On a normal integral bases problem over cyclotomic \boldsymbol{Z}_{p}-extensions

By Humio Ichimura

(Received Oct. 28, 1994)

§ 1. Introduction.

Let $力$ be a prime number and K be a number field containing a primitive p-th root of unity. Let $\mathscr{H}(K)$ be the subgroup of $K^{\times} / K^{\times p}$ consisting of elements $[\alpha]\left(\in K^{\times} / K^{\times p}\right)$ for which the extension $K\left(\alpha^{1 / p}\right)$ is unramified over K, and $\mathfrak{N}(K)$ be the subset of $\mathscr{H}(K)$ consisting of elements $[\alpha](\in \mathscr{H}(K))$ for which the unramified cyclic extension $K\left(\alpha^{1 / p}\right) / K$ has a relative normal integral bases. Here, we say that a Galois extension L / E of a number field E has a relative normal integral bases (an RNIB, for short) when the integer ring O_{L} of L is free over the group ring $O_{E}[\operatorname{Gal}(L / E)]$. In [3], Childs gave a criterion for a cyclic extension L / K of degree p to be unramified and have an RNIB (see Lemma 5 in §4), from which it follows that $\mathscr{N}(K)$ is a subgroup of $\mathscr{H}(K)$. He raised the question "what is the quotient group $\mathscr{H}(K) / \mathscr{I}(K)$?". We have been investigating this problem for certain abelian fields ([14], [15]) in connection with power series associated to certain p-adic L-functions. A similar study is also given in Taylor [24] when K is the p-th cyclotomic field $\boldsymbol{Q}\left(\mu_{p}\right)$. In this paper, we shall continue these investigations.

Let p be an odd prime number and k be an imaginary abelian field satisfying the following conditions:
(C1) k contains a primitive p-th root of unity.
(C2) $p \not x[k: \boldsymbol{Q}]$.
(C3) There is only one prime ideal of k over p.
Let k_{∞} / k be the cyclotomic \boldsymbol{Z}_{p}-extension and $k_{n}(n \geqq 0)$ be its n-th layer. We write, for brevity, $\mathscr{H}_{n}=\mathscr{H}\left(k_{n}\right)$ and $\mathscr{N}_{n}=\mathscr{N}\left(k_{n}\right)$. The Galois groups $\Delta=\operatorname{Gal}(k / \boldsymbol{Q})$ and $\Gamma=\operatorname{Gal}\left(k_{\infty} / k\right)$ act on these groups in a natural way. In particular, we may decompose these groups by the action of complex conjugation $\rho(\in \Delta)$; $\mathscr{H}_{n}=\mathscr{H}_{n}^{+} \oplus \mathscr{F}_{n}^{-}, \quad \mathscr{R}_{n}=\mathscr{N}_{n}^{+} \oplus \mathscr{N}_{n}^{-}$. As far as normal integral bases problem is concerned, we have nothing to consider on the "odd" part, because we already know that $\Re_{n}^{-}=\{1\}$ (Brinkhuis [1]). As for the "even" part, we have described,
in the previous papers [14], [15], the Γ-module structure of the quotient group $\mathscr{F}_{n}^{+} / \mathscr{n}_{n}^{+}$in terms of power series associated to certain p-adic L-functions under the assumption $p \nmid h\left(k^{+}\right)$(see Theorem 5 in §6). Here, $h\left(k^{+}\right)$denotes the class number of the maximal real subfield k^{+}of k. As its application, we have obtained the following

Theorem 1 ([15, Thm. 2]). Let k be an imaginary abelian field satisfying (C1), (C2) and (C3). If $p \nmid h\left(k^{+}\right)$, then, $\mathscr{C}_{n}^{+}=\mathfrak{N}_{n}^{+}$for all sufficiently large n.

Motivated by this assertion, we shall give some further results on the triviality of $\mathscr{C}_{n}^{+} / \mathscr{N}_{n}^{+}$for large n without the assumption $p \npreceq h\left(k^{+}\right)$. First, we give a "weak version" of the converse of this theorem. Namely, we prove that if $\mathscr{S}_{n}^{+}=\mathscr{N}_{n}^{+}$for all sufficiently large n, then, the Iwasawa λ-invariant of the ideal class group of the maximal real subfield k_{∞}^{+}of k_{∞} vanishes (Theorem 2). Next, we give, under some assumptions, a necessary and sufficient condition for $\mathscr{F}_{n}^{+}=\mathscr{N}_{n}^{+}$for all sufficiently large n in terms of special values of certain p-adic L-functions (Theorem 3). Finally, returning back to the case $p \nmid h\left(k^{+}\right)$, we give a more "precise" version (Theorem 4) of Theorem 1.

§ 2. Statement of results.

Let k be an imaginary abelian field satisfying (C1), (C2) and (C3). First, we give a "weak version" of the converse of Theorem 1. Let A_{n} be the Sylow p-subgroup of the ideal class group of k_{n}, and let $A_{\infty}=\lim A_{n}$ be the projective limit w.r.t. the relative norms. Let Ψ be a character of Δ defined and irreducible over \boldsymbol{Q}_{p}, which we call a \boldsymbol{Q}_{p}-character. We fix an irreducible component ψ of Ψ over a fixed algebraic closure Ω_{p} of \boldsymbol{Q}_{p}. We say that Ψ is even when $\psi(\rho)=1, \rho$ being the complex conjugation in Δ. Let e_{Ψ} be the idempotent of the group ring $Z_{p}[\Delta]$ corresponding to Ψ. Denote by \mathcal{O} the subring of Ω_{p} generated over \boldsymbol{Z}_{p} by the image of ψ. We identify the subring $e_{\psi} \boldsymbol{Z}_{p}[\Delta]$ with \mathcal{O} by the correspondence $e_{Y} \sigma \leftrightarrow \psi(\sigma)(\sigma \in \Delta)$. Let γ be the topological generator of Γ such that $\zeta^{r}=\zeta^{1+q}$ for all p^{a}-th roots ζ of unity ($a \geqq 1$), where q is the least common multiple of p and the conductor of ϕ. We identify, as usual, the completed group ring $\mathcal{O} \llbracket \Gamma \rrbracket$ with the power series ring $\Lambda=O \mathbb{O} \llbracket \rrbracket$ by the correspondence $\gamma \leftrightarrow 1+t$. Thus, for a module X over $\boldsymbol{Z}_{p}[\Delta] \llbracket \Gamma \rrbracket$ (e.g., $\mathscr{H}_{n}, \mathscr{N}_{n}, A_{n}$, A_{∞}), its Ψ-component $X(\Psi)=e_{\psi} X$ is a module over Λ. By Iwasawa [19, Thm. 5], $A_{\infty}(\Psi)$ is finitely generated and torsion over Λ, hence one can define its characteristic power series. It is the product of a distinguished polynomial and a unit, respectively, of Λ by the theorem of Ferrero-Washington [5] on Iwasawa μ-invariants and the Weierstrass preparation theorem. We denote the degree of this distinguished polynomial by λ_{ψ}. It is conjectured that $\lambda_{\psi}=0$ when Ψ is even ([19, page 316], Greenberg [11]).

Theorem 2. Let k be an imaginary abelian field satisfying (C1), (C2), (C3) and let Ψ be a nontrivial even \boldsymbol{Q}_{p}-character of Δ. If $\mathscr{H}_{n}(\Psi)=\mathscr{N}_{n}(\Psi)$ for all sufficiently large n, then, we have $\lambda_{F}=0$.

Remark 1. (1) Let k and Ψ be as above. Then, the condition $p \nmid h\left(k^{+}\right)$ implies that $p \nVdash h\left(k_{n}^{+}\right)$for all n by the criterion of Iwasawa [16] on p-divisibility of class numbers, and hence that $\lambda_{y}=0$. Therefore, Theorem 2 is regarded as a weak version of the converse of Theorem 1. But, the converse of Theorem 1 and that of Theorem 2 do not hold in general as we shall see at the end of $\S 5$.
(2) Let Ψ_{0} be the trivial character of Δ. It follows that $\mathscr{H}_{n}\left(\Psi_{0}\right)=\{1\}$ and $\lambda_{\Psi_{0}}=0$ by the Stickelberger theorem for p-cyclotomic fields $\boldsymbol{Q}\left(\mu_{p} n\right)(n \geqq 1)$ and the Kummer duality (the formula (6^{\prime}) of § 4).

