega a.e$ . $y\in A$ if and only if $E$ includes a nontangential sequence con-
verging to $y$ for $\omega a.e$ . $y\in A$ .

4. Proof of Theorem 3.

Let us prove Theorem 3. The essential part will be $(i)\Rightarrow(v)$ . For the
proof we shall invoke Lemma 3 and the assumption that $E \subset\bigcup_{y\in A}\Gamma_{\alpha}(\gamma)$ .

PROOF OF THEOREM 3. We have observed in Theorem $D$ that $(i)\Leftrightarrow$ (ii).

By definition $(iii)\Rightarrow$ (iv) and by Theorem 2 (iv) $\Rightarrow(iii)$ . In view of Theorem 1
and the remark after Definition 1 we have (iv) $\Leftrightarrow(v)\not\in\Rightarrow(vi)$ . Let us prove (iii)
$\Rightarrow(i)$ and $(i)\Rightarrow(v)$ .

$(iii)\Rightarrow(i)$ : Let $\omega$ be the harmonic measure at the origin as before Corollary
2. We observe that $K\omega\equiv 1$ on $D$ . Take $h=K\mu_{1}-K\mu_{2}\in \mathcal{H}(D, A)$ with measures
$\mu_{1}$ and $\mu_{2}$ concentrated on $A$ . Put $\alpha=\sup_{E}h$ . Then

$K\mu_{1}\leqq K(\mu_{2}+\alpha\omega)$ on $E$ .

Since $E$ determines $A$ , it follows from the discussion before Definition 2 that
the same inequality holds on $D$ ; in other words
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$h=K\mu_{1}-K\mu_{2}\leqq\alpha K\omega=\alpha$ on $D$ .
Hence $\sup_{D}h\leqq\alpha$ . Thus (i) follows.

$(i)\Rightarrow(v)$ : Let us prove the implication by contradiction. Suppose (v) does
not holds, $i.e.,$ $E$ is minimally thin at some point $y\in A$ for harmonic functions.
It is sufficient to show that there is a measure $\mu$ concentrated on $A\backslash \{y\}$ such
that $K_{y}\leqq K\mu$ on $E$ since $h=K_{y}-K\mu\in \mathcal{H}(D, A)$ satisfies $\sup_{E}h\leqq 0$ and yet, by
Theorem $C$ ,

$x \in D\backslash F\lim_{xarrow y}\frac{h(x)}{K_{y}(x)}=1$ with $F$ being minimally thin at $y$ ,

which in particular implies that $\sup_{D}h>0$ .
Suppose first $y$ is an isolated point of $A$ . Since $E$ is minimally thin at $y$

for harmonic functions, it follows from Lemma 5 that $E$ does not contain a
nontangential sequence converging to $y$ . From the assumption that $E \subset\bigcup_{y\in A}$

$\Gamma_{\alpha}(y)$ it follows that dist$(E, y)>0$ . Therefore there is $r>0$ such that $B(y, r)\cap$

$(A\backslash \{y\})=\emptyset$ and $B(y, r)\cap E=\emptyset$ . Let $y’\in A\backslash \{y\}$ . By the boundary Harnack
principle (see Lemma 6 below) we can show

$K_{y}(x)\leqq MK_{y’}(x)$ for $x\in D\cap\partial B(y,$ $\frac{r}{2})$

with $M$ depending on $y,$ $y’$ and $r$ but not on $x$ . Hence the maximum principle
yields the same inequality for $x\in D\backslash B(y, r/2)$ . Thus $K_{y}\leqq K\mu$ on $E$ with the
point mass $\mu$ at $y’$ of magnitude $M$ .

Suppose next $y$ is not an isolated point of $A$ . Then we can find a sequence
$y_{J}’$ in $A$ converging to $y$ . We observe that

$\Gamma_{n}(y)\subset\bigcup_{j}\Gamma_{2\alpha}(y_{J}’)$ .

Hence
$E\subset y’\in A\backslash \{y\}U\Gamma_{2\alpha}(y’)$ ,

which implies (3) with $F=A\backslash \{y\}$ and $\eta=1+2\alpha$ . Let $0<\rho<1$ . By Theorem 1
$E_{\rho}$ is minimally thin at $y$ , and hence we find a Green potential which majorizes
$K_{y}$ on $E_{\rho}$ . Therefore Lemma 3 yields a measure $\mu$ on $A\backslash \{y\}$ such that $K\mu\geqq$

$K_{y}$ on $E_{\rho}\supset E$ . The theorem is proved.

