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1. Introduction.

The Abhyankar-Moh-Suzuki theorem [AM], [Su] and the Lin-Zaidenberg
theorem [LZ] give a complete classification of polynomial injection of the
complex line $C$ into the complex plane $C^{2}$ . There is also classification of
morphisms of $C$ into $C^{2}$ for which the only singular point of the image is a
node [N]. Since smooth contractible complex algebraic surfaces have a lot in
common with the plane, it is interesting to consider similar questions for them.
There are some results in this direction which we remind now. It is known
that every smooth contractible complex algebraic surface has Kodaira logarithmic
dimension either 1 or 2 [GM], [F] unless this surface is isomorphic to $C^{2}$ .
Zaidenberg proved that there is no polynomial injection of $C$ into a smooth
contractible surface of Kodaira logarithmic dimension 2 [Z]. But it is not so
for contractible surfaces with Kodaira logarithmic dimension 1. Every of these
surfaces contains a curve isomorphic to $C[Z]$ . Miyanishi, Sugie and Tsunoda
[MS], [MT] reproved the result of Zaidenberg in the case Kodaira logarithmic
dimension 2, and in the case of Kodaira logarithmic dimension 1 they showed
that there exists only one contractible curve which, of course, coincides with
the curve we mentioned above. (They do not make the assumption about the
smoothness of this curve).

In this paper we study contractible surfaces of Kodaira logarithmic dimension
$\overline{k}=1$ only. We obtain a powerful generalization of the result of Zaidenberg,
Miyanishi and Sugie. Namely we described all morphisms (not necessarily
injections) from $C$ into such surfaces. Our classification is unexpectedly simple
due to the result of Petrie and tom Dieck who represent some of contractible
surfaces with $\overline{k}=1$ as hypersurface in $C^{3}[PtD]$ . Moreover, using the same
approach we obtain a complete classification of morphisms from a once-punctured
Riemann surface into a contractible surface $W$ with $\overline{k}(W)=1$ (section 3). From
this result follows that the Abhyankar-Singh property [AS] holds for $W,$ $i.e.$ ,
if $f$ is a regular function on $W$ whose zero fiber is isomorphic to a once-punctured
Riemann surface then every fiber of $f$ has one puncture only.
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We cannot obtain a similar result for morphisms from $c*$ into a smooth
contractible surface with $\overline{k}=1$ , but we study the case when these morphisms
depend holomorphically on a parameter. This enables us to classify all morphisms
from contractible surfaces with $\overline{k}=1$ into contractible surfaces with $\overline{k}=1$ (Theo-

rems 6.2, 6.4). As a result we can strengthen the theorem from $[PtD]$ which
says that there is no nontrivial automorphism of a smooth contractible surface
$W$ with $\overline{k}(W)=1$ . Actually, there is no nontrivial nondegenerate morphism from
$W$ into itself.

2. Preliminaries.

From now on $n$ and $m$ will be always coprime natural numbers satisfying
$1<m<n$ . Let $h_{n.m}$ be the polynomial on $C^{2}$ with coordinates $(x, y)$ defined by
$h_{n.m}(x, y)=(x+1)^{n}-(y+1)^{m}$ . Put $f_{n.m}(x, y, z)=h_{n.m}(xz, yz)/z$ . Consider the
hypersurface $V(n, m)=\{(x, y, z)\in C^{8}|f_{n.m}(x, y, z)=1\}$ . Then $V(n, m)$ is a con-
tractible surface of Kodaira logaritbmic dimension 1 $[PtD]$ . It contains a line
$L_{n,m}$ which coincides with the zeros of the function $z$ on $V(n, m)$ . We shall
need the following fact which may be extracted from ( $[PtD]$ , pp. 150-151).

LEMMA 2.1. The surface $V(n, m)$ is isomorphic to the complement of the
proper transform of the curve $\{(u, v)\in C^{2}|u^{n}-v^{m}=0\}$ in the blow-uP of $C^{2}$ at the
$p\alpha ntp=(1,1)$ . For every cmtractible surface $W$ of Kodaira logarithmic dimen-
ston 1 there exists a unique pair $(n, m)$ such that

(1) urther $W$ is isomorphic to $V(n, m)$ or
(2) $W$ can be obtained by the following procedure. Let $\rho=\rho_{J^{\circ}}\cdots\circ\rho_{1}$ : $\overline{W}arrow$

$V(n, m)$ be a blow-up of $V(n, m)$ at a Poznt $q\in L.,$ . and infinitely near points
and such that the center of the blow-up $\rho_{i}$ lies on the $excepti\theta n$ divisor of $\rho_{i-1}$

for $i\geqq 2$ . Then $W$ coincrdes with the complement of the ProPer transform in $\overline{W}$

of the curve $(\rho_{j-1}\circ\cdots\circ\rho_{1})^{-1}(L_{n.m})$ under the blow-up $\rho j$ . $\square$

DEFINITION 2.1.1. Let $W$ be the same is in the previous lemma. Then we
say that the contractible surface $W$ is of type $(n, m)$ .

Denote by $\rho_{W}$ the restriction of $\rho$ to $W$ in case (2) and the identical mapping
in case (1). Put $L_{W}=\rho_{W^{1}}^{-}(L_{n.m})$ . Then $L_{W}$ is a line and the restriction of $\rho_{W}$

to $W-L_{W}$ is an isomorphism between $W-L_{W}$ and $V(n, m)-L_{n.m}$ . Put $u=1+xz$

and $v=1+yz$ . The following fact is clear.

LEMMA 2.2. The image of $V(n, m)$ under the mapping $\tau_{n.m}$ $:=(u, v)$ is
$(C^{2}-\Gamma_{n.m})\cup p$ where $\Gamma_{n.m}$ is the curve $\{(u, v)\in C^{2}|u^{n}-v^{m}=0\}$ and the Pmnt
$p=(1,1)\in\Gamma_{n.m}$ . Moreover, $\tau_{n.m}(L_{n.m})=p$ and $\tau_{n.m}(V(n, m)-L_{n.m})=C^{2}-\Gamma_{n.m}$ .

$\square$
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Put $\tau_{W}=\tau_{n.m}\circ\rho_{W}$ . Then Lemmas 2.1 and 2.2 imply

COROLLARY 2.3. $\tau_{W}(W)=(C^{2}-\Gamma_{n.n})\cup P,$ $\tau_{W}(L_{W})=p$ , and the restriction of
$\tau_{W}$ to $W-L_{W}$ is an isomorphism between $W-L_{W}$ and $C^{2}-\Gamma_{n,m}$ . $\square$

We would like to emphasize one important property of functions $z,$ $u,$ $v$ on
$V(n, m):z=u^{n}-v^{m}$ . This implies that the function $z_{W}$ $:=z\circ\rho_{W}$ coincides with
$(u^{n}-v^{m})\circ\tau_{W}$ .

Note that there is a $c*$-action $G_{n,m}$ on $C^{2}-\Gamma_{n.m}$ given by $(u, v)arrow(\lambda^{m}u, \lambda^{n}v)$

where $\lambda\in C^{*}$ . The pullback of $G_{n.m}$ to $W-L_{W}$ will be denoted by $G_{W}$ . This
action $G_{W}$ cannot be extended to $L_{W}$ since $p$ is not invariant under $G_{n.m}$ . On
the other hand the mapping $W-L_{W}arrow(W-L_{W})/G_{W}\cong C$ can be extended to a
morphism $\Phi_{W}$ : $Warrow CP^{1}$ where $\Phi_{W}^{-1}(\infty)=L_{W}$ . We shall fix all the notation of
this section for the rest of the paper.

