Brelot spaces of Schrödinger equations

By Mitsuru NakaI

(Received Sept. 1, 1993)
(Revised Jun. 10, 1994)

Consider a Radon measure μ of not necessarily constant sign on a subregion W of the Euclidean space \boldsymbol{R}^{d} of dimension $d \geqq 2$. A function u on an open subset U of W is said to be μ-harmonic on U if u is continuous on U and satisfies the Schrödinger equation $(-\Delta+\mu) u=0$ on U in the sense of distributions. The family of μ-harmonic functions on open subsets of W determines a sheaf H_{μ} of functions on W (cf. $\S 1.1$ below), i.e., $H_{\mu}(U)$ is the set of μ-harmonic functions on U. In order for us to be able to effectively discuss various global structures such as the Martin boundary related to the equation $(-\Delta+\mu) u=0$ on W, it is the least requirement for the sheaf H_{μ} to give rise to a Brelot harmonic space, or simply Brelot space, (W, H_{μ}) (cf. §1.2). This paper concerns the question under what condition on μ the sheaf H_{μ} generates a Brelot space (W, H_{μ}). It was shown by Boukricha [3] for a positive measure μ and by Boukricha-Hansen-Hueber [4] for a signed measure μ that $\left(W, H_{\mu}\right)$ is a Brelot space if μ is of Kato class (cf. §2.2). It is a natural question to ask whether for μ to be of Kato class is the widest possible condition for $\left(W, H_{\mu}\right)$ to be a Brelot space; specifically we ask whether μ is of Kato class if (W, H_{μ}) is a Brelot space. The answer to this question is given as follows :

Main Theorem. Although a Radon measure μ of constant sign being of Kato class is necessary and sufficient for the pair $\left(W, H_{\mu}\right)$ to be a Brelot space, a Radon measure μ of nonconstant sign being of Kato class is sufficient but not necessary in general for $\left(W, H_{\mu}\right)$ to be a Brelot space.

We will give a self contained complete proof to the above assertion and actually more than described in the above statement as follows. We introduce a new notion of, what we call, a Radon measure of quasi Kato class (cf. § 3.2). We then have the following result:

Theorem 1. If μ is a Radon measure of quasi Kato class, then the pair (W, H_{μ}) is a Brelot space.

[^0]Since it is easily seen, by examining the very definitions of both classes, that a Radon measure μ on W is of quasi Kato class on W if it is of Kato class on W, the above theorem 1 is, at least superficially, a generalization of the above cited results of Boukricha [3] and Boukricha-Hansen-Hueber [4] (cf. also Strum [11]]. That it is a strict and essential generalization is seen by the following result:

Theorem 2. On any Euclidean subregion W there always exists a Radon measure μ which is of quasi Kato class on W but not of Kato class on W.

From theorems 1 and 2 the main theorem follows at once except for the part that a Radon measure μ of constant sign is of Kato class if (W, H_{μ}) is a Brelot space. The proof of this fact is quite easy and will briefly be given in $\S 2.2$ among other things. Thus we only have to concentrate ourselves upon the proofs of theorems 1 and 2 .

The paper consists of six sections. Brelot spaces are explained in $\S 1$. Here a simple example of $\left(W, H_{\mu}\right)$ which is not a Brelot space is stated. In $\S 2$ measures of Kato class are considered. A central fact treated in this section concerns the Brelot spaces (W, H_{μ}) with positive or negative measures μ. A new notion of measures of quasi Kato class is introduced in $\S 3$ and Green potentials of measures of quasi Kato class are discussed in §4. Based upon the results in the preceding section, the proof of Theorem 1 is given in $\S 5$. In the last $\S 6$, Theorem 2 is proved. The flat cone criterion for Dirichlet regularity is used in $\S 6$ and thus a proof for this fact is given in Appendix at the end of this paper.

1. Brelot spaces.

1.1. We denote by \boldsymbol{R}^{d} the Euclidean space of dimension $d \geqq 2$ and $\lambda=\lambda^{d}$ the Lebesgue measure on \boldsymbol{R}^{d}. We sometimes use the notation $|X|$ to mean the volume $\lambda(X)$ of a measurable subset X of \boldsymbol{R}^{d}. We also denote the volume element $d \lambda(x)$ by $d x=d x_{1} \cdots d x_{d}$ where $x=\left(x_{1}, \cdots, x_{d}\right)$ is a point of \boldsymbol{R}^{d}. The length of x is denoted by $|x|$. A subregion or region W of \boldsymbol{R}^{d} is an open and connected set. A typical example of regions is an open ball $B(a, r)$ of radius $r>0$ centered at $a \in \boldsymbol{R}^{d}$. We also denote by $\bar{B}(a, r)$ the closed ball $\overline{B(a, r)}=B(a, r) \cup \partial B(a, r)$. A Radon measure μ on a region W is a difference of two regular positive Borel measures on W (i.e., defined for Borel subsets of W) so that the total variation $|\mu|$ of μ and the positive (negative, resp.) part $\mu^{+}=(|\mu|+\mu) / 2\left(\mu^{-}=(|\mu|-\mu) / 2\right.$, resp.) of μ are positive regular Borel measures on W. If a Radon measure μ on W takes only nonnegative (nonpositive, resp.) values, then μ is said to be positive (negative, resp.), $\mu \geqq 0$ ($\mu \leqq 0$, resp.) in notation. Positive or negative Radon measures are said to be of constant sign.

Otherwise they are said to be of nonconstant sign. To stress that μ is not necessarily positive or negative we sometimes say that μ is a signed Radon measure.

Using a Radon measure μ on a region W in $\boldsymbol{R}^{d}(d \geqq 2)$ as its potential we consider a stationary (i.e., time independent) Schrödinger operator $-\Delta+\mu$ on W. By a solution u on an open subset U of W of the Schrödinger equation

$$
\begin{equation*}
(-\Delta+\mu) u=0 \quad\left(\Delta=\partial^{2} / \partial x_{1}^{2}+\cdots+\partial^{2} / \partial x_{d}^{2}\right) \tag{1.1}
\end{equation*}
$$

we mean that $u \in L_{1, \text { loc }}(U, \lambda+|\mu|)$ and u satisfies (1.1) on U in the sense of distributions, i.e.,

$$
\begin{equation*}
-\int_{U} u(x) \Delta \varphi(x) d x+\int_{U} u(x) \varphi(x) d \mu(x)=0 \tag{1.2}
\end{equation*}
$$

for every test function $\varphi \in C_{0}^{\infty}(U)$. A solution u of (1.1) on U may not be continuous (i.e., may not have a continuous representative as an element of $L_{1, \text { loc }}(U, \lambda+|\mu|)$) even if μ is of Kato class defined later (cf. [10] and also [11]) unless μ is absolutely continuous with respect to λ (cf. [1]) and thus we have to assume it if we wish to have the continuity of a solution u. A function u defined on an open subset U of W is said to be μ-harmonic on U if $u \in C(U)$ and u is a solution of (1.1) on U. Thus we may say that u is a μ-harmonic function on U if and only if $u \in C(U)$ and satisfies (1.2).

We denote by $H_{\mu}(U)$ the set of all μ-harmonic functions on an open subset U of W. Then we can define a sheaf H_{μ} of functions in W, i.e., H_{μ} gives rise to a mapping $U \mapsto H_{\mu}(U)$ defined on the family of all open sets U of W satisfying the following three sheaf axioms:
(S.1) For any open set U in $W, H_{\mu}(U)$ is a family of functions on U;
(S.2) For any two open sets U and V in W such that $U \subset V$, the restriction to U of a function in $H_{\mu}(V)$ belongs to $H_{\mu}(U)$, i.e., $H_{\mu}(V) \mid U \subset H_{\mu}(U)$;
(S.3) For any family $\left\{U_{d}\right\}_{\in \in I}$ of open sets U_{t} in W and any function u on $\cup_{t \in I} U_{\iota}, u \in H_{\mu}\left(\cup_{t \in I} U_{\iota}\right)$ if $u \mid U_{t} \in H_{\mu}\left(U_{t}\right)$ for every $\iota \in I$.

It is entirely obvious that H_{μ} certainly satisfies (S.1) and (S.2). It may be less obvious that H_{μ} satisfies (S.3). Suppose a function u on $U_{\iota \in I} U_{\iota}$ satisfies $u \mid U_{\iota} \in H_{\mu}\left(U_{\iota}\right)$ for every $\iota \in I$. In particular $u \mid U_{\iota} \in C\left(U_{\imath}\right)$ implies that $u \in C\left(\cup_{\iota} \in I_{l} U_{\ell}\right)$. Fix a partition $\left\{\boldsymbol{\phi}_{\alpha}\right\}_{\alpha \in A}$ of unity subordinate to a locally finite refinement of $\left\{U_{\}}\right\}_{\ell \in I}$. Choose an arbitrary $\varphi \in C_{0}^{\infty}\left(\cup_{\iota \in I} U_{l}\right)$. Since $\operatorname{supp} \varphi$ is compact, $\left\{\alpha \in A: \varphi \phi_{\alpha} \not \equiv 0\right\}$ is a finite set $\{\alpha(k): 1 \leqq k \leqq n\}$. Let $\varphi_{k}=\varphi \phi_{\alpha(k)}$ and $\iota(k) \in I$ be such that $\operatorname{supp} \varphi_{k} \subset U_{\iota(k)}$. From $u \mid U_{\iota(k)} \in H_{\mu}\left(U_{\iota(k)}\right)$ it follows that

$$
-\int_{U_{\iota(k)}} u(x) \Delta \varphi_{k}(x) d x+\int_{U_{\iota(k)}} u(x) \varphi_{k}(x) d \mu(x)=0 \quad(k=1, \cdots, n) .
$$

Adding the above identities for $k=1, \cdots, n$ and then observing that $\varphi=\sum_{k=1}^{n} \varphi_{k}$, we deduce (1.2) for $U=\cup_{\iota \in I} U_{\iota}$.
1.2. An open set U in W is said to be regular for H_{μ} if it is relatively compact in W and $\partial U \neq \varnothing$ and for every continuous function f defined on ∂U there is a unique continuous function u on \bar{U} such that

$$
u|\partial U=f, \quad u| U \in H_{\mu}(U) \quad \text { and } \quad u \geqq 0 \text { if } f \geqq 0
$$

We say that a pair $\left(W, H_{\mu}\right)$ forms a Brelot harmonic space or simply Brelot space if the following three axioms are satisfied:

Axiom 1 (Linearity). For any open set U of $W, H_{\mu}(U)$ is a linear subspace of the space $C(U)$;

Axiom 2 (Local solvability of Dirichlet problem). There is a base for the topology of W such that each set in the base is a regular region for H_{μ};

Axiom 3 (The Harnack principle). If U is a region in W and $\left\{u_{n}\right\}$ is any increasing sequence in $H_{\mu}(U)$, then $u=\sup _{n} u_{n}$ belongs to $H_{\mu}(U)$ unless u is identically $+\infty$.