5. Proof of Lemma 2.

In this section we prove Lemma 2. Let us recall the definition of an NTA
domain. A bounded domain is called NTA when there exist positive constants
$M$ and $r_{0}$ such that

(a) Corkscrew condition. For any $z\in\partial D,$ $r<r_{0}$ there exists a point $A.(z)\in$
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$D$ such that $M^{-1}r<|A_{r}(z)-z|<r$ and $\delta(A_{r}(z))>M^{-1}r$ .
(b) The complement of $D$ satisfies the corkscrew condition.
(c) Harnack chain condition. If $\epsilon>0$ and $x_{1}$ and $x_{2}$ belong to $D,$ $\delta(x_{j})>\epsilon$

and $|x_{1}-x_{2}|<C\epsilon$ , then there exists a Harnack chain from $x_{1}$ and $x_{2}$ whose
length depends on $C$ , but not $\epsilon$ .

Without loss of generality we may assume that $r_{0}=1$ and $B(O, 2)\subset D$ . The
boundary Harnack principle ([15, Lemma 4.10]) is crucial.

$L+MMA6$ . Let $z\in\partial D$ and let $0<r<1$ . Suppose $u$ and $v$ are Posrtive harmmic

functions $mB(z, 2r)\cap D$ and that $u$ and $v$ vanish continuously on $B(z, 2r)\cap\partial D$ .
Then

$\frac{u}{u(A_{r}(z))}\approx\frac{v}{v(A_{r}(z))}$ on $B(z, r)\cap D$

with cmstant of comParison indePendent of $z,$ $r,$ $u$ and $v$ .

The boundary Harnack principle is a powerful tool and produces many
results. The following is an easy corollary.

LEMMA 7. Let $z\in\partial D$ and let $0<r<1$ . Suppose $u$ is a Posrtive harmonic
function on $B(z, 2r)\cap D$ and that $u$ vanishes continuously $mB(z, 2r)\cap\partial D$ . Then

$\sup_{B(l.\mathcal{T})\cap^{D}}u\approx u(A_{r}(z))$

with constani of comPansm independent of $z,$ $r$ and $u$ .
Applying Lemma 7 to $g=G(\cdot, 0)$ , we obtain

LEMMA 8. Let $z\in\partial D$ and let $0<r<R<1$ . Then g(A.(z)):$ $Mg(A_{R}(z))$ .

Let $\Theta(x, y)=K(x, y)/g(x)$ . It is known that $\Theta(x, y)$ has a continuous
extension on $\overline{D}\cross\overline{D}$ . By the same symbol we denote the continuous extension.
The kernel $\Theta$ is referred to as the Naim’s $\Theta$ kernel for $D$ . By definition $\Theta$

is symmetric.

LEMMA 9. For $z\in\partial D$ we let $\theta_{z}(r)=\Theta(A_{r}(z), z)$ . Then

$\theta_{z}(R)$ $ $M\theta_{z}(r)$ for $0<r<R<1$ ,

where $M$ depends only on D. Moreover, if $x,$
$y\in\overline{D}$ and $2|y-z|$ $ $|x-z|<1$ , then

$\Theta(x, y)\approx\Theta(x, z)\approx\theta_{t}(|x-z|)$

with constant of cOmparison depending only on $D$ .
PROOF. Let $0<r<R<1$ . The maximum principle yields

$D \cap\partial B(\epsilon.R)\sup K(\cdot, z)\leqq\sup_{D\cap\partial B(zr)}.K(\cdot, z)$ .
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By Lemma 7 we have

$K(A_{R}(z), z)$ $ $MK(A_{r}(z), z)$

with $M$ independent of $z,$ $r$ and $R$ . This, together with Lemma 8, yields

$\theta_{z}(R)=\frac{K(A_{R}(z),z)}{g(A_{R}(z))}\leqq M\frac{K(A_{r}(z),z)}{g(A_{r}(z))}=M\theta_{z}(r)$ .

Suppose $x,$
$y\in\overline{D}$ and $2|y-z|\leqq|x-z|<1$ . By the continuity we may as-

sume that $x,$ $y\in D$ . Let $r=|x-z|$ . Observe that $K(\cdot, y)$ and $g$ are harmonic
on $D\cap B(z, 2r)\backslash B(z, (1/2)r)$ and vanish on $\partial D\cap B(z, 2r)\backslash B(z, (1/2)r)$ . By an
elementary geometrical observation and the Lemma 6 we have

$\frac{K(\cdot,y)}{K(A_{r}(z),y)}\approx\frac{g}{g(A_{r}(z))}$

on $D\cap\partial B(z, r)$ . Hence

$\Theta(x, y)=\frac{K(x,y)}{g(x)}\approx\frac{K(A_{r}(z),z)}{g(A_{r}(z))}=\Theta(A_{r}(z), z)=\theta_{z}(r)$ .