Next, let k be an imaginary abelian field satisfying (C1), (C3) and
(C2') the exponent of Δ is $p-1$.
Then, a \boldsymbol{Q}_{p}-character Ψ of Δ is of degree one, and hence $\psi=\Psi, \mathcal{O}=\boldsymbol{Z}_{p}$. Let Ψ be a nontrivial even \boldsymbol{Q}_{p}-character of Δ. We want to give a necessary and sufficient condition for $\mathscr{H}_{n}(\Psi)=\mathscr{n}_{n}(\Psi)$ for all sufficiently large n. This problem is less hard to deal with when the dimension of $\mathscr{H}_{n}(\Psi)$ over the prime field \boldsymbol{F}_{p} is small. Denote by Ψ^{*} the odd \boldsymbol{Q}_{p}-character of Δ defined by

$$
\begin{equation*}
\Psi^{*}(\sigma)=\omega(\sigma) \Psi\left(\sigma^{-1}\right) \quad(\sigma \in \Delta) . \tag{1}
\end{equation*}
$$

Here, ω is the character of Δ representing the Galois action on p-th roots of unity. Recall that (i) $\operatorname{dim}_{F_{p}} \mathscr{H}_{n}(\Psi)$ equals to the p-rank $r(n)$ of $A_{n}\left(\Psi^{*}\right)$ by the Kummer duality (see the formula (6') of §4), and that (ii) $r(n) \leqq \lambda_{\Psi *}$ for all n and the equality holds for all sufficiently large n (see [25, Cor. 13.29]). In particular, we have $\mathscr{H}_{n}(\Psi)=\mathscr{I}_{n}(\Psi)=\{1\}$ when $\lambda_{y *}=0$. Therefore, from the above, the case $\lambda_{Y *}=1$ is the first nontrivial case we have to consider. We prove the following

Theorem 3. Let k be an imaginary abelian field satisfying (C1), (C2'), (C3), and let Ψ be a nontrivial even \boldsymbol{Q}_{p}-character of Δ such that $\lambda_{\Psi *}=1$. Then, $\mathscr{H}_{n}(\Psi)$ $=গ_{n}(\Psi)$ for all sufficiently large n if and only if $L_{p}(1, \psi) /\left|A_{0}(\Psi)\right| \equiv 0(\bmod . p)$. Here, $L_{p}(s, \psi)$ is the p-adic L-function associated to ψ which we are regarding as a primitive Dirichlet character, and $|*|$ denotes the cardinality.

Remark 2. Let k and Ψ be as in Theorem 3, It is a direct consequence of Theorems 2 and 3 that $\lambda_{\psi}=0$ if $L_{p}(1, \psi) /\left|A_{0}(\Psi)\right| \equiv 0$ mod. p. A similar sufficient condition for $\lambda_{Y}=0$ is already given in Fukuda-Komatsu [6, Thm. 2], Kraft [21, Thm. 3] and Taya [23, Thm. 2], but without any connection with normal integral bases.

Finally, we return back to the situation of Theorem 1. So, the base field k is an imaginary abelian field satisfying (C1), (C2), (C3) and $p \nmid h\left(k^{+}\right)$. Then,
since $p \nmid h\left(k_{n}^{+}\right)($Remark $1(1))$, we have $\mathscr{G}_{n}^{-}=\mathscr{I}_{n}^{-}=\{1\}$ from the Kummer duality (see (6') of §4). We prove the following more precise version of Theorem 1.

Theorem 4. Let k be as above. Then, the homomorphism $\mathscr{A}_{n} / \mathscr{N}_{n} \rightarrow$ $\mathscr{A}_{n+1} / \mathscr{I}_{n+1}$ induced from the inclusion $k_{n}^{\times} \rightarrow k_{n_{+1}}^{\times}$is trivial for all n. Namely, the extension $L k_{n+1} / k_{n+1}$ does have an RNIB for any unramified cyclic extension L / k_{n} of degree p and for any n.

Remark 3. Theorem 1 follows from Theorem 4 since the p-rank of A_{n} is bounded as $n \rightarrow \infty$ ([5]).

The content of this paper is as follows. In § 3, we recall some basic facts on local units and cyclotomic units, which we need in the later sections. We prove Theorems 2,3 and 4 in §4, §5 and § 6 respectively.

§ 3. Cyclotomic units and local units.

Let k be an imaginary abelian field satisfying (C1), (C2), (C3), and let Ψ be a nontrivial even \boldsymbol{Q}_{p}-character of Δ. It follows that there is exactly one prime ideal \mathfrak{p}_{n} of k_{n} over p from (C2) and (C3). Let $K_{n}\left(\subset \Omega_{p}\right)$ be the completion of k_{n} by the prime \mathfrak{p}_{n}, and put $K_{\infty}=\bigcup K_{n}$. We regard that k_{n} is embedded in K_{n}. Let U_{n} be the group of principal units of K_{n}, and let E_{n} and C_{n} be, respectively, the group of units of k_{n} and the group of cyclotomic units of k_{n} in the sense of Hasse [13] and Gillard [8, §2-3]. Denote by \mathcal{E}_{n} and \mathcal{C}_{n} the closures of $E_{n} \cap \mathcal{U}_{n}$ and $C_{n} \cap \mathcal{U}_{n}$ in \mathcal{U}_{n} respectively. Let $U=\lim \mathcal{U}_{n}$ and $\mathcal{C}=\lim _{\mathcal{C}_{n}}$ be the projective limits w.r.t. the relative norms. We identify the Galois groups Δ and Γ with $\operatorname{Gal}\left(K_{0} / \boldsymbol{Q}_{p}\right)$ and $\operatorname{Gal}\left(K_{\infty} / K_{0}\right)$ respectively in an obvious way. Hence, we may regard the groups $\mathcal{U}_{n}, \mathcal{U}$ etc. as modules over $Z_{p}[\Delta] \llbracket \Gamma \rrbracket$. Therefore, the Ψ-components $\mathcal{U}_{n}(\Psi)$, $\mathcal{U}(\Psi)$ etc. are regarded as modules over $\Lambda=O \llbracket t \rrbracket$ by the manner we mentioned in §2. It is known that $U(\Psi)$ is free and cyclic over Λ (Iwasawa [17], Gillard [10, Prop. 1]). We fix a generator $\boldsymbol{u}=\left(\boldsymbol{u}_{n}\right)_{n \geq 0}$ of $\mathcal{U}(\Psi)$ over 1 . Iwasawa [18] constructed a power series $g_{\psi}(t) \in \mathcal{O} \llbracket t \rrbracket$ such that

$$
\begin{equation*}
g_{\psi}\left((1+q)^{1-s}-1\right)=L_{p}(s, \psi) . \tag{2}
\end{equation*}
$$

The following fact due to Iwasawa and Gillard on the quotient Λ-modules $\mathcal{U}(\Psi) / \mathcal{C}(\Psi)$ and $\Psi_{n}(\Psi) / \mathcal{C}_{n}(\Psi)$ plays an important role in our paper. Put $\omega_{n}=(1+t)^{p^{n}}-1$.

Lemma 1. (1) [10, Thm. 1] $\mathcal{U}(\Psi) / \mathcal{C}(\Psi) \cong \Lambda /\left(g_{\psi}\right)$.
(2) [10, Prop. 1,2 and Thm. 2] By the correspondence $\boldsymbol{u}_{n}^{g} \leftrightarrow g$, we have isomorphisms:

$$
\mathcal{U}_{n}(\Psi) \cong \Lambda /\left(\omega_{n}\right) \quad \text { and } \quad \mathcal{C}_{n}(\Psi) \cong\left(g_{\psi}, \omega_{n}\right) /\left(\omega_{n}\right) .
$$

Let $\mathcal{U}_{n}^{(1)}$ be the subgroup of \mathcal{U}_{n} consisting of local units u of \mathcal{U}_{n} such that $u \equiv 1$ modulo the ideal $\left(\zeta_{0}-1\right)$, ζ_{0} being a primitive p-th root of unity in K_{0}. Denote by $I_{n}(n \geqq 1)$ the ideal of Λ generated by p^{n} and $p^{n-1-j} \cdot t^{p j}(0 \leqq j \leqq n-1)$, and let $I_{0}=\Lambda$. It follows that I_{n} contains the ideal (ω_{n}) from a simple fact ($[15$, Lemma 4]) on binomial coefficients.

