On compact Kähler-Liouville surfaces

By Masayuki IGARASHI

(Received May 10, 1995)

Introduction.

It is rewarding to investigate riemannian manifolds with completely integrable geodesic flows, because the behavior of their geodesics can be observed.

In the 19th century, Jacobi investigated the 2-dimensional ellipsoid, and Liouville generalized this work to the geometry of a class of metrics, the so-called Liouville line elements, whose geodesic flows are integrable by a certain first integral. In relation to the present view point, their investigations can be recognized as a local theory of differential geometry. However, in 1991 K . Kiyohara began to develop a global theory in this area [1]. In this work he first defined the compact Liouville surface and classified it; it is defined as a compact 2-dimensional riemannian manifold whose geodesic flow has a first integral on the cotangent bundle such that (1) the first integral is fiberwise a homogeneous polynomial of degree 2; (2) the first integral can not be expressed as a linear combination of the square of a certain vector field and its energy function. Additionally, K. Sugahara, K. Kiyohara and the author investigated noncompact Liouville surfaces [2]. Subsequently, Kiyohara generalized this concept to the higher dimensional manifolds (see [3] for detail) as follows:

A Liouville manifold is defined as a riemannian manifold which has a real vector space of the first integrals on the cotangent bundle of its geodesic flows such that (1) all the first integrals are fiberwise homogeneous polynomials of degree 2; (2) all the first integrals are simultaneously normalizable on each fiber; (3) the dimension of the vector space is equal to the dimension of the underlying riemannian manifold.

In the investigation [3] of Liouville manifolds, Kiyohara has assumed the condition of "properness," and has classified proper Liouville manifolds of rank one; he has concluded that a proper 4-dimensional real Liouville manifold of rank one is diffeomorphic with the sphere S^{4}, the real projective space $\boldsymbol{R} P^{4}$ or the euclidean space \boldsymbol{R}^{4}.

It is known that the geodesic flow of the n-dimensional complex projective space $\boldsymbol{C} P^{n}(n \geqq 1)$ equipped with the standard metric is completely integrable (cf. [4], [5]). The author was informed by private communication with Prof. K. Kiyohara that there is a family of Kähler metrics on $\boldsymbol{C} P^{n}$ whose geodesic
flows are completely integrable. These facts motivated the author to study "Liouville structures" on compact Kähler manifolds.

The subject of this paper is Liouville structures on compact Kähler surfaces. We say that a quadruplet $(M, g, J ; \mathscr{F})$ is a Kähler-Liouville surface if (M, g, J) is a complete, connected Kähler surface and if \mathscr{F} is a 2 -dimensional real vector space of first integrals on the cotangent bundle $T^{*} M$ of its geodesic flows such that (1) the vector space \mathscr{I} contains the energy function on $T^{*} M$; (2) all the first integrals contained in the vector space \mathcal{F} are fiberwise homogeneous polynomials of degree 2 and are hermitian with respect to the complex structure J. For each $p \in M$, we put $\left.F_{p} \equiv F\right|_{r_{p}^{*} M}$ for $F \in \mathscr{F}$ and set $\mathscr{I}_{p}=\left\{F_{p} \mid F \in \mathscr{F}\right\}$. We call the points p of M such that $\operatorname{dim} \mathscr{F}_{p}=1$ the singular points of $(M, g, J ; \mathscr{F})$ and denote the set of them by $M_{\text {sing }}$.

In this paper we will study the compact Kähler-Liouville surface under the assumption of "properness" analogous to the condition of properness in the investigation [3] of Liouville manifolds, but not identical to it. We say that a Kähler-Liouville surface ($M, g, J ; \mathscr{F}$) is proper if $M_{\text {sing }} \neq \varnothing$ and if, for any $F \in \mathscr{F}$ and $p \in M$ such that $F_{p}=0$, there exists a covector $w \in T_{p}^{*} M$ such that $(d F)_{w} \neq 0$.

We remark that any compact proper Kähler-Liouville surface can not admit the structure of the 4 -dimensional Liouville manifold of rank one.

The purpose of this paper is to study the structure of the compact proper Kähler-Liouville surface.

The main results in this paper can be stated as follows:
Let ($M, g, J ; \mathscr{F}$) be a compact proper Kähler-Liouville surface. Then
(1) The geodesic flow of (M, g) is completely integrable.
(2) (M, J) is bi-holomorphic with the complex projective plane $\boldsymbol{C} P^{2}$.
(3) (M, g, J) has three points q_{0}, q_{1}, q_{2} and three totally geodesic 1-dimensional complex submanifolds H_{0}, H_{1}, H_{2} which are bi-holomorphic with the complex projective line $\boldsymbol{C} P^{1}$ such that
(i) $H_{1} \cap H_{2}=\left\{q_{0}\right\}, H_{0} \cap H_{1}=\left\{q_{2}\right\}, H_{0} \cap H_{2}=\left\{q_{1}\right\}$;
(ii) H_{0} coincides with the subset of M on which $F \in \mathscr{F}$ such that $F_{p}=0$ for $p \in M_{\text {sing }}$ is degenerate, and hence includes $M_{\text {sing }}$;
(iii) $H_{0} \cup H_{1} \cup H_{2}$ is the subset of M on which $F \in \mathscr{T}$ described in (ii) can be said to be critical in one sense.
(4) $M_{\text {sing }}$ forms a compact real submanifold of H_{0}, and hence also of M, and is diffeomorphic with the circle S^{1}.
(5) There exists an effective action Φ of the 2 -dimensional real torus $S^{1} \times S^{1}$ on M (as automorphisms of ($M, g, J ; \mathscr{F}$)) such that
(i) Φ leaves the three points q_{0}, q_{1}, q_{2} fixed;
(ii) Φ leaves the three submanifolds H_{0}, H_{1}, H_{2} invariant.
(6) There exists a family \mathfrak{S} of compact totally geodesic 2-dimensional real submanifolds of (M, g) such that
(i) Each compact real submanifold $S \in \mathbb{S}$ associated with the Liouville structure inherited from $\mathscr{\mathscr { F }}$ forms a compact real Liouville surface which is diffeomorphic with the real projective plane $\boldsymbol{R} P^{2}$;
(ii) The compact real Liouville surfaces belonging to \mathbb{S} are isomorphically transferred to each other by the action Φ on M.
This paper is organized as follows:
In §1 we will define the Kähler-Liouville surface and demonstrate its condition of properness. In $\S 2$ we will discuss local structure of the compact proper Kähler-Liouville surface and present lemmas, propositions and formulas, which will be used is subsequent sections. In $\S 3$ we will construct the compact complex submanifold H_{0} on which $F \in \mathscr{F}$ described in (3) (ii) in the above main results is degenerate. We will subsequently show that H_{0} is bi-holomorphic to the complex projective line $\boldsymbol{C} P^{1}$ and is totally geodesic, and that $M_{\text {sing }}$ is a real submanifold of H_{0} which is diffeomorphic with the circle S^{1}. In $\S 4$ we will study the S^{1}-actions naturally generated by the prescribed infinitesimal automorphisms of ($M, g, J ; \mathscr{I}$) and present some lemmas and propositions which will be needed in subsequent sections. In $\S 5$ we will first construct the compact complex submanifolds H_{1} and H_{2}, which may be described as the sets of critical points, in one sense, and show that H_{1} and H_{z} are bi-holomorphic to the complex projective line $\boldsymbol{C} P^{1}$ and are totally geodesic. Second, we will establish the complete integrability of the geodesic flows of (M, g). Third, we will define an effective action Φ of the 2 -dimensional real torus $S^{1} \times S^{1}$ on M. In $\S 6$ we will prove that (M, J) is bi-holomorphic to the standard complex projective plane ($\boldsymbol{C} P^{2}, J_{0}$). In $\S 7$ we will first discover a family \mathbb{S} of compact real Liouville surfaces naturally imbedded in M which are diffeomorphic with the real projective plane $\boldsymbol{R} P^{2}$. Finally, we will see that the torus action Φ on M induces a transitive action $\tilde{\Phi}$ of the real torus $S^{1} \times S^{1}$ on the family \mathbb{S} and that the compact real Liouville surfaces belonging to $\mathbb{\subseteq}$ are isomorphically transferred to each other by the action Φ on M.

Throughout this paper, we assume the differentiability of class C^{∞} unless otherwise stated.

Acknowledgments. The author would like to express his hearty gratitude to Professor Emeritus N. Tanaka, Professor K. Yamaguchi and Professor K. Kiyohara for their helpful advice and constant encouragement. Thanks are also due to his colleagues at Science University of Tokyo for providing an excellent work environment.

§ 1. The definition of Kähler-Liouville surfaces.

Let (M, g, J) be a complete, connected Kähler surface and let E be its energy function on $T^{*} M$. We define the complex structure J^{*} of $T^{*} M$ by $J^{*}=b \circ(-J) \circ b^{-1}$, where b is the identification map of $T M$ onto $T * M$ induced by the metric g in an obvious manner.

A quadruplet $(M, g, J ; \mathscr{F})$ will be called a Kähler-Liouville surface if \subseteq is a 2 -dimensional real vector space of \boldsymbol{R}-valued functions on $T^{*} M$ satisfying the following four conditions (KL1), $\cdots,(\mathrm{KL} 4)$:
(KL1) $E \in \mathscr{F}$;
(KL2) For any $F \in \mathscr{F}$ and for any point $p \in M$,

$$
\left.F_{p} \equiv F\right|_{T_{p}^{*} M}: T_{p}^{*} M \longrightarrow \boldsymbol{R}
$$

is a homogeneous polynomial of degree 2 ;
(KL3) For any $F \in \mathscr{F}, F$ is hermitian, i.e., $F \circ J^{*}=F$;
(KL4) For any $F_{1}, F_{2} \in \mathscr{F}$,

$$
\left\{F_{1}, F_{2}\right\}=0,
$$

where $\{*, *\}$ is the canonical Poisson bracket on $T^{*} M$.
Two Kähler-Liouville surfaces ($M, g, J ; \mathscr{F}$) and ($M^{\prime}, g^{\prime}, J^{\prime} ; \mathscr{F}^{\prime}$) will be called mutually isomorphic if there exists a holomorphic isometry $\Psi:(M, g, J)$ $\rightarrow\left(M^{\prime}, g^{\prime}, J^{\prime}\right)$ such that mapping Ψ^{*} defined by, for $F \in \mathscr{F}, \Psi^{\#}(F)=F \circ \Psi^{*}$ maps \mathscr{F} into \mathscr{F}^{\prime}.

Note that a vector field Y on M is an infinitesimal automorphism of a Kähler-Liouville surface ($M, g, J ; \mathscr{F}$) if and only if Y satisfies the following conditions:
(IA1) $\{Y, E\}=0$, or equivalently, $\mathcal{L}_{Y} g=0$;
(IA2) $\mathcal{L}_{Y} J=0$;
(IA3) $\{Y, F\} \in \mathscr{F}$ for any $F \in \mathscr{T}$,
where Y is considered as both a vector field on M and a fiberwise linear function on $T^{*} M$, and where \mathcal{L}_{Y} is the Lie derivation with respect to the vector field Y.