For a general theory of harmonic spaces including Brelot spaces, see e.g., Maeda [9] and Constantinescu-Cornea [5], among others. Under Axioms 1 and 2, Axiom 3 is seen to be equivalent to the following property (cf. e.g., LoebWalsh [8]): For each region U in W and each compact subset K of U there exists a constant $c>0$ such that for any $u \in H_{\mu}^{+}(U)$ (where \mathscr{F}^{+}always indicates the subfamily of a family \mathcal{F} of functions consisting of all nonnegative members in \mathscr{F})

$$
\sup _{x \in K} u(x) \leqq c \cdot \inf _{x \in K} u(x) \quad(\text { The Harnack inequality }) .
$$

As an example consider the Radon measure 0 on \boldsymbol{R}^{d}, i.e., the Radon measure whose values at every Borel sets are zero. The corresponding equation is the Laplace equation $-\Delta u=0$. For any distributional solution $u \in L_{1,1 o c}(U, \lambda)$ of $-\Delta u=0$ on an open set U, there exists a classical harmonic function $u^{\sim} \in C^{\infty}(U)$ satisfying $-\Delta u^{\sim}=0$ on U in the genuine sense such that $u^{\sim}=u \lambda$-a.e. on U. This is known as the Weyl lemma which is an easy consequence of the standard mollifier method. In this case, hence, there is no essentially discontinuous solutions of $-\Delta u=0$ other than 0 -harmonic functions. Thus in this case the sheaf H_{0} is determined by $H_{0}(U)=\left\{u \in C_{0}^{\infty}(U):-\Delta u=0\right.$ on $\left.U\right\}$ for each open subset U of \boldsymbol{R}^{d}. Then it is a well known classical result that $\left(\boldsymbol{R}^{d}, H_{0}\right)$ is a Brelot space. It is one of traditional ways to treat the equation $(-\Delta+\mu) u=0$ by reducing it to $-\Delta u=0$ through harmonic Green potentials.
1.3. Needless to say a sheaf H_{μ} on W need not generate a Brelot space (W, H_{μ}) in general. For example, take W as any subregion of \boldsymbol{R}^{d} containing the origin 0 of \boldsymbol{R}^{d} and δ the Dirac measure at 0 . Then δ is a positive Radon measure on W and we can form the sheaf H_{∂} of δ-harmonic functions on open sets of W. We maintain that ($W, H_{\dot{\delta}}$) does not form a Brelot space. Of course Axiom 1 is always satisfied by any sheaf of functions on W as far as it comes from a linear equation like the one $(-\Delta+\delta) u=0$ for $H_{\dot{\delta}}$. Thus if we assume ($W, H_{\hat{\delta}}$) forms, contrary to our assertion, a Brelot space, then it simply means that $\left(W, H_{\delta}\right)$ satisfies both of Axioms 2 and 3. By Axiom 2 there is a regular subregion U of W for $H_{\hat{\delta}}$ containing the origin 0 . We can find a $u \in C(\bar{U}) \cap H_{\hat{\delta}}(U)$ with $u \mid \partial U=1$ so that 1.2 with μ replaced by δ is satisfied. Hence we have

$$
\int_{U} u(x) \Delta \varphi(x) d x=u(0) \varphi(0)
$$

for every $\varphi \in C_{0}^{\infty}(U)$. By considering φ with $\operatorname{supp} \varphi \subset U \backslash\{0\}$ we see that u is harmonic in $U \backslash\{0\}$. The Riemann removability theorem (cf. e.g., [2], p. 32, or [12], p. 67) assures that $u \in H_{0}(U)$ and therefore the left hand side of the above identity must be zero for every $\varphi \in C_{0}^{\infty}(U)$. A fortiori $u(0) \varphi(0)=0$ for every $\varphi \in C_{0}^{\infty}(U)$ which means that $u(0)=0$. Since $u \mid \partial U=1 \geqq 0$, Axiom 2 implies that $u \mid U \geqq 0$. Observe that $\{n u\}_{n \geqq 1}$ is an increasing sequence in $H_{\bar{\delta}}(U)$. Again by $u \mid \partial U=1$, there exists a point $a \in U$ such that $u(a)>0$. Hence, if we set $v=\sup _{n} n u$ on U, then $v(a)=+\infty$ and $v(0)=0$, contradicting Axiom 3. Thus we have shown that $\left(W, H_{\dot{\partial}}\right)$ is not a Brelot space.

2. Measures of Kato class.

2.1. As before we fix a subregion W of \boldsymbol{R}^{d}. A kernel k on W is a continuous mapping k of $W \times W$ to $(-\infty,+\infty]$ such that $k(x, y)$ is finitely continuous on $W \times W$ outside its diagonal set and bounded from below on $K \times K$ for any compact subset K of W. The k-potential $k \mu$ of a Radon measure μ on W is defined by

$$
k \mu(x)=\int_{W} k(x, y) d \mu(y)
$$

as far as it is meaningful, which is the case, for example, if $\mu \geqq 0$ and has a compact support in W. Clearly $k \mu \in C(W \backslash \operatorname{supp} \mu)$ if μ has a compact support in W and $k \mu$ is well defined. If $\mu \geqq 0$ has a compact support in W, then $k \mu$ is lower semicontinuous on W. If μ and ν are positive and have compact supports in W, then $k(\mu+\nu) \in C(W)$ implies $k \mu, k \nu \in C(W)$ since $k \mu=k(\mu+\nu)-k \nu$ is alsc upper semicontinuous.

To talk about a certain kind of regularity of μ and $k \mu$ we introduce the following quantity

$$
\gamma(a, \mu, k)=\lim _{\varepsilon \downarrow 0}\left(\sup _{x \in B(a, \varepsilon)} \int_{B(a, \varepsilon)} k(x, y) d|\mu|(y)\right)
$$

for each point $a \in W$. Note that the quantity γ concerns the potential $k|\mu|$ and not $k \mu$ and in fact $\gamma(a, \mu, k)=\gamma(a,|\mu|, k)$. If $k(a, a)<+\infty$, then $\gamma(a, \mu, k)=$ $k(a, a)|\mu|(\{a\})$ and, in particular, $\gamma(a, \mu, k)=0$ if and only if $|\mu|(\{a\})=0$. If $k(a, a)=+\infty$, then $\gamma(a, \mu, k) \geqq k(a, a)|\mu|(\{a\})$. Hence in this case of $k(a, a)$ $=+\infty$ we see that $|\mu|(\{a\})=0$ if $\gamma(a, \mu, k)<+\infty$.

Lemma 2.1. Suppose $k=+\infty$ on the diagonal set of $W \times W$ and μ (and hence $|\mu|)$ has a compact support in W. Then $k|\mu| \in C(W)$ if and only if $\gamma(a, \mu, k)=0$ for every $a \in W$.

Proof. Take an arbitrary point $a \in W$ and assume $\gamma(a, \mu, k)=0$. For each $\varepsilon>0$ let μ_{ε} be the restriction of μ to $\bar{B}(a, \varepsilon)$ and $\nu_{\varepsilon}=\mu-\mu_{\varepsilon}$. For any $\delta>0$ there exists an $\varepsilon>0$ such that $\bar{B}(a, \varepsilon) \subset W$ and $|k| \mu_{\varepsilon}| |<\delta / 2$ on $B(a, \varepsilon)$. Then $k|\mu|$ $=k\left|\mu_{\varepsilon}\right|+k\left|\nu_{\varepsilon}\right|$ and

$$
|k| \mu|(x)-k| \mu|(a)| \leqq|k| \nu_{\varepsilon}|(x)-k| \nu_{\varepsilon}|(a)|+\delta
$$

for every $x \in B(a, \varepsilon)$. Since $k\left|\nu_{\varepsilon}\right| \in C(B(a, \varepsilon))$, we have

$$
\limsup _{x \rightarrow a}|k| \mu|(x)-k| \mu|(a)| \leqq \delta
$$

so that $k|\mu|$ is continuous at a and therefore $k|\mu| \in C(W)$.
Assume $k|\mu| \in C(W)$ and again take an arbitrary $a \in W$. Let μ_{ε} and ν_{ε} be as above. Since $k\left|\mu_{\varepsilon}\right|$ and $k\left|\nu_{\varepsilon}\right|$ are lower semicontinuous on W, the fact that $k\left|\mu_{\varepsilon}\right|+k\left|\nu_{\varepsilon}\right|=k|\mu| \in C(W)$ implies that $k\left|\mu_{\varepsilon}\right|$ is continuous (and so is $\left.k\left|\nu_{\varepsilon}\right|\right)$ on W. From

$$
k(a, a)\left|\mu_{\varepsilon}\right|(\{a\}) \leqq k\left|\mu_{\varepsilon}\right|(a)<+\infty
$$

and $k(a, a)=+\infty$ it follows that $\left|\mu_{\mathrm{s}}\right|(\{a\})=|\mu|(\{a\})=0$. Hence $k\left|\mu_{\mathrm{s}}\right|(x) \downarrow$ $k(x, a)|\mu|(\{a\})=0(\varepsilon \downarrow 0)$ at each point $x \in W$ and thus the Dini theorem assures that the convergence is uniform on each compact subset of W. Thus $\gamma(a, \mu, k)$ $=0$.

Let $N(x, y)$ be the Newtonean kernel on \boldsymbol{R}^{d}, i.e., $N(x, y)=1 /|x-y|^{d-2}$ for $d \geqq 3$ and $N(x, y)=\log (1 /|x-y|)$ for $d=2$. It is a kernel on \boldsymbol{R}^{d} and hence on any subregion W of \boldsymbol{R}^{d} in the sense of this section. We say that a kernel k on W is an N-kernel if there exists a constant $c>0$ such that $k-c N \in C(W \times W)$.

Lemma 2.2. Let k be an N-kernel on W with the associated constant c on W and $a \in W$. Then $\gamma(a, \mu, k)<+\infty$ if and only if $\gamma(a, \mu, N)<+\infty$ and in this
case $\gamma(a, \mu, k)=c \gamma(a, \mu, N)$.
Proof. By the above remark, $|\mu|(\{a\})=0$ if either $\gamma(a, \mu, k)$ or $\gamma(a, \mu, N)$ is finite. Then $\gamma(a, \mu, k-c N)=\gamma(a, \mu, c N-k)=0$. Hence $\gamma(a, \mu, k)=\gamma(a, \mu, c N)$ $=c \gamma(a, \mu, N)$ assures the assertion.
2.2. A Radon measure μ on an Euclidean subregion W is said to be of Kato class on W if

$$
\begin{equation*}
\gamma(a, \mu, N)=\lim _{\varepsilon \& 0}\left(\sup _{x \in B(a, \varepsilon)} \int_{B(a, \varepsilon)} N(x, y) d|\mu|(y)\right)=0 \tag{2.1}
\end{equation*}
$$

for every a in W. By Lemma 2.1, the condition (2.1) is equivalent to that the potential $N\left|\mu_{B}\right| \in C(W)$ (or equivalently $N\left|\mu_{B}\right| \in C\left(\boldsymbol{R}^{d}\right)$ in this case) for every open ball B with $\bar{B} \subset W$, where $\mu_{B}=\mu \mid B$ (cf. [4], [11]). That $N\left|\mu_{B}\right| \in C(W)$ is equivalent to $N \mu_{B}^{ \pm} \in C(W)$ and, in particular, $N \mu_{B} \in C(W)$ is deduced. It is extremely important to keep it in mind that $N \mu_{B} \in C(W)$ need not imply $N\left|\mu_{B}\right| \in C(W)$ and actually we will give such an example in $\S 6$. Originally the Kato class is considered for functions f on W (cf. e.g., [1]) : f is a function of Kato class on W if and only if, in our present terminology, $f \lambda$ (i.e., $d(f \lambda)=f d \lambda$) is a Radon measure of Kato class. Here recall λ is the Lebesgue measure on \boldsymbol{R}^{d}.