The above comparison holds particularly for $y=z$ , whence the lemma follows.

LEMMA 10. Let $z\in\partial D,$ $x\in D$ and $y\in\overline{D}$ .
$(i)$ If $2|y-z|\leqq|x-z|<1$ , then $K(x, y)\approx K(x, z)$ with constant of com-

parison independent of $z,$ $x$ and $y$ .
(ii) If $2|x-z|$ $ $|y-z|<1$ , then $K(x, y)\leqq MK(x, z)$ with $M$ independent of

$z,$ $x$ and $y$ .

PROOF. The first assertion readily follows from Lemma 9 and the defini-
tions of $K$ and $\Theta$ . Suppose $2|x-z|\leqq|y-z|<1$ . Changing the roles of $x$ and
$y$ , we obtain from Lemma 9 that

$\Theta(x, y)\approx\Theta(y, z)\approx\theta_{z}(|y-z|)\leqq M\theta_{t}(|x-z|)\approx\Theta(x, z)$ .

Hence $K$( $x$, y)$MK(x, $z$). The lemma follows.

PROOF OF LEMMA 2. Let $x,$ $y\in D$ and $z\in\partial D$ . Suppose

$|x-y|\geqq\rho\delta(x)$ ,
(6)

$|y-z|\leqq\gamma\delta(y)$ .

Without loss of generality we may assume that $|x-z|<1$ and $|y-z|<1$ . Sup-
pose first $2|y-z|\leqq|x-z|$ . Then Lemma 10 (i) yields $K(x, y)\approx K(x, z)$ . In
particular we have tbe required estimate. Suppose next $2|x-z|\leqq|y-z|$ . Then
Lemma 10 (ii) yields $K(x, y)\leqq MK(x, z)$ . Thus we have again the required
estimate. Finally suppose $(1/2)|y-z|\leqq|x-z|\leqq 2|y-z|$ . In view of (6), we
have
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(7) $|x-y|\geqq M|y-z|$ .

Let $r=4M|y-z|$ and $y_{0}=A_{r}(z)$ . Then $4|y-z|=M^{-1}r\leqq|y_{0}-z|\leqq r=4M|y-z|$

by the Corkscrew condition. Hence (6) and (7) yield

(8) $|y-y_{0}| \leqq(4M+1)|y-z|\leqq M’\min\{|x-y|, \delta(y)\}$ .
Observe that $G(x, )$ and $g$ are positive and harmonic in $D’=D\backslash \{x, 0\}$ . In view
of (8) and the Harnack chain condition, we can find a Harnack chain from $y$

to $y_{0}$ in $D’$ with length independent of $x$, $y$ and $y_{0}$ . Hence it follows from
the Harnack principle that $K(x, y)=K(x, y_{0})$ . Since $2|x-z|\leqq 4|y-z|$ $ $|y_{0}$ $z|$ ,
it follows from Lemma 10 (ii) that

$K(x, y)\approx K(x, y_{0})\leqq MK(x, z)$ .

The lemma is proved.

6. Proof of Theorem 4.

First we note the following characterization of minimal thinness which
readily follows from [5, Theorem XV.6, Theorem XV.8 and Theorem XV.9].

THEOREM E. Let $y\in\partial D$ and $E\subset D$ . Then the following are equivalent:
$(i)$ $E$ is minimally thin at $y$ .
(ii) There is a nmnegative superharmonic function $u$ on $D$ such that

$\lim_{x\in}\inf\frac{u(x)}{g(x)}<\lim_{xxarrowarrow,x\in}\inf\frac{u(x)}{g(x)}$ .

(iii) There is a Green potential $P$ on $D$ such that

$\lim_{x\in}\inf\frac{p(x)}{g(x)}<\lim_{xxarrowarrow,x\in}\inf\frac{p(x)}{g(x)}$ .

(iv) There is a Green potential $P$ on $D$ such that

$\lim_{x\in}\inf\frac{p(x)}{g(x)}<\lim_{xxarrowarrow,x\in}\inf\frac{p(x)}{g(x)}=\infty$ .

PROOF OF THEOREM 4 (SUFFICIENCY). Suppose there iS a pOSitive harmOniC
function $H$ such that

$\lim_{x\in D}\inf_{yxarrow}\frac{H(x)}{g(x)}<\lim_{x\in E}\inf_{yxarrow}\frac{H(x)}{g(x)}$ .