3. Morphisms from once-punctured Riemann surfaces.

First we shall discuss some simple facts about plane curves.

LEMMA 3.1. There is no closed plane affine algebraic curve $R$ which meets
$\Gamma_{n,m}$ at $p=(1,1)$ only.

PROOF. Assume the contrary. Let $R$ be the zero fiber of a polynomial
$P(u, v)$ , and let $g:Carrow\Gamma$ be the normalization of $\Gamma_{n.m}$ . One may suppose that
the coordinate form of $g$ is $g(t)=(t^{m}, t^{n})$ . Since $p=g(1)$ and $R\cap\Gamma_{n.m}=p$ , the
polynomial $P\circ g$ has the only zero at 1, $i.e.,$ $P\circ g=(t-1)^{\iota}$ up to a constant factor.

On the other hand $P\circ g$ is an element of the algebra generated by $t^{n}$ and $t^{m}$ .
Hence the derivative of $P\circ g$ at $t=0$ is zero, but it is not so for the function
$(t-1)^{l}$ . This contradiction implies the desired conclusion. $\square$

Recall that a compact Riemann surface without a point is called a once-
punctured Riemann surface.

LEMMA 3.2. Let $S$ be an algebraic curve which is homeomorphic to $a$ once-
punctured Riemann surface, and let $f:Sarrow W$ be a morphism. Then the function
$z_{W}$ is constant on $f(S)$ .

PROOF. Put $h=\tau_{W}\circ f$ . Since $z_{W}$ coincides with the function $z\circ\tau_{W}$ (recall

$z=u^{n}-v^{m})$ it suffices to show that $z$ is constant on $R=h(S)$ . Note that $R$

must be closed since $S$ is once-punctured. If $z|_{R}\neq const$ then $R$ meets $\Gamma_{n.m}$ .
Since $R\subset\tau_{n.m}(V_{n.m})=(C^{2}-\Gamma_{n.7n})\cup p$ , we have $R\cap\Gamma_{n,m}=p$ . This contradicts
Lemma 3.1 and we are done. $\square$

REMARK. Using notation of the previous lemma consider two cases:
$z_{W}|_{f(S)}=0$ and $z_{W}|_{f(S)}=const\neq 0$ . In the first case, clearly, $f(S)\subset L_{W}$ . In the
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second case $f(S)$ is contained in a nonzero fiber of $z_{W}$ which is isomorphic to
the curve $F_{n.m}=\{(u, v)|u^{n}-v^{m}=1\}$ . Note that $F_{n.m}$ is once-punctured and has
positive genus.

COROLLARY 3.3. For every nonconstant morphism $f:Carrow W$ the image of $C$

is contained in $L_{W}$ . In particular, $L_{W}$ is the only contractible curve in $W$ .
PROOF. Suppose that $z_{W}|_{f(c)}\neq 0$ . Then $f$ generates a mapping from $C$ into

the surface $F_{n.7n}$ from the remark above. Since the genus of $F_{n.m}$ is positive
this mapping must be constant. Hence $f(C)$ is contained in the zero fiber of
$z\circ p_{W}$ which is $L_{W}$ . $\square$

4. Some properties of morphisms from $c*$ .
LEMMA 4.1. Let $f:C^{*}arrow W-L_{W}$ be a morphism. Then $f(C^{*})$ is contained

in an orbit of the action $G_{W}$ .

PROOF. Since $G_{W}$ is generated by $G_{n.m}$ it is enough to prove that for every
morphism $g:C^{*}arrow C^{2}-\Gamma_{n.m}$ the image is contained in the orbit of $G_{n,m}$ . The
function $z=u^{n}-v^{\tau n}$ makes $C^{2}-\Gamma..m$ a fibration over $c*$ whose fibers are iso-
morphic to $F_{n.m}$ where $F_{n.m}$ is isomorphic to the curve $\{(u, v)\in C^{2}|u^{n}-v^{m}=1\}$ .
This fibration is not a direct product and its monodromy has order $nm$ . Con-
sider $Y=\{(u, v, \zeta)\in C^{3}|(u, v)\not\in\Gamma_{n.m}, \zeta^{nm}=u^{n}-v^{m}\}$ and the natural projection
$\pi:Yarrow C^{2}-\Gamma_{n.m}$ . The function $\zeta$ makes $Y$ a fibration over $c*$ with fiber $F_{n.m}$ ,
and $Y$ can be already identified with the direct product $c*\cross F_{n,m}$ . The natural
$c*$-action on this direct product is the pullback of $G_{n,m}$ . Its orbits are $C^{*}\cross q$ ,
where $q\in F_{n.m}$ and $\pi(C^{*}\cross q)$ is an orbit of $G_{n,m}$ .

Since $\pi$ is a covering there exists a mapping $h:C^{*}arrow Y$ such that $\pi\circ h(t)=$

$g(t^{nm})$ . Since $Y$ is the direct product $h$ generates two morphisms $h_{1}$ : $C^{*}arrow C^{*}$

and $h_{2}$ : $C^{*}arrow F_{n,m}$ . But the genus of $F_{n.m}$ is positive, and thus $h_{2}$ is constant.
Hence $h(C^{*})\subset C^{*}\cross q$ for some $q\in F_{n.m}$ which implies the desired conclusion. $\square$

Let $\psi:C^{*}arrow W$ be a morphism. Put $\varphi=\tau_{W}\circ\psi$ . There are two possibilities:
either $\varphi(C^{*})$ is a closed curve or it is not. In the first case we can apply
Lemma 3.1. In the second case one may suppose that $\varphi$ may be extended to
$C$ . If $\varphi(0)\not\in\Gamma_{n.m}$ or $\varphi(0)=p$ we can again apply Lemma 3.1 to $\varphi(C)$ . Thus the
only difficult case is when $\varphi(0)\in\Gamma_{n,m}-p$ .

LEMMA 4.2. Let $g:Carrow\Gamma_{n,m}$ be the normalization of $\Gamma_{n.m}$ pven by $tarrow$

$(t^{m}, t^{n})$ . Let $\varphi:Carrow C^{2}$ be a morphism such that $\varphi(C)$ meets $\Gamma_{n.m}$ at $p$ and at
another Point $p_{0}$ only. SuPPose that the curve $\varphi(C)$ is the zero fiber of an
irreducrble polynomial $P(u, v)$ . Then

(1) $P\circ g(t)=t^{k}(t-1)^{l}$ when $m>2$ . In Particular, $p_{0}$ is the origin.
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(2) $P\circ g(t)$ is either $t^{k}(t-1)^{l}$ or $(t^{2}-1)^{k}$ when $m=2$ and $n>3$ . In particular,
$p_{0}$ is urther the origin or $(1, -1)$ ;

(3) $P\circ g(t)$ is one of the polynomials $t^{k}(t-1)^{\iota},$ $(t^{2}-1)^{k},$ $(t-1)^{k}(t+l/k)^{\iota}$ when
$(n, m)=(3,2)$ . In particular $p_{0}$ belongs to a discrete subset of $\Gamma_{3,2}$ .

PROOF. Suppose $g(-a)=p_{0}$ . Since $P\circ g$ is zero at 1 and $-a$ only, then
$P\circ g(t)=(t-1)^{k}(t+a)^{\iota}$ up to a constant factor. On the other hand $P\circ g$ belongs
to the algebra generated by $t^{m}$ and $t^{n}$ , i.e., its derivative at $0$ is $0$ . Suppose
that $a\neq 0$ . Then $[(t-1)^{k}(t+a)^{\iota}]’=0$ for $t=0$ only when $a=l/k$ which implies
case (3). In case (1) the second derivative of $P\circ g$ at $t=0$ is also $0$ . The direct
computation shows that the second derivative of $(t-1)^{k}(t+l/k)^{l}$ is nonzero for
$t=0$ . This implies case (1). In case (2) similar consideration of the third
derivative implies the desired conclusion. $\square$

5. Families of morphisms from $c*$ .
It is difficult to describe all morphisms from $c*$ into a contractible surface

of Kodaira logarithmic dimension 1. But if we deal with a family of morphisms
from $c*$ we can extract some information which is the purpose of this section.