We will prove a fact (i.e., Theorem 1) which contains a result of Boukricha-Hansen-Hueber [4]: If μ is a Radon measure of Kato class on W, then $\left(W, H_{\mu}\right)$ is a Brelot space. We will also prove that the converse of the above is not true in general (cf. Theorem 2). However we have the following result:

Proposition 2.1. Suppose μ is a Radon measure of constant sign on a subregion W so that μ is positive or negative on W. In this case the fact that the pair (W, H_{μ}) forms a Brelot space implies that μ is of Kato class on W.

Proof. We only consider the case $\mu \geqq 0$. (The case of $\mu \leqq 0$ can be treated similarly.) We only have to show that $\gamma(a, \mu, N)=0$ for any fixed $a \in W$. Axiom 2 assures that there is a regular region V for H_{μ} such that $a \in V \subset B(a, 1 / 2)$. We choose a function $u \in C(\bar{V}) \cap H_{\mu}(V)$ such that $u \mid \partial V=1$. Since $u \mid \partial V=1 \geqq 0$, we have $u \geqq 0$ on V. We maintain that actually $u>0$ on V and in particular $u(a)>0$. Contrary to the assertion suppose there is a $b \in V$ such that $u(b)=0$. By continuity of u on $\bar{V}, u \mid \partial V=1$ assures the existence of a $c \in V$ with $u(c)>0$. The sequence $\{n u\}_{n \geqq 1}$ is an increasing sequence in $H_{\mu}(V)$ and hence $v=\sup _{n} n u \in H_{\mu}(V)$ or $v \equiv+\infty$ on V in view of Axiom 3. However $v(b)=0$ and $v(c)=+\infty$, a contradiction. Therefore $u(a)>0$.

For simplicity we set $\nu=u \mu$ (i.e., $d \nu=u d \mu$) which is a Radon measure on W with compact support in W by defining $u=0$ on $W \backslash \bar{V}$. Consider the function

$$
U(x)=\left(1 / \kappa_{d}\right) N \nu(x)=\left(1 / \kappa_{d}\right) \int_{V} N(x, y) u(y) d \mu(y)
$$

for $x \in \boldsymbol{R}^{d}$, where the space constant $\kappa_{d}=2 \pi$ for $d=2$ and $\kappa_{d}=(d-2) \sigma_{d}$ for $d \geqq 3$ with σ_{d} the surface area of the unit sphere S^{d-1} in \boldsymbol{R}^{d}. Since $V \subset B(a, 1 / 2)$ and $N>0$ on $B(a, 1 / 2) \times B(a, 1 / 2)$ for every dimension $d \geqq 2$, we see that $0 \leqq U(x)$ $\leqq+\infty$ on V. (In the case of $\mu \leqq 0$, consider $-U$ instead of U.) By the Fubini theorem we see that

$$
\kappa_{d} \int_{V} U(x) d x=\int_{V}\left(\int_{V} N(x, y) d x\right) u(y) d \mu(y) \leqq K \cdot\left(\sup _{V} u\right) \mu(\bar{V})<+\infty
$$

so that $U \in L_{1}(V, \lambda)$ where

$$
\int_{V} N(x, y) d x \leqq \int_{B(y, 1)} N(x, y) d x=\int_{B(0,1)} N(x, 0) d x=K<+\infty
$$

for every $y \in V$. Using the well known identity

$$
\varphi(y)=-\left(1 / \kappa_{d}\right) \int_{V} N(x, y) \Delta \varphi(x) d x \quad(y \in V)
$$

for every $\varphi \in C_{0}^{\infty}(V)$ (cf. e.g., [12], p. 13), the Fubini theorem again assures that

$$
\int_{V} U(x) \Delta \varphi(x) d x=\int_{V} \frac{1}{\kappa_{d}}\left(\int_{V} N(x, y) \Delta \varphi(x) d x\right) u(y) d \mu(y)=-\int_{V} \varphi(y) u(y) d \mu(y)
$$

so that we have $\Delta U=-u \mu$ on V in the sense of distributions. The μ-harmonicity of u of course implies that $\Delta u=u \mu$ in the sense of distributions. We set $h=u+U$ on V. Then $\Delta h=\Delta u+\Delta U=u \mu-u \mu=0$ on V in the distributional sense. Hence by the Weyl lemma there is a classical harmonic function (i.e., a 0 -harmonic function) $h^{\sim} \in C_{0}^{\infty}(V)$ such that $h=h^{\sim} \lambda$-a.e. on V, λ being the d-dimensional Lebesgue measure.

Let M_{ε} be an averaging operator so that for any function $f \in L_{1, \operatorname{loc}}(V, \lambda)$

$$
M_{\varepsilon} f(x)=\frac{1}{|B(0, \varepsilon)|} \int_{B(0, \varepsilon)} f(x+y) d y \quad(x \in V)
$$

for any $\varepsilon>0$ with $\bar{B}(x, \varepsilon) \subset V$, where $|B(0, \varepsilon)|=\lambda(B(0, \varepsilon))$ is the volume of ε-ball $B(0, \varepsilon)$. From the identity $h=u+U$ valid in $L_{1}(V, \lambda)$ and hence valid only λ-a.e. on V, we deduce a numerical identity

$$
M_{\varepsilon} h(x)=M_{\varepsilon} u(x)+M_{\varepsilon} U(x)
$$

valid for every $x \in V$. Since $h=h^{\sim} \lambda$-a.e. on V we see that $M_{\varepsilon} h(x)=M_{\varepsilon} h^{\sim}(x)$ for every $x \in V$ and then by the mean value property for 0 -harmonic functions we see $M_{\varepsilon} h^{\sim}(x)=h^{\sim}(x)$ for every $x \in V$ so that

$$
h^{\sim}(x)=M_{\varepsilon} u(x)+M_{\varepsilon} U(x)
$$

for every $x \in V$. The continuity of u on V, and of course at x, implies that $M_{\varepsilon} u(x) \rightarrow u(x)(\varepsilon \downarrow 0)$. It is an elementary knowledge that the superharmonicity (i.e., 0 -superharmonicity) of U on V assures that $M_{\varepsilon} U(x) \uparrow U(x)(\varepsilon \downarrow 0)$ for every $x \in V$ (cf. e.g., [6], p. 71). (In the case of $\mu \leqq 0$, consider $-U$ instead of U.) Hence on letting $\varepsilon \downarrow 0$ in the above identity we see that

$$
h^{\sim}(x)=u(x)+U(x)
$$

for every $x \in V$. Hence $U=h^{\sim}-u \in C(V)$ or $N \nu \in C(V)$. By Lemma 2.1, $\gamma(a, \nu, N)=0$. If we choose $\varepsilon>0$ sufficiently small so that $\bar{B}(a, \varepsilon) \subset V$ and $u>u(a) / 2$ on $\bar{B}(a, \varepsilon)$, then

$$
\int_{B(a, \varepsilon)} N(x, y) d \nu(y) \geqq \frac{u(a)}{2} \int_{B(a, \varepsilon)} N(x, y) d \mu(y)
$$

which in turn implies that $\gamma(a, \nu, N) \geqq(u(a) / 2) \gamma(a, \mu, N)$. (In the case of $\mu \leqq 0$, consider $-\mu$ instead of μ.) This proves that $\gamma(a, \mu, N)=0$ along with $\gamma(a, \nu, N)$ $=0$.

3. Measures of quasi Kato class.

3.1. We will make the essential use of the harmonic Green function $G_{0}^{B(a, s)}(x, y)$ of the open ball $B(a, \varepsilon)$. We denote by x^{*} the inversion of $x \in \boldsymbol{R}^{d} \backslash\{a\}$ with respect to the boundary sphere $\partial B(a, \varepsilon)$ of $B(a, \varepsilon): x^{*}=$ $a+\varepsilon^{2}|x-a|^{-2}(x-a)$. Recall that (cf. e.g., [6], p. 77), for $d=2$

$$
\begin{equation*}
\kappa_{d} G_{0}^{B(a, \varepsilon)}(x, y)=\log \left(\frac{|a-x|}{\varepsilon} \frac{\left|y-x^{*}\right|}{|y-x|}\right) \quad(y \in B(a, \varepsilon) \backslash\{x\}, x \neq a) \tag{3.1}
\end{equation*}
$$

$\log (\varepsilon /|y-a|)(y \in B(a, \varepsilon) \backslash\{a\}, x=a)$, and $+\infty(y=x) ;$ for $d \geqq 3$

$$
\begin{equation*}
\kappa_{d} G_{0}^{B(a, \varepsilon)}(x, y)=\frac{1}{|y-x|^{d-2}}-\left(\frac{\varepsilon}{|x-a|}\right)^{d-2} \frac{1}{\left|y-x^{*}\right|^{d-2}} \tag{3.2}
\end{equation*}
$$

$(y \in B(a, \varepsilon) \backslash\{x\}, x \neq a), 1 /|y-a|^{d-2}-1 / \varepsilon^{d-2}(y \in B(a, \varepsilon) \backslash\{a\}, x=a)$, and $+\infty$ $(y=x)$. Here κ_{d} is the space constant already considered in $\S 2.2$, i.e., $\kappa_{d}=2 \pi$ for $d=2$ and $\kappa_{d}=(d-2) \sigma_{d}$ for $d \geqq 3$ where σ_{d} is the surface area of the unit sphere $S^{d-1}=\partial B(0,1)$ of \boldsymbol{R}^{d}.

We consider another space constant τ_{d} given by

$$
\begin{equation*}
\tau_{d}=\sup _{x, y, z \in B(0,1)}\left(\frac{G_{0}^{B(0,1)}(x, z) G_{0}^{B(0,1)}(z, y)}{G_{0}^{B(0,1)}(x, y) \cdot \max \left(G_{0}^{B(0,2)}(x, z), G_{0}^{B(0,2)}(z, y)\right)}\right) \tag{3.3}
\end{equation*}
$$

It is far from being trivial to see that $\tau_{d}<+\infty$ (cf. e.g., 「4], [13] among others) but $\tau_{d}>1$ can be easily seen by considering the value of the ratio under the
supremum sign at e.g., $x=-y=(1 / 2,0, \cdots, 0)$ and $z=(0, \cdots, 0)$:

$$
\begin{equation*}
1<\tau_{d}<+\infty . \tag{3.4}
\end{equation*}
$$

We also remark that in the definition of τ_{d} we may replace $B(0,1)$ and $B(0,2)$ by $B(a, \rho)$ and $B(a, 2 \rho)$, respectively, where a is any point in \boldsymbol{R}^{d} and ρ is any positive number. Although the value itself is changed but the finiteness is unchanged in the right hand side of (3.3) if we replace $B(0,1)$ and $B(0,2)$ by $B(a, r)$ and $B(a, \boldsymbol{\rho})$, respectively, with $0<r<\boldsymbol{\rho}<+\infty$. Here, if $d \geqq 3$, then we may take $0<r<\rho \leqq+\infty$ or even $r=\rho=+\infty$.
3.2. The condition $\gamma(a, \mu, N)=0(a \in W)$ for a Radon measure μ on a subregion W to be of Kato class implies the following two properties: $\gamma(a, \mu, N)$ is less than any fixed positive constant on $W ; N \mu_{B} \in C\left(\boldsymbol{R}^{d}\right)$ for any open ball B with $\bar{B} \subset W$ where $\mu_{B}=\mu \mid B$. The latter is a consequence of $N\left|\mu_{B}\right| \in C\left(\boldsymbol{R}^{d}\right)$ (cf. Lemma 2.1). We will show that to ensure for $\left(W, H_{\mu}\right)$ to be a Brelot space the full powers of $\gamma(a, \mu, N)=0(a \in W)$ are not needed but only weak forms of the above two consequences suffice.