Then by Lemma 1 there is $\rho,$ $0<\rho<1$ , such that the above inequality with $E_{\rho}$

replacing $E$ holds. Hence, Theorem $E,$ $(ii)\Rightarrow(i)$ , implies that $E_{\rho}$ is minimally

thin at $y$ . By Theorem 1 $E$ is minimally thin at $y$ for harmonic functions.
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For the necessity of Theorem 4 we need to consider a version of the above
theorem in the context of harmonic functions. To this end we give a refine-
ment of Lemma 3. We extend the notation $E_{\rho}= \bigcup_{x\in E}B(x, \rho\delta(x))$ for $\rho\geqq 1$ .

LEMMA 11. Let $h,$ $E,$
$\rho,$ $u,$ $F$ and $\eta$ be as in Lemma 3. Then the measure

$\mu$ given in Lemma 3 satisfies $K\mu\leqq M_{0}u$ on $D\backslash E_{3\eta+2\rho}$ .

PROOF. Let $x\in D\backslash E_{3\eta\cdot 2\rho}$ . Let $x_{j}^{i}$ and $z_{j}^{0}$ be as in the proof of Lemma 3.
We observe that

$|x-z_{j}^{i}|\geqq|x-x_{f}^{l}|-|xj-z\}|\geqq(3\eta+2\rho-\eta)\delta(x\})\geqq 2(\eta+\rho)\delta(x_{j}^{t})>2|y-z_{j}^{t}|$ .

Hence, Lemma 10 (i) with $z=z_{j}^{i}$ yields $K(x, y)\approx K(x, z_{j}^{\iota})$ . Let $v_{i},$ $\mu_{i}$ and $\mu$ be
the measures as in the proof of Lemma 3. The above inequality implies that
$K\mu_{i}(x)\approx K\nu_{i}(x)$ . Hence

$K \mu(x)\leqq M\sum_{i=1}^{N}K\nu_{i}(x)\leqq M\sum_{i=1}^{v}\hat{R}_{h}^{E_{\rho}^{i}}(x)p\leqq M_{0}u(x)$ .

The lemma follows.

PROOF OF THEOREM 4 (NECESSITY). SuppOSe $E$ iS minimally thin at $y$ fOr
harmonic functions. Let $0<\rho<1<\eta$ We take $\alpha>6\eta+4\rho$ and let $\beta=$

$(\alpha-6\eta-4\rho)/(1+3\eta+2p)$ . By Lemma 5 we may assume that $EcD\backslash \Gamma.(y)$ . We
observe that

(9) $E_{3\eta+2\rho}\cap\Gamma_{\beta}(y)=\emptyset$ .
In fact, if $z\in E_{3\eta+2\rho}$ , then by an elementary calculation $|z-y|\geqq(1+\alpha-3\eta-2p)$

. $(1+3\eta+2\rho)^{-1}\delta(z)=(1+\beta)\delta(z)$ . This means that $z\not\in\Gamma_{\beta}(y)$ . Thus (9) follows.
Since $E_{\rho}$ is minimally thin at $y$ by Theorem 1, it follows from Theorem $E$ ,
$(i)\Rightarrow(iv)$ , that there is a Green potential $P$ such that

(10) $\lim_{x\in}\inf\frac{p(x)}{g(x)}<\lim_{xxarrow,Bx\inarrow E_{p}}\inf_{y}\frac{p(x)}{g(x)}=\infty$ .

By Lemma 5 the nontangential region $\Gamma_{\beta}(y)$ is not minimally thin at $y$ . Hence
it follows from Theorem $E,$ $(iii)\Rightarrow(i)$ , that

$\lim_{xarrow,x\in\Gamma_{\beta}y}\inf_{(y)}\frac{p(x)}{g(x)}=\lim_{xarrow,x\in 3}\inf\frac{p(x)}{g(x)}<\infty$
.

Let

$c>M_{0} \lim_{xarrow,x\in\Gamma_{\beta}y}\inf_{ty)}\frac{p(x)}{g(x)}$
,

where $M_{0}$ is the constant in Lemma 11. By (10) we can choose $\delta>0$ such that
$p\geqq cg$ on $E_{\rho}\cap B(y, \delta)$ . By Lemmas 3 and 11 with $u=p$ and (9) we find a
positive harmonic function $H$ such that $H\geqq cg$ on $E_{\rho}\cap B(y, \delta)$ and $H\leqq M_{0}p$ on
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$\Gamma_{\beta}(y)$ . Hence

$\lim_{xarrow,x\in}\inf\frac{H(x)}{g(x)}\leqq M_{0}\lim_{xarrow,x\in\Gamma_{\beta}y}\inf_{\langle y)}\frac{p(x)}{g(x)}<c\leqq_{xarrow}Bx\in F_{\rho}x\in Biim\inf\frac{H(x)}{g(x)}\leqq\lim_{xarrow}\inf\frac{H(x)}{g(x)}$
.

Thus Theorem 4 is proved.
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