Lemma 2 ([15, Prop. 1]). By the correspondence in the above lemma, we have $\mathcal{G}_{n}^{(1)}(\Psi) \cong I_{n} /\left(\omega_{n}\right)$.

By means of the group C_{n} of cyclotomic units in the sense of Hasse and Gillard, we have the following analytic class number formula ([8, §2-3]) analogous to the classical one:

$$
\left[E_{n}: C_{n}\right]=h\left(k_{n}^{+}\right) \times c_{n} .
$$

Here, c_{n} is an explicitly given integer depending only on the $\operatorname{group} \operatorname{Gal}\left(k_{n} / \boldsymbol{Q}\right)$, which, because of (C2), is not divisible by p (see [8, §2-3 and §1]). Hence, we obtain the formula $\left|A_{n}^{+}\right|=\left|\mathcal{E}_{n} / \mathcal{C}_{n}\right|$. Then, it is quite natural to ask "is the Δ-decomposed version of this formula valid ?". As a consequence of the Iwasawa main conjecture (proved by Mazur-Wiles [22]), Greenberg [12, Prop. 9] (resp. Gillard [9, Thm. 3]) proved it when $n=0$ (resp. when n is arbitrary and the Λ-module $A_{\infty}\left(\Psi^{*}\right)$ is pseudo-isomorphic to $\Lambda /(h)$ for some $\left.h \in \Lambda\right)$. In particular, we have the following

Lemma 3. Under the above notations, $\left|A_{n}(\Psi)\right|$ equals to the index $\left[\mathcal{E}_{n}(\Psi)\right.$: $\left.\mathcal{C}_{n}(\Psi)\right]$ when $n=0$ or $\lambda_{Y *}=1$.

§4. Proof of Theorem 2.

Let k be an imaginary abelian field satisfying (C1), (C2) and (C3). Let M be the maximal pro- p abelian extension over k_{∞} unramified outside p, and L be the maximal unramified pro- p abelian extension over k_{∞}. Put $F=$ $k_{\infty}\left(\varepsilon^{1 / p^{n}} \mid \varepsilon \in E_{\infty}^{\prime}, n \geqq 1\right)$. Here, E_{∞}^{\prime} is the group of p-units of k_{∞}. The Galois groups of these extensions over k_{∞} can be viewed as modules over $\left.\boldsymbol{Z}_{p}[\Delta] \llbracket \Gamma\right]$. For a \boldsymbol{Q}_{p}-character Ψ of Δ, let $M(\Psi)$ be the intermediate field of M / k_{∞} fixed by Φ-component $\operatorname{Gal}\left(M / k_{\infty}\right)(\Phi)$ for all \boldsymbol{Q}_{p}-characters Φ of Δ different from Ψ. Then $\operatorname{Gal}\left(M(\Psi) / k_{\infty}\right)=\operatorname{Gal}\left(M / k_{\infty}\right)(\Psi)$. Define $L(\Psi), F(\Psi)$ and $(L \cap F)(\Psi)$ in a similar way. In the following, let Ψ be a nontrivial even \boldsymbol{Q}_{p}-character of Δ and Ψ^{*} be the odd \boldsymbol{Q}_{p}-character associated to Ψ by the relation (1). By the assumptions (C1), (C2) and (C3), we see that the unique prime ideal \mathfrak{p}_{n} of k_{n} over p is principal. Therefore, A_{n} coincides with the Sylow p-subgroup of the $力$-ideal class group of k_{n}. Hence, by [19, Thm. 16], the Λ-modules $\operatorname{Gal}(M / F)\left(\Psi^{*}\right)$ and $\operatorname{Hom}\left(\underline{\lim } A_{n}(\Psi), \mu_{p^{\infty}}\right)$ are isomorphic. Here, $\underline{\lim } A_{n}$ is the
inductive limit w.r.t. the inclusion map $k_{n} \rightarrow k_{m}(n<m)$, and $\mu_{p^{\infty}}$ is the group of all p-power roots of unity in k_{∞}. It is known that $\lambda_{Y}=0$ if and only if $\underline{\underline{\lim }} A_{n}(\Psi)=\{1\}$ ([11, Prop. 2]). Therefore, to prove Theorem 2, it suffices to show that $M\left(\Psi^{*}\right)=F\left(\Psi^{*}\right)$.

Let $G=\operatorname{Gal}\left(L / k_{\infty}\right)$ and $H=\operatorname{Gal}\left((L \cap F) / k_{\infty}\right)$. To prove that $M\left(\Psi^{*}\right)=F\left(\Psi^{*}\right)$, we need the following

Lemma 4. Under the notations as above, both \mathcal{O}-modules $G\left(\Psi^{*}\right)$ and $H(\Psi *)$ are finitely generated and torsion free.

Proof. The assertion for $G\left(\Psi^{*}\right)$ is well known (see [25, Cor. 13.29]). So, we prove the assertion only for $H\left(\Psi^{*}\right)$. By class field theory, $\operatorname{Gal}(M / L)\left(\Psi^{*}\right)$ is isomorphic over Λ to the projective limit $\lim \left(q_{n} / \mathcal{E}_{n}\right)\left(\Psi^{*}\right)$ w.r.t. to the relative norms ($\left[4\right.$, Thm. 1.1]). Since Ψ^{*} is odd and $\Psi^{*} \neq \omega$, we have $\mathcal{E}_{n}\left(\Psi^{*}\right)=\{1\}$ by the fact ([25, Thm. 4.12]) on units of a CM-field. Hence, the Λ-module $\operatorname{Gal}(M / L)\left(\Psi^{*}\right)$ is isomorphic to $\mathcal{U}\left(\Psi^{*}\right)$. But, by [10, Prop. 1], the latter module is free and cyclic over Λ. Thus $\operatorname{Gal}(M / L)\left(\Psi^{*}\right) \cong \Lambda$. But, since $\operatorname{Gal}(M / F)\left(\Psi^{*}\right)$ is torsion over Λ ($[19$, Thm. 16]), we see that

$$
\operatorname{Gal}(M / L)\left(\Psi^{*}\right) \cap \operatorname{Gal}(M / F)\left(\Psi^{*}\right)=\{1\}
$$

Therefore, we obtain

$$
\begin{equation*}
M\left(\Psi^{*}\right)=F\left(\Psi^{*}\right) L\left(\Psi^{*}\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Gal}\left(F\left(\Psi^{*}\right) /(F \cap L)\left(\Psi^{*}\right)\right) \cong \operatorname{Gal}(M / L)\left(\Psi^{*}\right) \cong \Lambda \tag{4}
\end{equation*}
$$

By [19, Thm. 15], we have an injective homomorphism of $\operatorname{Gal}\left(F / k_{\infty}\right)\left(\Psi^{*}\right)$ into Λ with a finite cokernel. Therefore, by (4), we see that there is an (injective) embedding of $H\left(\Psi^{*}\right)$ into $\Lambda /(h)$ with a finite cokernel for some $h \in \Lambda$. Since the characteristic power series of $G\left(\Psi^{*}\right)$ is not divisible by $p([5])$ and it is divisible by h, h is not divisible by p. Hence, the \mathcal{O}-module $H\left(\Psi^{*}\right)$ is finitely generated and torsion free.

