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§1. Introduction.

Unbounded derivations in non-commutative C*-algebras have been studied in
detail by many authors, which are closely related to mathematical physics
and especially are one of the natural frameworks for quantum dynamics in
operator algebra context ([3, 4, 5, 14, 17, 18, 21, 22]).

In commutative C*-algebras, unbounded derivations, which were studied
systematically by Sakai in [21], are also very important and interesting object
to study, because it plays a role of certain differential structure of underlying
space ([1, 2,9, 11, 12, 24]). Indeed, known examples are given by (partial) dif-
ferentiation on spaces with some differential structure.

Since the differentiation d/dt on the space C™([0, 1]) of continuously dif-
ferentiable functions on [0, 1] is a typical example of closed derivations, for
any closed derivation 0 in a commutative unital C*-algebra C(K) (K: a compact
Hausdorff space) we may regard the domain ®(0) of 6 as a generalization of
the Banach space C®([0, 1]). Moreover, if ©0)=C(K), d is bounded and
hence d=0. Thus, we wish to look for unified approach to deal with C(K),
C™([0, 11) and several other spaces of differentiable functions together.

Properties of the domains of closed derivations (for example, functional
calculus) have been investigated by several authors. 9(Jd) becomes Banach alge-
bras under several graph norms. Moreover, it was shown that ©(d) with a
closed *-derivation & is a Silov algebra by Sakai ([22]), and other interesting
properties of ¥(d) as a Banach algebra have been studied by Batty, Goodman
and Tomiyama ([1, 2,9, 24]). We are also interested in some interplays be-
tween properties of ©(d) as a Banach space (or a Banach algebra) and the
structure of 4.

On the other hand, a well-known Banach-Stone theorem [8] states that
surjective linear isometries of C(K) are induced by homeomorphisms of K and
this theorem was extended to more general case by Novinger, Okayasu and
Takagaki ({15, 16]). 'Moreover, the structure of surjective linear isometries of
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C™([0, 1]) with various graph norms have been studied by Cambern [6], Cam-
bern and Pathak [7], Rao and Roy [19]. Recently, Jarosz and Pathak
gave a general scheme to study surjective linear isometries between many
classical well known spaces.

The purpose of this paper is to discuss the Banach algebra ®(d) with X-
norm and the Banach space ®(d) with M-norm as generalizations of spaces of
differentiable functions. In section 2, we present basic notations and summarize
several properties of closed *-derivations which will be used later. In section
3, we determine the form of extreme points of the closed unit ball of the con-
jugate space ®(0)* of D(d) with X-norm. In section 4, by using the result in
section 3 we study the structure of surjective linear isometries of ®(6) with X-
norm. In section 5 and 6, we get the form of extreme points of the closed
unit ball of ®(d)* and the structure of surjective linear isometries of ®(4) with
M-norm. In section 7, characterizations of extreme points of the closed unit
ball of ®(9) with M-norm will be given.

To investigate further detailed properties of ©(d) as a function space, it
seems necessary to analyze o itself in detail.

§ 2. Preliminaries.

Let K be a compact Hausdorff space and C(K) denotes the space of all
complex valued continuous functions on K with the supremum norm |:||e. A
derivation ¢ in C(K) is a linear mapping in C(K) satisfying the following con-
dition :

(1) The domain ®(d) of ¢ is a norm dense subalgebra of C(K).

@) dfg)=0f)g+fd(g) (f, gED(0)).

0 is said to be a *-derivation if it also satisfies:

(3) f=D0) implies f*=D(0) and o(f*)=04(f)* where f* means the complex
conjugate of f.

0 is said to be closed if f,&9(0), f»,—f and d(f,)—g implies f=D(d) and (f)
=g, that is, 0 is a closed linear operator.

Now, we give three examples of closed *-derivations.

(1) Let K=1I or I\UJ where I and J are finite closed intervals of the real
line with INJ=¢@ and let d be the differentiation d/dt on C™(K). Then § is
a closed *-derivation in C(K). If K=1I, then the kernel of ¢ is C1 and if K=
I\ J, then C1 is a proper subset of the kernel of d.

(2) Let K be a compact Hausdorff space and let ¢ be the partial derivative
on C([0, 1]xK), that is, for feC([0, 1]XK) and (s, x)=[0, 1]1XK

o(f)s, x) = lim (f(t, x)—f(s, x))/(t=s),
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whenever the limit exists. Let
D) := {f=C{0, 11X K): d(f) is defined and continuous on [0, 1]xK}.

Then ¢ is a closed *-derivation in C([0, 1]XK) and the kernel of é and C(KX)
are isomorphic ([9]).

(3) Let @ be a non-constant generalized Cantor function and let C*(1, @)
be the C*-subalgebra of C([0, 1]) generated by @ and 1. Define o(f+g):=
(d/d))f (feC™(0,1]) and g=C*(, @)). Then 0 is a closed *derivation in
C([0, 17) which is a proper extension of d/dt and the kernel of ¢ is the C*-
subalgebra C*(1, @). The converse statement also holds ([22]).

Now we state several facts on closed *-derivations. ®(d) necessarily con-
tains the constant function 1 (and hence C1) and C®-functional calculus is
possible in () (see [Proposition A below). 9(8) becomes a Banach space under
the norm.

(M-norm) 1flly 2 = max (| f e, [0(N)lle)  (fED(D)).

Moreover, ®(d) is a Banach algebra for each of the following three norms, re-
spectively.

(3-norm) £l = 1f lat 18 (fEDED,

(c-norm) I £lle = sup{l F(I +18()(0)] : xEK}  (fED@)
and

(@-norm) = | P =m0

We summarize three important results in which will be used later
frequently. In the following three propositions, let K be a compact Hausdorff
space and let ¢ be a closed *-derivation in C(K).

PROPOSITION A ([22]). For f(=f*eD0) and heCO[—fllew Ifls]), R(f)
(=h-f)eD(d) and o(h(f)=h'(f)O(f) where h' means the derivative of h.

ProPOSITION B ([22]). If f<(d) is a constant in a neighborhood of x<K,
then o(f)(x)=0.

PROPOSITION C ([22]). Let J, and [, be disjoint closed subsets of K. Then
there is an element f<(0) such that

=0 onJ, f=1 onJ, and 0Zf<1.

For other properties of unbounded derivations in C*-algebras, we refer to

Finally, we shall state notations, For a Banach space B, B* denotes the
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dual space of B. B, and B* denote the closed unit balls of B and B*, respec-
tively. Moreover, extB, and extB* denote the sets of extreme points of B; and
B*, respectively. Let Ker(d) be the kernel of a closed *-derivation 4 and %(d)
the range of 8. T denotes the unit circle {z=C : |z|=1} in the complex plane.
For fixed point x&K we define two linear functionals 7., .0 on ©(d) by

n:(f) = f(x) (feD),
nz20(f):=0(f)x) (fE€D)).
Let K(6) be the set of x=K such that 7,°0+0, that is,
K@) = {x€K: 9,°0+0}
= {xeK:3f=D(0) such that d(f)(x)=+0}.
Then K(9) is an open set in K.