We say that a Radon measure μ on a subregion W of \boldsymbol{R}^{d} is of quasi Kato class if the following two conditions are fulfilled: Firstly, μ satisfies

$$
\begin{equation*}
\gamma(a, \mu, N)=\lim _{\varepsilon \in 0}\left(\sup _{x \in B(a, \varepsilon)} \int_{B(a, \varepsilon)} N(x, y) d|\mu|(y)\right)<\frac{\kappa_{d}}{4 \tau_{d}} \tag{3.5}
\end{equation*}
$$

for every $a \in W$; Secondary, there is a base of neighborhood system at any point $a \in W$ such that each set in the base is an N-regular ball for μ centered at a. Here an open ball B is said to be N-regular for μ if $\bar{B} \subset W$ and

$$
\begin{equation*}
N \mu_{B}=\int_{B} N(\cdot, y) d \mu(y) \in C\left(\boldsymbol{R}^{d}\right) \tag{3.6}
\end{equation*}
$$

As we have observed at the beginning of this $\S 3.2$, a Radon measure μ on W of Kato class is automatically a Radon measure of quasi Kato class.

For simplicity we write $\nu=\mu_{B}=\mu \mid B$ for a Radon measure μ of quasi Kato class on a region W and an N-regular ball B for μ in W. In view of (3.5) $N|\nu|$ is locally bounded on \boldsymbol{R}^{d} and by (3.6) $N \nu \in C\left(\boldsymbol{R}^{d}\right)$. For such a measure we have the following result.

Lemma 3.1. Let ν be a Radon measure on \boldsymbol{R}^{d} with compact support such that $N|\nu|$ is locally bounded and $N \nu \in C\left(\boldsymbol{R}^{d}\right)$. Then for any $f \in C(\operatorname{supp} \nu)$

$$
N(f \nu)=\int_{\text {supp } \nu} N(\cdot, y) f(y) d \nu(y) \in C\left(\boldsymbol{R}^{d}\right) .
$$

Proof. We fix a ball $B=B(0, \rho) \supset K=\operatorname{supp} \nu$ and set

$$
M=\sup _{x \in B} \int_{K}|N(x, y)| d|\nu|(y)<+\infty .
$$

Clearly $N(f \boldsymbol{\nu}) \in C\left(\boldsymbol{R}^{\boldsymbol{d}} \backslash K\right)$ and hence we only have to prove the continuity of $N(f \nu)$ at an arbitrary point $a \in K$. For any positive number $\varepsilon>0$ there is a ball $V=B(a, \eta)(\eta>0)$ with $\bar{V} \subset B$ such that $N>0$ on $V \times V$ and

$$
\sup _{y \in V \cap K}|f(y)-f(a)|<\varepsilon / 2 M
$$

In terms of $\alpha=\nu \mid V$ and $\beta=\nu \mid\left(\boldsymbol{R}^{d} \backslash V\right)$ we have

$$
N(f \nu)(x)-N\left(f_{\nu}\right)(a)=(N(f \alpha)(x)-N(f \alpha)(a))+(N(f \beta)(x)-N(f \beta)(a))
$$

for any $x \in V$ and the first term on the right hand side of the above is expressed as

$$
\begin{aligned}
(N(f \alpha)(x) & -N(f(a) \alpha)(x))+(N(f(a) \alpha)(x)-N(f(a) \alpha)(a)) \\
& +(N(f(a) \alpha)(a)-N(f \alpha)(a))
\end{aligned}
$$

The first term of the above in the absolute value is dominated by

$$
\left(\sup _{y \in V \cap K}|f(y)-f(a)|\right) N|\nu|(x) \leqq(\varepsilon / 2 M) \cdot M=\varepsilon / 2
$$

for every $x \in V$ and similarly the last term of the above in the absolute value is dominated by

$$
\left(\sup _{y \in V \cap K}|f(y)-f(a)|\right) N|\nu|(a) \leqq(\varepsilon / 2 M) \cdot M=\varepsilon / 2
$$

The second term of the above in the absolute value is $|f(a)||N \alpha(x)-N \alpha(a)|$. Thus we deduce that

$$
|N(f \nu)(x)-N(f \nu)(a)| \leqq|f(a)||N \alpha(x)-N \alpha(a)|+|N(f \beta)(x)-N(f \beta)(a)|+\varepsilon .
$$

Observe that $N(f \beta)$ and $N \beta$ are continuous at a since $a \notin(\operatorname{supp} \beta) \cup(\operatorname{supp}(f \beta))$. In view of $N \alpha=N \nu-N \beta$ and $N \nu \in C\left(\boldsymbol{R}^{d}\right), N \alpha$ is also continuous at a along with $N \beta$. Therefore, taking the superior limits of both sides of the above inequality as $x \rightarrow a$, we see that

$$
\limsup _{x \rightarrow a}|N(f \nu)(x)-N(f \nu)(a)| \leqq \varepsilon .
$$

3.3. Take a Radon measure μ of quasi Kato class on a region $W \subset \boldsymbol{R}^{d}$ so that $\gamma(a, \mu, N)<\kappa_{d} / 4 \tau_{d}(a \in W)$ and there exists a sequence of N-regular balls B for μ centered at any given point $a \in W$ and shrinking to a. Recall that $N \mu_{B} \in C\left(\boldsymbol{R}^{d}\right)$ for N-regular balls B for μ. Since $\gamma(a, \mu, N)$ is upper semiconti-
nuous on W as a function of $a \in W$, there is an $a_{1} \in K$ for any compact subset $K \subset W$ such that

$$
\sup _{a \in K} \gamma(a, \mu, N)=\gamma\left(a_{1}, \mu, N\right)<\kappa_{d} / 4 \tau_{d} .
$$

Therefore we can find a positive number $q=q(K, \mu)$ such that

$$
\frac{2 \tau_{d}}{\kappa_{d}} \cdot \sup _{a \in K} \gamma(a, \mu, N)<q<1 / 2 .
$$

It is convenient to call $q=q(K, \mu)$ a μ-constant for K, and in particular, a μ-constant at a when $K=\{a\}$. For any μ-constant $q \in\left(\left(2 \tau_{d} / \kappa_{d}\right) \gamma(a, \mu, N), 1 / 2\right)$ at $a \in W$ there is a ball $B(a, \varepsilon)$ of radius $\varepsilon \in(0,1 / 2)$ centered at a such that $B(a, \varepsilon)$ is N-regular for μ and

$$
\begin{equation*}
\frac{2 \tau_{d}}{\kappa_{d}} \sup _{x \in B(a, \varepsilon)} \int_{B(a, \varepsilon)} N(x, y) d|\mu|(y)<q<\frac{1}{2} \tag{3.7}
\end{equation*}
$$

Such a ball $B(a, \varepsilon)$ is said to be a μ-ball at a associated with a μ-constant q at a.

We denote by $G(x, y)=G_{0}^{B(a, \varepsilon)}(x, y)$ the harmonic Green function on $B(a, \varepsilon)$ (cf. §3.1). Since $\left(1 / \kappa_{d}\right) N(x, y)-G(x, y)$ is nonnegative and finitely continuous for $(x, y) \in B(a, \varepsilon) \times B(a, \varepsilon)$ as a consequence of $\varepsilon \in(0,1 / 2)$, we have

$$
\begin{equation*}
\sup _{x \in B(a, \varepsilon)} \int_{B(a, \varepsilon)} G(x, y) d|\mu|(y)<q / 2 \tau_{d}<q \tag{3.8}
\end{equation*}
$$

where $q \in(0,1 / 2)$ is a μ-constant at a and $B(a, \varepsilon)$ is a μ-ball at a associated with q. Here we must recall (3.4): $1<\tau_{d}<+\infty$.

4. Potential operator.

4.1. Let μ be a Radon measure of quasi Kato class on a subregion W of \boldsymbol{R}^{d}. We fix an arbitrary point $a \in W$, a μ-constant $q \in(0,1 / 2)$ at a, and a μ-ball $V=B(a, \varepsilon)$ at a associated with q. We consider the Banach space $C(\bar{V})$ of continuous functions f on \bar{V} equipped with the norm $\|f\|=\sup _{\bar{V}}|f|$. We denote by $G(x, y)=G_{0}^{V}(x, y)$ the harmonic Green function on V. First we prove the following result.

Lemma 4.1. For any $f \in C(\bar{V})$ the Green potential

$$
G\left(f \mu_{V}\right)=\int_{V} G(\cdot, y) f(y) d \mu(y) \in C(\bar{V})
$$

and $G\left(f \mu_{V}\right) \mid \partial V=0$ where $\mu_{V}=\mu \mid V$.
Proof. To begin with we consider the behavior of $G\left(f \mu_{V}\right)$ on V. Since
$N-\kappa_{d} G \in C(V \times V)$ and $|f \mu|(V)<+\infty$, we see that

$$
N\left(f \mu_{V}\right)-\kappa_{d} G\left(f \mu_{V}\right)=\left(N-\kappa_{d} G\right)\left(f \mu_{V}\right) \in C(V)
$$

By virtue of the N-regularity of V for μ, Lemma 3.1 can be applied to μ_{V} to conclude that $N\left(f \mu_{V}\right) \in C\left(\boldsymbol{R}^{d}\right)$. Thus we can see that $G\left(f \mu_{V}\right) \in C(V)$.