LEMMA 5.1. Let $\Delta_{\epsilon}=\{\zeta\in C||\zeta|<\epsilon\}$ for posrtive $\epsilon,$
$\Delta=\Delta_{1},$ $\Delta^{*}=\Delta-\{0\}$ , let

$\pi:\Delta\cross Carrow\Delta$ be the natural projection, and let $\varphi:\Delta^{*}\cross Carrow C^{2}$ be a regular map-
ping with the following properties:

$-\varphi_{\zeta}(0)=p_{0}\in\Gamma_{n.m}$ for every $\zeta\in\Delta^{*}$ where $\varphi c$ is the restriction of $\varphi$ to the line
$\pi^{-1}(\zeta)$ and $p_{0}\neq p=(1,1)$ ,

-for every $\zeta\in\Delta^{*}$ the curve $\varphi c(C^{*})$ meets $\Gamma_{n.m}$ at the point $P$ only.
Denote by $R$ the curve $\varphi^{-1}(p)$ . Suppose that $\overline{R}\cap\pi^{-1}(0)$ is not empty where $\overline{R}$ is
the closure of $R$ in $\Delta\cross C$. Then $\overline{R}\cap\pi^{-1}(\Delta_{\text{\’{e}}})$ is relatively compact in $\Delta\cross C$ when
$\epsilon>0$ is sufficiently small.

PROOF. Assume the contrary. Let $(\zeta, t)\in R\cap\pi^{-1}(\Delta_{\epsilon}^{*})$ . Then we may treat
$t$ as a multi-valued function of $\zeta$ . Reducing $\epsilon$ and replacing $\zeta$ by $\zeta‘/\iota$ for some
natural $l$ , if necessary, one may suppose that this multi-valued function is
actually the union of $k$ single-valued functions $t_{1}(\zeta),$

$\cdots,$
$t_{k}(\zeta)$ . The absence of

relative compactness just means that $t_{i}(\zeta)$ has a pole at $0$ for some $i$ (say $i=1$ ).

Let $\varphi_{\zeta}=(f_{\zeta}, g_{\zeta})$ where $f_{\zeta},$
$g_{(}$ are polynomials. Consider the regular mapping

$\overline{\varphi}$ : $\Delta^{*}\cross Carrow C^{2}$ such that its restriction to the line $\pi^{-1}(\zeta)$ is given by $\varphi c(t)=$

$(\tilde{f}_{\zeta}(t),\tilde{g}_{\zeta}(t))$ where $\tilde{f}_{\zeta}(t)=f_{\zeta}(t+t_{1}(\zeta))$ and $\tilde{g}_{C}(t)=g_{\zeta}(t+t_{1}(\zeta))$ . In particular, $\tilde{\varphi}\zeta(0)=p$ .
Consider the three possibilities:

(1) $\tilde{\varphi}_{0}=\lim_{\zetaarrow 0\tilde{\varphi}c}$ exists and it is different from a constant,
(2) this limit does not exist,
(3) $\tilde{\varphi}_{0}$ exists and it is constant.
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(1). Put $S=\tilde{\varphi}_{0}(C)$ . Assume that $S\neq\Gamma_{n,m}$ and that $\tilde{\varphi}_{0}(t^{0})=P_{1}\in\Gamma_{n.m}$ for
some $r^{0}\in C$ where $p_{1}\neq p$ . By the Hurwitz theorem, there exists $t^{1}(\zeta)$ such that
$\tilde{\varphi}\zeta(t^{1}(\zeta))=p(\zeta)\in\Gamma_{n.m}-p$ when $|\zeta|$ is sufficiently small. Moreover, $t^{1}(\zeta)arrow t^{0}$ as
$\zetaarrow 0$ . On the other hand $\tilde{\varphi}c(t)\in\Gamma_{n.m}-P$ only when $t=-t_{1}(\zeta)$ , i.e., $t^{1}(\zeta)=-t_{1}(\zeta)$ .
It cannot be so, since $|t_{1}(\zeta)|arrow\infty$ as $\zetaarrow 0$ . Hence $S\cap\Gamma_{n,m}=p$ . But this con-
tradicts Lemma 3.1.

NOW let $S=\Gamma_{n.m}$ . Then for some $t^{0}\in C$ the point $\tilde{\varphi}_{0}(t^{0})$ is the origin $0\in C^{2}$ .
Since $0$ is a singular point of $\Gamma_{n,m}$ then, by [Proposition 2.2, $Z$], for small $|\zeta|$

there exists $t^{1}(\zeta)$ such that $t^{1}(\zeta)arrow t^{0}$ as $\zetaarrow 0$ and $\tilde{\varphi}c(t^{1}(\zeta))\in\Gamma_{n.m}-p$ . The same
argument as above shows that $t^{1}(\zeta)=-t_{1}(\zeta)$ , but it cannot be so since $|t_{1}(\zeta)|arrow\infty$

as $\zetaarrow 0$ .
(2). Suppose that $f_{\zeta}(t)=\Sigma_{i=0}^{s}a_{i}(\zeta)t^{i}$ and $g_{C}(t)=\Sigma_{i=0}^{r}b_{i}(\zeta)t^{i}$ . Since $\varphi$ is regular,

the functions $a_{i}(\zeta)$ and $b_{i}(\zeta)$ have no essential singularities at $0$ . Let $\tilde{f}_{\zeta}(t)=$

$\Sigma_{i=0}^{s}a_{i}(\zeta)t^{i}$ and $\tilde{g}_{\zeta}(t)=\Sigma_{i=0}^{r}5_{i}(\zeta)t^{i}$ . Recall that $t_{1}(\zeta)$ has a pole at $0$ . Hence, by
construction, functions $\overline{a}_{i}$ and $\tilde{b}_{i}$ have at most poles at $0$ . In fact one of these
functions must have a pole since $\lim_{\zetaarrow 0\tilde{\varphi}\zeta}$ does not exist. Note also that
$\tilde{a}_{0}(\zeta)=\tilde{b}_{0}(\zeta)=1$ since $\tilde{\varphi}\zeta(0)=P$ . Let $k_{i}$ be $0$ when $\tilde{a}_{i}$ has a removable singularity
at $0$ , and let it be the order of the pole of $\tilde{a}_{i}$ at zero otherwise. Similarly, $l_{i}$

is $0$ when $\tilde{b}_{i}$ has a removable singularity at $0$ , and it is the order of the pole
of $\tilde{b}_{i}$ at $0$ otherwise. Put $\alpha=\max\{k_{i}/i, l_{j}/j|i=1, \cdots, s;j=1, , r\}$ . Then $\alpha$

is positive rational number of form $k/l$ (where $k$ and $l$ are integers) and,
replacing $\zeta$ by $\zeta^{l/l}$ , one may suppose that $\alpha$ is integer. Consider $\prime t=t\zeta^{-a}$ . Then
$(\zeta, \prime t)$ is a new coordinate system on $\Delta^{*}\cross C$ which provides the embedding of
this manifold into another sample of $\Delta\cross C$ . In this new coordinate system

denote by $’\tilde{\varphi}\zeta(’t)$ the restriction of $\tilde{\varphi}$ to the fiber $\pi^{-1}(\zeta)$ . Every holomorphic
function $h( \zeta, t)=\sum c_{i}(\zeta)t^{i}$ on $\Delta^{*}\cross C$ may be rewritten in the new coordinate
system as $\sum c_{i}(\zeta)\zeta^{la}(’t)^{i}$ . Applying this observation to the coordinate functions
of the mapping $’\tilde{\varphi}_{C}$ one can see that this mapping has limit when $\zetaarrow 0$ and,
moreover, $\lim_{\zetaarrow 0’\tilde{\varphi}\zeta}$ is not constant. Note also that the function $t_{1}(\zeta)=t_{1}(\zeta)\zeta^{-\alpha}$

still has a pole at $0$ . Therefore, we have reduced case (2) to case (1).