Now, let us prove Theorem 2, Let \widetilde{L} be the maximal unramified abelian extension over k_{∞} whose Galois group is of exponent p. We have clearly $\operatorname{Gal}\left(\widetilde{L} / k_{\infty}\right)=G / G^{p}$ and $\operatorname{Gal}\left((\widetilde{L} \cap F) / k_{\infty}\right)=H / H^{p}$. Define $\widetilde{L}(\Psi *)$ and $(\widetilde{L} \cap F)\left(\Psi^{*}\right)$ similarly to $L\left(\Psi^{*}\right)$ and $(L \cap F)\left(\Psi^{*}\right)$. Hence, we have

$$
\operatorname{Gal}\left(L\left(\Psi^{*}\right) / k_{\infty}\right)=\left(G / G^{p}\right)\left(\Psi^{*}\right) \quad \text { and } \quad \operatorname{Gal}\left((\widetilde{L} \cap F)\left(\Psi^{*}\right) / k_{\infty}\right)=\left(H / H^{p}\right)\left(\Psi^{*}\right) .
$$

Let \mathscr{H}_{∞} be the subgroup of $k_{\infty}^{\times} / k_{\infty}^{\times p}$ consisting of classes [α] ($\alpha \in k_{\infty}^{\times}$) for which the extension $k_{\infty}\left(\alpha^{1 / p}\right) / k_{\infty}$ is unramified. By the Kummer pairing

$$
\operatorname{Gal}\left(\tilde{L} / k_{\infty}\right) \times \mathscr{H}_{\infty} \longrightarrow \mu_{p},
$$

we obtain (cf. [25, Chap. 10])

$$
\begin{equation*}
\widetilde{L}\left(\Psi^{*}\right)=k_{\infty}\left(\alpha^{1 / p} \mid[\alpha] \in \mathscr{H}_{\infty}(\Psi)\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{\infty}\left(\Psi^{*}\right) / A_{\infty}\left(\Psi^{*}\right)^{p} \cong \operatorname{Gal}\left(L\left(\Psi^{*}\right) / k_{\infty}\right) \cong \operatorname{Hom}\left(\mathscr{H}_{\infty}(\Psi), \mu_{p}\right) \tag{6}
\end{equation*}
$$

The first isomorphism in (6) is due to class field theory. Similarly, we obtain

$$
A_{n}\left(\Psi^{*}\right) / A_{n}\left(\Psi^{*}\right)^{p} \cong \operatorname{Hom}\left(\mathscr{H}_{n}(\Psi), \mu_{p}\right) .
$$

Since the p-rank of A_{n} is bounded as $n \rightarrow \infty$ ([5]), we see from (6) and (6^{\prime}) that $\mathscr{H}_{\infty}(\Psi)=\mathscr{H}_{n}(\Psi)$ for all sufficiently large n under the natural inclusion $\mathscr{H}_{m} \rightarrow \mathscr{H}_{\infty}$ induced by $k_{m}^{\times} \rightarrow k_{\infty}^{\times}$. Therefore, by the assumption of Theorem 2, we have $\mathscr{H}_{\infty}(\Psi)=\mathscr{I}_{n}(\Psi)$ for sufficiently large n. But, by the following lemma Lemma 5), we have

$$
\Re_{n}(\Psi) \subset\left(E_{n} k_{n}^{\times p} / k_{n}^{\times p}\right)(\Psi) .
$$

Therefore, we obtain $\widetilde{L}\left(\Psi^{*}\right)=(\widetilde{L} \cap F)\left(\Psi^{*}\right)$ by (5). Hence, $\left(G / G^{p}\right)\left(\Psi^{*}\right)$ and $\left(H / H^{p}\right)\left(\Psi^{*}\right)$ have the same dimension over \boldsymbol{F}_{p}. So, by Lemma 4, we get $G\left(\Psi^{*}\right)$ $=H\left(\Psi^{*}\right)$ and hence $L\left(\Psi^{*}\right) \subset F\left(\Psi^{*}\right)$. Therefore, by (3), we obtain $M\left(\Psi^{*}\right)=F\left(\Psi^{*}\right)$ and hence $\lambda_{Y}=0$.

Lemma 5 ([3, Thm. B]). Let K be a number field containing a primitive p-th root ζ_{0} of unity. Then, a cyclic extension L / K of degree p is unramified and has an RNIB if and only if L is obtained by adjoining to K a p-th root of a unit ε of K such that $\varepsilon \equiv 1$ modulo the ideal $\left(\zeta_{0}-1\right)^{p}$.

We need in $\S 5$ the following fact which follows from the above lemma.
Lemma 6. Let k be an imaginary abelian field satisfying (C1), (C2), (C3), and let Ψ be a \boldsymbol{Q}_{p}-character of Δ. If $A_{0}(\Psi)=\{1\}$, then, $\mathscr{H}_{0}(\Psi)=\mathscr{H}_{0}(\Psi)$.

Proof. Let \Re_{0}^{*} be the subgroup of $k^{\times} / k^{\times p}$ consisting of classes [ε] with $\varepsilon \in E_{0}$ for which the extension $k\left(\varepsilon^{1 / p}\right) / k$ is unramified. Clearly, we have $\mathscr{N}_{0} \subset \mathfrak{n}_{0}^{*} \subset \mathscr{F}_{0}$. Let ε be a unit of k such that $k\left(\varepsilon^{1 / p}\right) / k$ is unramified. Let $\mathfrak{p}=\mathfrak{p}_{0}$ be the unique prime of k over p. Replacing ε by $\varepsilon^{1-N_{p}}$ if necessary, we may assume $\varepsilon \equiv 1$ modulo \mathfrak{p}, i.e., $\varepsilon \in \mathcal{Q}_{0}$. It follows that $\mathfrak{p}=\left(\zeta_{0}-1\right)$ by (C1), (C2) and (C3). Hence, $\mathcal{U}_{0}=\mathcal{U}_{0}^{(1)}$. Further, since $k\left(\varepsilon^{1 / p}\right) / k$ is unramified and \mathfrak{p} is principal, we get $\varepsilon=u^{p}$ for some $u \in \mathcal{U}_{0}=\mathcal{U}_{0}^{(1)}$ by class field theory. Hence, we have $\varepsilon \equiv 1$ modulo $\left(\zeta_{0}-1\right)^{p}$. Therefore, $\mathscr{N}_{0}^{*}=\mathscr{N}_{0}$ by Lemma 5, For each element $[\alpha]$ of \mathscr{N}_{0}, there exists an ideal \mathfrak{l} of k such that $\mathfrak{H}^{p}=(\alpha)$. Then, by mapping each $[\alpha]$ $\left(\in \mathscr{H}_{0}\right)$ to the ideal class of \mathfrak{l} with $\mathfrak{H}^{p}=(\boldsymbol{\alpha})$, we obtain an exact sequence compatible with the Galois action:

$$
\{1\} \longrightarrow \mathscr{n}_{0}^{*} \longrightarrow \mathscr{H}_{0} \longrightarrow A_{0} .
$$

Therefore, if $A_{0}(\Psi)=\{1\}$, we have $\mathscr{H}_{0}(\Psi)=\mathscr{I}_{0}^{*}(\Psi)$, and hence $\mathscr{H}_{0}(\Psi)=\mathscr{I}_{0}(\Psi)$ as desired.

REmARK 4. As we mentioned in $\S 1$, we have $\Re_{n}^{-}=\{1\}$ as a consequence of [1]. This fact also follows from Lemma 5 and the fact [25, Thm. 4.12] on units of a CM-field.

§5. Proof of Theorem 3.

§5-1. Two Propositions on $\mathscr{H}_{n} / \mathscr{I}_{n}$.

In this subsection, we give two propositions on $\mathscr{H}_{n} / \mathscr{I}_{n}$, from which Theorem 3 follows immediately. The subsections $\S 5-2 \sim \S 5-4$ are devoted to the proof of the propositions.