§ 3. Extreme points of the closed unit ball of the conjugate
space D(0)* of D(F) with Y-norm.

Throughout this section, let K be a compact Hausdorff space and let  be
a closed *-derivation in C(K); the norm of f&®(d) is

1flls = 1 fllot1100 e

We use the following lemma later frequently.

LEMMA 3.1. For x,=K(0) and a closed subset J(Hx,) of K, there exists an
element f(=f*)eD(d) such that

0 fNxe)=1 and o6(f)=0 on J.

PROOF. As 7%.,0#0, there exists a function fo(=/§)&D(@) such that
0(fo)(xs)=1. Since K is a compact Hausdorff space, there exist an open neigh-
borhood U, of x, and an open neighborhood U, of J such that U,NU,=@.
Then g(=g¥%<D(0) such that

go=1 on U, and g,=0 on U,.

Then f,g,=D(9), 0(f080)(%0)=0(f o )(x6)Zo(x0)+ fo(%6)0(go)(xs)=1 and 0(fogo)(x)=0
for xJ. This completes the proof of Lemma 3.1.

The Krein-Milman theorem asserts that the closed unit ball of the conjugate
space of any Banach space has sufficiently many extreme points in the sense
that the unit ball is the w*-closed convex hull of its extreme points. In this
section, we get concrete expressions of extreme points of D(d)*.

Let W be the compact Hausdorff space KX KX T with the product topology.
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For f&®(d), we define f=C(W) by
fx, x', 2):= f(x)+28(f)(x")  ((x, x’, 2)EW).

Then we may embed ©(d) as a closed subspace of C(W).

LEMMA 3.2. The mapping ¢: f—F establishes a linear and norm-preserving
correspondence between D(8) and the closed subspace S:= {f: f€DB)} of CW).

Net+2nz00, N, ED@)* have clearly norm one. The following lemma
shows that 7.°0(#0)=®(d)* has also norm one.

LEMMA 3.3. If x,€K(0), the norm of 7.,°0 is one.

Proor. For x,€K(d), set G :=n,,°0(+0). Let ¥ be any norm-preserving
extension of (¢ ")*(G) to C(W). Then there exist a complex regular Borel
measure g on W such that ||u|=|¥| =%, <1 and

vig)=| gdu (gscoV).

Hence we have
o) = | e, w, dp = | (F0)+ 200D

for all fe®(d). For any open neighborhood U(C K) of x, we choose an open
neighborhood V of x, such that VCU. Then we take g,&®(d) such that

gi(x)=1, g=0 on KNV and 0 g, <1,

then g,=0(g,)=0 on K \U. For arbitrary ¢>0, we take f.(=/¥)eD(d) such
that
[7z,°01—e < [0(fXxo)| and |f.lls<1.

Put ¢.:= min (1—||6(f)ll«)/(l0(g))=+1), ¢). Then we take a function h.€
C(l)([—”fs”w’ ”fe”oo:D such that

Jhelew < coy R(felx0) =0, RUfx0)) =1, and [hife=1.
Put g.:= h.(f.). Then we have 0(g,g.)=0 on K\U,
0(8:18:)(x0) = 0(8:)(x6)8e(X0)+81(x6)0(g:)(x0) = 8(g:)(X0) = 6(f e)(%0),
18:18:llx = 11818ellwt10(818) ) = (14 ]0(g D))+ 0(f )] = 1.

Then we have
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1920001—¢ < 18(£(x)] = 10818 = || (81800 +20(g.8(x"

<

(1(g18)(x)| +6(g:18:) (%) )d | ] +S (8180l d] gl

SKxeT K x(K\U)

xle/zl—}-ceg

S |pHEXUXT)+e|ul(KXK\UXT)

<
< lggls| i

= lplte = lnz,eol+e.

As ¢—0, we have |pu|(KXUXT)=|lpll and hence supp|pu|CKX {x, XT. For
S ()N

S =, T2

- SKx(xo)xrf(x)d#—"_a(f)(xo)gl{ Zd[,t.

X{Zg}xT

As 7,,20#0, there exists fo(=/¥)ED(d) such that o(f,)(xo)=1. For arbitrary
¢’>0, we take a function ho.=CP([—| follw I foll«]) such that |, ]l.<e’ and
ho(fo(xo)=1. Then, h.(f,)=D(d) and

1 = 10(he(fo))(x0)]

<

|hs'(fo)(x)ld‘ﬂl+Ia(he’(fo))(xo)lg Lol 2ldlp

SKX(xo)xT

s ellpl+lpl < e +1.

Kx{xg

As ¢'—0, we conclude that [%.,0]=|¥|=|uxl=1. This completes the proof.

Now we state the main result of this section. If d=0, an element GED(d)*
is an extreme point of D(4)¥ if and only if G=ay,, for some x,€K and acT.
Hence we deal with the case that 0.

Now, we show that for (x, x’, 2) € KXK(0)XT, the expression of a(y,+
Z794+°0) is unique. Suppose that

a1(7711+217]12°5) - a2<77y1+2277y2°5) """ (*)

for a;, a,€T and (xi, X5, 21), (Y1, Ve, 2)EKXK@O)XT. As 1€D(0), we have
a;=a;. Suppose that x,#y.. Since x,=K(d), there exists f,(=f¥)eD() such
that o(f)(x,)=1 and d(f,)(v.)=0 from [Lemma 3.1. Then we take h,=
CO[—filles [ f1ll]) such that

hi(fo(x)) = h(fi(y)) =0 and hi(fi(xs) = 1.
Put g,:= h,(f,); then
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gi(x) = g:(y) =0, 0(g)(x)=1 and d(g)(y.) =0.

This contradicts with (¥) and hence x,=y,.

Next, suppose that x,#7y,; there exists f,(=f5HeD(0) such that f(x,)=1
and f.(y,)=0. Then we take h,&CO([—|fallw l|f2llo]) such that

ho(0) =0, ho(1)=1, and ha(fo(x2)) = 0.
Set ge 1= hg(fg)em(a); we haVe

g(x) =1, gy)=0 and 4(g:)(x.) = 0.

This contradicts with () and hence x,=y,. Hence the expression of a(n,-+
zn420) ((x, x', 2)€ KX K(0)XT) is unique.

THEOREM 3.4. Let K be a compact Hausdorff space and let 6(+0) be a closed
*.dertvation in C(K). Then an element GED(0)* is an extreme point of D(0)¥
if and only if

G = a(nz,+20z,°0) for some (x1, x5, )EKXK@O)XT and acT.

PROOF. At first, we show ‘only if part’. Let L be an extreme point of
S¥* where S is as in Then we can extend L to the extreme point
of C(W)*. We recall that any extreme point of C(W)¥ is a point evaluation
multiplied by a« (a=T). Hence if GEe®()* is an extreme point of D()¥, then

G = a(yz,+29:,°0) for some (x,, x,, 2)EW and acT.