Next we examine the behavior of $G\left(f \mu_{V}\right)$ on $\bar{V} \backslash\{a\}$. We need to consider cases of $d=2$ and $d \geqq 3$ separately. If $d=2$, then by (3.1) we have

$$
\boldsymbol{\kappa}_{d} G\left(f \mu_{V}\right)(x)=N\left(f \mu_{V}\right)(x)-N\left(f \mu_{V}\right)\left(x^{*}\right)+\left(\log \frac{|a-x|}{\varepsilon}\right) \int_{V} f d \mu
$$

for $x \in \bar{V} \backslash\{a\}$. By Lemma 3.1, $N\left(f \mu_{V}\right) \in C\left(\boldsymbol{R}^{\boldsymbol{d}}\right)$ so that $N\left(f \mu_{V}\right)(x)$ and $N\left(f \mu_{V}\right)\left(x^{*}\right)$ are continuous functions of x on $\bar{V} \backslash\{a\}$. Hence we see that $G\left(f \mu_{V}\right) \in C(\bar{V} \backslash\{a\})$. If $x \in \partial V$, then $|a-x|=\varepsilon$ and $x=x^{*}$ assure that $G\left(f \mu_{V}\right)(x)=0$. If $d \geqq 3$, then (3.2) implies that

$$
\kappa_{d} G\left(f \mu_{V}\right)(x)=N\left(f \mu_{V}\right)(x)-\left(\frac{\varepsilon}{|x-a|}\right)^{d-2} N\left(f \mu_{V}\right)\left(x^{*}\right)
$$

for $x \in \bar{V} \backslash\{a\}$. By the same fashion as in the case of $d=2$, we see that $G\left(f \mu_{V}\right) \in C(\bar{V} \backslash\{a\})$ and $G\left(f \mu_{V}\right) \mid \partial V=0$.
4.2. We now define a linear operator T of $C(\bar{V})$ into itself by

$$
\begin{equation*}
T f(x)=\int_{V} G(x, y) f(y) d \mu(y) \quad(x \in \bar{V}) \tag{4.1}
\end{equation*}
$$

for each $f \in C(\bar{V})$. Lemma 4.1 assures that $T f=G\left(f \mu_{V}\right) \in C(\bar{V})$ and

$$
\begin{equation*}
T f \mid \partial V=0 \tag{4.2}
\end{equation*}
$$

We also consider an auxiliary linear operator $|T|$ of $C(\bar{V})$ into $L_{\infty}(\bar{V}, \lambda)$ defined by

$$
|T| f(x)=\int_{V} G(x, y) f(y) d|\mu|(y) \quad(x \in \bar{V})
$$

for every $f \in C(\bar{V})$. By (3.8) we see that

$$
|T f(x)|,||T| f(x)| \leqq\left|T\left\|f|(x) \leqq\|f\|| T \mid 1(x) \leqq\left(q / 2 \tau_{d}\right)\right\| f\|\leqq q\| f \|\right.
$$

for every $x \in \bar{V}$ and for every $f \in C(\bar{V})$. Hence

$$
\begin{equation*}
\|T\| \leqq q / 2 \tau_{d}<q / 2<q<1 / 2<1 \tag{4.3}
\end{equation*}
$$

which assures the existence of the inverse linear operator $(I+T)^{-1}$ of $C(\bar{V})$ onto itself of the operator $I+T$ where I is the identity operator of $C(\bar{V})$ onto itself. As is well known, $(I+T)^{-1}$ is given by the C. Neumann series:

$$
\begin{equation*}
(I+T)^{-1}=\sum_{n=0}^{\infty}(-1)^{n} T^{n} \tag{4.4}
\end{equation*}
$$

4.3. Recall that we denoted by \mathscr{F}^{+}the class of nonnegative members of a class \mathscr{F} of functions. Hence $H_{0}^{+}(V)$ is the class of nonnegative classical harmonic (i.e., 0 -harmonic) functions on V. The following is the crucial property of the potential operator T in the proof of Theorem 1:

Lemma 4.2. For any $h \in C(\bar{V}) \cap H_{0}^{+}(V)$, the inequalities

$$
\begin{equation*}
\left|T^{n} h\right| \leqq q^{n} h \quad(n=1,2, \cdots) \tag{4.5}
\end{equation*}
$$

hold on V.
Proof. Fix an arbitrary $h \in C(\bar{V}) \cap H_{0}^{+}(V)$. For each $m=1,2, \cdots$, let $h_{m} \in C(\bar{V}) \cap H_{0}(V \backslash \bar{B}(a, \varepsilon-\varepsilon / 2 m))$ such that $h_{m} \mid \bar{B}(a, \varepsilon-\varepsilon / 2 m)=h$ and $h_{m} \mid \partial V=0$. Then h_{m} is a potential on $V=B(a, \varepsilon)$, i.e., a nonnegative superharmonic function with vanishing greatest harmonic minorant on V. By the Ries z decomposition theorem (cf. e.g., [6], pp. 116-117) there is a unique positive Radon measure ν_{m} on V with $\operatorname{supp} \nu_{m} \subset \partial B(a, \varepsilon-\varepsilon / 2 m)$ such that

$$
h_{m}(x)=\int G(x, y) d \nu_{m}(y) \quad(x \in V) .
$$

By the Fubini theorem, (3.3) and (3.7), we see that

$$
\begin{aligned}
& \left|\int_{V} G(x, z) h_{m}(z) d \mu(z)\right| \leqq \int_{V} G(x, z) h_{m}(z) d|\mu|(z) \\
= & \int_{V} G(x, z)\left(\int_{V} G(z, y) d \nu_{m}(y)\right) d|\mu|(z) \\
= & \int_{V}\left(\int_{V} G(x, z) G(z, y) d|\mu|(z)\right) d \nu_{m}(y) \\
\leqq & \int_{V}\left(\int_{V} \tau_{d} G(x, y) \max \left(G_{0}^{B(a, 2 \varepsilon)}(x, z), G_{0}^{B(a, 2 \varepsilon)}(z, y)\right) d|\mu|(z)\right) d \nu_{m}(y) \\
\leqq & \frac{\tau_{d}}{\kappa_{d}} \int_{V} G(x, y)\left(\int_{B(a, s)} \max (N(x, z), N(z, y)) d|\mu|(z)\right) d \nu_{m}(y) \\
\leqq & \frac{\tau_{d}}{\kappa_{d}} \int_{V} G(x, y)\left(\int_{B(a, s)} N(x, z) d|\mu|(z)+\int_{B(a, \varepsilon)} N(y, z) d|\mu|(z)\right) d \nu_{m}(y) \\
\leqq & q \int_{V} G(x, y) d \nu_{m}(y)=q h_{m}(x)
\end{aligned}
$$

for every $x \in V$, i.e., we have shown that

$$
\left|\int_{V} G(x, y) h_{m}(y) d \mu(y)\right| \leqq \int_{V} G(x, y) h_{m}(y) d|\mu|(y) \leqq q h_{m}(x) \quad(x \in V)
$$

Since $h_{m} \uparrow h(m \uparrow \infty)$ and h is $\left(G(x, \cdot) d \mu^{ \pm}\right)$- and $(G(x, \cdot) d|\mu|)$-integrable over V, by the Lebesgue dominated convergence theorem, we deduce, on making $m \uparrow \infty$
in the above identity, that

$$
\left|\int_{V} G(x, y) h(y) d \boldsymbol{\mu}(y)\right| \leqq \int_{V} G(x, y) h(y) d|\mu|(y) \leqq q h(x) \quad(x \in V) .
$$

In terms of the operator T and $|T|$ we can restate the above as

$$
\begin{equation*}
|T h| \leqq|T| h \leqq q h \tag{4.6}
\end{equation*}
$$

on V. We now show (4.5) inductively. It is true for $n=1$ by (4.6). Suppose $\left|T^{n} h\right| \leqq q^{n} h$ on V. Then, since $|T|$ is order preserving, we see, by (4.6), that

$$
\left|T^{n+1} h\right|=\left|T\left(T^{n} h\right)\right| \leqq|T|\left|T^{n} h\right| \leqq|T|\left(q^{n} h\right)=q^{n}|T| h \leqq q^{n}(q h)=q^{n+1} h .
$$

The induction is herewith complete.

5. Proof of Theorem 1.

5.1. Let μ be a Radon measure of quasi Kato class on a Euclidean region W. We wish to show that $\left(W, H_{\mu}\right)$ satisfies Axioms 1,2 and 3 . Since the Schrödinger operator $-\Delta+\mu$ is linear, the class $H_{\mu}(U)$ of μ-harmonic functions on an open set $U \subset W$ forms a linear subspace of $C(U)$ and thus Axiom 1 is trivially satisfied.

We proceed to the proof for that $\left(W, H_{\mu}\right)$ satisfies Axiom 2. For the purpose choose any point $a \in W$ and an open set U containing a. We only have to show the existence of a regular region for H_{μ} contained in U and containing a. Take a μ-constant $q \in(0,1 / 2)$ at a and a μ-ball $V=B(a, \varepsilon)$ at a associated with q. We maintain that V is a required regular region for H_{μ}. We take the potential operator associated with V (cf. (4.1)).

Choose an arbitrary $f \in C(\partial V)$. There is an $h \in C(\bar{V}) \cap H_{0}(V)$ such that $h \mid \partial V=f$. Set $u=(I+T)^{-1} h \in C(\bar{V})$, i.e., $h=u+T u$. By using the well known identity

$$
\int_{V} G(x, y) \Delta \varphi(y) d y=-\varphi(x)
$$

for every $\varphi \in C_{0}^{\infty}(V)$ (cf. e.g., [6], p. 71), we see, by the Fubini theorem, that

$$
\begin{aligned}
& \int_{V} T u(x) \Delta \varphi(x) d x=\int_{V}\left(\int_{V} G(x, y) u(y) d \mu(y)\right) \Delta \varphi(x) d x \\
= & \int_{V}\left(\int_{V} G(x, y) \Delta \varphi(x) d x\right) u(y) d \mu(y)=\int_{V}(-\varphi(y) u(y)) d \mu(y)
\end{aligned}
$$

so that $\Delta T u=-u \mu$ on V and $\Delta u=\Delta h-\Delta T u=0-(-u \mu)=u \mu$ on V in the sense of distributions, i.e., $u \in C(\bar{V}) \cap H_{\mu}(V)$. Since $T u \mid \partial V=0$, we have $u \mid \partial V=$ $h|\partial V-T u| \partial V=f$.

Suppose $v \in C(\bar{V}) \cap H_{\mu}(V)$ such that $v \mid \partial V=f$. Then $w=u-v \in C(\bar{V}) \cap H_{\mu}(V)$ by Axiom 1 and $w|\partial V=u| \partial V-v \mid \partial V=f-f=0$. Let $k=w+T w$ on \bar{V}. By the same method as above we see that $\Delta T w=-w \mu$. Thus $\Delta k=\Delta w+\Delta T w=$ $w \mu-w \mu=0$. A fortiori $k \in C(\bar{V}) \cap H_{0}(V)$ and $k|\partial V=w| \partial V+T w \mid \partial V=0$ and therefore $k=0$ on \bar{V}, or $w=-T w$ on \bar{V}. The inequality $\|w\|=\|T w\| \leqq q\|w\|$ with $q \in(0,1 / 2)$ yields that $w=0$ on V and thus we have seen the uniqueness of u with $u \in C(\bar{V}) \cap H_{\mu}(V)$ and $u \mid \partial V=f$.