Let $(M, g, J ; \mp)$ be a Kähler-Liouville surface. For each point $p \in M$, we set $\mathscr{F}_{p}=\left\{F_{p}=\left.F\right|_{T_{p}^{*} M} \mid F \in \mathscr{F}\right\}$; it can be also regarded as a real vector space. It follows that $1 \leqq \operatorname{dim} \mathscr{F}_{p} \leqq 2$ for any point $p \in M$.

A point p of M such that $\operatorname{dim} \mathscr{F}_{p}=1$ will be called the singular point of ($M, g, J ; \mathscr{F}$), and the set of them will be denoted by $M_{\text {sing }}$. A point p of M such that $\operatorname{dim} \mathscr{I}_{p}=2$ will be called the regular point of $(M, g, J ; \mathscr{F})$, and the set of them will be denoted by $M_{\text {reg }}$.

A Kähler-Liouville surface ($M, g, J ; \mathscr{F}$) will be called proper if \mathscr{F} satisfies the following conditions:
(PKL1) $M_{\text {sing }} \neq \varnothing$;
(PKL2) For any $F \in \mathscr{F} \backslash\{0\}$ and $p \in M$ such that $F_{p}=0$, there exists a covector $w \in T_{p}^{*} M$ which satisfies $(d F)_{w} \neq 0$.

We know from [1] that, for a Kähler-Liouville surface ($M, g, J ; \Psi$) such that $M_{\text {sing }} \neq \varnothing$, the condition (KL4) in the definition of the Kähler-Liouville surface yields the following property:

For each $F \in \mathscr{F}$, there exists a real constant r such that the equality $F_{p}=r E_{p}$ holds for every point $p \in M_{\text {sing }}$.

Thus, for any compact proper Kähler-Liouville surface ($M, g, J ; \mathscr{F}$), we can always find $F \in \mathscr{F}$ such that
(N1) $F \neq r E$ for any $r \in \boldsymbol{R}$;
(N2) $F_{p}=0$ if and only if $p \in M_{\text {sing }}$.
In the following sections the element F of \mathscr{F} will be always assumed to satisfy the conditions (N1) and (N2) above.

§ 2. Local structure of compact proper Kähler-Liouville surfaces.

Let $(M, g, J ; \Psi)$ be a compact, connected proper Kähler-Liouville surface and let F be an element of \mathscr{F}; as mentioned at the end of $\S 1, F$ is assumed to satisfy the conditions (N1) and (N2) in § 1.

Let $\pi^{*}: T^{*} M \rightarrow M$ be the cotangent bundle over M and let g^{*} be the contravariant metric tensor corresponding to g. For each $p \in M$, we define the endomorphism F_{p}^{e} of $T_{p}^{*} M$ by $F_{p}(w)=g^{*}\left(w, F_{p}^{e}(w)\right)$ for $w \in T_{p}^{*} M$. This induces the bundle endomorphism F^{e} of $T^{*} M$. The cotangent bundle $T^{*} M$ is regarded as a complex vector bundle over M by the complex structure J^{*}. Because F is hermitian, F^{e} can be regarded as the complex bundle endomorphism of $T * M$.

Let $\tilde{\Omega}$ be an arbitrary open subset of M which is equipped with a local unitary coframe $\tilde{V}_{1}^{*}, \tilde{V}_{2}^{*}$ on M. Then, F^{e} can be represented on $\tilde{\Omega}$ in the following form:

$$
\left(F^{e}\left(\tilde{V}_{1}^{*}\right), F^{e}\left(\tilde{V}_{2}^{*}\right)\right)=\left(\tilde{V}_{1}^{*}, \tilde{V}_{2}^{*}\right)\left(\begin{array}{cc}
a_{11} & \kappa \tag{2.1}\\
\bar{\kappa} & a_{22}
\end{array}\right),
$$

where a_{11}, a_{22} are \boldsymbol{R}-valued functions on $\tilde{\Omega}$ and κ is a \boldsymbol{C}-valued function on $\tilde{\Omega}$. We put $A \equiv\left(\begin{array}{cc}a_{11} & \kappa \\ \tilde{\kappa} & a_{22}\end{array}\right)$ on $\tilde{\Omega}$.

We can define the \boldsymbol{R}-valued continuous functions f_{1} and f_{2} on $\tilde{\Omega}$ by

$$
\left\{\begin{array}{l}
f_{1}=\frac{a_{11}+a_{22}+\sqrt{\left(a_{11}-a_{22}\right)^{2}+4 \bar{\kappa} \kappa}}{2} \tag{2.2}\\
f_{2}=\frac{-a_{11}-a_{22}+\sqrt{\left(a_{11}-a_{22}\right)^{2}+4 \bar{\kappa} \kappa}}{2}
\end{array}\right.
$$

Notice that $-f_{2} \leqq f_{1}$ and that $-f_{2}$ and f_{1} assign the eigen values of the matrix A to each point of $\tilde{\Omega}$. We can see that f_{1} and f_{2} are globally defined on the whole of M. However, we can not conclude that f_{1} and f_{2} are smooth at a point of $M_{\text {sing }}$.

From the assumption (N2) of F in $\S 1$ we obtain the following
Lemma 2.1. A point p of M belongs to $M_{\text {sing }}$ if and only if $f_{1}(p)=f_{2}(p)=0$. In particular, $M_{\text {sing }}$ is a closed subset of M.

Moreover, we define the \boldsymbol{R}-valued functions h_{1} and h_{2} on $\tilde{\Omega}$ as follows:

$$
\left\{\begin{array}{l}
h_{1} \equiv-\operatorname{det} A=-a_{11} a_{22}+\bar{\kappa} \kappa \tag{2.3}\\
h_{2} \equiv \operatorname{trace} A=a_{11}+a_{22}
\end{array}\right.
$$

We can also see that h_{1} and h_{2} are globally defined on the whole of M. From (2.2) and (2.3), we immediately obtain the following relations:

$$
\begin{equation*}
h_{1}=f_{1} \cdot f_{2}, \quad h_{2}=f_{1}-f_{2} \quad \text { on } M \tag{2.4}
\end{equation*}
$$

Here we have another expression of the properness condition for $(M, g, J ; \mathscr{F})$.

Lemma 2.2. Let $(M, g, J ; \mathscr{F})$ be a Kähler-Liouville surface satisfying that $M_{\mathrm{sing}} \neq \varnothing$. The condition (PKL2) in the definition of properness for ($M, g, J ; \Psi$) in $\S 1$ is equivalent to the following condition:

$$
\begin{equation*}
\left(d h_{2}\right)_{p} \neq 0 \quad \text { for any } p \in M_{\text {sing }} . \tag{2.5}
\end{equation*}
$$

Proof. Let p be an arbitrary point of $M_{\text {sing }}$ and $\tilde{\Omega}$ an open neighborhood of p in M which is equipped with a local unitary coframe $\tilde{V}_{1}^{*}, \tilde{V}_{2}^{*}$. We set the orthonormal coframe $V_{1}^{*}, V_{3}^{*}, V_{2}^{*}, V_{4}^{*}$ on $\tilde{\Omega}$ corresponding to the unitary coframe $\tilde{V}_{1}^{*}, \tilde{V}_{2}^{*}$ and the orthonormal frame $V_{1}, V_{3}, V_{2}, V_{4}$ on $\tilde{\Omega}$ which is dual to the coframe $V_{3}^{*}, V_{1}^{*}, V_{4}^{*}, V_{2}^{*}$. Notice that $J^{*} V_{1}^{*}=V_{3}^{*}, J^{*} V_{2}^{*}=V_{4}^{*}$ and $J V_{1}=V_{3}, J V_{2}$ $=V_{4}$. Recalling (2.1), we have

$$
\begin{align*}
F= & a_{11} \cdot\left(\left(V_{1}\right)^{2}+\left(V_{3}\right)^{2}\right)+a_{22} \cdot\left(\left(V_{2}\right)^{2}+\left(V_{4}\right)^{2}\right) \tag{2.6}\\
& +2 a_{12} \cdot\left(V_{1} V_{2}+V_{3} V_{4}\right)+2 a_{21} \cdot\left(V_{1} V_{4}-V_{2} V_{3}\right) \quad \text { on } \tilde{\Omega},
\end{align*}
$$

where a_{12} and a_{21} are the \boldsymbol{R}-valued functions on $\tilde{\Omega}$ such that $\kappa=a_{12}+\sqrt{-1} a_{21}$. We notice that $a_{11}(p)=a_{22}(p)=a_{12}(p)=a_{21}(p)=0$.

We now verify the desired equivalence.
(I) The implication (2.5) \rightarrow (PKL2). Observing (2.6), the condition that $(d F)_{w}=0$ implies that $\left(d a_{11}\right)_{p}=\left(d a_{22}\right)_{p}=0$. From (2.3), we thus have $\left(d h_{2}\right)_{p}=$ $\left(d a_{11}\right)_{p}+\left(d a_{22}\right)_{p}=0$.
(II) The implication (PKL2) \rightarrow (2.5), Take a certain $w \in T_{p}^{*} M$ so that $\|w\|$ $\neq 0$ and $(d F)_{w} \neq 0$. We can assume that $\left(V_{1}^{*}\right)_{p}=w /\|w\|$. Then, using (2.6), we obtain $\left(d a_{11}\right)_{p} \neq 0$. From the condition (KL4) $\{E, F\}=0$ in $\S 1$ we can see that $\left(d a_{11}\right)_{p}$ can not be obtained by the scalar multiple of $\left(d a_{22}\right)_{p}$. Thus, we have $\left(d h_{2}\right)_{p}=\left(d a_{11}\right)_{p}+\left(d a_{22}\right)_{p} \neq 0$.

Going back to the argument for the compact, connected proper KählerLiouville surface ($M, g, J ; \mathscr{F}$) given at the beginning of this section, we have the following

Proposition 2.3. The subset M_{reg} of M is a non-empty open subset of M.
Proof. Let $p \in M_{\text {sing. }}$. The condition (2.5) in Lemma 2.2 implies that there exists a point q close to the point p such that $h_{2}(q)=f_{1}(q)-f_{2}(q) \neq 0$. The openness is immediate from Lemma 2.1.

For each point p of $M_{\text {reg }}$, there exist both an open neighborhood Ω of p and an orthonormal frame $V_{1}, V_{3}, V_{2}, V_{4}$ on Ω which satisfy the following conditions:
(1) $\Omega \subset M_{\text {reg }}$;
(2) $J V_{1}=V_{3}$ and $J V_{2}=V_{4}$;
(3) F and $2 E$ are expressed as

$$
\left\{\begin{array}{l}
F=-f_{2}\left(\left(V_{1}\right)^{2}+\left(V_{3}\right)^{2}\right)+f_{1}\left(\left(V_{2}\right)^{2}+\left(V_{4}\right)^{2}\right) \tag{2.7}\\
2 E=\left(V_{1}\right)^{2}+\left(V_{3}\right)^{2}+\left(V_{2}\right)^{2}+\left(V_{4}\right)^{2} \quad \text { on } \Omega .
\end{array}\right.
$$

Such an orthonormal frame $V_{1}, V_{3}, V_{2}, V_{4}$ on Ω will be called the F-adapted orthonormal frame on Ω.