As 0+#0, there exists x,=K(0). For (x,, x;, 2) EKXK\K(@0)XT and a=T, we
have
Go = a(nz,+29z,°0)

= ans, = (@/2) {9z, + 72,200+ (Nz,—72,°0)},

which implies that G, is not an extreme point.
Next, we prove the converse statement. For (x,, x,, z,) €KX K@) XT, we
set G:= 9, +Zm,°0. Let ¥ be any norm-preserving extension of (¢~ )*(G) to

C(W). There exists a regular Borel measure g on W such that Zlf(g):SW gdp
(geCW)) and |pl|=|¥|=1. Hence we have

Fledt2d(H e = | Fox, 2, g = | (Fo+20000ede

for all fe®(3). Moreover, since ¥(1)=(p)*G)1)=G(1)=1, g is non-negative.
For any open neighborhood U(CK) of x, we choose an open neighborhood V
of x, such that VcU. Then we take g,=®(d) such that

gi(x)=1 g, =0 on K~V and 0=<g,<1,
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then g,=0d(g,)=0 on K \U. For arbitrary ¢>0, there exists f.(=/f¥)=D(d) such
that
l—e = ||5z,°0]—& < |d(f)x2)] and [Iffz <1

Put c¢.:= min (1—|0(f))l«)/(10(g))le-+1), ). Then we take a function h.&
CO(—felloes 1 fellw]) such that

[hello < €., R(fe(x) = he(f(x2) =0, hi(fe(x2))=1, and [hile=1.
Put g.:= h(f.). Then we have (g,2.)(x,)=0, d(g,g.)=0 on K \U,
0(8:18:)(x2) = 0(81)(x2)ge(X2)+ g1(X:)0(g:)(x0) = 0(ge)(x2) = 0(f)(x2),

and  Jlg:g:ls = Jlglgsllm+ll5(g1gs)llw < (1+110(gnlle)c+110(f )l = 1.
Then
I—e < [0(f)(x2)| = [(g:1ge)x1)+20(8:18:)(x2)]

= || (gg)t0t2ig. g0yl

= SKXUXT(l(gIngx) |+ 15(g1gs)(x’)1)a"u+g 1(g:8:)(x) | dp

Kx(K\U)xT

<lggls|  dp+el] dp

KX (K\U)xT
S p(KXUXT)+ep(KXK\UXT)
< 1+-e.

As ¢—0, we get p(KXUXT)=1. Since p is a regular measure, p(KX {x;} XT)
=1, which means that the support of g is concentrated on the set KX {x,} XT.

Next, We show that u({x.} X {x,} XT)=1. For any open neighborhood U
of x,, we get a function f,(=f¥&D() such that

folx)=1 f,=0 on Kx\U and 0Zf,<I.
There exists h,&CY{[ — | fslle Il f2llw]) such that
ho(l) =1, h(0)=0, 0 h, <1 and hy(fo(xy) = 0.

Put g,:= hy(f,)ED(0); then we have

”gZ”W = 1) gZ(xl) - ]-, gZ = 0 on K\U and 5(g2)(x2):0.
Since

1= g +ad@e = || gdndp

KXx{xg

<

| go(x)] a’,u+S | 2o(x) | dpe

SUxu:z)xT

< pUX {x XT) £ 1,

(E\U)x{zg)xT
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we have p(UX{x,} XT)=1. Since p is a regular measure, we have p({x,} X
{xs} XT)=1. Hence for f=D)

FO)+2o8(f () = Swwﬂﬂx)dmﬁwWﬂzé(fx.x dp
= oo edp.
As n2,°0%#0, we have ZO:S Tzdp. Put h(x,, x,, 2):= 2z for (x,, x,, 2)E
{1} X{(To} X

W. Then e

2y = Zop({x1} X {x,} X {Zo})+Sw1)x(z2)xr\uo)hd#:
that is,

Zo‘u({xl} X Axah XTN {zoh) = S(.rl)x(.tgle\(zo)hdﬂ.
Therefore we have

SixI)X(xg)xT\(zol | h l d# - ﬂ({xl} X {xZ} XTI {ZO}) - |S(x,l><(zz)xT\(zo)h d‘u '

Thus there exists a=C such that
h=alhl=a (a.e. p).
Hence we get

Zop 2} X X TN ) = | adp = ap({x:} X {xo XTI {z0}).

(1% 1291 xT\(20)

Suppose that p({x:} X {xs} X T\ {z,})>0; then z,=a, that is, h(x,, x,, 2)=2,(a.e. p),
which implies p({x} X {x:} XT\{z,})=0. This is a contradiction and hence we
get p({x.} X {x:} X {2})=1. Since p is the dirac measure at (x,, x,, z,), any
norm-preserving extension of (¢ )*(G) is an extreme point of C(W)¥. Let

()G :=1/2)(F+F)  (F, eSY).

Let £, and F, be any norm-preserving extensions of F, and F, to C(W), respec-
tively. Since (1/2)(F‘ A+Fy) is a norm-preserving extension of (¢~)*(G), F =F,.
Hence we have F,=F,, that is, (¢~)*(G) is an extreme point of S¥, which
implies that G=7,,+2,9.,°0 is an extreme point of D(d)}. This completes the
proof.

We remark that if 1e%(d), then K(d)=K.



238 T. MaTsumoro and S. WATANABE

§4. Linear isometries between ©(J,) and ¥(J.) with 2-norm.

Rao and Roy ([19]) investigated the structure of surjective linear isometries
of C®([0,-1]) with 2-norm.

In this section we use the results in section 3 to get the structure theorem
of surjective linear isometries of ®(d) with the X-norm as one of generalizations
of the result by Rao and Roy.

Let K; be a compact Hausdorff space and let d; be a closed *-derivation in
C(K;) ¢G=1,2). Let T be a surjective linear isometry from %(d;) to D(d,).
Then we have the following two lemmas.

LEMMA 4.1. For all yeK,
IT1(y)] =1 and 0,T1)y)=0.

PrROOF. If 0,=0 (7=1, 2), it is clear. Suppose that d;#0 (:=1, 2). Since
T* carries ext®(d,)¥ onto extdD()*, for y,=K,, y,=K,(0,) and z=T there exist
x, €K, x,=K.0,), 22T and a=T such that

T*(vy1+27/yz°52) = ‘1(7711+2'77r2°51)’
which implies
IT1(y)+20(T1)y2)| = 1.