To complete the proof concerning Axiom 2 we need to show that $f \geqq 0$ on ∂V implies $u \geqq 0$ on V. Set $h=u+T u \in C(\bar{V}) \cap H_{0}(V)$. Since $h|\partial V=u| \partial V=f \geqq 0$, we see that $h \geqq 0$ on \bar{V}. By (4.4) we see that

$$
u=(I+T)^{-1} h=\sum_{n=0}^{\infty}(-1)^{n} T^{n} h=h+\sum_{n=1}^{\infty}(-1)^{n} T^{n} h \geqq h-\sum_{n=1}^{\infty}\left|T^{n} h\right|
$$

on V. By (4.5) and $q \in(0,1 / 2)$, we then deduce

$$
u \geqq h-\sum_{n=1}^{\infty} q^{n} h=\frac{1-2 q}{1-q} h \geqq 0
$$

so that we have shown $u \geqq 0$ on V.
5.2. Before proceeding to the proof for that $\left(W, H_{\mu}\right)$ satisfies Axiom 3, we prove a form of the Harnack inequality. For an arbitrary $a \in W$, choose a μ-constant $q \in(0,1 / 2)$ at a and a μ-ball $V=B(a, \varepsilon)$ at a associated with q. We prove the following Harnack inequality:

$$
\begin{equation*}
C^{-1} u(y) \leqq u(x) \leqq C u(y) \quad\left(C=4 \cdot 3^{d} /(1-2 q)\right) \tag{5.1}
\end{equation*}
$$

for any pair of points x and y in $\bar{B}(a, \varepsilon / 2)$ and for every $u \in C(\bar{B}(a, \varepsilon)) \cap$ $H_{\mu}^{+}(B(a, \varepsilon))$, where $H_{\mu}^{+}(B(a, \varepsilon))$ is the family of nonnegative μ-harmonic functions u on $V=B(a, \varepsilon)$. Set $h=(I+T) u$. Because of the fact that $h \mid \partial V=$ $u|\partial V+T u| \partial V=u \geqq 0$ on $\partial B(a, \varepsilon)$, we see that $h \in H_{0}^{+}(B(a, \varepsilon))$. As is well known

$$
\begin{equation*}
\left(1 / 4 \cdot 3^{d}\right) h(y) \leqq h(x) \leqq 4 \cdot 3^{d} h(y) \tag{5.2}
\end{equation*}
$$

for every pair of points x and y in $\bar{B}(a, \varepsilon / 2)$ (cf. e.g., [6], p. 29 or [2], p. 47, etc.). Similar to the proof of $u \geqq((1-2 q) /(1-q)) h$ on V given in $\S 5.1$, we can show that $u \leqq(1 /(1-q)) h$ on V. In fact, by (4.4) and (4.5), we see that

$$
\begin{aligned}
u & =(I+T)^{-1} h=\sum_{n=0}^{\infty}(-1)^{n} T^{n} h=h+\sum_{n=1}^{\infty}(-1)^{n} T^{n} h \\
& \leqq h+\sum_{n=1}^{\infty}\left|T^{n} h\right| \leqq h+\sum_{n=1}^{\infty} q^{n} h=\frac{1}{1-q} h
\end{aligned}
$$

on V. Hence we have

$$
\begin{equation*}
\frac{1-2 q}{1-q} h(z) \leqq u(z) \leqq \frac{1}{1-q} h(z) \tag{5.3}
\end{equation*}
$$

for every $z \in V$. Combining inequalities (5.2) and (5.3) with $z=x$ and $z=y$, we deduce (5.1).
5.3. We now complete the proof of Theorem 1 by showing that $\left(W, H_{\mu}\right)$ satisfies Axiom 3. For the purpose, fix an arbitrary region U in W and choose any increasing sequence $\left\{u_{n}\right\}$ in $H_{\mu}(U)$ and set $u=\sup _{n} u_{n}$. We have to show that $u \in H_{\mu}(U)$ unless $u \equiv+\infty$. Replacing $\left\{u_{n}\right\}$ by $\left\{u_{n}-u_{1}\right\}$ if necessary, we may assume that $\left\{u_{n}\right\}$ is an increasing sequence in $H_{\mu}^{+}(U)$. Put

$$
E=\left\{x \in U: u(x)=\sup _{n} u_{n}(x)<+\infty\right\} .
$$

If $E=\varnothing$, then $u \equiv+\infty$ on U and the proof is over. Thus we assume that $E \neq \varnothing$. For any $a \in W$, let $q \in(0,1 / 2)$ be a μ-constant at $a, B(a, \varepsilon)$ a μ-ball at a associated with q and $C=4 \cdot 3^{d} /(1-2 q)$. If $a \in E$, then by (5.1)

$$
u_{n}(x) \leqq C u_{n}(a) \quad(x \in \bar{B}(a, \varepsilon / 2))
$$

for every $n=1,2, \cdots$. Hence $u(x) \leqq C u(a)<+\infty$, i.e., $B(a, \varepsilon / 2) \subset E$. This proves that E is open. If $a \in \bar{E}$, then there is a $b \in E \cap B(a, \varepsilon / 2)$. Thus again by (5.1) we see that $u_{n}(a) \leqq C u_{n}(b)$ for every $n=1,2, \cdots$. Hence $u(a) \leqq C u(b)$ $<+\infty$, i.e., $a \in E$. This proves that E is closed. Therefore $E=U$ and $u(x)$ $=\sup _{n} u_{n}(x)=\lim _{n} u_{n}(x)$ defines a numerical function on U. Again by (5.1)

$$
0 \leqq u_{n+p}(x)-u_{n}(x) \leqq C\left(u_{n+p}(a)-u_{n}(a)\right) \quad(x \in \bar{B}(a, \varepsilon / 2))
$$

for every n and $p=1,2, \cdots$. On letting $p \uparrow \infty$ we see that

$$
0 \leqq u(x)-u_{n}(x) \leqq C\left(u(a)-u_{n}(a)\right) \quad(x \in \bar{B}(a, \varepsilon / 2))
$$

for every $n=1,2, \cdots$. Since $a \in W$ is arbitrary, the above proves that $\left\{u_{n}\right\}$ converges to u locally uniformly on W so that $u \in C(U)$. On each $V=B(a, \varepsilon)$ above, set $h_{n}=u_{n}+T u_{n}$, which belongs to $C(\bar{V}) \cap H_{0}^{+}(V)$. Since $\left\|u_{n}-u\right\| \rightarrow 0$ $(n \uparrow \infty)$ in $C(\bar{V})$, we see that $h=\lim _{n} h_{n}=\lim _{n}\left(u_{n}+T u_{n}\right)=u+T u$. As a uniform limit of the sequence $\left\{h_{n}\right\}$ of harmonic functions, $h=u+T u \in C(\bar{V})$ is harmonic on V. Thus

$$
\Delta u=\Delta h-\Delta T u=0-(-u \mu)=u \mu
$$

(cf. §5.1 for $\Delta T u=-u \mu$) shows that $u \in H_{\mu}(V)$ for every admissible V so that $u \in H_{\mu}(U)$.

The proof of Theorem 1 is herewith complete.

6. Proof of Theorem 2.

6.1. It may be convenient to say that a Radon measure μ on a Euclidean region W is of Brelot class if $\left(W, H_{\mu}\right)$ forms a Brelot space. Then we have seen, as consequences of Theorem 1 and Proposition 2.1 that

$$
\{\text { Kato class }\} \subset\{\text { quasi Kato class }\} \subset\{\text { Brelot class }\}
$$

and

$$
\left\{\text { Kato class }^{ \pm}=\{\text {quasi Kato class }\}^{ \pm}=\{\text {Brelot class }\}^{ \pm},\right.
$$

where, e.g., \{Kato class\} mean the set of all Radon measures of Kato class on an arbitrarily fixed region and $\{\text { Kato class }\}^{+}$(\{Kato class $\}^{-}$, resp.) is the subfamily of positive (negative, resp.) measures in \{Kato class\}. We now wish to show that the first inclusion relation in the above displayed diagram is strict or equivalently there is a measure μ in

$$
\{\text { quasi Kato class }\} \backslash\{\text { Kato class }\} \neq \varnothing
$$

on any region W. Thus the required μ must be of nonconstant sign.
Hence for any Euclidean region W we will construct a signed measure μ on W which is of quasi Kato class but not of Kato class. Fixing an arbitrary point $a \in W$ and an arbitrary ball $B(a, r) \subset W$ we only have to construct a required μ with compact support in $B(a, r)$. By translation and dilation we may suppose that $a=0$ and $r=1$. Thus all we have to do is to construct a signed Radon measure μ of compact support on the open unit ball $R=B(0,1)$ which is of quasi Kato class on R but not of Kato class on R. The measure μ we are going to construct satisfies $\gamma(a, \mu, N)=0$ for every $a \in R \backslash\{0\}$ and $\gamma(0, \mu, N)>0$ so that μ is certainly not of Kato class on R but of Kato class on R except for a miserable meager set consisting of only one point 0 . It is of quasi Kato class if $\gamma(0, \mu, N)<\kappa_{d} / 4 \tau_{d}$ which is achieved by multiplying a small constant to μ as far as $\gamma(0, \mu, N)<+\infty$.
6.2. Let $R=B(0,1)$ in $\boldsymbol{R}^{d}(d \geqq 2)$. Fix a sequence $\left\{a_{n}\right\}$ of points a_{n} contained in the x_{1}-axis such that

$$
0<a_{n+1}^{\widehat{n}}<a_{n}^{\widehat{n}}<1 \text { and } \lim _{n \rightarrow \infty} a_{\hat{n}}^{\widehat{n}}=0
$$

where $a_{n}=\left(a_{n}, 0, \cdots, 0\right)$. Fix a sequence $\left\{r_{n}\right\}$ in $(0,1)$ so small that $\bar{B}\left(a_{n}, r_{n}\right)$ $\subset R \backslash\{0\}$ and $\bar{B}\left(a_{n}, r_{n}\right) \cap \bar{B}\left(a_{n+1}, r_{n+1}\right)=\varnothing(n=1,2, \cdots)$. Choose one more sequence $\left\{s_{n}\right\}$ with $0<s_{n}<r_{n}(n=1,2, \cdots)$ which will be determined below. Since every boundary point of $R \backslash \bar{B}\left(a_{n}, s_{n}\right)$ satisfies the cone condition (or even ball condition), it is regular for H_{0} by the Zaremba theorem (cf. e.g., [6], p. 173). Take a $w_{n} \in C(\bar{R}) \cap H_{0}\left(R \backslash \bar{B}\left(a_{n}, s_{n}\right)\right)$ such that $w_{n} \mid \bar{B}\left(a_{n}, s_{n}\right)=1$ and $w_{n} \mid \partial R=0$ for each $n=1,2, \cdots$. For each fixed $n, w_{n} \downarrow 0\left(s_{n} \downarrow 0\right)$ on $\bar{R} \backslash B\left(a_{n}, r_{n}\right)$. We can thus
determine $s_{n} \in\left(0, r_{n}\right)$ so small that

$$
\begin{equation*}
w_{n} \mid\left(\bar{R} \backslash B\left(a_{n}, r_{n}\right)\right)<1 / 5^{n} \quad(n=1,2, \cdots) . \tag{6.1}
\end{equation*}
$$

We put $P=\left\{x=\left(x_{1}, \cdots, x_{d}\right) \in \boldsymbol{R}^{d}: x_{d}=0\right\}$, the ($d-1$)-dimensional hyperplane perpendicular to x_{d}-axis. Consider the compact set $K_{n}=P \cap \bar{B}\left(a_{n}, s_{n} / 2\right)$ contained in $B\left(a_{n}, s_{n}\right)(n=1,2, \cdots)$. Choose and fix an $\varepsilon_{n} \in\left(0,\left(1-\widehat{a_{n}}-r_{n}\right) / 4\right) \cap\left(0, s_{n} / 2\right)$ so small that

$$
\begin{equation*}
w_{n} \mid\left(\bar{R} \backslash B\left(0,1-4 \varepsilon_{n}\right)\right)<1 / 3 \cdot 2^{n} \quad(n=1,2, \cdots) . \tag{6.2}
\end{equation*}
$$