(3). Since $\tilde{\varphi}_{0}$ is constant $a_{i}(0)$ and $5_{i}(0)$ are zero for $i>0$ . Consider $\prime\prime t=t\zeta^{\beta}$

where $\beta$ is a positive rational number. Consider the restriction of $\varphi$ to $\pi^{-1}(\zeta)$

as a function of $\prime\prime t$ which is denoted by $\prime\prime\tilde{\varphi}c(’’t)$ . Following the scheme of (2)

one may suppose that $\beta$ is integer and that $\prime\prime\tilde{\varphi}_{0}=lim_{\zetaarrow 0’’\tilde{\varphi}\zeta}$ exists and is different
from a constant mapping. When we change $t$ to $\prime\prime t$ the function $t_{1}(\zeta)$ must be
replaced by $\prime t_{1}(\zeta)=t_{1}(\zeta)\zeta^{\beta}$ . If $\prime\prime t_{1}(\zeta)$ has a pole at $0$ then the same argument as
in (1) implies that this case cannot hold. Assume that $\prime t_{1}$ has a removable
singularity at $0$ . Then $’\tilde{\varphi}_{0}(-\prime\prime t_{1}(0))=Po$ by construction. On the other hand
some point $(0, t_{0})$ in the old coordinate system $(\zeta, t)$ belongs to $\overline{R},$ $i.e.$ , in every
neighborhood of this point there are points from $R$ . When we switch from



Contractible surfaces of Kodaira logarithmic dimension 1 803

$(\zeta, t)$ to $(\zeta, \prime\prime t)$ these points will appear in every neighborhood of $(0, -\parallel t_{1}(0))$

since the limits of $(t_{0}-t_{1}(\zeta))\zeta^{\beta}$ and $-t_{1}(\zeta)\zeta^{\beta}$ are the same when $\zetaarrow 0$ . Hence
$’\tilde{\varphi}_{0}(-\chi t_{1}(0))=p$ . Contradiction. $\square$

LEMMA 5.2. Let $S$ be a smooth algebraic curve, let $X$ be a smooth algebraic

surface admitting a morphism $\pi:Xarrow S$ whose fibers are isomorphic to C. SuPPose
that $h$ : $Sarrow X$ is a section (i.e., $\pi\circ h=id$ ) and $\varphi$ : $Xarrow C^{2}$ is a morphism such that

$-\varphi(h(S))=p_{0}\in\Gamma_{n}m$ where $p_{0}\neq p$ ,

-the intersection of $\varphi(X-h(S))$ and $\Gamma_{n,m}$ consists of the Point $p$ only.
Then $\varphi(X)$ is a curve.

PROOF. Put $R=\varphi^{-1}(p)$ . Removing some points from $S$ and the correspond-
ing fibers from $X$ , if necessary, one may suppose that $\pi|_{R}$ : $Rarrow S$ is a finite
morphism. The curve $R$ consists of components $R_{1},$ $R_{2},$

$\cdots,$
$R_{k}$ . Let $S_{1}arrow R_{1}$

be a normalization of $R_{1}$ and let $\nu:S_{1}arrow S$ be the composition of this normali-
zation and $\pi$ . Consider $X_{1}=X\otimes_{S}S_{1}$ . Then we have a section $h_{1}$ : $S_{1}arrow X_{1}$ and
a natural morphism $\varphi_{1}$ : $X_{1}arrow C^{2}$ so that this pair $(h_{1}, \varphi_{1})$ has the same properties
as the pair $(h, \varphi)$ . It suffices to prove that $\varphi_{1}(X_{1})$ is a curve. Replace $S,$ $X,$ $h$ ,

$\varphi$ by $S_{1},$ $X_{1},$ $h_{1},$
$\varphi_{1}$ . The advantage of this procedure is that one may suppose

that $\pi|_{R_{1}}$ : $R_{1}arrow S$ is an isomorphism, $i.e.$ , we have the second section $h^{1}$ : $Sarrow X$

so that $h^{1}=(\pi|_{R_{1}})^{-1}$ . Hence we can consider $X$ as the direct product $C\cross S$ where
$O\cross S=h(S)$ and $1\cross S=h^{1}(S)$ . Note that for $i\geqq 2$ each R. may be treated the
graph of a multl-valued holomorphic function $\psi_{i}$ on $S$ . Let $\overline{S}$ be a smooth
compactification of $S$ , then $\overline{S}-S$ consists of a finite number of points $s_{1},$ $\cdots,$ $s_{l}$ .
Consider a neighborhood $U$ of $s_{j}$ such tbat $U-s_{j}$ is isomorphic to a once-
punctured disc $\Delta^{*}$ . Applying Lemma 5.1 to the restriction $\varphi$ to $\pi^{-1}(U-s_{j})$ one
can see $\psi_{i}$ may be extended to $s_{j}$ , by the Riemann theorem about removing
singularities. Hence we obtain a multi-valued holomorphic function on $\overline{S}$ which
must be constant due to the maximum principle. This implies that $R_{i}=t_{i}\cross S$

for some $t_{i}\in C$. Consider a generic point $s\in S$ and a local coordinate $\zeta$ on $S$ in
a neighborhood of $s$ . Put $\varphi_{\zeta}$ equal to the restriction of $\varphi$ to $\pi^{-1}(\zeta)$ . Then
$\varphi_{\zeta}=(f_{\zeta}, g_{\zeta})$ , where $f_{\zeta},$ $g_{\zeta}\in C[t]$ . Since $\varphi_{\zeta}(C)$ meet $\Gamma_{n,m}$ when $t=0,1,$ $t_{2},$ $\cdots$ , $t_{k}$

only, $f_{\zeta}^{n}(t)-g_{\zeta}^{m}(t)=\lambda(\zeta)q(t)$ where $q\in C[t]$ and has roots at $0,1,$ $t_{2}$ , , $t_{k}$ only,
and $\lambda(\zeta)$ is a holomorphic function. Since $s$ is generic one may suppose that
$\lambda(\zeta)\neq 0$ . Put $\tilde{f}_{\zeta}=f_{\zeta}/\lambda^{/n}$ and $\tilde{g}_{\zeta}=g_{\zeta}/\lambda^{1/m}$ , then $\tilde{f}_{\zeta}^{n}(t)-\tilde{g}_{\zeta}^{m}(t)=q(t)$ . We shall show
that $\tilde{f}_{\zeta},\tilde{g}\zeta$ do not depend on $\zeta$ . Let $\hat{f}_{\zeta},\hat{g}_{\zeta}$ be the derivatives of $\tilde{f}_{\zeta},\tilde{g}_{\zeta}$ with
respect to $\zeta$ . Since $s$ is generic, $\deg\hat{f}_{\zeta}=\deg\tilde{f}_{\zeta}=const$ and $\deg\tilde{g}_{\zeta}=\deg\hat{g}_{\zeta}=const$ .
Note that $n\hat{f}_{\zeta}\tilde{f}_{\zeta}^{n-1}-m\hat{g}_{\zeta}\tilde{g}_{\zeta}^{m-1}=0$ . Suppose that $\tilde{f}_{\zeta}$ and $\tilde{g}_{\zeta}$ are relatively prime.
Assume that $\hat{f}_{(},\hat{g}_{\zeta}$ are not identically zero. Then $\deg$ fcl $(m-1)\deg\tilde{g}\zeta$ and
$\deg\hat{g}_{(}\geqq(n-1)\deg\tilde{f}_{\zeta}$ which is impossible. Thus $\tilde{f}_{\zeta},\tilde{g}\zeta$ does not depend on $\zeta$ in
this case.
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When $\tilde{f}_{\zeta}$ and $\tilde{g}_{C}$ are not relatively prime, $f_{\zeta}$ and $g_{\zeta}$ have common zeros
and $\varphi_{C}(C)$ contains the origin $(0,0)\in\Gamma$ . Hence $p_{0}$ is the origin. Since $p_{0}\not\in\varphi_{\zeta}(C^{*})$