Using the neighborhood Ω and the F-adapted orthonormal frame V_{1}, V_{3}, V_{2}, V_{4} on Ω, we can define the complex subbundles D_{1} and D_{2} of the tangent bundle $T\left(M_{\text {reg }}\right)$ over $M_{\text {reg }}$ by

$$
\begin{equation*}
\left.D_{1}\right|_{\Omega}=\left\langle V_{1}, V_{3}\right\rangle,\left.\quad D_{2}\right|_{\Omega}=\left\langle V_{2}, V_{4}\right\rangle, \tag{2.8}
\end{equation*}
$$

where $\left\langle V_{i}, V_{i+2}\right\rangle$ being the distribution on Ω generated by V_{i} and $V_{i+2}, i=1,2$. It follows that $T\left(M_{\text {reg }}\right)=D_{1} \oplus D_{2}$.

Now, we have
Lemma 2.4. The functions f_{1}, f_{2} and h_{1} are non-negative on M.

Proof. (1) We recall that $-f_{\mathbf{z}} \leqq f_{1}$. Assume that there exists a point p of $M_{\text {reg }}$ such that $0<-f_{2}(p) \leqq f_{1}(p)$. Then, observing (2.7), we see that F_{p} is positive definite. Joining p and a point of $M_{\text {sing }}$ by a minimizing geodesic segment, we can find $v \in T_{p} M$ such that $F_{p}(v)=0$, which is a contradiction. Likewise, we obtain a contradiction under the assumption that $-f_{2}(p) \leqq f_{1}(p)<0$. Thus, we conclude that $-f_{2}(p) \leqq 0 \leqq f_{1}(p)$. Non-negativity of h_{1} follows immediately from the fact that $h_{1}=f_{1} f_{2}$ in (2.4).

Combining Lemma 2.1 and Lemma 2,4, we can immediately obtain the following

Proposition 2.5. (1) The subset $M_{\text {sing }}$ of M is characterized as the set of points on which $f_{1}+f_{2}$ vanishes.
(2) The subset $M_{\text {reg }}$ of M is characterized as the set of points on which $f_{1}+f_{2}$ is positive.

Moreover, we have the following
Proposition 2.6. The subset $M_{\text {reg }}$ of M is an open dense connected subset of M.

Proof. (denseness) We take $p_{0} \in M_{\text {reg }}$. Let $S_{p_{0}}^{*} M$ be the unit sphere of the cotangent space $T_{p_{0}}^{*} M$. From (2.7), we can easily see that the set Θ of unit covectors at p_{0} where $d E \wedge d F \neq 0$ is dense in $S_{p_{0}}^{*} M$. Let $\pi: T * M \rightarrow M$ be the natural projection, let $\left\{\zeta_{t}\right\}_{t \in \boldsymbol{R}}$ be the geodesic flow on (M, g), let $d \alpha$ be the canonical symplectic structure on $T^{*} M$ and let X_{F} be the symplectic vector field on $T^{*} M$ defined by

$$
i\left(X_{F}\right) d \alpha=-d F
$$

where $i\left(X_{F}\right)$ is the interior derivation with respect to X_{F}. We take $w \in \Theta$. We then consider the geodesic $\gamma(t)=\pi\left(\zeta_{t}(w)\right)$ and the Jacobi field

$$
B(t)=\pi_{*}\left(\zeta_{t}\right)_{*}\left(X_{F}\right)_{w}
$$

along it. From the condition (KL4) $\{E, F\}=0$ in $\S 1$, we can see that

$$
\begin{equation*}
g\left(\dot{\gamma}(t), \nabla_{(\partial \partial \partial t)} B(t)\right)=0 \tag{2.9}
\end{equation*}
$$

Assume that $\dot{\gamma}\left(t_{0}\right), B\left(t_{0}\right)$ are linearly dependent for some t_{0}. Replacing $B(t)$ with a linear combination of $\dot{\gamma}(t)$ and $B(t)$, we may assume that $B\left(t_{0}\right)=0$. Then, we can see from (2.9) that $\nabla_{(\partial \partial t)} B\left(t_{0}\right)$ is a non-zero vector perpendicular to $\dot{\gamma}\left(t_{0}\right)$ and hence that $B(t)$ is a non-zero normal Jacobi field along $\gamma(t)$. Hence, we see that the times t such that $\dot{\gamma}(t), B(t)$ are linearly dependent appear discretely in \boldsymbol{R}. Thus, $d F \wedge d E \neq 0$ in a dense subset in $T^{*} M$. This implies that E, F are linear independent in a dense subset in M.
(connectedness) Take any two points p_{1}, p_{2} of $M_{\text {reg }}$. We put $F^{b}=F_{0} b$, where b is the identification map of $T M$ onto $T^{*} M$ induced by g. We join the two points p_{1} and p_{2} by the minimizing geodesic segment γ; we put $\gamma(0)=p_{1}$, $\gamma\left(t_{2}\right)=p_{2}$. When $F(\dot{\gamma}) \neq 0$, the segment γ does not pass through $M_{\text {sing }}$. When $F(\dot{\gamma})=0$, observing (2.7), Lemma 2.4 and Proposition 2.5 (2), we can take a geodesic segment γ_{1} such that (i) $\gamma_{1}(0)=p_{1}$; (ii) $\gamma_{1}\left(t_{2}\right)$ is in a sufficiently small neighborhood of p_{2} which is included in $M_{\text {reg }}$; (iii) $F^{b}\left(\dot{\gamma}_{1}\right) \neq 0$. Thus, we conclude that $M_{\text {reg }}$ is arcwise connected.

Let Ω be an open subset of $M_{\text {reg }}$ equipped with a F-adapted orthonormal frame $V_{1}, V_{3}, V_{2}, V_{4}$. For $k=1,2$, we put

$$
W_{k}=\sqrt{f_{1}+f_{2}} \cdot V_{k}, \quad W_{k+2}=\sqrt{f_{1}+f_{2}} \cdot V_{k+2} \quad \text { on } \Omega .
$$

Then, we obtain an orthogonal frame $W_{1}, W_{3}, W_{2}, W_{4}$ on Ω and the following relations:

$$
\left\{\begin{align*}
-F+f_{1} \cdot 2 E & =\left(W_{1}\right)^{2}+\left(W_{3}\right)^{2} \tag{2.10}\\
F+f_{2} \cdot 2 E & =\left(W_{2}\right)^{2}+\left(W_{4}\right)^{2} \quad \text { on } \Omega .
\end{align*}\right.
$$

Such a frame will be called the F-adapted orthogonal frame on Ω.
We take an arbitrary open subset Ω of $M_{\text {reg }}$ equipped with a F-adapted orthogonal frame $W_{1}, W_{3}, W_{2}, W_{4}$. Henceforth in this section, we will use this open subset and this frame on it without further notice.

From the condition (KL4) $\{E, F\}=0$ in $\S 1$, we can compute

$$
\begin{equation*}
W_{1} f_{2}=W_{3} f_{2}=0, \quad W_{2} f_{1}=W_{4} f_{1}=0 \quad \text { on } \Omega \tag{2.11}
\end{equation*}
$$

and the following
Lemma 2.7. There exist functions $\sigma_{12}, \sigma_{21}, \tau_{12}$ and τ_{21} on Ω such that, for $(i, j) \in\{(1,2),(2,1)\}$,

$$
\begin{aligned}
& {\left[W_{i}, W_{j}\right]=-\sigma_{j i} W_{i+2}+\sigma_{i j} W_{j+2},} \\
& {\left[W_{i}, W_{j+2}\right]=-\tau_{j i} W_{i+2}+\sigma_{i j} W_{j},} \\
& {\left[W_{i+2}, W_{j+2}\right]=-\tau_{j i} W_{i}+\tau_{i j} W_{j} \text { on } \Omega .}
\end{aligned}
$$

Let ω be the Kähler form on (M, g, J) defined by $\omega(X, Y) \equiv g(X, J Y)$ for any point p, and for any vectors, X and Y, tangent to M at p. The Kähler condition $d \omega=0$ yields the following

Lemma 2.8. There exist functions $\xi_{1}^{1}, \xi_{1}^{3}, \xi_{2}^{2}$ and ξ_{2}^{4} on Ω such that, for $(i, j) \in\{(1,2),(2,1)\}$,

$$
\left[W_{i}, W_{i+2}\right]=\xi_{i}^{i} \cdot W_{i}+\xi_{i}^{i+2} \cdot W_{i+2}+\frac{W_{j+2} f_{j}}{f_{1}+f_{2}} \cdot W_{j}-\frac{W_{j} f_{j}}{f_{1}+f_{2}} \cdot W_{j+2} \quad \text { on } \Omega
$$

Let $(i, j) \in\{(1,2),(2,1)\}$. Using Lemma 2.7 and Lemma 2.8, we have two expressions of $\left[W_{j},\left[W_{i}, W_{i+2}\right]\right]$ and two expressions of $\left[W_{j+2},\left[W_{i}, W_{i+2}\right]\right]$. Comparing the two expressions of $\left[W_{j},\left[W_{i}, W_{i+2}\right]\right]$ and comparing those of [W_{j+2}, [$\left.W_{i}, W_{i+2}\right]$], we obtain the following formulas on Ω which will be used in this section and subsequent sections:
(FML1)

$$
\left(W_{j} f_{j}\right) \xi_{j}^{j}=W_{j} W_{j+2} f_{j}-\frac{\left(W_{j} f_{j}\right)\left(W_{j+2} f_{j}\right)}{f_{1}+f_{2}}
$$

(FML2)

$$
\begin{aligned}
& \sigma_{i j} \xi_{i}^{i}+\tau_{i j} \xi_{i}^{i+2}+\frac{W_{j} f_{j}}{f_{1}+f_{2}} \cdot \xi_{j}^{j+2} \\
& \quad=-\frac{\left(W_{j}\right)^{2} f_{j}}{f_{1}+f_{2}}+\frac{\left(W_{j} f_{j}\right)^{2}}{\left(f_{1}+f_{2}\right)^{2}}-W_{i+2} \sigma_{i j}+W_{i} \tau_{i j}
\end{aligned}
$$

(FML3)

$$
\left(W_{j+2} f_{j}\right) \xi_{j}^{j+2}=-W_{j+2} W_{j} f_{j}+\frac{\left(W_{j} f_{j}\right)\left(W_{j+2} f_{j}\right)}{f_{1}+f_{2}}
$$