Let k be an imaginary abelian field satisfying (C1), (C2') and (C3), and let Ψ be a nontrivial even \boldsymbol{Q}_{p}-character of Δ. Then, Ψ is of degree one, and hence $\psi=\Psi, \mathcal{O}=\boldsymbol{Z}_{p}$ and $\Lambda=\boldsymbol{Z}_{p} \llbracket t \rrbracket$. Assume that $\lambda_{\Psi *}=1$. Then, the p-rank of $A_{n}\left(\Psi^{*}\right)$ is one for all n by [25, Cor. 13.29 and Prop. 13.26] and $\mathcal{O}=\boldsymbol{Z}_{p}$. Therefore, $\operatorname{dim}_{F_{p}} \mathscr{A}_{n}(\Psi)=1$ for all n by (6^{\prime}) of $\S 4$. Hence, for each integer n_{0}, we have $\mathscr{A}_{n}(\Psi)=\mathscr{N}_{n}(\Psi)$ for all $n \geqq n_{0}$ if and only if $\mathscr{K}_{n_{0}}(\Psi)=\mathscr{N}_{n_{0}}(\Psi)$, or equivalently if and only if $\operatorname{dim}_{F_{p}} \Re_{n_{0}}(\Psi)=1$. We prove the following

Proposition 1. Let k be an imaginary abelian field satisfying (C1), (C2'), and (C3), and let Ψ be a nontrivial even \boldsymbol{Q}_{p}-character of Δ such that $\lambda_{\Psi *}=1$. Then, $\mathscr{H}_{n}(\Psi)=\mathscr{N}_{n}(\Psi)$ for all sufficiently large n if and only if $\mathscr{H}_{0}(\Psi)=\mathscr{N}_{0}(\Psi)$.

We give a necessary and sufficient condition for $\operatorname{dim}_{F_{p}} \Re_{0}(\Psi)=1$ (without the assumption $\lambda_{\Psi *}=1$). Such a condition is already obtained by [24, Thm. 2] when $k=\boldsymbol{Q}\left(\boldsymbol{\mu}_{p}\right)$. The following is its generalization.

Proposition 2. Let k be an imaginary abelian field satisfying (C1), (C2') and (C3), and let Ψ be a nontrivial even \boldsymbol{Q}_{p}-character of Δ. Then, $\operatorname{dim}_{\boldsymbol{F}_{p}} \mathscr{N}_{0}(\Psi) \leqq 1$. Further, $\operatorname{dim}_{F_{p}} \Re_{0}(\Psi)=1$ if and only if $L_{p}(1, \psi) /\left|A_{0}(\Psi)\right| \equiv 0 \bmod . p$.

§5-2. A preliminary lemma.

Let k be an imaginary abelian field satisfying (C1), (C2'), (C3), and let Ψ be a nontrivial even \boldsymbol{Q}_{p}-character of Δ. If $\lambda_{Y}=0$, then, any ideal of k representing an ideal class in $A_{0}(\Psi)$ is capitulated in k_{s} for some s ([11, Prop. 2]).

Lemma 7. Let k and Ψ be as above. Assume that $\lambda_{\Psi *}=1, \lambda_{\Psi}=0$ and $A_{0}(\Psi)$ $\cong \boldsymbol{Z} / p^{a} \boldsymbol{Z}$ with $a \geqq 1$. Let r be the least nonnegative integer such that any ideal of k representing an ideal class of order p in $A_{0}(\Psi)$ is capitulated in k_{r+1}. Then, we have $A_{n}(\Psi) \cong \boldsymbol{Z} / p^{a+n} \boldsymbol{Z}\left(\right.$ res $\left.p . \boldsymbol{Z} / p^{a+r} \boldsymbol{Z}\right)$ when $0 \leqq n \leqq r(r e s p . n \geqq r+1)$.

Proof. Though this assertion seems to be more or less known to specialists, we give its proof because we could not find an appropriate reference. First, we give some remarks which follow from the assumptions. Let M and L be as in $\S 4$, and let M_{n} (resp. L_{n}) be the maximal abelian extension of k_{n} contained in M (resp. L). Denote by $M_{n}(\Psi)$ the intermediate field of M_{n} / k_{∞} fixed by $\operatorname{Gal}\left(M_{n} / k_{\infty}\right)(\Phi)$ for all \boldsymbol{Q}_{p}-characters Φ of Δ with $\Phi \neq \Psi$. Define $L_{n}(\Psi)$ in a similar way. From the assumption $\lambda_{\psi * *}=1$, it follows that the Λ-module $\operatorname{Gal}\left(M(\Psi) / k_{\infty}\right)$ is isomorphic to $\Lambda /(t-\alpha)$ for some $\alpha \in \boldsymbol{Z}_{p}$ with $p \mid \alpha$ (cf. [21, Thm. 1]). Hence, we have

$$
\begin{equation*}
\operatorname{Gal}\left(M_{n}(\Psi) / k_{\infty}\right) \cong \boldsymbol{Z}_{p} \llbracket t \rrbracket /\left(t-\alpha, \omega_{n}\right) \cong \boldsymbol{Z}_{p} / \alpha p^{n} \boldsymbol{Z}_{p} \tag{7}
\end{equation*}
$$

We must have $\alpha \neq 0$ because [$M_{0}(\Psi): k_{\infty}$] is finite (see [11, page 266]) by the Leopoldt conjecture for k and p (proved by Brumer [2]). Let $p^{e}(e \geqq 1)$ be the highest power of p dividing α. By class field theory and the assumptions (C2), (C3), there is the canonical isomorphism :

$$
\begin{equation*}
\operatorname{Gal}\left(L_{n}(\Psi) / k_{\infty}\right) \cong A_{n}(\Psi) . \tag{8}
\end{equation*}
$$

Hence, by (7) and $L_{n}(\Psi) \subset M_{n}(\Psi)$, we see that $A_{n}(\Psi)$ is cyclic. Similarly, we have $a \leqq e$. For $n<m$, denote by $\iota_{n, m}$ the homomorphism $A_{n}(\Psi) \rightarrow A_{m}(\Psi)$ induced by the inclusion $k_{n} \rightarrow k_{m}$. From the definition of r and the cyclicity of $A_{n}(\Psi)$, we see that $\iota_{n, m}$ is injective when $0 \leqq n<m \leqq r$ but $\iota_{r, r+1}$ is not. Further, we have

$$
\begin{equation*}
\left|A_{n}(\Psi)\right|\left|\left|A_{n+1}(\Psi)\right|\right. \tag{9}
\end{equation*}
$$

since the map $A_{n+1}(\Psi) \rightarrow A_{n}(\Psi)$ induced from the norm map $N_{n+1 / n}$ from k_{n+1} to k_{n} is surjective.

Now, let us prove the first part of the assertion. Assume that $A_{n}(\Psi) \cong$ $\boldsymbol{Z} / p^{a+n} \boldsymbol{Z}$ for an integer n with $0 \leqq n<r$. Take a prime ideal \mathfrak{B} of k_{n+1} of degree one such that its class $[\mathfrak{P}]_{n+1}$ generates the cyclic group $A_{n+1}(\Psi)$. Here, for an ideal \mathfrak{H} of k_{m}, $[\mathfrak{U}]_{m}$ denotes the ideal class of k_{m} represented by \mathfrak{l}. Then, the order of $[\mathfrak{P}]_{n+1}$ is divisible by p^{a+n} by (9) and the assumption of induction. Put $\mathfrak{p}=N_{n+1 / n} \mathfrak{W}$. Then, the class $[\mathfrak{p}]_{n}$ generates $A_{n}(\Psi)$, and hence, the order of $[\mathfrak{p}]_{n}$ is p^{a+n}. Hence, the order of $\left[p^{\mathfrak{o}^{n+1}}\right]_{n+1}$ is p^{a+n} because of the injectivity of $\iota_{n, n+1}$. Here, \mathcal{O}_{m} denotes the ring of integers of k_{m}. Assume that $[\mathfrak{P}]_{n+1}$ is of order p^{a+n}. Then, $\left[\mathfrak{p}^{\mathcal{O}_{n+1}}\right]_{n+1}=[\mathfrak{P}]_{n+1}^{c}$ for some integer c with $p \nmid c$. Applying the norm map $N_{n+1 / n}$, we get $[\mathfrak{p}]_{n}^{p}=[p]_{n}^{c}$. Hence, the order of $[p]_{n}$ is relatively prime to p. This is a contradiction. Assume that the order of $[\mathfrak{P}]_{n+1}$ is divisible by p^{a+n+2}. Then, we see that $a+1 \leqq e$ from (7) and (8), and that there exists an intermediate field H of $M_{n+1}(\Psi) / k_{\infty}$ such that H is unramified over k_{∞} and $\left[H: k_{\infty}\right]=p^{a+n+1}$ from (8). By $a+1 \leqq e$ and (7), we must have $H \subset M_{n}(\Psi)$, and hence $H \subset L_{n}(\Psi)$. Therefore, we get $p^{a+n+1}| | A_{n}(\Psi) \mid$ from
(8). This is a contradiction.