we see the common zero of $\tilde{f}_{\zeta}$ and $\tilde{g}_{C}$ is $0$ only. This implies that $\tilde{f}_{\zeta}(t)=\overline{f}_{\zeta}(t)t^{\alpha}$

and $g_{\zeta}(t)=g_{C}(t)t^{\beta}$ where $\overline{f}_{\zeta},\overline{g}_{C},$ $t$ are pairwise relatively prime.
Since $s$ is generic, $f_{\zeta}(t)=f_{\zeta}(t)t^{a}$ and $\hat{g}_{C}(t)=\check{g}\zeta(t)t^{\beta}$ . Hence $n\check{f}_{\zeta}(t)\overline{f}_{\zeta}^{n-1}(t)t^{n\alpha}-$

$m\check{g}_{C}(t)\overline{g}_{\zeta}^{m-1}(t)t^{m\beta}=0$ . Put $r=n\alpha-m\beta$ . Without loss of generality suppose that
$r\geqq 0$ . Since $\deg\check{f}_{\zeta}=\deg\overline{f}_{\zeta}$ and $\deg\check{g}_{C}=\deg\overline{g}_{C}$ when $\hat{f}_{(},\hat{g}_{\zeta}\neq 0$ we have $\deg\overline{g}_{C}\geqq$

$(n-1)\deg\overline{f}+r$ and $\deg\overline{f}\geqq(m-1)\deg\overline{g}_{C}$ . Hence $\deg\overline{g}_{C}\geqq(n-1)(m-1)\deg\overline{g}_{C}+r$

and $\deg-\zeta\geqq(n-1)(m-1)\deg\overline{f}_{\zeta}+(m-1)r$ , which is impossible. Thus $\hat{f}_{\zeta},\hat{g}_{\zeta}=0$

again and $\tilde{f}_{\zeta},\tilde{g}\zeta$ do not depend on $\zeta$ . Put $\tilde{f}=\tilde{f}_{\zeta},\tilde{g}=\tilde{g}_{C}$ . Then $f_{\zeta}=\lambda(\zeta)^{1/n}\tilde{f}$ and
$g_{(}=\lambda(\zeta)^{1/m}\tilde{g}$ . This implies that $\lambda\equiv const$ (otherwise $\varphi c(1)$ cannot be $p=(1,1)$ for
each $\zeta$). Therefore, $f_{\zeta}$ and $g\zeta$ do not depend on $\zeta$ and we are done.

LEMMA 5.3. Let $Y$ be an algebraic surface, let $S$ be a smooth algebraic
curve, and let $\nu:Yarrow S$ be a morphism such that its generic fibers are $c*$ . SupPose
that $\psi:Yarrow W$ is a morPhism into contractible surface $W$ with $\overline{k}(W)=1$ . Then
either $\psi$ is degenerate or for every $s\in S$ the set $\psi(\nu^{-1}(s))$ is contained in a fiber
of a function $\Phi_{W}$ on $W$ (see Preliminanes for notation).

PROOF. Suppose that $\psi(\nu^{-1}(s))$ is contained in a fiber of $\Phi_{W}$ for a generic
$s\in C$. Then we have a morphism $x=\Phi_{W^{\circ}}\psi\circ\nu^{-1}$ : $S-\{s_{1}$ , $\cdot$ .., $s_{l}\}arrow CP^{1}$ where the
fibers $\nu^{-1}(s_{1}),$ $\cdots$ , $\nu^{-1}(s_{l})$ are singular. Let $\overline{S}$ be a smooth completion of $S$ . Then
one can extend $\chi$ to a morphism 2: $\overline{S}arrow CP^{1}$ due to the Riemann theorem about
deleting singularities. Hence $\psi(\nu^{-1}(s_{i}))$ is contained in a fiber $\Phi_{W^{1}}^{-}(\overline{x}(s_{i}))$ of $\Phi_{W}$ .
This argument enables us to consider generic fibers of $\nu$ only. That is why

from now on we suppose that every fiber of $\nu$ is generic and therefore, is
isomorphic to $c*$ . Moreover, we suppose that if $\psi(\nu^{-1}(s))$ is contained in a fiber
of $\Phi_{W}$ , this fiber is different from $L_{W}=\Phi_{W}^{-1}(\infty),$ $i.e.,$ $\psi(\nu^{-1}(s))$ is contained in an
orbit of $G_{W}$ .

Let $\overline{Y}$ be a completion of $Y$ for which the divisor $\overline{Y}-Y$ is of normal
crossing type. By Hironaka’s theorem, we may suppose that there is an exten-
sion V: $\overline{Y}arrow\overline{S}$ of $\nu$ . Due to the remark about generic fibers one may also
suppose that $\overline{\nu}^{-1}(s)$ is isomorphic to $CP^{1}$ for every $s\in S$ , and $\overline{\nu}^{-1}(S)-Y$ consists
of either two disjoint smooth curves $R_{0}$ and $R_{\infty}$ or a smooth curve $S_{1}$ such that
$\overline{\nu}|s_{1}$ is a 2-sheeted covering. Replacing $S$ and $Y$ by $S_{1}$ and $Y\otimes_{S}S_{1}$ respectively,
we can reduce the second possibility to the first one. Clearly, the restrictions
$\overline{\nu}|_{R_{0}}$ and $\overline{\nu}|_{R_{\infty}}$ give isomorphisms between $R_{0}$, R.., and $S$ . For a generic $s$ put
$\overline{T}=\overline{\nu}^{-I}(s)$ , $T=\nu^{-1}(s)$ , $t_{0}=R_{0}\cap\overline{T}$ , and $t_{\infty}=R_{\infty}\cap\overline{T}$ . Consider $\varphi=\tau_{W}\circ\psi:Yarrow C^{2}$ .
Suppose that $\varphi$ is not constant.

If $\varphi(T)$ is a closed curve in $C^{2}$ then $\psi(T)\subset W-L_{W}$ , by Lemma 3.1, and,

therefore, $\psi(T)$ is contained in an orbit of $G_{W}$ , by Lemma 4.1. The argument
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about generic fibers in the beginning of this proof implies the statement of
Lemma in this case.