(FML4)

$$
\begin{aligned}
& \sigma_{i j} \xi_{i}^{i}+\tau_{i j} \xi_{i}^{i+2}-\frac{W_{j+2} f_{j}}{f_{1}+f_{2}} \cdot \xi_{j}^{j} \\
& =-\frac{\left(W_{j+2}\right)^{2} f_{j}}{f_{1}+f_{2}}+\frac{\left(W_{j+2} f_{j}\right)^{2}}{\left(f_{1}+f_{2}\right)^{2}}-W_{i+2} \sigma_{i j}+W_{i} \tau_{i j} \\
& \\
& \quad \text { for }(i, j) \in\{(1,2),(2,1)\} \text { and on } \Omega .
\end{aligned}
$$

Now, we define the vector fields U_{1}, U_{2}, U_{3} and U_{4} on $M_{\text {reg }}$ by

$$
\left\{\begin{array}{l}
i\left(\frac{U_{3}}{f_{1}+f_{2}}\right) \omega=d f_{1}, \quad U_{1}=-J U_{3} \tag{2.12}\\
i\left(\frac{U_{4}}{f_{1}+f_{2}}\right) \omega=d f_{2}, \quad U_{2}=-J U_{4}
\end{array}\right.
$$

where $i(U)$ is the interior derivation with respect to U. We set

$$
\begin{equation*}
M_{\mathrm{REG}} \equiv\left\{p \in M_{\mathrm{reg}} \mid\left(d f_{1}\right)_{p} \neq 0 \text { and }\left(d f_{2}\right)_{p} \neq 0\right\} \tag{2.13}
\end{equation*}
$$

It follows that U_{1}, U_{3}, U_{2} and U_{4} form an orthogonal frame on $M_{\text {REG }}$ and that $D_{i}=\left\langle\left\langle U_{i}, U_{i+2}\right\rangle, i=1,2\right.$, on $M_{\text {REG }}$. Here we define a real subbundle D_{+}of the tangent bundle $T\left(M_{\text {REG }}\right)$ over $M_{\text {REG }}$ by

$$
\begin{equation*}
\left.D_{+}=\left\langle U_{1}, U_{2}\right\rangle\right\rangle . \tag{2.14}
\end{equation*}
$$

Using (FML1), (FML2), (FML3), (FML4) and Lemma 2.7, we obtain the following

Lemma 2.9. $\operatorname{For}(i, j) \in\{(1,2),(2,1)\}$,

$$
\begin{aligned}
& {\left[U_{i}, U_{i+2}\right]=\frac{U_{i} f_{i}}{f_{1}+f_{2}}\left(U_{i+2}-U_{j+2}\right),} \\
& {\left[U_{i}, U_{j}\right]=\left[U_{i}, U_{j+2}\right]=\left[U_{i+2}, U_{j+2}\right]=0 \quad \text { on } M_{\mathrm{reg}} .}
\end{aligned}
$$

Let ∇ denote the riemannian connection on M with respect to g. A simple calculation leads to the following

Lemma 2.10. For $(i, j) \in\{(1,2),(2,1)\}$, we have

$$
\nabla_{U_{i}} U_{i}=\frac{1}{2}\left(\frac{\left(U_{i}\right)^{2} f_{i}}{U_{i} f_{i}}+\frac{U_{i} f_{i}}{f_{1}+f_{2}}\right) \cdot U_{i}-\frac{U_{i} f_{i}}{2\left(f_{1}+f_{2}\right)} \cdot U_{j}
$$

on the domain of M_{reg} in which $\left(d f_{i}\right) \neq 0$ holds, and

$$
\nabla_{U_{i}} U_{j}=\frac{U_{j} f_{j}}{2\left(f_{1}+f_{2}\right)} \cdot U_{i}-\frac{U_{i} f_{i}}{2\left(f_{1}+f_{2}\right)} \cdot U_{j} \quad \text { on } M_{\mathrm{reg}} .
$$

We now define the vector fields Y_{1} and Y_{2} on M by the following equations:

$$
\begin{equation*}
i\left(Y_{1}\right) \boldsymbol{\omega}=d h_{1}, \quad i\left(Y_{2}\right) \boldsymbol{\omega}=d h_{2}, \tag{2.15}
\end{equation*}
$$

where $i(Y)$ is the interior derivation with respect to Y.
Observing (2.4), (2.12) and (2.15), we have

$$
\left\{\begin{array}{l}
Y_{1}+f_{1} \cdot Y_{2}=U_{3} \tag{2.16}\\
Y_{1}-f_{2} \cdot Y_{2}=U_{4} \text { on } M_{\mathrm{reg}} .
\end{array}\right.
$$

Then, we see that, for $k, j=1,2, Y_{k} f_{j}=0$ on $M_{\text {reg. }}$. Thus, from (2.4), it follows that, for $k, j=1,2, Y_{k} h_{j}=0$ on M.

Using (2.16) and Lemma 2.9, we can compute the following
Lemma 2.11. The vector fields U_{1}, U_{2}, Y_{1} and Y_{2} on M_{reg} are mutually commutative on $M_{\text {reg }}$ with respect to the Lie bracket, that is,

$$
\begin{aligned}
& {\left[U_{1}, U_{2}\right]=0, \quad\left[Y_{1}, Y_{2}\right]=0,} \\
& {\left[U_{1}, Y_{1}\right]=\left[U_{1}, Y_{2}\right]=\left[U_{2}, Y_{1}\right]=\left[U_{2}, Y_{2}\right]=0 \quad \text { on } M_{\mathrm{reg}} .}
\end{aligned}
$$

Using (2.16), (FML1), (FML2), (FML3) and (FML4), we obtain the following
Proposition 2.12. For $i, k=1,2$, we have

$$
\left\{\left(W_{i}\right)^{2}+\left(W_{i+2}\right)^{2}, Y_{k}\right\}=0 \quad \text { on } \Omega .
$$

Using Proposition 2.6, (2.10) and Proposition 2.12, we obtain the following
Theorem.2.13. The vector fields Y_{1} and Y_{2} on M are infinitesimal automorphisms of ($M, g, J ; \mp$). Actually, they satisfy
(1) $\left\{E, Y_{1}\right\}=\left\{E, Y_{2}\right\}=0$;
(2) $\mathcal{L}_{Y_{1}} J=\mathcal{L}_{Y_{2}} J=0$;
(3) $\left\{F, Y_{1}\right\}=\left\{F, Y_{2}\right\}=0$,
where \mathcal{L}_{Y} means the Lie derivation with respect to Y on M.

§ 3. The submanifold H_{0} including the semi-definite subset of M.

Let $(M, g, J ; \mathscr{F})$ be a compact, connected proper Kähler-Liouville surface. We now recall the function h_{1} on M defined by (2.3) in $\S 2$. We define the subset H_{0} of M by

$$
\begin{equation*}
H_{0}=\left\{p \in M \mid h_{1}(p)=0\right\} . \tag{3.1}
\end{equation*}
$$

Since h_{1} is non-negative, it follows that $\left(Y_{1}\right)_{p}=0$ for all $p \in H_{0}$. Since $h_{1}=f_{1} f_{2}$, we have $H_{0} \supset M_{\text {sing }}$.

The main objective of this section is to establish the following
Theorem 3.1. Let $(M, g, J ; \mp)$ be a compact, connected proper KählerLiouville surface and let H_{0} be the subset of M defined above. Then
(1) H_{0} is a complex submanifold of (M, g, J) which is bi-holomorphic with the complex projective line $\boldsymbol{C} P^{1}$, and is totally geodesic with respect to g.
(2) $M_{\text {sing }}$ is a compact real submanifold of H_{0}, and hence also of M, and is diffeomorphic with the circle S^{1}.
(3) H_{0} is divided into the two open disks H_{01} and H_{02} by the circle $M_{\text {sing }}$, and the divided domains H_{01} and H_{02} are integral submanifolds of D_{1} and D_{2} respectively.

We take an arbitrary point p_{0} of $M_{\text {sing }}$. Let $R \ni t \rightarrow \psi_{t}^{(2)}\left(p_{0}\right) \in M$ be the integral curve of Y_{2} through p_{0}; it is assumed to be $\psi_{0}^{(2)}\left(p_{0}\right)=p_{0}$. Since $Y_{\mathbf{2}} h_{j}=0$ for $j=1,2$, we have

Lemma 3.2. $\quad \phi_{t}^{(2)}\left(p_{0}\right) \in M_{\text {sing }}$ for all $t \in \boldsymbol{R}$.
We define the vector fields X_{1}, X_{2} on M by $X_{1}=-J Y_{1}, X_{2}=-J Y_{2}$. From (2.16) in $\S 2$ we have

$$
\left\{\begin{array}{l}
X_{1}+f_{1} \cdot X_{2}=U_{1} \tag{3.2}\\
X_{1}-f_{2} \cdot X_{2}=U_{2} \text { on } M_{\mathrm{reg}} .
\end{array}\right.
$$

Using Proposition 2.6 and Lemma 2 11 in § 2, we obtain

$$
\begin{align*}
{\left[X_{1}, X_{2}\right] } & =\left[Y_{1}, Y_{2}\right]=\left[X_{1}, Y_{1}\right] \tag{3.3}\\
& =\left[X_{1}, Y_{2}\right]=\left[X_{2}, Y_{1}\right]=\left[X_{2}, Y_{2}\right]=0 \quad \text { on } M .
\end{align*}
$$

Let $\boldsymbol{R} \ni t \rightarrow \varphi_{t}^{(2)}\left(p_{0}\right) \in M$ be the integral curve of X_{2} through $p_{0} \in M_{\text {sing }}$; it is assumed to be $\varphi_{0}^{(2)}\left(p_{0}\right)=p_{0}$. From the fact that $\left[X_{2}, Y_{1}\right]=0$ in (3.3) we obtain

Lemma 3.3. $\quad \varphi_{t}^{(2)}\left(p_{0}\right) \in H_{0}$ for all $t \in \boldsymbol{R}$.
Then, we have the following
Proposition 3.4. There exist points at which F is positive semi-definite and also points at which F is negative semi-definite.

Proof. Let p_{0} be an arbitrary point of $M_{\text {sing }}$ and let $\tilde{\Omega}$ be an open neighborhood of p_{0} in M equipped with a local orthonormal frame V_{1}, V_{3}, V_{2}, V_{4} such that $J V_{1}=V_{3}$ and $J V_{2}=V_{4}$. Then, we have

$$
X_{2} h_{2}=\left\|X_{2}\right\|^{2}=\left(V_{1} h_{2}\right)^{2}+\left(V_{3} h_{2}\right)^{2}+\left(V_{2} h_{2}\right)^{2}+\left(V_{4} h_{2}\right)^{2} \geqq 0 \quad \text { on } \tilde{\Omega} .
$$

Hence, the condition (2.5) in Lemma 2.2 in $\S 2$ implies that the function

$$
\boldsymbol{R} \ni t \longmapsto h_{2}\left(\varphi_{t}^{(2)}\left(p_{0}\right)\right) \in \boldsymbol{R}
$$

is a strictly increasing function. Since Lemma 3, 3 means that $h_{1}\left(\varphi_{t}^{(2)}\left(p_{0}\right)\right)=0$ for all $t \in \boldsymbol{R}$, we have
(i) when $t>0, F_{\varphi_{i}^{(2)}\left(p_{0}\right)}$ is positive semi-definite;
(ii) when $t<0, F_{\varphi_{t}}^{(2)\left(p_{0}\right)}$ is negative semi-definite.