Let us deal with the case $n=r+1$. As we have shown above, we have $A_{r}(\Psi) \cong \boldsymbol{Z} / p^{a+r} \boldsymbol{Z}$. Hence, by (9), p^{a+r} divides $\left|A_{r+1}(\Psi)\right|$. Put $\left|A_{r+1}(\Psi)\right|=p^{a+r+l}$ with $l \geqq 0$. We show that $l=0$. Take a prime ideal \mathfrak{B} of k_{r+1} such that the class $[\mathfrak{F}]_{r+1}$ generates $A_{r+1}(\Psi)$. We see that the order of the ideal class [$\left.N_{r+1 / r} \mathfrak{ß}\right]_{r+1}$ of k_{r+1} divides p^{a+r-1} because the ideal class $\left[N_{r+1 / r} \Re\right]_{r}$ of k_{r} is of order p^{a+r} and $\ell_{r, r+1}$ is not injective. By the identification of $\boldsymbol{Z}_{p} \llbracket \Gamma \rrbracket$ with $\boldsymbol{Z}_{p} \llbracket t \rrbracket$ via $\gamma \leftrightarrow 1+t$, the norm operator $N_{r+1 / r}$ corresponds to the polynomial $\nu=\nu(t)=$ $\omega_{r+1} / \omega_{r}$. Therefore, the polynomial $p^{a+r-1} \cdot \nu$ annihilates the Λ-module $A_{r+1}(\Psi)$. By (7) and the canonical isomorphism (8), we see that the element t acts on $A_{r+1}(\Psi)$ via the multiplication by α. Hence, if $f(t)\left(\in \boldsymbol{Z}_{p} \llbracket t \rrbracket\right)$ annihilates $A_{r+1}(\Psi)$, then, $p^{a+r+l} \mid f(\boldsymbol{\alpha})$ because $A_{r+1}(\Psi) \cong \boldsymbol{Z} / p^{a+r+l} \boldsymbol{Z}$. We easily see that $\nu(\alpha) / p$ is a p-adic unit. Therefore, we have $p^{a+r+l} \mid p^{a+r-1} \cdot p$, hence $l=0$.

Finally, let us prove the assertion when $n \geqq r+2$. Assume that $\left|A_{n}(\Psi)\right|$ is divisible by p^{a+r+1} for some $n \geqq r+2$. Then, by (8), there exists an intermediate field H of $M_{n}(\Psi) / k_{\infty}$ such that H / k_{∞} is unramified and $\left[H: k_{\infty}\right]=p^{a+r+1}$. Then, we have $H \subset M_{r+1}(\Psi)$ by (7) and $a \leqq e$. Therefore, $H \subset L_{r+1}(\Psi)$. Hence, by (8), $p^{a+r+1}| | A_{r+1}(\Psi) \mid$. This is a contradiction.

§ 5-3. Proof of Proposition 2.

Let k and Ψ be as in Proposition 2, Because of the assumption (C2'), we obtain $\operatorname{dim}_{F_{p}}\left(E_{0} / E_{0}^{p}\right)(\Psi)=1$ from the theorem of Minkowski on units of a Galois extension over \boldsymbol{Q} by using a similar argument as in Iwasawa [20, page 119]. Hence, by Lemma 5, we get $\operatorname{dim}_{F_{p}} \Re_{0}(\Psi) \leqq 1$. Let ε be a unit of k such that its class in E_{0} / E_{0}^{p} generates the cyclic group $\left(E_{0} / E_{0}^{p}\right)(\Psi)$ of order p. Replacing ε by $\varepsilon^{1-N \mathfrak{p}}$ if necessary, we may assume $\varepsilon \in \mathcal{U}_{0}$. Here, \mathfrak{p} is the unique prime ideal of k over p. We see that $\operatorname{dim}_{F_{p}} \Re_{0}(\Psi)=1$ if and only if $\varepsilon^{e^{\Psi} \in \mathcal{U}_{0}}(\Psi)^{p}$ by a similar argument as the first part of the proof of Lemma 6. On the other hand, we see that $\mathcal{Q}_{0}(\Psi) \cong \boldsymbol{Z}_{p}$ by $\mathcal{O}=\boldsymbol{Z}_{p}$ and Lemma $1(2)$. Therefore, we see that $\operatorname{dim}_{F_{p}} \mathscr{I}_{0}(\Psi)=1$ if and only if $p \mid\left[\Psi_{0}(\Psi): \mathcal{E}_{0}(\Psi)\right]$. Clearly, we have

$$
\begin{equation*}
\left[\mathcal{U}_{0}(\Psi): \mathcal{E}_{0}(\Psi)\right]=\left[\mathscr{U}_{0}(\Psi): \mathcal{C}_{0}(\Psi)\right] /\left[\mathcal{E}_{0}(\Psi): \mathcal{C}_{0}(\Psi)\right] \tag{10}
\end{equation*}
$$

By the formula (2), Lemma 1(2) and Lemma 3, the right hand side is divisible by p if and only if so is $L_{p}(1, \psi) /\left|A_{0}(\Psi)\right|$.

§5-4. Proof of Proposition 1.

Let k and Ψ be as in Proposition 1. By the remark in $\S 5-1$, all we have to do is to prove that $\mathscr{H}_{n}(\Psi) \neq \mathscr{N}_{n}(\Psi)$ for all $n(\geqq 0)$ when $\mathscr{H}_{0}(\Psi) \neq \mathscr{I}_{0}(\Psi)$. So, we first pick up the cases where $\mathscr{H}_{0}(\Psi)=\mathscr{N}_{0}(\Psi)$. Let $g_{\psi}(t)$ be as before the power series with coefficients in \boldsymbol{Z}_{p} associated by (2) to the p-adic L-function
$L_{p}(s, \psi)$. By the Iwasawa main conjecture (proved by Mazur-Wiles [22]), the power series $\dot{g}_{\psi}(t)=g_{\psi}\left((1+q)(1+t)^{-1}-1\right)$ is a characteristic power series of the torsion Λ-module $A_{\infty}\left(\Psi^{*}\right)$, which is not a multiple of p by the theorem of [5]. Hence, the assumption $\lambda_{\Psi *}=1$ implies that g_{ψ} equals to $t-\beta$ for some $\beta \in \boldsymbol{Z}_{p}$ with $p \mid \beta$ up to multiplication by unit of Λ. The main conjecture also says that g_{ψ} is a characteristic power series of $\operatorname{Gal}\left(M(\Psi) / k_{\infty}\right)$. Hence, β is nothing but the α in the proof of Lemma 7. As we have seen there, we have $\beta=\alpha \neq 0$. Let $p^{e}(e \geqq 1)$ and $p^{a}(a \geqq 0)$ be the highest powers of p dividing β and $\left|A_{0}(\Psi)\right|$ respectively. By (10), Lemma 1(2) and Lemma 3, we must have $e \geqq a$. By Proposition 2 and the remark in §5-1, we have $\mathscr{H}_{0}(\Psi)=\mathscr{I}_{0}(\Psi)$ if and only if $e>a$. Further, we have $\mathscr{H}_{0}(\Psi)=\mathscr{n}_{0}(\Psi)$ when $a=0$ by Lemma 6.