NOW let $\varphi(T)$ is not a closed curve. This means that $\varphi$ can be extended
to either $T\cup t_{0}\simeq C$ or $T\cup t_{\infty}\approx C$ (say, to $T\cup t_{0}$ ). If $\varphi(t_{0})\not\in\Gamma_{n.m}$ or if $\varphi(t_{0})=p$

then $\varphi(C)$ is a closed curve which meets $\Gamma_{n.m}$ at $p$ only. This contradicts
Lemma 3.1. Hence $\varphi(t_{0})=p_{0}\in\Gamma_{n,m}-p$ . If $\varphi(T)\ni p$ , then $\psi(T)\subset W-L_{W}$ . Again
$\psi(T)$ is contained in an orbit of $G_{W}$ , by Lemma 4.1, and the argument from
the beginning of the proof works. Thus we have to consider the case when
$p\in\varphi(T)$ . Since $\varphi(C)$ contains now $p$ and $p_{0}$ , we see that $p_{0}$ belongs a discrete
subset of $\Gamma_{n,m}$ , by Lemma 4.2. Hence $p_{0}$ is independent of $s$ (recall $T=\nu^{-1}(s)$).

Put $X=\overline{\nu}^{-1}(S)-R_{\infty}$ . Then we may extend $\varphi$ to $X$ (use the same letter $\varphi$ for
this extension), since we have supposed that all fibers of $\nu$ and $\overline{\nu}$ over $S$ are
generic. Put $h=(\nu|_{R_{0}})^{-1}$ and $\pi=\overline{\nu}|_{X}$ . Note that $h:Sarrow X$ is a section such
that $\varphi(h(S))=p_{0}$ . Hence the data $X,$ $S,$ $\pi,$ $\varphi,$

$h$ satisfies Lemma 5.2. Tbus $\varphi(X)$

is a curve and $\psi$ is degenerate. $\square$

We shall also need some information about non-generic fibers in a family
of morphisms from $c*$ to $W$ , which is given in the next two lemmas.

LEMMA 5.4. Let $Y$ be a Stein surface, let $\nu:Yarrow\Delta$ be a surjective mapping
every fiber of which is biholomorPhic to $c*$ , let $\psi:Yarrow C^{*}$ be a holomorphic
maPffing, and let $\psi_{s}$ be the restnction of $\psi$ to $\nu^{-1}(s)$ for $s\in\Delta$ . Suppose that $\psi_{s}$

has no essential srngularities at $0$ and $\infty$ . Then $\psi_{0}$ is a constant mapping iff $\psi_{s}$

is constant for every $s\in\Delta$ .

PROOF. Without loss of generality one may suppose that all nonzero fibers
of $\nu$ are generic. Choose a coordinate on the zero fiber so that $0$ and $\infty$ corre-
spond to the punctures. Since $Y$ is Stein, this coordinate can be extended to a
holomorPhic function $f$ on $Y$ . Let $C_{s}’=\nu^{-1}(s)\cap f^{-1}(\Delta)$ and $c_{s}=\nu^{-1}(s)\cap f^{-1}(\partial\Delta)$ .
We may suppose that $f$ has no critical points on $c_{0}$ and, hence, $c_{s}$ is a circle
for every $s$ . There are two possibilities: $C_{s}’$ is biholomorphic to either $\Delta$ or $\Delta^{*}$ .
But the first possibility implies that $f^{-1}(\Delta)$ is not holomorphically convex which
contradicts to the fact that $Y$ is Stein. Therefore, $C_{s}’$ and $C_{s}’’=\nu^{-1}(s)-(C_{s}’\cup c_{s})$

are biholomorphic to $\Delta^{*}$ . Assume that $\psi_{0}$ is a constant mapping and $\psi_{s}$ is not
constant for nonzero $s$ . Let $p_{s}’$ and $p_{s}’’$ be the punctures of $\nu^{-1}(s)$ so that
$C_{s}’\cup p_{s}’$ and $C_{s}’’\cup p_{s}’’$ are discs. Without loss of generality suppose that $\psi_{s}$ has
zero at $p_{s}’$ when $s\neq 0$ . On the other hand the restriction of $\psi_{\iota}$ to $c_{\iota}$ must be
close to the nonzero constant $\psi_{0}$ . Hence $\psi_{s}$ does not take on the zero value
due to the argument principle. This contradiction proves lemma. $\square$

LEMMA 5.5. Let $Y$ be a smooth affine algebraic surface with a finite Picard
grouP, let $\nu:Yarrow S$ be a morphism from $Y$ into a smooth algebraic curve $S$ such
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that its generic fibers are isomorphic to $c*$ . Suppose that $\varphi:Yarrow W$ is a morphism
for which $\varphi(\nu^{-1}(s))$ is contained in a fiber of $\Phi_{W}$ for every $s$ . Let $g(\nu^{-1}(s_{0}))CL_{W}$

for some $s_{0}$ . Then either $\varphi$ is degenerate or $\nu^{-1}(s_{0})$ is a disjoint union of lines.

PROOF. Suppose that $\varphi(Y)\not\subset L_{W}$ . Let $U$ be a neighborhood of $s_{0}$ such that
$U$ is biholomorphic to $\Delta$ , $s_{0}$ corresponds to the origin, every $s\in U-s_{0}$ is a
generic value of $\nu$ , and $\varphi(\nu^{-1}(s))$ is contained in an orbit of $G_{W}$ for $s\in U-s_{0}$ .
It is well-known that each component of $\nu^{-1}(s_{0})$ must be either $c*$ , or $C$, or a
couple of lines with one common point (e.g., see [Z]). Assume that $\nu^{-1}(s_{0})$ is
not a disjoint union of lines. If this Pber contains a $c*$-component then remove
all other components from $\nu^{-1}(U)$ . If there is no $c*$-component, choose a com-
ponent which is a couple of lines with one common point and remove all other
components and one of these lines from $\nu^{-1}(U)$ . As a result of this procedure
we obtain a complex manifold $X$ such that $X$ admits a holomorphic mapping on
$U\cong\Delta$ whose fibers are isomorphic to $c*$ . By abusing notation, denote the
projection $Xarrow U$ by $\nu$ again. Note that $X$ is Stein. lndeed, since $Y$ has a
finite Picard group, for every divisor $D\subset Y$ there exists natural $k$ so that
$kD$ coincides with the zeros of a regular function on $Y$ . Thus $Y-D$ is
affine and, therefore, $X$ is Stein. Put $\tilde{\varphi}=\tau_{W}\circ\varphi|_{X}$ : $Xarrow C^{2}-(0,0)$ . The assump-
tion of this lemma on fibers may be reformulated now: $\tilde{\varphi}(\nu^{-1}(s_{0}))=p=(1,1)$ and
$\tilde{\varphi}(\nu^{-1}(s))\subset\{(u, v)\in C^{2}-(0,0)|u^{n}-a_{s}v^{m}=0\}$ for $s\in U-s_{0}$ where $a_{\epsilon}\in C-\{1\}$ . Re-
ducing $U$ , one may suppose that $a_{s}\in\{t\in C||t-1|<1/2\}$ . Note that $\{(u, v)\in C^{2}$

$-(0,0)||u^{n}/v^{m}-1|<1/2\}$ is isomorphic to $c*\cross\Delta$ . Thus we have a mapping
$\psi:Xarrow C^{*}$ . Lemma 5.4 implies that $\psi|_{\nu}-1_{(S)}$ is constant. Hence $\tilde{\varphi}$ and, therefore,
$\varphi$ are degenerate. $\square$

6. Morphisms of contractible surfaces with $\overline{k}=1$ .
First we consider the case of degenerate mappings.

LEMMA 6.1. Let $g:Yarrow S$ be a nonconstant morphism of a smooth algebraic
variety $Y$ onto an affine algebraic curve S. Suppose that $Y$ has a finite first ho-
mology grouP and $\nu:Sarrow S$ is a normalization of S. Then $\tilde{S}$ is isomorPhic to $C$.