Proposition 3.5. There exist points at which F is indefinite.
This proposition is obtained immediately from the following
Lemma 3.6. $\quad h_{1} \not \equiv 0$ on M.
Proof. Assume that $h_{1} \equiv 0$ on M. For $i=1,2$, we set $G_{i} \equiv\left\{p \in M_{\text {reg }} \mid f_{i}(p)\right.$ $=0\}$. Then, G_{1} and G_{2} have the following three properties: (i) Both G_{1} and G_{2} are closed subsets of $M_{\text {reg }}$; (ii) $G_{1} \cap G_{2}=\varnothing$; (iii) $M_{\text {reg }}=G_{1} \cup G_{2}$. Because of the connectedness of $M_{\text {reg }}$ (Proposition 2.6 in § 2), either $G_{1}=\varnothing$ or $G_{2}=\varnothing$ holds. This contradicts Proposition 3.4.

Proposition 3.7. The subset H_{0} of M is a compact, connected 1-dimensional complex submanifold of (M, g, J) such that
(1) H_{0} is bi-holomorphic to the complex projective line $\boldsymbol{C} P^{1}$;
(2) H_{0} is totally geodesic with respect to g.

Proof. We take an arbitrary point p_{0} of $M_{\text {sing }}$ and a sufficiently small $\varepsilon>0$. Then, for an open interval $] a, b[$ we set

$$
\Pi(] a, b[) \equiv\left\{\varphi_{t}^{(2)}\left(\psi_{u}^{(2)}\left(p_{0}\right)\right) \mid a<t<b,-\varepsilon<u<\varepsilon\right\} .
$$

By Lemma 3.2 and Lemma 3.3, we have II(]$-\varepsilon, \varepsilon[) \subset H_{0}$. From the fact that $\left[X_{2}, Y_{2}\right]=0$ in (3.3), we see that $\Pi(]-\varepsilon, \varepsilon[)$ is a local integral surface of the distribution $\left\langle X_{2}, Y_{2}\right\rangle$ generated by X_{2} and Y_{2}.

Now, we set

$$
\widetilde{H}_{0}=\left\{p \in M \mid\left(Y_{1}\right)_{p}=0\right\}
$$

Then, from (3.1) it follows that $H_{0} \subset \widetilde{H}_{0}$. Let $\left(\widetilde{H}_{0}\right)_{0}$ be the connected component of \widetilde{H}_{0} including the point p_{0}. It follows that $\left(\widetilde{H}_{0}\right)_{0} \supset \Pi(]-\varepsilon, \varepsilon[) \ni p_{0}$. Since Y_{1} is an infinitesimal isometry of (M, g), by a standard theory of the transformation group we can assert that $\left(\tilde{H}_{0}\right)_{0}$ is a closed totally geodesic submanifold whose codimension is even, namely, that $\left(\widetilde{H}_{0}\right)_{0}$ coincides with one of the following: (i) The total space M; (ii) A certain 2 -dimensional compact totally geodesic submanifold; (iii) A certain point of M. Because of Lemma 3.6 we have $\left(\widetilde{H}_{0}\right)_{0} \neq M$. Since $\left(\widetilde{H}_{0}\right)_{0} \supset I I(]-\varepsilon, \varepsilon[),\left(\widetilde{H}_{0}\right)_{0}$ is not one point. We thus conclude that $\left(\tilde{H}_{0}\right)_{0}$ is a compact, connected totally geodesic 2-dimensional real submanifold. Moreover, since Y_{1} is an infinitesimal holomorphic transformation, $\left(\widetilde{H}_{0}\right)_{0}$ is a complex submanifold of (M, J). Since $d h_{1} \equiv 0$ on $\left(\widetilde{H}_{0}\right)_{0}$, we have $h_{1} \equiv 0$ on $\left(\widetilde{H}_{0}\right)_{0}$. Thus, we obtain

$$
\left(\tilde{H}_{0}\right)_{0} \subset H_{0} \subset \widetilde{H}_{0}
$$

Here, we will verify that $\left(\tilde{H}_{0}\right)_{0}=H_{0}$. Assume that $H_{0} \backslash\left(\tilde{H}_{0}\right)_{0} \neq \varnothing$ and take $q \in H_{0} \backslash\left(\widetilde{H}_{0}\right)_{0}$. We also take points p_{-}and p_{+}of $\Pi(]-\varepsilon, 0[)$ and $\Pi(] 0, \varepsilon[)$, respectively. Notice that $p_{-}, p_{+} \in\left(\widetilde{H}_{0}\right)_{0}$. Let γ_{-}and γ_{+}be the minimizing geodesics from q to p_{-}and from q to p_{+}respectively; they are assumed to parameterized as $\gamma_{-}(0)=\gamma_{+}(0)=q$ and $\gamma_{-}\left(s_{-}\right)=p_{-}, \gamma_{+}\left(s_{+}\right)=p_{+}$. Since $\left(\tilde{H}_{0}\right)_{0}$ is compact and totally geodesic and since $q \notin\left(\widetilde{H}_{0}\right)_{0}$, it follows that $\dot{\gamma}_{-}\left(s_{-}\right), \dot{\gamma}_{+}\left(s_{+}\right)$ are not tangent to $\left(\widetilde{H}_{0}\right)_{0}$. We put $F^{b}=F \circ b$, where b is the identification map of $T M$ onto $T^{*} M$ induced by g. Using the same argument as in the proof of Proposition 3.4, we have

$$
F^{b}\left(\dot{\gamma}_{-}(0)\right)=F^{b}\left(\dot{\gamma}_{-}\left(s_{-}\right)\right)<0, \quad F^{b}\left(\dot{\gamma}_{+}(0)\right)=F^{b}\left(\dot{\gamma}_{+}\left(s_{+}\right)\right)>0,
$$

which contradicts the property that F is semi-definite at $q \in H_{0}$.
Thus, we conclude that H_{0} is a compact, connected totally geodesic 1-dimensional complex submanifold of (M, g, J).

It remains to verify (1). Since $Y_{2} h_{1}=0$, it follows that Y_{2} is tangent to H_{0} at any point of H_{0}. Then, we see that Y_{2} is a non-trivial infinitesimal holomorphic transformation of H_{0} and hence that H_{0} is bi-holomorphic to $\boldsymbol{C} P^{1}$ or the 1-dimensional complex torus. Since Y_{2} vanishes at the points at which the function $\left.h_{2}\right|_{I I_{0}}$ takes the maximal value or minimal value, we can conclude that H_{0} is bi-holomorphic to the complex projective line $\boldsymbol{C} P^{1}$.

Proposition 3.8. The subset $M_{\text {sing }}$ of M is a real submanifold of H_{0} which is diffeomorphic with the circle S^{1}; actually, there exists a positive real constant c_{2} such that, for any $p_{0} \in M_{\text {sing }}$,

$$
M_{\mathrm{sing}}=\left\{\phi_{u}^{(2)}\left(p_{0}\right) \left\lvert\, u \in\left(\boldsymbol{R} / \frac{2 \pi}{c_{2}} \boldsymbol{Z}\right)\right.\right\} .
$$

Proof. Since $h_{1}=f_{1} f_{2}$, we have $H_{0} \supset M_{\text {sing }}$. As in the proof of Proposition 3.7, for each $p \in M_{\text {sing }}$, we take the open neighborhood $\Pi_{p}(]-\varepsilon, \varepsilon[)$ of p in H_{0} as follows:

$$
\Pi_{p}(]-\varepsilon, \varepsilon[) \equiv\left\{\varphi_{t}^{(2)}\left(\psi_{u}^{(2)}(p)\right) \mid-\varepsilon<t<\varepsilon,-\varepsilon<u<\varepsilon\right\} .
$$

Because $\Pi_{p}(]-\varepsilon, \varepsilon[) \cap M_{\text {sing }}=\left\{\psi_{u}^{(2)}(p) \mid-\varepsilon<u<\varepsilon\right\}$ for each $p \in M_{\text {sing }}, M_{\text {sing }}$ is a real 1-dimensional regular submanifold of H_{0}. Since $M_{\text {sing }}$ is a closed subset of H_{0}, it follows that $M_{\text {sing }}$ is a compact submanifold of H_{0}.

Take an arbitrary $p_{0} \in M_{\text {sing }}$ and fix it. Let ($\left.M_{\text {sing }}\right)_{0}$ be the connected component of $M_{\text {sing }}$ including p_{0}. Then, it is a compact, connected 1-dimensional real manifold, and hence, is diffeomorphic with the circle S^{1}. Thus, there exists a positive real constant c_{2} such that $\left(M_{\text {sing }}\right)_{0}$ can be expressed as

$$
\left(M_{\text {sing }}\right)_{0}=\left\{\psi_{u}^{(2)}\left(p_{0}\right) \left\lvert\, u \in\left(\boldsymbol{R} / \frac{2 \pi}{c_{2}} \boldsymbol{Z}\right)\right.\right\} .
$$

We here set $\Xi_{0}=\left\{\varphi_{t}^{(2)}\left(\psi_{u}^{(2)}\left(p_{0}\right)\right) \mid t \in \boldsymbol{R}, u \in\left(\boldsymbol{R} /\left(2 \pi / c_{2}\right) \boldsymbol{Z}\right)\right\}$, which forms an open submanifold of H_{0} diffeomorphic with the cylinder. Using Lemma 2, 10 in §2, we can easily see that, for each $u \in\left(\boldsymbol{R} /\left(2 \pi / c_{2}\right) \boldsymbol{Z}\right)$, the curve $\boldsymbol{R} \ni t \rightarrow \varphi_{t}^{(2)}\left(\psi_{u}^{(2)}\left(p_{0}\right)\right)$ $\in H_{0}$ coincides with a geodesic segment whose initial vector is $\left(X_{2} /\left\|X_{2}\right\|\right)_{\varphi_{u}(2)\left(p_{0}\right)}$ set-theoretically. Since H_{0} is compact, we can find two points q_{1} and q_{2} of H_{0} by taking the limit as $\lim _{t \rightarrow-\infty} \varphi_{t}^{(2)}\left(p_{0}\right)=q_{2}, \lim _{t \rightarrow+\infty} \varphi_{t}^{(2)}\left(p_{0}\right)=q_{1}$. Since Y_{2} is a non-trivial infinitesimal isometry of the 2-dimensional sphere H_{0}, we can see that $\left\{q \in H_{0} \mid\left(Y_{2}\right)_{q}=0\right\}=\left\{q_{1}, q_{2}\right\}$. Hence, it is easy to see that $H_{0}=\left\{q_{2}\right\} \cup \Xi_{0} \cup\left\{q_{1}\right\}$ and therefore

$$
M_{\text {sing }}=\left(M_{\text {sing }}\right)_{0} .
$$

From the proof of Proposition 3.8, together with the proof of Proposition 3.4, we obtain the following

Proposition 3.9. The circle $M_{\text {sing }}$ divides the sphere H_{0} into two domains H_{01} and H_{02} such that
(1) $H_{0 i}, i=1,2$, is an integral submanifold of D_{i};
(2) F is positive semi-definite on H_{01}, and negative semi-definite on H_{02};
(3) $H_{0 i}, i=1,2$, is diffeomorphic to the 2-dimensional real open disk with origin q_{i};
(4) the function $\left.f_{i}\right|_{H_{0}}, i=1$, 2, takes the maximal value, say m_{i}, at q_{i}, and $f_{i}=0, d f_{i}=0$ on $H_{0 j}$, where j is the integer such that $(i, j) \in\{(1,2),(2,1)\}$.