Now, assume that $e=a \geqq 1$. We prove $\mathscr{H}_{n}(\Psi) \neq \mathscr{N}_{n}(\Psi)$ for all n. By Lemma 1(2) (and $\mathcal{O}=\boldsymbol{Z}_{p}$), we have

Here, \boldsymbol{u}_{n} is as in $\S 3$, and \bar{x} denotes the class represented by x. If $\lambda_{Y} \neq 0$, then, we see that $\mathscr{H}_{n}(\Psi) \neq \mathscr{n}_{n}(\Psi)$ for all n by using Theorem 2. Hence, we may further assume that $\lambda_{Y}=0$. Let $r(\geqq 0)$ be as in Lemma 7 and n be any integer with $n \geqq r+1$. Then, by Lemma 3, Lemma 7 and (11), we have

$$
\begin{equation*}
\mathcal{E}_{n}(\Psi)=\mathcal{U}_{n}(\Psi)^{p^{n-r}} \cdot \mathcal{C}_{n}(\Psi) \quad \text { and } \quad \mathcal{E}_{n}(\Psi) / \mathcal{C}_{n}(\Psi) \cong \boldsymbol{Z} / p^{e+\tau} \boldsymbol{Z} \tag{12}
\end{equation*}
$$

In particular, noting that $p \mid \beta$, we obtain the following isomorphisms induced from the correspondence in Lemma 1(2).

$$
\begin{array}{rlr}
\mathcal{E}_{r+1}(\Psi) & \stackrel{\sim}{\sim}\left(p, t, \omega_{r+1}\right) /\left(\omega_{r+1}\right) & \left(\boldsymbol{u}_{r+1}^{g} \longleftrightarrow \bar{g}\right) \\
\cup & \cup \\
\mathcal{E}_{r+1}(\Psi) \cap U_{r+1}(\Psi)^{p} & \longleftrightarrow\left(p, p t, \omega_{r+1}\right) /\left(\omega_{r+1}\right) & \\
\cup & \cup \\
\mathcal{E}_{r+1}(\Psi)^{p} & \stackrel{\sim}{\longleftrightarrow} & \\
\longleftrightarrow & \left(p^{2}, p t, \omega_{r+1}\right) /\left(\omega_{r+1}\right) .
\end{array}
$$

Therefore, we may and shall take a unit ε of k_{r+1} such that, in $\Psi_{r+1}, \varepsilon^{e^{\varphi}}$ is sufficiently close to \boldsymbol{u}_{r+1}^{p}. Then, from the above, we see that the cyclic group $\mathscr{H}_{r+1}(\Psi)$ of order p is generated by the class [$[\varepsilon]^{e \varphi_{r}}$. Assume $\mathscr{H}_{n}(\Psi)=\mathscr{I}_{n}(\Psi)$ for some $n\left(\geqq r+1 \text {). Then, by Lemma 5, we must have } \varepsilon^{e V_{r}} / \eta^{p} \equiv 1 \text { modulo (} \zeta_{0}-1\right)^{p}$ for some $\eta \in \mathcal{E}_{n}(\Psi)$. Therefore, we see that

$$
\begin{equation*}
\boldsymbol{u}_{r+1}=v \cdot \eta \text { for some } v \in \mathcal{U}_{n}^{(1)}(\Psi) \text { and } \eta \in \mathcal{E}_{n}(\Psi) . \tag{13}
\end{equation*}
$$

We compare the orders of the classes of both hand sides of (13) in the cyclic group $\mathcal{U}_{n}(\Psi) / \mathcal{C}_{n}(\Psi)$. By the identification of $\boldsymbol{Z}_{p} \llbracket \Gamma \rrbracket$ with $\boldsymbol{Z}_{p} \llbracket t \rrbracket$ via $\gamma \leftrightarrow 1+t$,
the norm map $N_{n / r+1}$ from k_{n}^{\times}to k_{r+1}^{\times}corresponds to the polynomial

$$
S=\sum_{j=0}^{p^{n-r-1}-1}(1+t)^{p^{r+1} j} .
$$

In the residue ring $\boldsymbol{Z}_{p} \llbracket t \rrbracket /\left(t-\beta, \omega_{n}\right) \cong \boldsymbol{Z}_{p} / p^{e+n} \boldsymbol{Z}_{p}$, the class of S is decomposed as the product of p^{n-r-1} and a unit since $S(\beta)$ is p^{n-r-1} times a unit of \boldsymbol{Z}_{p}. Therefore, since $\boldsymbol{u}_{r+1}=N_{n / r+1} \boldsymbol{u}_{n}=\boldsymbol{u}_{n}^{S}$, we see that the order of the class $\overline{\boldsymbol{u}}_{r+1}$ in $Q_{n}(\Psi) / \mathcal{C}_{n}(\Psi)$ is p^{e+r+1} by (11). On the other hand, we see that the order of the class \bar{v} divides p^{e} by Lemma 2 and (11) because $p^{n} \mid p^{n-1-j} \beta^{p j}(0 \leqq j \leqq n-1)$. Further, the order of the class $\bar{\eta}$ divides p^{e+r} by (12). This is a contradiction. Therefore, $\mathscr{A}_{n}(\Psi) \neq \mathscr{I}_{n}(\Psi)$ for all $n \geqq r+1$. Hence, $\mathscr{H}_{n}(\Psi) \neq \mathscr{N}_{n}(\Psi)$ for all n.

§ 5-5. Examples.

The converse of Theorem 1 and that of Theorem 2 do not hold in general as we see in the following examples respectively. Let $p=3$ and $k=\boldsymbol{Q}(\sqrt{-3}, \sqrt{d})$ where d is a rational integer with $d \equiv 2(\bmod .3)$. Let Ψ be the unique nontrivial even \boldsymbol{Q}_{p}-character of Δ. Then, $\mathscr{H}_{n}(\Psi)=\mathscr{H}_{n}^{+}$and $\mathscr{I}_{n}(\Psi)=\mathscr{V}_{n}^{+}$. Assume λ_{Y}. $=1$. Let ε be a fundamental unit of the real quadratic subfield k^{+}. Then, it follows that $\mathscr{H}_{n}^{+}=\mathscr{N}_{n}^{+}$for all sufficiently large n if and only if $\varepsilon^{8} \equiv 1$ modulo $\left(\zeta_{0}-1\right)^{3}$ from Proposition 1 (and the remark in §5-1) and Lemma 5,

First, consider the case $d=257$. Then, we have $\varepsilon=16+\sqrt{ } 257$ and $\varepsilon^{8} \equiv 1$ (mod. 9). Further, $\lambda_{Y *}=1$ by the table of Fukuda [7] on Iwasawa λ-invariants of imaginary quadratic fields. But, we have $h\left(k^{+}\right)=3$. Next, consider the case $d=443$. Then, we have $\varepsilon=442+21 \sqrt{443}$ and $\varepsilon^{8} \equiv \equiv 1$ modulo $\left(\zeta_{0}-1\right)^{3}$. Further, $\lambda_{\psi *}=1$ by [7]. But, we have $\lambda_{Y}=0$ by [11, page 282].

§6. Proof of Theorem 4.

Let k be an imaginary abelian field satisfying (C1), (C2), (C3) and $p \nless h\left(k^{+}\right)$. Since $\mathscr{H}_{n}\left(\Psi_{0}\right)=\mathscr{H}_{n}^{-}=\{1\}$ (see §2), it suffices to prove that the homomorphism

$$
\rho_{n}:\left(\mathscr{H}_{n} / \mathscr{N}_{n}\right)(\Psi) \longrightarrow\left(\mathscr{H}_{n+1} / \mathscr{N}_{n+1}\right)(\Psi)
$$

induced from the inclusion $k_{n}^{\times} \rightarrow k_{n+1}^{\times}$is trivial for any nontrivial even \boldsymbol{Q}_{p}-character Ψ. Let Ψ be any such character and ψ be a fixed irreducible component of Ψ over Ω_{p}. To prove Theorem 4, we have to recall the main theorem and a lemma of the preceding paper [15]. Define an ideal X_{n} of $\mathcal{O} \llbracket t \rrbracket$ and a $O \llbracket t]$-module Y_{n} by

$$
\begin{aligned}
& X_{n}=\left\{g \in \mathcal{O} \llbracket t \rrbracket \mid p \cdot g \in\left(g_{\psi}, \omega_{n}\right)\right\}, \\
& Y_{n}=X_{n} /\left(X_{n} \cap I_{n}, g_{\psi}, \omega_{n}\right) .
\end{aligned}
$$

Put $S_{n}=\omega_{n+1} / \omega_{n}$. We see that $g \cdot S_{n} \in X_{n+1}$ for all $g \in X_{n}$ and that the homomorphism

$$
s_{n}: Y_{n} \longrightarrow Y_{n+1}, \quad[g]_{n} \longrightarrow\left[g \cdot S_{n}\right]_{n+1}
$$

is well defined (see $[\mathbf{1 5}, \S 5-1]$). Here, $[g]_{n}$ denotes the element of Y_{n} represented by $g \in X_{n}$.