PROOF. Let $\overline{S}$ be a completion of $S$ and $\overline{Y}$ be a smooth completion of $Y$ .
One may suppose that $g$ may be extended to a regular morphism $\overline{g}$ : $\overline{Y}arrow\overline{S}$ due
to the Hironaka theorem. Note that $\overline{g}^{-1}(S)$ has a finite first homology group,
since $g^{-1}(S)\supset Y$ . Replacing $Y$ by $g^{-1}(S)$ , one may suppose from the beginning
that $g$ is proper. There exists $\tilde{g}$ : $Yarrow\tilde{S}$ such that $g=\nu\circ\tilde{g}$ and $\tilde{g}$ is also proper
[Sh]. By Stein factorization, there exist a finite morphism $C:\hat{S}arrow\tilde{S}$ and a
proper morphism $\hat{g}$ : $Yarrow\hat{S}$ so that $\tilde{g}=\hat{\nu}\circ\hat{g}$ and the generic fibers of $\hat{g}$ are
connected. Clearly, it suffices to prove that $\hat{S}$ is isomorphic to $C$. Suppose
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that $\gamma:[0,1]arrow\hat{S}$ is an arbitrary loop, $i.e.,$ $\gamma(0)=\gamma(1)=s$ . One may think that $s$

is a generic point and, in particular, $F=\hat{g}^{-1}(s)$ is connected. Since $\hat{g}$ is proper
there exists a continuous mapping $\mu_{1}$ : $[0,1]arrow Y$ for which $\gamma(t)=\hat{g}(\mu_{1}(t))$ for
every $t\in[0,1]$ . Choose a path $\mu_{2}$ in $F$ joining the points $\mu_{1}(0)$ and $\mu_{1}(1)$ . Then
$\mu_{1}$ and $\mu_{2}$ generate a loop $\mu$ in $Y$ . Consider the elements $[\gamma]\in H_{1}(\hat{S})$ and
$[\mu]\in H_{1}(Y)$ . Clearly, $\hat{g}_{*}([\mu])=[\gamma]$ . Hence $[\gamma]$ has a finite order. But there is
no nontrivial elements of finite order in the first homology group of a Riemann
surface. Hence $H_{1}(\hat{S})=0$ and $\hat{S}$ is isomorphic to $C$ which concludes the proof. $\square$

THEOREM 6.2. Let $Y$ be a smooth algebraic variety whose first homology
group is finite, let $W$ be a smooth contractible surface with $\overline{k}(W)=1$ . and let
$\varphi$ : $Yarrow W$ be a morphism such that $\varphi(Y)$ is a curve. Then $\varphi(Y)\subset L_{W}$ .

PROOF. Put $S=\varphi(Y)$ , and let $\nu:\tilde{S}arrow S$ be a normalization of this curve $S$ .
By Lemma 6.1, $\tilde{S}$ is isomorphic to $C$ . By Corollary 3.3, $S=\nu(\tilde{S})\subset L_{W}$ . $\square$

In the nondegenerate case we shall need the following lemma.

LEMMA 6.3. Let $S_{W}$ be the curve $\{u^{n_{1}}-v^{m_{1}}=1\}$ where $n_{1}$ and $m_{1}$ are rela-
tively Prime and $n_{1}>m_{1}>0$ , and let $S_{U}$ be the curve $\{u^{n}-v^{m}=1\}$ . Constder the
action of a cyclic grouP $g_{W}\cong Z_{n_{1}m_{1}}$ on the curve $S_{W}$ given by $(u, v)arrow(\epsilon^{m_{1}}u, \epsilon^{n_{1}}v)$

where $\epsilon$ is a Pnmitive $(n_{1}m_{1})$-root of unity, and the action of a cyclic grouP
$g_{U}\cong Z_{nm}$ on the curve $S_{U}$ given by $(u, v)arrow(\delta^{m}u, \delta^{n}v)$ where $\delta$ is an $(nm)$-root of
unity. Suppose that $h$ is a morphism from $S_{W}$ to $S_{U}$ such that the image of
every orbit of $g_{W}$ is contained in an orbit of $g_{U}$ . Then $h$ is given by one of the
formulas: $h(u, v)=(u^{k}, v^{\iota})$ or $h(u, v)=(v^{l}, u^{k})$ . When the first formula holds
$n_{1}=kn$ and $m_{1}=lm$ , and when the second formula holds $n_{1}=lm$ and $m_{1}=nk$ (this

imposes some conditions on $k$ and $l.$ )

PROOF. The assumption of Lelnma implies that there exists a homomorphism
$h_{*}:$ $g_{W}arrow g_{U}$ for which $h\circ\gamma=h_{*}(\gamma)\circ h$ for every $\gamma\in g_{W}$ . Let $kerh_{*}$ be generated
by an element of $g_{W}$ whose action on $S_{W}$ is given by $(u, v)arrow(\epsilon^{m_{1}m_{2}n_{2}}u, \epsilon^{n_{1}m_{2}n_{2}}v)$

where $n_{2}$ is a divisor of $n_{1}$ and $m_{2}$ is a divisor of $m_{1}$ . Put $l=m_{1}/m_{2}$ and $k=n_{1}/n_{2}$ .
Consider $S_{V}=\{u^{n_{2}}-v^{m_{2}}=1\}$ and the action of the group $g_{V}\cong Z_{n_{2}m_{2}}$ on $S_{V}$ given
by $(u, v)arrow(\sigma^{m_{2}}u, \sigma^{n_{2}}v)$ where $\sigma$ is an $(n_{2}m_{2})$-root of unity. There is the natural
mapping $h_{1}$ : $S_{W}arrow S_{V}$ given by $(u, v)arrow(u^{k}, v^{\iota})$ and a mapping $h_{2}$ : $S_{V}arrow S_{U}$ such
that $h=h_{2}\circ h_{1}$ and the restriction of $h_{2}$ to every orbit of $g_{V}$ is an embedding
into an orbit of $g_{U}$ . Hence $in_{2}m_{2}=nm$ for some natural $i$ . Note that $n_{2},$ $m_{2}>1$ ,

otherwise $S_{V}$ is isomorphic to $C$, but there is no nonconstant morphism from $C$

into $S_{U}$ whose genus is positive. The genus of $S_{V}$ is $(n_{2}-1)(m_{2}-1)/2$ and the
genus of $S_{U}$ is $(n-1)(m-1)/2$ . Since there is a nonconstant mapping from $S_{V}$

to $S_{U}$ , the Riemann-Hurwitz formula implies that $(n_{2}-1)(m_{2}-1)\geqq(n-1)(m-1)$ ,

i.e., $n_{2}m_{2}-n_{2}-m_{2}\geqq nm-m-n$ and $n+m\geqq nm(i-1)/i$ . Assume $i>1$ , then the
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last inequality holds either when $m=3,$ $n=4,$ $i=2$ , and $n_{2}m_{2}=6$ , or when $m=$

$i=2$ . In the first case $n_{2}m_{2}-n_{2}-m_{2}<nm-n-m$ . Contradiction.
In the second case $n_{2}m_{2}-n_{2}-m_{2}=nm/2-n_{2}-m_{2}=n-m_{2}-n_{2}\geqq nm-m-n=$

$n-2$ . The last inequality obviously does not hold. Thus $i=1$ and $n_{2}m_{2}=nm$ .
Suppose that $h_{2}$ is $s$-sheeted. If $s>1$ , then $(n_{2}, m_{2})\neq(n, m)$ and $(n_{2}, m_{2})\neq(m, n)$ .
Hence the number $nm=n_{2}m_{2}$ is a product of at least three prime numbers, $i.e.$ ,
$nm=n_{2}m_{2}\geqq 30$ .