Hence for arbitrary y, €K, and y,= K,(3,),
ITIy)|I+10:(TH») =1 or [[TLy)|—10:(TH(H.)| =1,

which implies that |T1(y;)|=1 or T1(y,)=0. Suppose T1=0; then 0,7T1)=0,
which is a contradiction. Hence there exists ye K, such that |T1(y)|=1, that
is, |T1ll.=1. Since

I=|lls=ITls= Tl at0TDlw = 1+)10:(T Dllee ,

we see 0,(T'1)=0. Hence |T1(y)|=1 and §.(T1)(y)=0 for all y=K,. Similarly,
we observe that it holds in the case that 6,=0 and d,#0. Considering of 77,
we can conclude that it holds in the case that 6,=0 and §,#0. This completes
the proof. ’

If 0,=0 /=1, 2), for y,=K, there exist x,€ K, and a,&T such that T*(y, )
=ayz, From if 6;#0 (=1, 2), for y,€K, and v,=K,(0,) there
exist x,€K,, x,€K,0,), z,&T and a,=T such that

Ty +74,°02) = au(nz,+2172,°01).
LEMMA 4.2. In the above situation,

T*<77y1) = a\np:, and T*(ﬂyzc’az) = al(Zlﬂzz"al)-
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PrROOF. For y,€K,, y,=K,(0,), there exist x,€K,, x,=K,(,), z,&€T and
a, =T such that

T*<7}?/1+v02°52) - “1(%1'*“210:2"51) .

Put F:=T*(n,) and F,:=T*(5,,°0,). Since F,—F,€extd(d,)}, there exist
x.€K,, x,K(0), z.=T and a,=T such that

Fi—F, = ay(nz,+2:02,°0).
Since Fy(1)=0 from Lemma 4.1, we see a;=a,=F,(1). Thus we have
Fy = (a1/2){(02,+2192,°00)+ (N2, +229 2,200},
and Fy = (a1/2){(N 2, +2:102,°00) — (9 zy+ 227 2,200} .

Since F,+iF,Sext®(0,)*, there exist x;=K,, x.=K(0,), z:&T and a;=T such
that

F+iF, = a3(7]15+2377x5°51> =A
= (a/2{(A+D)(N 2, +2192,°0) (1 =) 24+ 227,200} := B.

Now, we show that x,=x, and x,=ux,, thatis, x,=x,. Suppose that x,#x,
and x,=x, then from x,=K,(d,) and Lemma 3.1 there exists f,(=/¥eD(,)

such that d,(f1)(x¢)=1and 8,(f,)(x2)=0. Then we take h,&C V([ —| fille, | f1llea])
such that

ha(f1(x1) = h(f1(xs)) = A(f1(x5)) =0 and  hi(fi(xe) = 1.
Put g,:= h,(f,); then

gi(x) = gu(x5) = g@i(x5) =0, 0.(g1)(x) =0 and 0,(g)(xe) = L.

Then |A(g) =1, but |B(g.)|=+/2/2. This is a contradiction and hence this
case does not occur. Similarly, the case that xs=x; and x,%x, does not occur.
Suppose that xs#x, and x,#x,. Since x,=K,(d,), there exists f,(=/¥$)cD(,)
such that

0.(f2)(xe) =1 and 0,(fa)(x2) = 0:i(fo)(x) = 0
from Lemma 3.I. Then we take h,&C®([—| fallw || f2)lw]) such that
heo(fa(%1)) = ho(fo(x)) = ha(fo(x5)) =0, and  hy(fo(xe) = L.
Put g,:= hy(f.); then
8o(%1)=8x(x5)=gu(%:)=0, 0:(82)(x2)=01(:)(x)=0 and 0:(gs)(xe)=1.

Then |A(g:)|=1, but |B(g,)|=0. This is a contradiction and thus this case
does not occur, too. Hence we get that x;—=x, and x,=x, that is, x,=x,.
Next, we show that xy=x; and x;=x,, that is, x,=x,;. Suppose that x;# x,
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and x;=ux,, there exists fy(=/¥)eD(d,) such that fy(x;)=1 and f4(x,)=0. Then
we take h,eCO([—| fsllw || fsllw]) such that
he(0) =0, hy(1)=1, and hy(fs(x))=0.
Set g;:= hy(f:)ED(d,); we have
gy(x1) =0, gi(xs)=1 and 0,(gs)(xs) = 0.

Then |A(gs)|=1, but |B(gs)|=4/2/2. This is a contradiction and hence this
case does not occur. Similarly, the case that x;=x, and x;#x; does not occur.
Suppose that x;#x, and x;#x;. Then we can take g,£9(d,) such that

gu(x) =0, gx;)=1 and 0d:(g)(x,) =0
and g;=9(4,) such that
gs(xs) =0, gs(x5)=1 and 0.(gs)(xs) =0

as a function g, above. Then g,2:=9(0,) and |A(g.gs)|=1, but B(g.gs)=0.
This is a contradiction and thus this case does not occur, too. Hence we get
that x;=x, and x;=x, that is, x,=x,. Hence we obtain

Fi = a\nq,+(a1/2)(z1+2)(92,°01)
Fy = (a,/2) (21— 22)(9) 2,°01) .
Since |[5,°0,[ =1 (v Ky(d,)) from and T* is a linear isometry,
L= [IT*(9y,20)l = | Fll = (1/2)|21— 22| | 92,00 = (1/2)|2:— 22|
and hence z,=—2z,. Consequently, we have
T*(py,) = arnz, and T*(y,,°0:) = a(219,°0).

Thus the proof is completed.

REMARK 4.3. The same argument as in the above proof implies that if
there exists a surjective linear isometry between ¥(d;) and D(d,), then J;=0
(=1, 2) or 9;#0 (1=1, 2).

From this lemma, we get the following theorem.

THEOREM 4.4. Let K; be a compact Hausdorff space and let 0; be a closed
*.derivation in C(K;) (i=1, 2).

(1) Let T be a surjective linear isometry from D(d,) to D(d;). Then the
following statements are held.

(i) There exist a homeomorphism = from K, to K,, w,<Ker(d,) and a con-
tinuous function ws on K,(0,) such that ©(K.(0,))=K,(0,), |w,(y)|=1 for all yeK,,
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|wy(y)| =1 for all y=K,(d,),
(THY) = wy)f(z(¥)) for fED0,) and yEK,,

0T f)y) = w(3)0(f)Nz(y)) for fED(d,) and yEKx(3,).

(i) T(Ker(0,)=Ker(0,).

(2) Suppose that there exist we Ker(d,) and a homeomorphism © from K, to
K, such that [w(y)|=1 for all yEK,, t(Ky8:))=K\(8,), fr=D(0:) for all f€
D(0,),g°77'€D(d,) for all geD(dy), and |0s(f-T)(¥)|=|0(/Nc(yN] for all fe&
D0,) and all yEKy(0,). Then the operator T from (0,) to D(0,) defined by

(TH)=w) (=)  for f€D() and yEK,

1S a surjective linear isometry.

PROOF. At first, we prove the statement (i). We may assume that 0;#0
(=1, 2). From for each point ye K,, there exist x€ K, and acT
such that

TH*p, = an; .