Therefore, combining Proposition 3.7, Proposition 3.8 and Proposition 3.9, we obtain Theorem 3.1.

Observing the proof of Proposition 3.8, we moreover obtain the following
PROPOSITION 3.10. The one-parameter group $\left\{\psi_{u}^{(2)}\right\}_{u \in R}$ of automorphisms of $(M, g, J ; \mathscr{F})$ generated by Y_{2} defines an S^{1}-action ψ_{2} on H_{0} with the least period $2 \pi / c_{2}$ given by

$$
\phi_{2}: H_{0} \times\left(\boldsymbol{R} / \frac{2 \pi}{c_{2}} \boldsymbol{Z}\right) \ni(p, u) \longmapsto \psi_{u}^{(2)}(p) \in H_{0}
$$

where c_{2} is the positive real constant stated in Proposition 3.8; this action can be recognized as the rotation of the sphere H_{0} which leaves the two points q_{1} and q_{2} fixed as its pivotal points.
\S 4. S^{1}-actions on $(M, g, J ; \mathscr{F})$.
For a submanifold L of M we denote by $N_{p} L$ the normal vector space to L at $p \in L$ in (M, g); we will use this symbol in this section and subsequent sections. From Theorem 2.13 in $\S 2$, we recall that the vector fields Y_{1} and Y_{2} defined by (2.15) in $\S 2$ are infinitesimal automorphisms of ($M, g, J ; \mathcal{F}$).

We begin with the following
LEMMA 4.1. Let Z be an infinitesimal automorphism of ($M, g, J ; \mathcal{F}$) described as $Z=\bar{m}_{1} \cdot Y_{1}+\bar{m}_{2} \cdot Y_{2}$, where $\bar{m}_{1}, \bar{m}_{2} \in \boldsymbol{R}$, and let $\left\{\eta_{t}\right\}_{t \in \boldsymbol{R}}$ be the one-parameter group of automorphisms of $(M, g, J ; \mathscr{F})$ generated by Z. If a point p of $M_{\text {reg }}$ satisfies $Z_{p}=0$, then, for $i=1,2$, there exists a real number $\hat{c}_{i}(p)$ such that the mapping $\left.\left(\eta_{t}\right)_{* p}\right|_{\left(D_{i}\right)_{p}}, t \in \boldsymbol{R}$, is expressed as

$$
\left(\eta_{t}\right)_{* p} v=\cos \left(\hat{c}_{i}(p) t\right) \cdot v+\sin \left(\hat{c}_{i}(p) t\right) \cdot J v \quad \text { for any } v \in\left(D_{i}\right)_{p}
$$

which is a \boldsymbol{C}-linear isometry of the complex vector space $\left(D_{i}\right)_{p}$ onto itself.
Proof. We take a neighborhood Ω of p in $M_{\text {reg }}$ which is equipped with an F-adapted orthogonal frame $W_{1}, W_{3}, W_{2}, W_{4}$. From Proposition 2.12 in §2, it follows that, for $i=1,2,\left\{Z,\left(W_{i}\right)^{2}+\left(W_{i+2}\right)^{2}\right\}=0$ on Ω. This is equivalent to the following statement: there exists a function \hat{c}_{i} on Ω such that $\left[Z, W_{i}\right]=$ $-\hat{c}_{i} W_{i+2},\left[Z, W_{i+2}\right]=\hat{c}_{i} W_{i}$ on Ω. This implies that, for any $v \in\left(D_{i}\right)_{p}$,

$$
\frac{\partial}{\partial t}\left(\eta_{t}\right)_{* p} v=\hat{c}_{i}(p) \cdot J\left(\left(\eta_{t}\right)_{* p} v\right), \quad t \in \boldsymbol{R}
$$

Integrating this equation, we obtain the desired equation.

Lemma 4.2. Let $(i, j) \in\{(1,2),(2,1)\}$. Let L be a connected integral submanifold of the distribution D_{i} in M_{reg} such that $\left(d f_{j}\right)_{p}=0$ for all $p \in L$, and let \tilde{m}_{j} denote the constant value which f_{j} takes on the whole of L. Let Z be an infinitesimal automorphism of ($M, g, J ; \mathscr{F}$) defined by $Z=Y_{1}+(-1)^{j+1} \tilde{m}_{j} Y_{2}$ and let $\left\{\eta_{t}\right\}_{t \in \boldsymbol{R}}$ denote the one-parameter group of automorphisms of $(M, g, J ; \mathbb{F})$ generated by Z.

Then, there exists a real constant c such that
(1) for each $p \in L$, the mapping $\left.\left(\eta_{t}\right)_{* p}\right|_{N_{p} L}, t \in \boldsymbol{R}$, is a \boldsymbol{C}-linear isometry of $N_{p} L$ onto itself given by

$$
\left(\eta_{t}\right)_{* p} v=\cos (c t) \cdot v+\sin (c t) \cdot J v \quad \text { for any } v \in N_{p} L ;
$$

(2) we have

$$
\left(\left(W_{j}\right)^{2} f_{j}\right)(p)=\left(\left(W_{j+2}\right)^{2} f_{j}\right)(p)=c \quad \text { for all } p \in L,
$$

where $W_{1}, W_{3}, W_{2}, W_{4}$ is an F-adapted orthogonal frame on a certain neighborhood of p in $M_{\text {reg }}$.

Proof. Let p be an arbitrary point of L. From the condition that $\left(d f_{j}\right)_{p}$ $=0$ and $f_{j}(p)=\tilde{m}_{j}$ we obtain

$$
\begin{equation*}
Z_{p}=0 . \tag{4.1}
\end{equation*}
$$

Then, applying Lemma 4 1 , we can see that $\left.\left(\eta_{t}\right)_{*_{p}}\right|_{N_{p} L}, t \in \boldsymbol{R}$, is a \boldsymbol{C}-linear isometry of $N_{p} L$ onto itself and that there exists a real number $c(p)$ such that

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\eta_{t}\right)_{* p} v=c(p) \cdot J\left(\left(\eta_{t}\right)_{* p} v\right) \quad \text { for all } t \in \boldsymbol{R} \text { and } v \in N_{p} L . \tag{4.2}
\end{equation*}
$$

Note that $T_{p} L=\left(D_{i}\right)_{p}$ and $N_{p} L=\left(D_{j}\right)_{p}$. Using the formulas (FML1) and (FML3) in $\S 2$, we obtain

$$
\begin{equation*}
\left.\frac{\partial}{\partial t}\left(\eta_{t}\right)\right)\left._{* p} v\right|_{t=0}=\nabla_{v} Z=\left(\left(W_{j}\right)^{2} f_{j}\right)(p) \cdot J v \quad \text { for any } v \in N_{p} L . \tag{4.3}
\end{equation*}
$$

By the formulas (FML2), (FML4) in $\S 2$, we have $\left(\left(W_{j}\right)^{2} f_{j}\right)(p)=\left(\left(W_{j+2}\right)^{2} f_{j}\right)(p)$. Combining (4.2), (4.3) and this equality, we obtain

$$
\begin{equation*}
c(p)=\left(\left(W_{j}\right)^{2} f_{j}\right)(p)=\left(\left(W_{j+2}\right)^{2} f_{j}\right)(p) \tag{4.4}
\end{equation*}
$$

Using Lemma 2.7 and the formulas (FML1), (FML3) in $\S 2$, we can easily see that $\left(W_{i}\right)_{p}\left(\left(W_{j}\right)^{2} f_{j}\right)=\left(W_{i+2}\right)_{p}\left(\left(W_{j}\right)^{2} f_{j}\right)=0$. This implies that $c(p)$ is independent of the choice of the point p of L; we thus obtain the desired real constant c. Therefore, (4.2) and (4.4) means the properties (1) and (2), respectively.

Now, as an application of Lemma 4, we have the following

Proposition 4.3. There exists a non-zero real constant c_{1} such that
(1) the one-parameter group $\left\{\psi_{t}^{(1)}\right\}_{t \in R}$ of automorphisms of ($M, g, J ; \mathscr{F}$) generated by Y_{1} possesses the property that, for any $t \in \boldsymbol{R}$ and for any $p \in H_{0},\left.\left(\psi_{t}^{(1)}\right)_{* p}\right|_{N_{p}\left(H_{0}\right)}: N_{p}\left(H_{0}\right) \rightarrow N_{p}\left(H_{0}\right)$ is a \boldsymbol{C}-linear isometry of $N_{p}\left(H_{0}\right)$ which satisfies

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(\psi_{l}^{(1)}\right)_{* p} v=c_{1} \cdot J\left(\left(\psi_{l}^{(1)}\right)_{* p} v\right) \\
& \quad \text { for any } t \in \boldsymbol{R} \text { and for any } v \in N_{p}\left(H_{0}\right) \text { and } p \in H_{0} ;
\end{aligned}
$$

(2) for $(i, j) \in\{(1,2),(2,1)\}$, we have

$$
\left(\left(W_{j}\right)^{2} f_{j}\right)(p)=\left(\left(W_{j+2}\right)^{2} f_{j}\right)(p)=c_{1} \quad \text { for any } p \in H_{0 i}
$$

where $W_{1}, W_{3}, W_{2}, W_{4}$ is an F-adapted orthogonal frame defined on a neighborhood of p in M.