Choose the third sequence $\left\{t_{n}\right\}$ with $t_{n} \in\left(0, \varepsilon_{n}\right)$ which will be again determined below. Take the vector $e_{d}=(0, \cdots, 0,1)$ and set $K_{n}^{ \pm}=K_{n} \pm t_{n} e_{d}$ which is contained in $B\left(a_{n}, s_{n}\right)$ by the choice of $t_{n}: 0<t_{n}<\varepsilon_{n}<s_{n} / 2$. Since every boundary point of the region $R \backslash K_{n}^{ \pm}$satisfies the flat cone condition, it is regular for H_{0} (see Appendix at the end of this paper). Thus we can construct functions $u_{n}^{ \pm} \in C(\bar{R}) \cap H_{0}\left(R \backslash K_{n}^{ \pm}\right)$such that $u_{n}^{ \pm} \mid K_{n}^{ \pm}=1$ and $u_{n}^{ \pm} \mid \partial R=0$ for all $n=1,2, \cdots$, where double signs on shoulders are taken in the same order. Since $K_{n}^{ \pm} \subset B\left(a_{n}, s_{n}\right)$, by the maximum principle, (6.1) assures that

$$
\begin{equation*}
u_{n}^{ \pm} \mid\left(\bar{R} \backslash B\left(a_{n}, r_{n}\right)\right)<1 / 5^{n} \quad(n=1,2, \cdots) . \tag{6.3}
\end{equation*}
$$

For each fixed n, we choose and then fix a $t_{n} \in\left(0, \varepsilon_{n}\right)$ so small that

$$
\begin{equation*}
\sup _{x \in \bar{R}}\left|u_{n}^{+}(x)-u_{n}^{-}(x)\right|<1 / 2^{n} \quad(n=1,2, \cdots) \tag{6.4}
\end{equation*}
$$

We need a proof for the possibility of choosing such a t_{n}. For the purpose we take an auxiliary function $v_{n} \in C\left(\boldsymbol{R}^{d}\right) \cap H_{0}\left(B\left(0,1-2 \varepsilon_{n}\right) \backslash K_{n}\right)$ such that $v_{n} \mid K_{n}=1$ and $v_{n} \mid\left(\boldsymbol{R}^{d} \backslash B\left(0,1-2 \varepsilon_{n}\right)\right)=0$ for every $n=1,2, \cdots$. We then set $v_{n}^{ \pm}(x)=$ $v_{n}\left(x \pm t_{n} e_{d}\right)$. By the uniform continuity of v_{n}, there exists a $t_{n} \in\left(0, \boldsymbol{\varepsilon}_{n}\right)$ such that

$$
\left|v_{n}^{+}(x)-v_{n}^{-}(x)\right|<1 / 3 \cdot 2^{n} \quad\left(x \in \boldsymbol{R}^{d}\right)
$$

Consider the function $u_{n}^{ \pm}-v_{n}^{\star}$ on R. In view of (6.2) and $u_{n}^{ \pm} \leqq w_{n}$ on R, the maximum principle yields

$$
\left|u_{n}^{ \pm}(x)-v_{n}^{ \pm}(x)\right|<1 / 3 \cdot 2^{n} \quad(x \in \bar{R})
$$

Using these two inequalities we deduce

$$
\left|u_{n}^{+}-u_{n}^{-}\right| \leqq\left|u_{n}^{+}-v_{n}^{+}\right|+\left|v_{n}^{+}-v_{n}^{-}\right|+\left|v_{n}^{-}-u_{\bar{n}}^{-}\right|<1 / 2^{n}
$$

on \bar{R}, i.e., we have chosen $t_{n} \in\left(0, \varepsilon_{n}\right)$ such that (6.4) is valid.
6.3. We denote by $G(x, y)=G_{0}^{R}(x, y)$ the harmonic Green function on R. Judging from the boundary values of $u_{n}^{ \pm}$, we see that $u_{n}^{ \pm}$is the capacitary
potential of $K_{n}^{ \pm}$relative to R. Hence $u_{n}^{ \pm}$is represented as a Green potential

$$
u_{n}^{ \pm}(x)=\int G(x, y) d \nu_{n}^{ \pm}(y) \quad(x \in \bar{R})
$$

by using the capacitary distribution $\nu_{n}^{ \pm}$for $K_{\pi}^{ \pm}$which is a positive Radon measure with support in $K_{n}^{ \pm}$(cf. e.g., [6], p. 128). We set

$$
\nu=\sum_{n=1}^{\infty}\left(\nu_{n}^{+}-\nu_{\bar{n}}^{-}\right),
$$

which is easily seen to define a Radon measure on \boldsymbol{R}^{d} with support in the compact set

$$
K=\left(\bigcup_{n=1}^{\infty} K_{n}^{+}\right) \cup\left(\bigcup_{n=1}^{\infty} K_{n}^{-}\right) \cup\{0\} \subset R .
$$

Then the total variation $|\nu|$ of ν is

$$
|\nu|=\sum_{n=1}^{\infty}\left(\nu^{+}+\nu^{-}\right) .
$$

We set

$$
u(x)=\sum_{n=1}^{\infty}\left(u_{n}^{+}(x)-u_{n}^{-}(x)\right)=\int G(x, y) d \nu(y) \quad(x \in \bar{R})
$$

By (6.4), the Weierstrass M-test assures that the series converges uniformly on \bar{R}. Since $u_{n}^{+}-u_{n} \in C(\bar{R})$, we conclude that $u \in C(\bar{R})$. Finally we set

$$
U(x)=\sum_{n=1}^{\infty}\left(u_{n}^{+}(x)+u_{n}^{-}(x)\right)=\int G(x, y) d|\nu|(y) \quad(x \in \bar{R}) .
$$

6.4. We maintain that $U \in C(\bar{R} \backslash\{0\}), U$ is discontinuous at $x=0$, and U is bounded on $\bar{R}: U(x) \leqq 5 / 2(x \in \bar{R})$.

First choose an arbitrary $x \in K$. Then either there is an m such that $x \in K_{m}^{+} \cup K_{m}^{-}$or $x=0$. In the former case, by (6.3), we see that

$$
U(x)=\sum_{n \geq 1, n \neq m}\left(u_{n}^{+}(x)+u_{n}^{-}(x)\right)+\left(u_{m}^{+}(x)+u_{m}^{-}(x)\right) \leqq \sum_{n=1}^{\infty} 2 / 5^{n}+2=5 / 2 .
$$

In the latter case we also see by (6.3) that

$$
U(x)=U(0)=\sum_{n=1}^{\infty}\left(u_{n}^{+}(0)+u_{n}^{-}(0)\right) \leqq \sum_{n=1}^{\infty} 2 / 5^{n}=1 / 2<5 / 2 .
$$

We have thus seen that $U \leqq 5 / 2$ on the support of the measure $|\nu|$ of the Green potential U. By the Maria-Frostman domination principle (cf. e.g., [6], p. 134), we conclude that $U \leqq 5 / 2$ on \bar{R}.

We set $R^{+}=\left\{x \in R: x^{\wedge}>0\right\}$ and $R^{-}=\left\{x \in R: x^{\wedge}<0\right\}$ where, as before, x^{\wedge} is the first component of $x=\left(x_{1}, \cdots, x_{d}\right)$ so that $x^{\wedge}=x_{1}$. If $x \in R^{-}$, then (6.3) assures that $u_{n}^{ \pm}(x)<1 / 5^{n}$ and thus $U(x)<1 / 2$. Hence

$$
\liminf _{x \rightarrow 0} U(x) \leqq 1 / 2 .
$$

On the other hand, observe that 0 is an accumulation point of $K \backslash\{0\}$ so that there exists a sequence $\left\{x_{m}\right\}$ in $K \backslash\{0\}$ converging to 0 . For each x_{m} there is an n such that $x_{m} \in K_{n}^{+} \cup K_{n}^{-}$. Hence $U\left(x_{m}\right)>u_{n}^{+}\left(x_{m}\right)+u_{n}^{-}\left(x_{m}\right) \geqq 1$ and thus

$$
\limsup _{x \rightarrow 0} U(x) \geqq \limsup _{m \rightarrow \infty} U\left(x_{m}\right) \geqq 1
$$

Therefore U is not continuous at $x=0$.
Finally, there is an \bar{n} for any $\eta \in(0,1)$ such that $\bar{B}\left(a_{n}, r_{n}\right) \cap\{\eta \leqq|x| \leqq 1\}=\varnothing$ for all $n \geqq \bar{n}$. By (6.3), the Weierstrass M-test assures that $\sum_{n \geq \bar{n}}\left(u_{n}^{+}+u_{n}^{-}\right)$is uniformly convergent on $\{\eta \leqq|x| \leqq 1\}$. Since $u_{n}^{+}+u_{n}^{-} \in C(\bar{R})$ for any n, U is continuous on $\bar{R} \backslash\{0\}$.
6.5. By $U(x) \leqq 5 / 2(x \in R)$, we have $\gamma(a, \nu, G) \leqq 5 / 2(a \in R)$. Since G is an N-kernel, i.e., $G-\kappa_{d}^{-1} N \in C(R \times R)$, Lemma 2.2 assures that $\gamma(a, \nu, N)=\kappa_{d} \gamma(a, \nu, G)$ $\leqq 5 \kappa_{a} / 2 \quad(a \in R)$. By the fact that $U \in C(\bar{R} \backslash\{0\})$, Lemma 2.1 assures that $\gamma(a, \nu, N)=\kappa_{d} \gamma(a, \nu, G)=0$ for every $a \in R \backslash\{0\}$.

Fix an arbitrary $\alpha \in\left(0,1 / 10 \tau_{d}\right)$ and set $\mu=\alpha \nu$. Then $\gamma(a, \mu, N)=\alpha \gamma(a, \nu, N)$ $=0(a \in R \backslash\{0\})$ and $\gamma(0, \mu, N)=\alpha \gamma(0, \nu, N) \leqq \alpha \cdot 5 \kappa_{d} / 2<\kappa_{d} / 4 \tau_{d}$. Thus μ satisfies the condition (3.5) on R.

Take an arbitrary $a \in R \backslash\{0\}$ and an arbitrary ball $B=B(a, \varepsilon)$ with $\bar{B} \subset R \backslash\{0\}$. Let $\mu_{B}=\mu \mid B$. Since $\alpha U=G|\mu|=G\left|\mu_{B}\right|+G\left|\mu-\mu_{B}\right|$ is continuous on $R \backslash\{0\}$, we see that $G\left|\mu_{B}\right|$ is continuous on $R \backslash\{0\}$. Clearly $G\left|\mu_{B}\right|$ is continuous at 0 and thus $G\left|\mu_{B}\right|$ is continuous on R. Clearly $\left(N-\kappa_{d} G\right)\left|\mu_{B}\right|=$ $N\left|\mu_{B}\right|-\kappa_{d} G\left|\mu_{B}\right|$ is continuous on R and hence $N\left|\mu_{B}\right|$ is continuous on R. Clearly $N\left|\mu_{B}\right|$ is continuous on $\boldsymbol{R}^{d} \backslash B$ and a fortiori $N\left|\mu_{B}\right|$ is continuous on \boldsymbol{R}^{d}. Thus $N \mu_{B} \in C\left(\boldsymbol{R}^{d}\right)$. Thus the family of N-regular balls for μ centered at a forms a base of neighborhood system at $a \in R \backslash\{0\}$.