Defining = and w, by T*y,:= w,(¥)%:(,», then w,=T1& Ker(d,) from
and 7 is a homeomorphism from K, to K,. We note that fe.r=w¥(T f)=D(0,)
for f€9(d,).

From for each point y< K,(d,) there exist x€ K,(4,) and acT
such that

T*(p,o8s) = aly26,) # 0.

Defining 7, and w, by T*(,°8:) := wa(y)n:,,»°0:;, then 7, is a mapping from
K,(,) to K.(d)).
Next we show that r=17, on K,(d,). Since w,& Ker(d,),

W90 FD)) = Buw,f+T)3) = ST F)3)
= wy(y)0:(f)To(y)) e (%)

for all f=®0,) and all y=K,(,). Suppose that there exists y,= K,(d,) such
that 7(y,)#7,(v,). Then there exist f,=D(d,) such that 0d,(f,)(r,(y,))=1 and
0.(f)(r(y,)=0 from Lemma 3.1. Since K, is a compact Hausdorff space, there
exist an open neighborhood U,(CK,) of 7,(v,) and an open neighborhood U,(C K)
of 7(y,) such that U,N\U,=@. Then we take g,&®(d,) such that g,=1 on U,
and g,=0 on U,. Since 7 is a homeomorphism, z~(U,) is an open neighborhood
of y, and hence (f,g,).r=0 on =7 (U,), which implies 0,((f,g:)°7)(v,)=0. But
0,(f18)(zo(y o)) =0:(f 1 )(7o(¥0))&1(To(¥o))=1. This contradicts with (), which im-
plies that r=7, on K,(d,). Hence we have T*(7,°0,)=ws(y)9: )0, for y & Ky(ds).

Finally, we show that w, is continuous on K,(d;). Since 7(K,(d.))=K(d,),
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for arbitrary y,=Ky(0,), there is f,&®(d,) such that d,(fo)(7(y,)+#0. We take
an open neighborhood U(C K,(d,)) of z(y,) such that 6,(f,)(x)#0 (x€U). Then
we have wy(y)=w(y)0:(f ) ¥)/0,(f)z(y)) for yer *(U) and w, is continuous at
Yo, that is, w, is continuous on K:(d;). This completes the proof of (i). (ii)
follows easily from (i).

Next, we prove the converse statement (2). From the assumption in (2),
T is well-defined as a surjective linear operator from ©(d,) to D(d,). Then we
have

ITflls = 1T fllot 10T F)lloo
= T flleot 1w do(f o T)lleo

= | fllot 10Nl = I fllx -
Thus all the proofs of are completed.

REMARK 4.5. If %(,)>1 (especially, 9(3,)=C(XK,), then K,(6,)=K, and
there exists f,=®(d,) such that 0,(f,)=1 and hence w.(y)=w,(y)0:(fe°7)(y) for
all yeK..

We note that if d=d/dt on C®([0, 1]), then R(0)=C([0, 1]) and if 6=d/dz
on C(T), then 1€R(0)SC(T).

Let 0 be a closed *-derivation in C([0, 1]) such that ¢ extends d/d¢ that
is, CO[0, 11)cD) and 8(f)=f" for f&C™M([0, 1]). Applying [Theorem 4.4 to
0, we can investigate further structure of 7. At first, we shall state several
facts for our purpose.

A real valued function @ on [0, 1] is said to be a generalized Cantor func-
tion (abbreviated GCF) if @ is increasing on [0, 1], but not strictly increasing
on any subinterval of [0, 1] ([22]). For a GCF @, there exists a family of
non-empty disjoint open intervals {/,} such that \Jy, /, is dense in [0, 1] and
@ is constant on each /.

Let 0 be a closed *-derivation in C([0, 1]) such that 0 extends d/d¢. Then
there is a GCF @ such that Ker(d)=C*(1, @) and D0)=C ([0, 1])+ Ker(d)
([221).

We denote the identity mapping of [0, 1] by 7d.

COROLLARY 4.6. Let 0 be a closed *-derivation in C([0, 1) such that 0 ex-
tends d/dt. Suppose that the norm of f&D(d) is

1z = 1f o100 e«

(1) Let T be a surjective linear isometry of D). Then there exist w, t,,
00 Ker(9) such that |w(x)|=1 for all x€[0, 1], t:=1id+7, is a homeomorphism
of [0, 1], v7'=id+po, 7o(0)=7o(1)=p¢(0)=0,(1)=0 and further,
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(TH(x) =wx)f(id+1o)(x)  for f=D0) and x<[0, 1],
or

(TF)x) =wx)f1=Gd+T))x)  for fEBO) and x<[0, 1].

(2) Suppose that there exist w, t,& Ker(d) such that |w(x)|=1 for all x&
[0, 1], r:=id+7, is a homeomorphism of [0, 1] and fe-r, f-r7'&D@) for all
feKer(6). Then the operators T, and T, on D(0) defined respectively by

(T1/ (%) :=w(x)f ~(Fd+7)(x) for fEeB(0) and x<[0, 1],
(Tof)x):=w(x)f(A—Gd+r))x)  for fED0) and x<[0, 1]

are surjective linear isometries of ¥(0).

PrOOF. We shall prove the statement (1). From (1) of there
exist a homeomorphism 7 of [0, 1] and we Ker(d) such that |w(x)|=1 for all

x<[0, 17 and
(T f)(x) = w(x)f(r(x)) for fe®(0) and x<[0, 1].

Since 7 is a homeomorphism, we may suppose that ¢ is strictly increasing on
[0, 17. Since 1, id and w=T(1)eD0), t=w*T ((d)=D(d). Then there exist a
real function = C® ([0, 1]) and a real function 7, Ker(d) such that r=7,+7,,
7.(0)=1,(0)=0 and 7,(1)4+7,(1)=1. Then there exists A€ C([ — | @ ||w, ||P]l-]) such
that 7,=h-®, which implies that 7, is constant on each 7/,. Now, since =
7,+h-@ and r is strictly increasing on [0, 1], we get 7, is strictly increasing
on each /,. We show that r, is strictly increasing on [0, 1J. Suppose that
there exist x, and y, in [0, 1] such that x,<y, and 7.(y,)<7:(x,). Since 7, is
in C™([0, 1), then there exists an open subinterval J (C(x,, ¥,)) On which 7,
is non-increasing. But 7, is strictly increasing on /N[, for some [I,. This is
a contradiction. Thus 7, is strictly increasing on [0, 1]. Hence 7{=0. Next,
we show 7{=1. Since d(w)=0, we have

2= |idlls= TG =
= [wrllwt16(we)]e
= [Itllet il -

From this and |z]l.=1, we have |r{|l.=1. Suppose that there exists x, in [0, 1]
such that 7i(x,)<<1. Then we choose a function he C®([0, 1]) such that |A].
<1, |h']e=1, A'(z(x,))=1 and 0<h’(x)<1 for all x(##t(x,)=[0,1]. Since
7i(x0)<1 and 0<h’(x)<1 for all x(s#7(x,))<[0, 1], there exists an open neigh-
borhood U, of x, such that

sup {ri(x): x €U, } (:=¢)) < 1
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and
sup{h’er(x): x ([0, INU. D} (:=¢z) < 1.
Then
L= ||h"fje=[0(h)]

= [|0(T h)llew = [[0(ho7T)]c

=sup{h’-r(x)ry(x): x<[0, 11}

< max(cy, ¢;) < 1.
This is a contradiction. Thus r{=1. Since 7,(0)=0, we get r,=:id. Consider-

ing T™', we get p,=Ker (0) such that r7'=id+4p,. If 7 is strictly decreasing,
we may consider 1—r.