Proof. Since $\left(Y_{1}\right)_{p}=0$ for all $p \in H_{0}$, we can see that, for each $t \in \boldsymbol{R}$, $\left.\psi_{t}^{(1)}\right|_{H_{0}}$ is the identity transformation of H_{0}. Let p be an arbitrary point of H_{0}. We note that $T_{p} M=T_{p}\left(H_{0}\right) \oplus N_{p}\left(H_{0}\right)$ and that $N_{p}\left(H_{0}\right)$ is a 1-dimensional complex subspace of $T_{p} M$ which is perpendicular to $T_{p}\left(H_{0}\right)$. Since $\psi_{t}^{(1)}, t \in \boldsymbol{R}$, is an automorphism of ($M, g, J ; \mathscr{F}$) and hence a holomorphic isometry of (M, g, J) onto itself, we can obtain a \boldsymbol{C}-linear isometry $\left(\psi_{t}^{(1)}\right)_{\left.*_{p}\right|_{N_{p}\left(H_{0}\right)}: N_{p}\left(H_{0}\right), ~(1)}$ $\rightarrow N_{p}\left(H_{0}\right), t \in \boldsymbol{R}$. Hence, there exists a real number $\tilde{c}_{1}(p)$ such that

$$
\begin{align*}
& \frac{\partial}{\partial t}\left(\phi_{t}^{(1)}\right)_{* p} v=\tilde{c}_{1}(p) \cdot J\left(\left(\phi_{t}^{(1)}\right)_{* p} v\right) \tag{4.5}\\
& \quad \text { for each } t \in \boldsymbol{R} \text { and } v \in N_{p}\left(H_{0}\right) .
\end{align*}
$$

Notice that $\tilde{c}_{1}(p)$ is independent of the choice of t and v.
Let $(i, j) \in\{(1,2),(2,1)\}$. From Proposition 3.9 in $\S 3$ we recall that $T_{p}\left(H_{0 i}\right)$ $=\left(D_{i}\right)_{p}, f_{j}(p)=0$ and $\left(d f_{j}\right)_{p}=0$ for each $p \in H_{0 i}$. Then, applying Proposition 4.2 to the case where $L=H_{0 i}$ and $\tilde{m}_{j}=0$, we can find a real constant $c_{1, i}$ which satisfies the properties (4.6) and (4.7) as follows:

$$
\begin{align*}
& \frac{\partial}{\partial t}\left(\psi_{t}^{(1)}\right)_{* p} v=c_{1, i} \cdot J\left(\left(\psi_{l}^{(1)}\right)_{* p} v\right) \tag{4.6}\\
& \quad \text { for all } t \in \boldsymbol{R}, v \in N_{p}\left(H_{0 i}\right) \text { and for all } p \in H_{0 i} ; \\
& \left(\left(W_{j}\right)^{2} f_{j}\right)(p)=\left(\left(W_{j+2}\right)^{2} f_{j}\right)(p)=c_{1, i} \text { for all } p \in H_{0 i}, \tag{4.7}
\end{align*}
$$

where $W_{1}, W_{3}, W_{2}, W_{4}$ is an F-adapted orthogonal frame defined on a neighborhood of p in M.

Observing the fact that $H_{0}=H_{02} \cup M_{\text {sing }} \cup H_{01}$ and $M_{\text {sing }}=\bar{H}_{02} \cap \bar{H}_{01}$, we obtain $\tilde{c}_{1}(p)=c_{1,1}=c_{1,2}$ for all $p \in H_{0}$. Thus, putting $c_{1}=c_{1,1}=c_{1,2}$, from (4.5) and (4.7) we obtain the properties (4.8) and (4.9) as follows:

$$
\begin{align*}
& \frac{\partial}{\partial t}\left(\psi_{i}^{(1)}\right)_{* p} v=c_{1} \cdot J\left(\left(\psi_{i}^{(1)}\right)_{* p} v\right) \tag{4.8}\\
& \quad \text { for all } t \in \boldsymbol{R}, v \in N_{p}\left(H_{0 i}\right) \text { and for all } p \in H_{0 i} ; \\
& \left(\left(W_{j}\right)^{2} f_{j}\right)(p)=\left(\left(W_{j+2}\right)^{2} f_{j}\right)(p)=c_{1} \text { for all } p \in H_{0 i} . \tag{4.9}
\end{align*}
$$

Now we verify that $c_{1} \neq 0$. Assume that $c_{1}=0$. We take an arbitrary point q of $M \backslash H_{0}$ and the minimizing geodesic segment $\gamma(s), 0 \leqq s \leqq s_{1}$, from the point q to the compact submanifold H_{0}; it may be assumed to be $\gamma\left(s_{1}\right)=q$ and $\gamma(0)=$ $p_{1} \in H_{0}$. It follows that $\dot{\gamma}(0) \in N_{p_{1}}\left(H_{0}\right)$. Putting $v_{1}=\dot{\gamma}(0)$, we have $\gamma(s)=\exp s v_{1}$, $0 \leqq s \leqq s_{1}$. Since $\psi_{t}^{(1)}, t \in \boldsymbol{R}$, is an isometry, we have

$$
\begin{align*}
\psi_{t}^{(1)}(\gamma(s))=\psi_{t}^{(1)}\left(\exp s v_{1}\right)= & \exp \left(s \cdot\left(\psi_{t}^{(1)}\right)_{*_{p}} v_{1}\right) \tag{4.10}\\
& \text { for } s \in\left[0, s_{1}\right] \text { and } t \in \boldsymbol{R} .
\end{align*}
$$

Using (4.8) and the assumption that $c_{1}=0$, we obtain

$$
\left(Y_{1}\right)_{q}=\left.\frac{\partial}{\partial t} \psi_{t}^{(1)}\left(\gamma\left(s_{1}\right)\right)\right|_{t=0}=s_{1} \cdot(\exp)_{* s_{1} v_{1}}\left(\frac{\partial}{\partial t}\left(\psi_{t}^{(1)}\right)_{* p_{1}} v_{1}\right)=0
$$

Since q is an arbitrary point of $M \backslash H_{0}$, we obtain $Y_{1} \equiv 0$ on M, which contradicts Lemma 3,6 in §3. Thus, we obtain the desired non-zero real constant c_{1}. Therefore, (4.8) and (4.9) prove Proposition 4.3,

Reconsidering the argument at (4.10), we can see that the mapping $\boldsymbol{R} \ni t \mapsto$ $\psi_{t}^{(1)}(q) \in M$ is periodic with the period $2 \pi / c_{1}$ and that $\psi_{t}^{(1)}$ defines an S^{1}-action ψ_{1} (as automorphisms of ($M, g, J ; \mathcal{F}$)) in the following form:

$$
\begin{equation*}
\psi_{1}: M \times\left(\boldsymbol{R} / \frac{2 \pi}{c_{1}} \boldsymbol{Z}\right) \ni(p, t) \longmapsto \psi_{t}^{(1)}(p) \in M, \tag{4.11}
\end{equation*}
$$

which leaves the submanifold H_{0} fixed pointwise.
On the other hand, recalling Proposition 3.10 in $\S 3$, we moreover have the following

Proposition 4.4. Let $i \in\{1,2\}$. For any $v \in T_{q_{i}}\left(H_{0}\right)=\left(D_{i}\right)_{q_{i}}$ we have

$$
\frac{\partial}{\partial u}\left(\psi_{u}^{(2)}\right)_{* q_{i}} v=(-1)^{i} c_{2} \cdot J\left(\left(\psi_{u}^{(2)}\right)_{* q_{i}} v\right), \quad u \in\left(\boldsymbol{R} / \frac{2 \pi}{c_{2}} \boldsymbol{Z}\right),
$$

where c_{2} is the positive real constant stated in Proposition 3.8 and Proposition 3.10 in § 3 .

Proof. Let $(i, j) \in\{(1,2),(2,1)\}$. We recall that $T_{q_{i}}\left(H_{0}\right)=\left(D_{i}\right)_{q_{i}}, N_{q_{i}}\left(H_{0}\right)$ $=\left(D_{j}\right)_{q_{i}}$ and $\left(Y_{2}\right)_{q_{i}}=0$. Then, applying Lemma 4.1 to the case where $Z=Y_{2}$, we can see that $\left.\left(\psi_{u}^{(2)}\right)_{* q_{i}}\right|_{T_{q_{i}}\left(H_{0}\right)}$ is a \boldsymbol{C}-linear isometry of $T_{q_{i}}\left(H_{0}\right)$ onto itself and that there exists a real number $c_{2, i}$ such that

$$
\frac{\partial}{\partial u}\left(\psi_{u}^{(2)}\right)_{*_{i}} v=c_{2, i} \cdot J\left(\left(\psi_{u}^{(2)}\right) *_{q_{i}} v\right), \quad u \in\left(\boldsymbol{R} / \frac{2 \pi}{c_{2}} \boldsymbol{Z}\right),
$$

for all $v \in T_{q_{i}}\left(H_{0}\right)$. Since q_{2} and q_{1} are the pivotal points of the rotation of the sphere H_{0} which are antipodal to each other, it follows that $c_{2,2}=-c_{\mathbf{2}, 1}=c_{2}$. Thus, we obtain the desired equation.

§ 5. Submanifolds H_{1} and H_{2}.

We set $H \equiv\left\{p \in M \mid\left(d h_{1}\right)_{p},\left(d h_{2}\right)_{p}\right.$ are linearly dependent $\}$ and $Q \equiv\left\{q \in M_{\text {reg }} \mid\right.$ $\left.\left(d f_{1}\right)_{q}=\left(d f_{2}\right)_{q}=0\right\}$. We recall from Corollary 3.9 (4) in $\S 3$ that, for $i=1,2,\left.f_{i}\right|_{H_{0}}$ takes the maximal value m_{i} at q_{i}.

The first objective of this section is to prove the following
Theorem 5.1. There exist a point q_{0} of M and complex submanifolds H_{1} and H_{2} of M which have the following properties:
(1) $H=H_{0} \cup H_{1} \cup H_{2}$;
(2) $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$;
(3) $H_{1} \cap H_{2}=\left\{q_{0}\right\}, H_{1} \cap H_{0}=\left\{q_{2}\right\}$ and $H_{2} \cap H_{0}=\left\{q_{1}\right\}$;
(4) $H_{i}, i=1,2$, is a totally geodesic complex submanifold of (M, g, J) which is bi-holomorphic to the complex projective line $\boldsymbol{C} P^{1}$;
(5) $H_{i}, i=1,2$, is a (maximal) integral submanifold of D_{i};
(6) $H_{i}, i=1,2$, is the set of the points on which f_{j} takes the maximal value m_{j}, where j is the integer such that $(i, j) \in\{(1,2),(2,1)\}$.

Proof. We divide the proof into several steps.
(Step 1) In this step we will construct H_{1} and H_{2}, and study their properties. We begin with the following

Lemma 5.2. Let $(i, j) \in\{(1,2),(2,1)\}$. There exist both a compact, connected complex submanifold H_{i} of (M, g, J) including q_{j} and a point $q_{0 i}$ of H_{i} such that
(i) H_{i} is bi-holomorphic to the complex projective line $\boldsymbol{C} P^{1}$, and is totally geodesic with respect to g;
(ii) H_{i} is an integral submanifold of D_{i} in M;
(iii) $f_{j}(p)=m_{j}>0,\left(d f_{j}\right)_{p}=0$ for all $p \in H_{i}$;
(iv) $H_{i} \cap H_{0}=\left\{q_{j}\right\}$;
(v) $\left.f_{i}\right|_{H_{i}}$ takes the maximal value, say $m_{i i}>0$, at the point $q_{0 i}$ of H_{i}, and we have $\left(d f_{i}\right)_{q_{0 i}}=0$.