Theorem 5 ([15, Thm. 1]). Let k and Ψ be as above. Then, there exists an isomorphism ι_{n} from $\left(\mathscr{C}_{n} / \mathscr{R}_{n}\right)(\Psi)$ to Y_{n} as modules over $\mathcal{O} \llbracket t \rrbracket$ such that $\iota_{n+1} \circ \rho_{n}=s_{n} \circ \iota_{n}$ for all n.

Therefore, to prove Theorem 4, it suffices to show that the homomorphism s_{n} is trivial. For this purpose, we have to know a set of generators of Y_{n} over $\mathcal{O} \llbracket t \rrbracket$. Let h_{ψ} be the distinguished polynomial of $\mathcal{O}[t]$ associated to the power series g_{ψ}. Since h_{ψ} equals to g_{ψ} times a unit of $\mathcal{O} \llbracket t \rrbracket$ ([5]), we may write h_{ψ} instead of g_{ψ} in the definitions of X_{n} and Y_{n}. Put $\lambda=\operatorname{deg} h_{\varphi}$, which does not depend on the choice of the irreducible component ψ of Ψ. We have $\lambda=\lambda_{\psi * *}$ by the Iwasawa main conjecture. Therefore, when $\lambda=0$, we have $\mathscr{H}_{n}(\Psi)=$ $\mathscr{N}_{n}(\Psi)=\{1\}$ by [25, Cor. 13.29] and (6^{\prime}) of $\S 4$. So, we may assume $\lambda \geqq 1$. We put

$$
a_{n}=\left(h_{\psi}-t^{\lambda-p^{n}} \cdot \omega_{n}\right) / p \quad \text { or } \quad\left(\boldsymbol{\omega}_{n}-t^{p^{n-\lambda}} \cdot h_{\psi}\right) / p
$$

according as $p^{n} \leqq \lambda$ or $p^{n} \geqq \lambda$. Clearly, the polynomial a_{n} is an element of X_{n}.
Lemma 8 ([15, Lemma 3]). The module Y_{n} is generated over $\mathcal{O} \llbracket t \rrbracket$ by the class of a_{n}.

Now, we prove Theorem 4. By Theorem 5 and Lemma 8, it suffices to prove that

$$
\begin{equation*}
a_{n} \cdot S_{n} \in\left(X_{n+1} \cap I_{n+1}, h_{\psi}, \omega_{n+1}\right) . \tag{14}
\end{equation*}
$$

We already have $a_{n} \cdot S_{n} \in X_{n+1}$ since $a_{n} \in X_{n}$. We see that $S_{n}=p+\delta$ for some $\delta \in I_{n+1}$ and $\omega_{n} \in I_{n+1}$ by the equality

$$
(1+t)^{p^{n}}=1+t^{p^{n}}+\sum_{k=0}^{n-1} t^{p^{k}} \cdot \sum_{j=p^{k}}^{p^{k+1}-1} B\left(p^{n}, j\right) t^{j-p^{k}}
$$

and a simple fact ([15, Lemma 4]) on binomial coefficients $B\left(p^{n}, j\right)$. Assume $p^{n} \leqq \lambda$. Then, since $h_{\psi} \in X_{n+1}$, we have

$$
\begin{equation*}
b=a_{n} \cdot S_{n}-h_{\psi}=-t^{\lambda-p^{n}} \cdot \omega_{n}+a_{n} \delta \in X_{n+1} . \tag{15}
\end{equation*}
$$

On the other hand, we have $b \in I_{n+1}$ because $\delta, \omega_{n} \in I_{n+1}$. Therefore, $b \in X_{n+1}$ $\cap I_{n+1}$, and hence, we obtain the assertion (14) in this case. When $p^{n} \geqq \lambda$, we obtain (14) by a similar argument, using

$$
b^{\prime}=a_{n} \cdot S_{n}+t^{p^{n}-\lambda} \cdot h_{\psi}=\omega_{n}+a_{n} \delta
$$

in place of b. This completes the proof of Theorem 4,

References

[1] J. Brinkhuis, On the Galois module structure over CM-fields, Manuscripta Math., 75 (1992), 333-347.
[2] A. Brumer, On the units of algebraic number fields, Mathematika, 14 (1967), 121124.
[3] L. N. Childs, The group of unramified Kummer extensions of prime degree, Proc. London Math. Soc., 35 (1977), 407-422.
[4] J. Coates, p-adic L-functions and Iwasawa's theory, Algebraic Number Fields, Durham Symposium 1975, (ed. A. Fröhlich), Academic Press, London, 1977, pp. 269-353.
[5] B. Ferrero and L.C. Washington, The Iwasawa invariant μ_{p} vanishes for abelian number fields, Ann. of Math., 109 (1979), 377-395.
[6] T. Fukuda and K. Komatsu, On \boldsymbol{Z}_{p}-extensions of real quadratic fields, J. Math. Soc. Japan, 38 (1986), 95-102.
[7] T. Fukuda, Iwasawa λ-invariants of imaginary quadratic fields, J. College Industrial Technology Nihon Univ., 27 (1994), 35-88, (Corrigendum to appear in ibid.).
[8] R. Gillard, Remarques sur les unités cyclotomiques et unités elliptiques, J. Number Theory, 11 (1979), 21-48.
[9] R. Gillard, Unités cyclotomiques, unités semi-locales et \boldsymbol{Z}_{l}-extensions, Ann. Inst. Fourier, 29-1 (1979), 49-79.
[10] R. Gillard, Unités cyclotomiques, unités semi-locales et \boldsymbol{Z}_{l}-extensions II, Ann. Inst. Fourier, 29-4 (1979), 1-15.
[11] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math., 98 (1976), 263-284.
[12] R. Greenberg, On p-adic L-functions and cyclotomic fields, Nagoya Math. J., 67 (1977), 139-158.
[13] H. Hasse, Über die Klassenzahl Abelscher Zahlkörper, Akademie-Verlag, 1952.
[14] H. Ichimura, On a relative normal integral basis problem over abelian number fields, Proc. Japan Acad., 69 (1993), 413-416.
[15] H. Ichimura, On p-adic L-functions and normal basis of rings of integers, J. Reine Angew. Math., 462 (1995), 169-184.
[16] K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg, 20 (1956), 257-258.
[17] K. Iwasawa, On some modules in the theory of cyclotomic fields, J. Math. Soc. Japan, 16 (1964), 42-82.
[18] K. Iwasawa, Lectures on p-adic L-functions, Ann. of Math. Studies, 74, Princeton Univ. Press, 1972.
[19] K. Iwasawa, On \boldsymbol{Z}_{l}-extensions of algebraic number fields, Ann. of Math., 98 (1973), 246-326.
[20] K. Iwasawa, A note on cyclotomic fields, Invent. Math., 36 (1976), 115-123.
[21] J. S. Kraft, Iwasawa invariants of CM fields, J. Number Theory, 32 (1989), 65-77.
[22] B. Mazur and A. Wiles, Class fields of abelian extensions of \boldsymbol{Q}, Invent. Math., 76 (1984), 179-330.
[23] H. Taya, On the Iwasawa λ-invariants of real quadratic fields, Tokyo J. Math., 16 (1993), 121-130.
[24] M. J. Taylor, The Galois module structure of certain arithmetic principal homogeneous spaces, J. Algebra, 153 (1992), 203-214.
[25] L. C. Washington, Introduction to Cyclotomic Fields, Springer-Verlag, 1982.

Humio Ichimura

Department of Mathematics Yokohama City University 22-2 Seto, Kanazawa-ku Yokohama 236
Japan