We prove the converse statement (2). Since 7,o77'€®(d) from assumption
in (2), t7l=id—7,o77'€D(0). Hence we have for and f.r D) for all f=
®(0). Thus T, defined in (2) is a surjective linear operator on ®(d). Next, we
shall show that |0 fet)}(x)|=|0(f)r(x))] for all f&D(d) and all x[0, 1]. For
each f=9(0d), there exist f,€C®([0, 1]) and f,=Ker(d) such that f=f,+f,.
Since

[0(fet)(x)| = |0(f 1o+ fooT)(x)]

= |(f1e10(r)+0(foo))(x)]

= |(fiet+0(foo)(x)],
it is sufficient to show f,er=Ker(d). From our assumption, g:= f,.7&(0).
Therefore there exist g,=C® ([0, 1]) and g,=Ker(d) such that fyer=g,-+g.
For each I,, U {t7*(I)NI,} is dense in z7(I,). Since g=g,+ g, and g and
g, are constant on each non-empty open interval z7'(/,)"\I,, then g, is constant
and hence g;=0 on each such interval z~*(/,,)"\I,. Since g, is in C®([0, 1]),
then gi=0 on each t7'(/,). Since U,z *[,) is dense in [0, 1], gi=0 on
[0, 1], which implies that g, is constant and hence f,-t&Ker(d). Thus, from

(2) of we get |T.flls=Ilf|ls for all fED). Similarly, we can
prove that T, is a surjective isometry of ©(J). This completes the proof.

Considering the case that @ is constant and d=d/dt in Corollary 4.6, we
get the following corollary.

COROLLARY 4.7 (Rao and Roy). Suppose that the norm of fe= CP([0, 17) s

1l = 1fllot10Cf)lleo -

Let T be a surjective linear isometry of CP([0, 1]). Then T has the following
expression
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(T f)x) = af(t(x)) for all feC™®([0, 1]) and x [0, 1]
with T()=a (acT) is a constant and t is one of the two functions id or 1—id.

§5. Extreme pointsv of the closed unit ball of the conjugate
space D(0)* of D(0) with M-norm.

Throughout this section, let K be a compact Hausdorff space and let ¢ be
a closed *-derivation in C(K); the norm of f&9D() is

I 1l = max (| fllee, 10(f)]le).

In this section, we get concrete expressions of extreme points of ®(0)¥ with
M-norm.

Let W be the compact Hausdorff space X\UY (topological sum with X=Y
—=K). We define f on C(W) (f€DO)) by

f(w) if wekX

Flw):= { ,
3w if weY.

Then we may embed ©(d) as a closed subspace of C(W).

LEMMA 5.1. The mapping ¢: f— 7 establishes a linear and norm-preserving
correspondence between D(0) and the closed subspace S := { 7 fEDO)} of CW).

We recall that CW)=C(K)P~ C(K) and CW)*=C(K)*P,;: C(K)* by the
canonical correspondence. Let ¥ be an extension of (¢ ")*(F) (FED(0)*) to
C(W), where this extension is not necessary unique; then ¥<C(W)* has the
form

~

Uig) = | gdu+| sydy  (vgsCcom)

for some complex regular Borel measures ¢ and v on K. Hence F(€®(0)*) has
the form

FiH= = rap+( onav (1720

If ¥ is a norm-preserving extension, |Fl|=I|¥|=Igl+Iv].
Now we state the main result of this section. We note that the expressions
of 9, and %,°0#0 are unique.

THEOREM 5.2. Let K be a compact Hausdor/f space and let 0 be a closed
*_derivation in C(K). Then an element GED(0)* is an extreme point of D(O)F
if and only if

G =an, (acT, x€K) or a(n;-0) (a€T, x€ K(0)).
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PROOF. At first, we prove ‘only if part’. Suppose that L is an extreme
point of S* where S is as in Lemma 5.1; then we can extend L to the ex-
treme point of C(W)*. We recall that the form of an extreme point of C(W)*
is a point evaluation multiplied by a (a=T). Hence, if an element G of D(d)*
is an extreme point of ¥(d)¥, then

G =ay, (acT, x€K) or a(yn.°0) (acT, xK(0)).

Next, we show ‘if part’. For x,€X(=K), we set G,:= 5, €D()*. Let
¥, be any norm-preserving extension of (¢ )*(G,) to C(W). Then there exist
complex regular Borel measures p=C(X)* and yeC(Y)* such that |¥,)|=|ul+
[vi and

fa) =¥ = | fdu+| sHdv
for all fe®(d). Since

1= = dp=|| da| | dipi =l s =1,

we have |jg|=g1)=1 and hence p is a positive measure. Since 1=[T\|=|4u|
+Iull, we have »=0. Hence for all fED(9), f(x)=¥.(F)=| fdp. Since D)

is dense in C(K), p is the dirac measure at x,. Thus ¥, (arbitrary norm-
preserving extension of (¢~)*(G,) to C(W)) is an extreme point of C(W)¥ and
hence we conclude that (¢™")*(G,) is an extreme point of S¥, which implies that
G,=7z, is an extreme point of B(d)}.

Finally, we shall show that G,:= %,,°d is an extreme point of D(9)} for
Yo=K (@0)XCY). Let ¥, be any norm-preserving extension of (¢"")*(G,) to C(W).
Then there exist complex regular Borel measures pe C(X)* and ve C(Y)* such
that ||@|=|ul+Ilv] and

o) =¥ = _rdu+{ a(ras
for all f=®(F). For arbitrary >0, we take f.(=f*&D() such that
17400l —e < [0(f)(po)| and |Iffla < 1.