By the Riemann-Hurwitz formula, $(n_{2}-1)(m_{2}-1)>s[(n-1)(m-1)-2]$ , but
one can see that this inequality does not hold when $s>1$ and $nm\geqq 30$ . Thus $s=1$

and $h_{2}$ is an isomorphism. Then $(n-1)(m-1)=(n_{2}-1)(m_{2}-1)$ since the $S_{U}$ and
$S_{V}$ have the same genus. Thus $(n_{2}, m_{2})=(n, m)$ or $(n_{2}, m_{2})=(m, n)$ . Suppose
that $(n_{2}, m_{2})=(n, m)$ . Since $h_{2}$ maps the orbits of $g_{V}$ into the orbits of $g_{U}$ this
maPping $h_{2}$ must be the identical mapping and $h(u, v)=(u^{k}, v^{l})$ . If $(n_{2}, m_{2})=$

$(m, n)$ we obtain similarly that $h(u, v)=(v^{\iota}, u^{k})$ . $\square$

THEOREM 6.4. Let $W,$ $U$ be contractible smooth surfaces zvzth $\overline{k}(W)=\overline{k}(U)=1$ ,

and let $\varphi:Warrow U$ be a nondegenerate morphism. Suppose that the type of $U$ is
$(n, m)$ and the type of $W$ is $(n_{1}, m_{1})$ . Then

(1) $\tau_{U}\circ\varphi=f\circ\tau_{W}$ where $f:C^{2}arrow C^{2}$ is given by one of the following formulas:
(i) $(u, v)arrow(u^{k}, v^{t})$ , or (ii) $(u, v)arrow(v^{l}, u^{k})$ .

(2) The type $(n_{1}, m_{1})$ of $W$ is either $(kn, lm)$ if $f$ is given by (i), or $(lm, kn)$

if $f$ is given by (ii) (note that srnce $n_{1}$ and $m_{1}$ are relatively prime and $n_{1}>m_{1}$ ,

this property imposes some condition on the Pair $(k, 1))$ .
(3) Moreover, for every $W$ as above and every pairs $(n, m)$ and $(k, l)$ such

that either $(n_{1}, m_{1})=(nk, ml)$ or $(n_{1}, m_{1})=(lm, kn)$ there exist a contractible surface
$U$ of type $(n, m)$ and a morphism $\varphi$ satisfying (1) and (2).

PROOF. Let $\Phi_{W},$ $\Phi_{U},$ $z_{W},$ $z_{U}$ have the same meaning as in preliminaries.
Since $\varphi$ is nondegenerate it sends the fibers of $\Phi_{W}$ into the fibers of $\Phi_{U}$ , by
Lemma 5.3. Since the only fiber of $\Phi_{W}$ which is not isomorphic to $c*$ , is
$L_{W}=\Phi_{W}^{-1}(\infty)$ , we have $\varphi^{-1}(L_{U})\subset L_{W}$ , by Lemma 5.5. Note that $\varphi(L_{W})\subset L_{U}$ , by
Corollary 3.3. Since $L_{W}$ is the zero fiber of $Z_{W}$ and $L_{U}$ is the zero fiber of $z_{U}$ ,

$\varphi$ transforms the fibers of $z_{W}$ into the fibers of $Z_{U}$ , by Nullstallenzats. The
generic fiber of $z_{W}$ is the curve $S_{W}=\{u^{n_{1}}-v^{m_{1}}=1\}$ and the generic fiber of $z_{U}$

is the curve $S_{U}=\{u^{n}-v^{m}=1\}$ . There is the action of a cyclic group $g_{W}\cong Z_{n_{1}m_{1}}$

on the curve $S_{W}$ given by $(u, v)arrow(\epsilon^{m_{1}}u, \epsilon^{n_{1}}v)$ where $\epsilon$ is an $(n_{1}m_{1})$-root of unity,
and there is the action of a cyclic group $g_{U}\cong Z_{nm}$ on the curve $S_{U}$ given by
$(u, v)arrow(\delta^{m}u, \delta^{n}v)$ where $\delta$ is an $(nm)$-root of unity. Denote by $h$ the morphism
$S_{W}arrow S_{U}$ generated by $\varphi$ Note that every orbit of $g_{W}$ may be treated as the
intersection of the generic fiber $S_{W}$ of $z_{W}$ with a fiber of $\Phi_{W}$ . Similarly, every
orbit of $g_{U}$ is the intersection of $S_{U}$ with a fiber of $\Phi_{U}$ . Hence $h$ transforms
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the orbits of $g_{W}$ into the orbits of $g_{U}$ and $h$ has one of the forms prescribed,
by Lemma 6.3. Consider the restriction of $\varphi$ to $W-L_{W}$ . Recall that $\varphi(W-L_{W})$

$\subset U-L_{U}$ and $\tau_{W}|_{W-L_{W}}$ : $W-L_{W}arrow(C^{2}-\Gamma_{n_{1},m_{1}})$ is an isomorphism such that the
fibers of $z_{W}$ are mapped into nonzero fibers of the function $u^{n_{1}}-v^{m_{1}}$ , and the
similar statement is true for $\tau_{U}$ , the fibers of $z_{U}$ , and nonzero fibers of $u^{n}-v^{m}$ .
Thus $\varphi$ generates the mapping $f:C^{2}-\Gamma_{n_{1}.m_{1}}arrow C^{2}-\Gamma_{n,m}$ so that $\tau_{U^{\circ}}\varphi=f\circ\tau_{W}$ and
$f$ maps each fiber of $u^{n_{1}}-v^{m_{1}}$ into a fiber of $z=u^{n}-v^{m}$ . Suppose that $h(u, v)$

$=(u^{k}, v^{\iota})$ and consider $h$ as a mapping of $C^{2}$ . Then $f=\psi\circ h$ where $\psi:C^{2}-\Gamma_{n,m}$

$arrow C^{2}-\Gamma_{n.m}$ is a mapping of form $\psi(u, v)=((c(u^{n}-v^{m}))^{im}u, (c(u^{n}-v^{m}))^{in}v)$ where
$i$ is integer and $c\in C^{*}$ . Therefore, $f(u, v)=((c(u^{n_{1}}-v^{m_{1}}))^{im}u^{k}, (c(u^{n_{1}}-v^{m_{1}}))^{in}v^{\iota})$ .
Since $f$ is generated by $\varphi$ , one can see that $f$ may be extended to $p$ and
$f(p)=p$ . This implies that $i=0$ , i.e., $f(u, v)=(u^{k}, v^{l})$ . This implies (1) and (2)

in case (i).

NOW we have to check the existence of such morphisms. Consider a small
neighborhood $B_{W}$ of $P$ in $C^{2}$ . Then the restriction of $f(u, v)=(u^{k}, v^{\iota})$ to this
neighborhood is a biholomorphism between $B_{W}$ and another neighborhood $B_{U}$

of $p$ . Let $U$ be the surface obtained by gluing $\tau_{W}^{-1}(B_{W})$ and $C^{2}-\Gamma_{n.m}$ along
the sets $\tau_{W}^{-1}(B_{W})-L_{W}\approx B_{W}-\Gamma_{n_{1},m_{1}}$ and $B_{U}-\Gamma_{n.m}$ by the mapping $f$ . Then one
can easily check that $U$ is contractible algebraic surface with $\overline{k}(U)=1$ , since it
satisfies the construction of Petrie and tom Dieck, described in Lemma 2.1. The
natural projection $Warrow U$ produces the desired morphism. Theorem is proved in
case (i).

One can obtain case (ii) in a similar way, by putting $h(u, v)=(v^{\iota}, u^{k})$ . $\square$

COROLLARY 6.5. Every nondegenerate morphism from $W$ into $W$ is the
identical mapping.
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