Take any ball $B=B(0, \varepsilon)$ with $\bar{B} \subset R$. Clearly $G \mu_{B}=G \mu-G\left(\mu-\mu_{B}\right)=$ $\alpha u-G\left(\mu-\mu_{B}\right) \in C(B)$. Since $G|\mu|=G\left|\mu_{B}\right|+G\left|\mu-\mu_{B}\right| \in C(R \backslash\{0\})$, we see that $G\left|\mu_{B}\right| \in C(R \backslash\{0\})$ and thus $G \mu_{B} \in C(R \backslash\{0\})$. Hence $G \mu_{B} \in C(R)$ and a fortiori $N \mu_{B} \in C(R)$. It is clear that $N \mu_{B} \in C\left(\boldsymbol{R}^{d} \backslash B\right)$ and finally we have $N \mu_{B} \in C\left(\boldsymbol{R}^{d}\right)$. Thus the family of N-regular balls for μ centered at 0 forms a base of neighborhood system at 0 . Therefore we have seen that the Radon measure μ constructed above is of quasi Kato class.

Finally we maintain that $\gamma(0, \mu, N)=\kappa_{d} \gamma(0, \mu, G)>0$. Otherwise, since $\gamma(a, \mu, N)=\kappa_{d} \gamma(a, \mu, G)=\alpha \kappa_{d} \gamma(a, \nu, G)=0 \quad(a \in R \backslash\{0\})$, we have $\gamma(a, \mu, G)=0$
$(a \in R)$ and therefore by Lemma 2.1, $G|\mu|=\alpha G|\nu|=\alpha U \in C(R)$, which contradicts the discontinuity of U at 0 . Thus μ is not of Kato class.

The proof of Theorem 2 is herewith complete.

Appendix: Flat cone condition.

A.1. Let D be a bounded region in the Euclidean space $\boldsymbol{R}^{d}(d \geqq 2)$. We denote by H_{f}^{D} the harmonic Dirichlet solution on D for a boundary function f in $C(\partial D)$ obtained by the Perron-Wiener-Brelot method (cf. e.g., [6], pp. 156162). A point $x \in \partial D$ is Dirichlet regular if $H_{f}^{D}(y)$ approaches to $f(x)$ as $y \in D$ tends to x for every $f \in C(\partial D)$. A cone $\Lambda(x, a ; \theta)$ with x as its vertex and θ as its half of the opening angle and containing a on its axis of symmetry is given by

$$
\Lambda(x, a ; \theta)=\left\{y \in \boldsymbol{R}^{d}:(x-a) \cdot(x-y) \geqq|x-a||x-y| \cos \theta\right\}
$$

where $(x-a) \cdot(x-y)$ denotes the inner product of $x-a$ and $x-y$. A truncated flat cone with vertex x is the set of the form $\Lambda(x, a ; \theta) \cap P \cap \bar{B}(x, r)(r>0)$ where P is a ($d-1$)-dimensional hyperplane containing the axis of symmetry of $\Lambda(x, a ; \theta)$.

Theorem A. A boundary point x of a bounded region D in $\boldsymbol{R}^{d}(d \geqq 2)$ is Dirichlet regular if there is a truncated flat cone with vertex x in the complement $\sim D=\boldsymbol{R}^{d} \backslash D$ of D.

An interesting but unique proof is found in Kuran [7]. For the convenience of the reader we give here a proof to the above theorem simply by combining the standard common knowledge: Bouligand barrier criterion, monotoneity and subadditivity of the capacity, and Wiener test.
A.2. A function w is a barrier at $x \in \partial D$ if w is defined on $B \cap D$ for some open ball B centered at x and possesses the following properties: (i) w is superharmonic on $B \cap D$; (ii) $w>0$ on $B \cap D$; (iii) $w(y) \rightarrow 0$ as $y \in B \cap D$ tends to x. The Bouligand criterion then states that $x \in \partial D$ is Dirichlet regular if and only if there is a barrier at x (cf. e.g., [6], p. 171).

Suppose S is a region in \boldsymbol{R}^{d} with a harmonic Green function G. The capacity of any compact subset K of S relative to S is given by $\mathcal{C}(K)=$ $\sup \{\mu(K): G \mu \leqq 1$ on S, μ a positive Radon measure with support in $K\}$. Then we have the monotoneity: $K_{1} \subset K_{2}$ implies $\mathcal{C}\left(K_{1}\right) \leqq \mathcal{C}\left(K_{2}\right)$, and the subadditivity: $\mathcal{C}\left(K_{1} \cup K_{2}\right)+\mathcal{C}\left(K_{1} \cap K_{2}\right) \leqq \mathcal{C}\left(K_{1}\right)+\mathcal{C}\left(K_{2}\right)$ (cf. e.g., [6], p. 141).

Fix a point $x \in \partial D$ and consider the capacity C relative to the open ball S of radius $1 / 2$ centered at x. For $\lambda>1$ we consider spherical rings

$$
A(\lambda, n)=\left\{y \in \boldsymbol{R}^{d}: \lambda^{n} \leqq N(x, y) \leqq \lambda^{n+1}\right\} \quad(n=1,2, \cdots)
$$

where $N(x, y)$ is the Newtonean kernel on $\boldsymbol{R}^{d}(d \geqq 2)$. Let \bar{n} be the least positive integer such that $A(\lambda, n) \subset S$ for every $n \geqq \bar{n}$. The Wiener test maintains (cf. e.g., [6], p. 220) that $x \in \partial D$ is Dirichlet regular if and only if

$$
\sum_{n \geqq \bar{\pi}} \lambda^{n} C((\sim D) \cap A(\lambda, n))=+\infty .
$$

A.3. Proof of Theorem A. By translation we may assume that $x=0$ is the boundary point of D in question. We assume that a truncated flat cone T with vertex 0 is contained in $\sim D$. By rotation about the origin we can assume that T is contained in the hyperplane $P=\left\{y=\left(y_{1}, \cdots, y_{d}\right) \in \boldsymbol{R}^{d}: y_{d}=0\right\}$ so that T is expressed as follows:

$$
T=\Lambda(0, a ; \theta) \cap P \cap \bar{B}(0, \rho) \subset \sim D
$$

where $\rho \in(0,1 / 2)$ and $\theta \in(0, \pi / 2)$. We can also take $|a|=\rho$. Observe that there is a finite number of points $a_{1}=a, a_{2}, \cdots, a_{m}$ in $P \cap \partial \bar{B}(0, \rho)$ such that

$$
K=P \cap \bar{B}(0, \rho) \subset \bigcup_{j=1}^{m} T_{j}, \quad T_{j}=\Lambda\left(0, a_{j} ; \theta\right) \cap P \cap \bar{B}(0, \rho) .
$$

We consider the capacity \mathcal{C} relative to the open ball $S=B(0,1 / 2)$. Since \mathcal{C} is clearly invariant under rotation of S around the origin and all $T_{j} \cap A(\lambda, n)$ are congruent to $T \cap A(\lambda, n)$ by suitable rotations of S about the origin, we see that

$$
\mathcal{C}\left(T_{j} \cap A(\lambda, n)\right)=\mathcal{C}(T \cap A(\lambda, n)) \quad(j=1, \cdots, m ; n=1,2, \cdots) .
$$

By the monotoneity and the subadditivity of \mathcal{C} we see that

$$
\mathcal{C}(K \cap A(\lambda, n)) \leqq \mathcal{C}\left(\left(\bigcup_{j=1}^{m} T_{j}\right) \cap A(\lambda, n)\right) \leqq \sum_{j=1}^{m} \mathcal{C}\left(T_{j} \cap A(\lambda, n)\right)=m \mathcal{C}(T \cap A(\lambda, n)) .
$$

Observe that $w(y)=w\left(y_{1}, \cdots, y_{d}\right)=\left|y_{d}\right|$ is a barrier at $0 \in \partial(S \backslash K)$ since it is superharmonic (and actually harmonic) on $B(0, \rho) \cap(S \backslash K)$ and has vanishing boundary values on $B(0, \rho) \cap \partial(S \backslash K)=B(0, \rho) \cap K$ and in particular at $x=0$. A fortiori $x=0 \in \partial(S \backslash K)$ is Dirichlet regular for the region $S \backslash K$. Hence by the Wiener criterion

$$
\begin{aligned}
+\infty & =\sum_{n \geq \bar{n}} \lambda^{n} \mathcal{C}((\sim(S \backslash K)) \cap A(\lambda, n))=\sum_{n \geqq \bar{n}} \lambda^{n} \mathcal{C}(K \cap A(\lambda, n)) \\
& \leqq m \sum_{n \geqq \bar{\pi}} \lambda^{n} \mathcal{C}(T \cap A(\lambda, n)) \leqq m \sum_{n \geqq \bar{\pi}} \lambda^{n} \mathcal{C}((\sim D) \cap A(\lambda, n))
\end{aligned}
$$

and, again by the Wiener criterion, $x=0 \in \partial D$ is Dirichlet regular for the region D.

References

[1] M. Aizenman and B. Simon, Brownian motion and Harnack inequality for Schrödinger operators, Comm. Pure Appl. Math., 35 (1982), 209-273.
[2] S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, Springer, 1992.
[3] A. Boukricha, Das Picard-Prinzip und verwandte Fragen bei Störung von harmonischen Räumen, Math. Ann., 239 (1979), 247-270.
[4] A. Boukricha, W. Hansen and H. Hueber, Continuous solutions of the generalized Schrödinger equation and perturbation of harmonic spaces, Exposition. Math., 5 (1987), 97-135.
[5] C. Constantinescu and A. Cornea, Potential Theory on Harmonic Spaces, Springer, 1969.
[6] L.L. Helms, Introduction to Potential Theory, Wiley-Interscience, 1969.
[7] Ü. Kuran, A new criterion of Dirichlet regularity via quasi-boundedness of the fundamental superharmonic function, J. London Math. Soc., 19 (1979), 301-311.
[8] P.A. Loeb and B. Walsh, The equivalence of Harnack's principle and Harnack's inequality in the axiomatic system of Brelot, Ann. Inst. Fourier, 15 (1965), 597-600.
[9] F.-Y. Maeda, Dirichlet Integrals on Harmonic Spaces, Lecture Notes in Math., 803, Springer, 1980.
[10] M. Nakai, Continuity of solutions of Schrödinger equations, Math. Proc. Cambridge Philos. Soc., 110 (1991), 581-597.
[11] K. T. Sturm, Schrödinger semigroups on manifolds, J. Funct. Anal., 118 (1993), 309-350.
[12] J. Wermer, Potential Theory, Lecture Notes in Math., 408, Springer, 1974.
[13] Z. Zhao, Green function for Schrödinger operator and conditioned Feynman-Kac gauge, J. Math. Anal. Appl., 116 (1986), 309-334.

Mitsuru Nakai
Department of Mathematics Nagoya Institute of Technology Gokiso, Showa, Nagoya 466
Japan

[^0]: To complete the present work the author was supported in part by Grant-in-Aid for Scientific Research, No. 06640227, Japanese Ministry of Education, Science and Culture.