For any open neighborhood U(CY) of v, we choose an open neighborhood V
of y, such that VCU. Then we take g,=®(d) such that

gi(v)=1 g =0 on KNV and 0=<g, <1,

then g,=d(g,)=0 on K\U. Put c¢.:= (1—1[0(f)lle)/(10(g)]+1)<1). Then we
take a function A.€CP([—| fellw I fell]) such that

[hellw = co; he(fe(30) =0, hi(fe(yo)) =1 and |hil.=1.
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Put g.:= h.(f.). Then we have

0(8.8)(¥o) = 0(81)(30)8:(¥o)+ &1(30)0(g:) (Vo) = 0(ge)(Yo) = 0(f ) Vo),

lgigelle = ¢, [0(g:8)=1 and gig.=0(g:8)=0 on K \U.
Since

174,20l —& < [0(f)(0)| = 10(£18:)(30)]

= }SKglgsdmLSKﬁ(glgs)dvi
= | lgaldipl+] 1oy

< | dipi+],d1v
< Nl Il = 1Tl = 7,030,

we have| d|p =[] and Svdlvl: Ivl. Thus we have supp|ulC {yo} and supply|

C {yo}, which implies there exist a, b&C such that y=ad,, and v=>bd,, where
d,, is the dirac measure at {y,}. Hence we have d(f)(yo)=af(yo)+bd(f)(¥o).
Since 1€®(0) and y,=K(0), we see a=0 and b=1. Thus v is the dirac meas-
ure at y, and ¢=0, which implies ¥, is an extreme point of C(W)}¥. Then we
conclude that (¢ )*(G.) is an extreme point of S¥, which implies that G,=%,d
is an extreme point of D(9)¥. This completes the proof.

§6. Linear isometries between ©(d,) and ®©(d,) with M-norm. .

In this section we use the results in section 5 to study the structure of
surjective linear isometries of ©(d) with the M-norm.

THEOREM 6.1. Let K; be a compact Hausdorff space and let 6, be a closed
*_derivation in C(K;) (i=1, 2).

(1) Let T be a surjective linear isometry from D(d,) to D(d,). Then the
following statements are held.

(i) There exist a homeomorphism t from K, to K,, w,eKer(d,) and a con-
tinuous function w, on Ki(0,) such that ©(Ky(0,))=K,(0,), |w,(y)| =1 for all yEK,,
lw. (=1 for all y=Ky(0,),

(T)w)=w(»)f(z(y) for f€D@) and yeK,,
0T f)(y) = wa(3)0.(f)(7(¥)) for fED,) and y& Ky(0,).

(i) T (Ker(8,)=Ker(0,).
(2) Suppose that there exist we Ker(0,) and a homeomorphism t from K, to
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K, such that \w(y)|=1 for all yeK,, t(Ky(0.)=K(,), f-t€D(,) for all f<
D), gt ED(0)) for all gED(d:), and |0(f-7)(¥)|=0:(/)Nz(y)| for all fe&
¥D6,) and all y=K,(0,). Then the operator T from D(0,) to D(0,) defined by

(TH) :=w)f(x(y))  for fED@) and yEK,
S a surjective linear isometry.
PrROOF. At first, we recall that
ext®(0)F = {an,, B(n,°0:): a, BET, x€K;, ye Ki(0:)}

and its expression is unique. For each point yK,, we have two possibilities :
1. There exist x,= K, and a,=T such that

T*Uy = aln“—'l
or
2. There exist x,= K, and a,=T such that

T*ny = as(92,°01).
Hence we have [ T1(y)|=1 or T1(y)=0 for each ye=K,. Put
Q:= {yeK,: [T1Q)|=1}(+Q),
I' = {yeK,: Tl(y)=0}.

Suppose that ['+# @ ; then £ and /" are non-empty open and closed sets. Put
p:=1—(TDHXT1)&D(,); then p is a projection and hence d,(p)=0. For AT,

IT1+Aplly = max ([T1+2p]lw, 0T D)
= maX (|7 1l«, [10:(T1)ll)
=|IT1y =1
and T"YT14+2p)=14AT*(p), but there exists 4,7 such that
ITHT1+2 )l = 11T (D)llw > 1.

This is a contradiction, which implies /'=@. Hence for each point y=K,,
there exist x& K, and a=T such that

T*py = an. .

Then, defining r and w, by T*yp, = w.(¥)9.», we have w,=T1€D(d,) and 7
is a homeomorphism from K, to K,.

Since T* carries ext®(0,)¥ and {an,:acT, y=K,} onto ext®(d;)¥ and
{an,: acsT, x€K,} respectively, for each ye K,(0,) there exist x=K,(d,) and
ac<T such that
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T*(ﬁy°52> = a7].z:°51(;¢0)'

From this, we see w,& Ker(d:). Defining 7, and w, by T*(5,°0:) := wa(Y)0:y(y»°01,
then 7, is a mapping from K,(d,) to K,(d;). By the same way as in the proof
of the proof of (i) is completed. (ii) follows easily from (i).

We prove the converse statement (2). From the assumption in (2), T is
well-defined as a surjective linear isometry from ®(d,) to ©(d;). Then we have

ITfllo =1 flle and [0xT f)llo = 6:(f)llee,

that is, [|Tfllx=|fllx for all fED@,). From g.r'eDd,) for all g&D@0,), T
is surjective. Thus, all the proofs are completed.

If 1e%(,), refer to Remark 4.5.

REMARK 6.2. Let T be a surjective linear isometry from ©(d,) to D(d,).
From [Theorem 6.1, then |7 fllo=lflle and [|0«(T f)]=0:(/)l for all f&D(3,).
Hence if there exist a surjective linear isometry from ®(d,) to ¥(d,), 6;=0 (=
1, 2) or 0;+#0 (7=1, 2). If 6,=0 (=1, 2), we have a well-known Banach-Stone
theorem.

In [Theorem 6.1, let d be a closed *-derivation in C([0, 1]) such that d ex-
tends d/dt. By the same way as in the proof of Corollary 4.6, we get the
following corollary.

COROLLARY 6.3. Let & be a closed *-derivation in C([0, 1]) such that 0 ex-
tends d/dt. Suppose that the norm of f&D(0) is

1/ s = max (}f e, 10(/)]les).

(1) Let T be a surjective linear isometry of ©(0). Then there exist w, t,,
0. Ker(0) such that |w(x)|=1 for all x<[0, 1], t:=1id+7, is a homeomorphism
of [0, 1], 7'=id+ po, 7:(0)=7,(1)=po(0)=p,(1)=0 and further,

(THx)=wx)fGd+to)(x)  for fE€B0) and x<[0, 1],
or

(Tf)x)=w(x)f(1—Ed+70))(x) for feD(0) and x<[0, 1].

(2) Suppose that there exist w, t,& Ker(0) such that |w(x)|=1 for all x<
[0, 1], z:=id+r7, is a homeomorphism of [0, 1] and f-r, fer'eD(d) for all
f&Ker(d). Then the operators T, and T, on D(0) defined respectively by

(T1f)(x) = w(x)fo({d+7e)(x) for f€D0) and x<[0, 1],
(Tof)(x) = wx)fe(l—=Gd+To))x)  for f&€D0) and x<[0, 1]

are surjective linear isometries of D(0).
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Considering the case that @ is constant and 0=d/d¢ in [Corollary 6.3, we
get the following corollary.

COROLLARY 6.4. Suppose that the norm of feC®([0, 1]) s

1S s = max (1 /ooy 11f"llee).

Let T be a surjective linear isometry of CV([0, 1]). Then T has the following
expression

(TH)(x)=af(z(x))  for feC™([0, 1]) and x<[0, 1]

with T()=a (acT) is a constant and © is one of the two functions id or 1—id.

§7. Extreme points of the closed unit ball of ®(0) with M-norm.

Let K be a compact Hausdorff space and let 0 be a closed *-derivation in
C(K). Extreme points of the closed unit balls of Banach spaces have been
investigated for many concrete spaces by many authors. In this section we
wish to characterize all the extreme points of the closed unit ball of ®(0) with
M-norm, that is,

[l = max (| f [lee, 6()]e)-

The first thing to note is that for f to belong to ext®(d), it is necessary
that ||ffl.=1. For if ||fll.<1, then [|f+(1—|fllo)llxx<1 and

[ =072 +A= 11D+ —A— [/ l=)D},

which implies that f is not extreme. Moreover, if f belongs ®(0); and |f(x)]
=1 for all x&K, then f belongs to ext®(d);. This is because f is already
extreme in C(K). In the situation mentioned above, we describe the other
members of ext D(9),.

THEOREM 7.1. Let K be a compact Hausdorff space and let 0 be a closed
*-derivation with Ker(0)=C1. Let f be an element of D(0) such that || fly=]f]lw
=1 and suppose that [ is not of modulus one everywhere. Then fcext®(0), if
and only if |8(f)x)|=1 (x&€K~M,), where M;:= {x€K: |f(x)|=|fle=1}.

PROOF. We first prove ‘only if’ part. Suppose that there exists x, e K \M;
such that |0(f)(xe)|<1, that is, there exists a>0 such that max(|f(x,)]|,
[0(/)x))<a<l. Let U, := {x&K:max(|f(x)], [6(f)x)|)<a}. Then there
exists f,&®(6) such that

folx) =1 [fox)=0 (x€K\U,) and 0=f,=<l

Moreover, there exists heC®([0, 1]) such that
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0<h(1)<1 and A(0)=hr'0)=0.

Put go:= h(fy). Then g,&®(d) is non-zero and g,=d(g,)=0 on K \U,,. We
choose a real A such that

0 <2< min (1/]|golle, 1/(14110(g0)l))(1—a).
Then we have

If =280/l = max (|| f =280l 10(f +2g0)w) =1,

which implies that f+Ag, belong to ®(d),. Moreover, we have

[ =Q/D){f+ag0)+(f —Ago)}.

Consequently, f<ext®(d), implies that |9(f)|=1 on K~\M;,.
To prove the converse statement, we take fe®(d), such that |fllx=]f

=] and f is not necessarily modulus one everywhere. Suppose further that
[o(f)|=1 on K~\M;. Let

fi=01/2)(g.+8) (81, &ED(0)1).
Clearly,

1= g2 = f on Mf .
Also,
a(f) = (1/2)(0(g1)+0(g2)) .

Hence, from the assumption we have
0(g,) = 0(g2) = 0(f) on K\Mf-
We show that
0(g,) = 0(gs) = o(f) on M,.

To this end, we take and fix arbitrary x<M,. Suppose that there exists an
open neighborhood U, of x such that U,CM,. Then

f—8=0 and f—g,=0 onU,,
which implies
o(f)x) =0(g)(x) and O(f)(x) = d(g)(x).

Next, suppose that for each open neighborhood U, of x=M,, there exists y&
U.N(K~M;). Then there exists a net {x;} in K\M, such that

xyp—>x, 0(f)x;) =0d(g)(x;) and 0(f)(xy) = 6(g:)xr).
Therefore
0(f)(x) = 8(g1)(x) = 0(g:)(x).
Consequently, we have
6(g) =0(g,) =0(f) on K,



252 T. MaTsumor10 and S, WATANABE

that is,
0f—g,) =0 and o(f—g.,) =0 on K.

From our assumption, f—g, and f—g, are constant on K. Since f=g, and
f=g, on M;, we have f=g, and f=g, on K, which implies that f belongs to
ext®(0),. This completes the proof.

REMARK 7.2. In the proof of ‘only if’ part of [Theorem 7.1, the condition
Ker(0)=C1 is unnecessary. However, this condition can not be deleted in ‘if’
part and such example is easily constructed.

As stated in the first paragraph of this section, a unitary element u (that
is, [u(x)|=1 on K) of (), is an extreme point of B();. For a unitary u=dD(d)
it may happen that ||6(#)].>>1, and for a non-unitary u=%(d), d(u) is able to be
unitary. Such examples are easy to find in C®([0, 17). In connection with
this, we present some examples. '

ExAMPLE 7.3. Let K be a compact Hausdorff space and let 0 be a closed
*.derivation in C(K). For any f(=f*)&®D(0) such that |0(f)].=1, there exists
heCO([—1flle Iflls]) such that ||A’'|.<1 and & is of modulus one everywhere.
Then, |A(Hllx=1 and A(f) is unitary, hence hA(f)e extD(),.

EXAMPLE 7.4. Let K be a compact connected Hausdorff space and let § be
a closed *-derivation in C(K) with R(0)=C(K). Then there exist f(=f*) D)
and heCP([—|fle, Iflle]) such that A(f) is non-unitary with ||A(f)l.=1 and
o(h(f)) is unitary. Thus h(f) is in D(0), and h(f) satisfies the condition of
Theorem 7.1. Thus, if the kernel of § is one dimensional C1, A(f) is an ex-
treme point of ®(d),.

Next, we consider a special case with Ker(d)+C1.

PROPOSITION 7.5. Let K=I1UJ] where I and ] are disjoint finite closed
intervals of the real line and let & be a closed *-derivation in C(K). Suppose that
the kernel of 0 is the set of functions which are respectively constant on I and ]J.
Let [ be an element of D(0) such that | flly=|fll-=1 and suppose that f is not
of modulus one everywhere. Then f=ext®(d), if and only if |6(f)(x)|=1 (x&
K\Mg), INM;#@ and JN\M,;# @, where M;:= {xeK: | f(x)|=|f]-=1}.

PrROOF. We first prove ‘only if’ part. From [Theorem 7.1, f<ext®(),
implies that |0(f)|=1 on K~\M,. Suppose that /"M ,=¢@, that is, there exists
b>0 such that b<1-—sup{|f(x)|: x=I}. Put geDO),

g=b on/l and g=0 on J.

Then ||f+g|x<1 and
f=A/{f+g)+(f—2a),
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which implies that f is not extreme. Consequently, f<ext®(d), implies that
18(H)(x)|=1 (x€K\M,), INM,;#@® and JAM,#g.

By the same way as in the proof of the [Theorem 7.1, we get the converse
statement. This completes the proof.

REMARK 7.6. Let K=I\UJ where [ and J are disjoint finite closed intervals
of the real line and let d be the differentiation d/dt in C(K); then é satisfies
the condition of the preceding proposition.
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