Proof of Lemma 5.2. We will first construct the desired submanifold H_{i}. We define a function \tilde{h}_{j} on M by $\tilde{h}_{j} \equiv\left(f_{i}+m_{j}\right)\left(f_{j}-m_{j}\right)$, and a vector field Z_{j} on M by $i\left(Z_{j}\right) \omega=d \tilde{h}_{j}$. It follows that

$$
\begin{equation*}
Z_{j}=Y_{1}+(-1)^{j+1} m_{j} \cdot Y_{2} . \tag{5.1}
\end{equation*}
$$

Since Y_{1} and Y_{2} are infinitesimal automorphisms of ($M, g, J ; \mathscr{F}$), so is Z_{j}. Here we set $\widetilde{H}_{i} \equiv\left\{p \in M \mid\left(Z_{j}\right)_{p}=0\right\}$. It is easy to see that $\widetilde{H}_{i} \cap H_{0}=\left\{q_{1}, q_{2}\right\}$ and hence that $\widetilde{H}_{i} \subset M_{\text {reg }}$. Let H_{i} denote the connected component of \widetilde{H}_{i} including the point q_{j}. Since Z_{j} is an infinitesimal holomorphic transformation of (M, J) and an infinitesimal isometry of $(M, g), H_{i}$ is a compact, connected totally geodesic complex submanifold of (M, g, J) whose codimension is even. We note that $H_{i} \subset M_{\text {reg }}$. We have

$$
T_{q_{j}}\left(H_{i}\right)=\left\{X \in T_{q_{j}} M \mid\left[Z_{j}, X\right]_{q_{j}}=0\right\},
$$

where X appearing in the equality $\left[Z_{j}, X\right]_{q_{j}}=0$ is regarded as a vector field which is extended on a certain open neighborhood of q_{j} in M. Since $\left[Z_{j}, X\right]_{q_{j}}$ $=0$ for $X \in\left(D_{i}\right)_{q_{j}}$, we have $\left(D_{i}\right)_{q_{j}} \subset T_{q_{j}}\left(H_{i}\right)$. Thus, we can conclude that H_{i} is a compact, connected totally geodesic 1 -dimensional complex submanifold of (M, g, J) and that $\left(D_{i}\right)_{q_{j}}=T_{q_{j}}\left(H_{i}\right)$.

We will now verify the property (i). Since H_{i} is totally geodesic, we have

$$
\exp _{q_{j}}\left(D_{i}\right)_{q_{j}}=H_{i}
$$

Let \hat{p} be an arbitrary point of $H_{i} \backslash\left\{q_{j}\right\}$. We can take a geodesic $\gamma_{q_{j} \hat{p}}$ from q_{j} to \hat{p} such that $\gamma_{q_{j} \hat{p}}(0)=q_{j}$ and $\dot{\gamma}_{q_{j} \hat{p}}(0) \in\left(D_{i}\right)_{q_{j}}$; we set $v=\dot{\gamma}_{q_{j} \hat{p}}(0)$ and $\gamma_{q_{j} \hat{p}}(\hat{s})=\hat{p}$. We denote by $\left\{\psi_{1}^{(1)}\right\}_{t \in R}$ the one-parameter group of automorphisms of ($M, g, J ; \mathscr{F}$) generated by Y_{1}. From Proposition 4.3 (1) in $\S 4$ and the fact that $\psi_{t}^{(1)}, t \in \boldsymbol{R}$, is an isometry of (M, g), we have

$$
\left(Y_{1}\right)_{\hat{p}}=\left(\exp _{q_{1}}\right)_{* \hat{i} v}\left(\hat{s_{1}} \cdot J v\right) \in T_{\hat{p}}\left(H_{i}\right) .
$$

Since $c_{1} \neq 0$ and $\hat{s} \neq 0$, if \hat{p} is sufficiently close to q_{j}, then $\left(Y_{1}\right)_{\hat{p}} \neq 0$. Thus, Y_{1} can be regarded as a non-trivial infinitesimal holomorphic transformation of H_{i}. Since $\left(Y_{1}\right)_{q_{j}}=0$, we can conclude that H_{i} is bi-holomorphic to the complex projective line $\boldsymbol{C} P^{1}$, thus proving (i).

Here we can find the point $q_{0 i}$ of H_{i}. Since Y_{1} is a non-trivial infinitesimal isometry of the 2-dimensional sphere H_{i}, the set of points in H_{i} on which Y_{1} vanishes consists of two points: one is the point q_{j}; the other we denote by $q_{0 i}$.

We will verify the properties (ii), (iii), (iv) and (v). Since $\left(Z_{j}\right)_{p}=0$ for all $p \in H_{i}$, we have $\left(d f_{j}\right)_{p}=0$ for all $p \in H_{i}$. This, together with the fact that $f_{j}\left(q_{j}\right)=m_{j}(>0)$, implies $f_{j}(p)=m_{j}>0$ for all $p \in H_{i}$, thus proving (iii). From (iii), we can see that, for each $p \in H_{i}$,

$$
\left(Y_{1}\right)_{p}=\frac{m_{j}}{f_{i}(p)+m_{j}} \cdot\left(U_{i+2}\right)_{p} \in\left(D_{i}\right)_{p}
$$

Since Y_{1} is tangent to H_{i} and $\left(Y_{1}\right)_{p} \neq 0$ for all $p \in H_{i} \backslash\left\{q_{j}, q_{0 i}\right\}$, we can see that
$T_{p}\left(H_{i}\right)=\left(D_{i}\right)_{p}$ for all $p \in H_{i}$, which means (ii). From (iii) and the fact that $\tilde{H}_{i} \cap H_{0}=\left\{q_{1}, q_{2}\right\}$, we obtain (iv). Let γ_{0} be a geodesic in H_{i} joining q_{j} and $q_{0 i}$; we set $\gamma_{0}(0)=q_{j}$ and $\gamma_{0}\left(l_{i}\right)=q_{0 i}$. The family $\left\{\gamma_{t}(s) \equiv \psi_{t}^{(1)}\left(\gamma_{0}(s)\right)\right\}_{t \in G}$, where $G=$ $\left(\boldsymbol{R} /\left(2 \pi / c_{1}\right) \boldsymbol{Z}\right)$, of the geodesic joining q_{j} and $q_{0 i}$ forms a polar coordinate in H_{i} with poles q_{j} and $q_{0 i}$ such that each geodesic γ_{t} is a meridian curve. Since $\dot{\gamma}_{t}(s)$ is perpendicular to $\left(Y_{2}\right)_{r_{t}(z)}$ and since $f_{i}\left(\gamma_{t}(0)\right)=f_{i}\left(q_{j}\right)=0$, it follows that $\dot{\gamma}_{t}(s)=\left(U_{i+2} /\left\|U_{i+2}\right\|\right)_{r_{t}(s)}$ and $\dot{\gamma}_{t}(s) f_{i}>0$ for all $\left.s \in\right] 0, l_{i}\left[\right.$ and $t \in\left(\boldsymbol{R} /\left(2 \pi / c_{1}\right) \boldsymbol{Z}\right)$. Hence, the function $\left.f_{i}\right|_{H_{i}}$ takes the maximal value $m_{i i}$ at the point $q_{0 i}$. Thus, we obtain (v). This completes the proof of Lemma 5, 2.
(Step 2) In this step we will verify the following
Assertion. We have

$$
\begin{equation*}
q_{01}=q_{02} \text {, denoted as } q_{0} \text {, and } H_{1} \cap H_{2}=\left\{q_{0}\right\} . \tag{5.2}
\end{equation*}
$$

This, together with Lemma 5.2 (iv), means the property (3) of Theorem 5.1. To establish Assertion (5.2) we need the following

Lemma 5.3. Let $(i, j) \in\{(1,2),(2,1)\}$. For each $p \in H_{i}$, we have

$$
\left(\left(W_{j}\right)^{2} f_{j}\right)(p)=\left(\left(W_{j+2}\right)^{2} f_{j}\right)(p)=-m_{j} c_{2}(<0),
$$

where $W_{1}, W_{3}, W_{2}, W_{4}$ is an F-adapted orthogonal frame on a certain neighborhood of p in M.

Proof of Lemma 5.3. As in the proof of Lemma 4.2 in §4, we can see that $\left(\left(W_{j}\right)^{2} f_{j}\right)(p)=\left(\left(W_{j+2}\right)^{2} f_{j}\right)(p)$ for all $p \in H_{i}$ and that

$$
\begin{aligned}
\left(\left(W_{j}\right)^{2} f_{j}\right)\left(q_{j}\right) \cdot J v= & \nabla_{v} Z_{j}=(-1)^{j+1} m_{j} \cdot \nabla_{v} Y_{2}=-m_{j} c_{2} \cdot J v \\
& \text { for any } v \in\left(D_{j}\right)_{q_{j}}=T_{q_{j}}\left(H_{0}\right)=N_{q_{j}}\left(H_{i}\right) .
\end{aligned}
$$

Notice that $m_{j}>0$ and $c_{2}>0$ Proposition 3.8 in §3). Since H_{i} is an integral submanifold of D_{i}, we obtain

$$
\left.\left(\left(W_{j}\right)^{2} f_{j}\right)\right|_{H_{i}}=\text { a constant function on } H_{i}=-m_{j} c_{2}(<0),
$$

which proves Lemma 5.3,
We will now proceed to verify Assertion (5.2), We recall from Lemma 5, 2 (v) that $\left.f_{1}\right|_{H_{1}}$ takes the maximal value m_{11} at q_{01}. We define a function \tilde{h}_{11} on M by $\tilde{h}_{11}=\left(f_{2}+m_{11}\right)\left(f_{1}-m_{11}\right)$ and a vector field Z_{11} on M by $i\left(Z_{11}\right) \omega=d \tilde{h}_{11}$. It follows that Z_{11} is an infinitesimal automorphism of $(M, g, J ; \mathscr{F})$. By the same argument as in the proof of Lemma 5.2 we see that the connected component of the set $\left\{p \in M \mid\left(Z_{11}\right)_{p}=0\right\}$ including the point q_{01} forms a compact totally geodesic 1 -dimensional complex submanifold of (M, g, J), which is denoted by H_{12}, and that H_{12} satisfies the following: (i) $\exp _{q_{01}}\left(D_{2}\right)_{q_{01}}=H_{12}$; (ii) $\left(d f_{1}\right)_{p}=0$,
$f_{1}(p)=m_{11}(>0)$ for all $p \in H_{12}$; (iii) $H_{1} \cap H_{12}=\left\{q_{01}\right\}$.
Let $\left\{\eta_{t^{2}}^{(2)}\right\}_{t \in \boldsymbol{R}}$ denote the one-parameter group of automorphisms of (M, g, J; \mathscr{F}) generated by $Z_{2}=Y_{1}-m_{2} Y_{2}$. Applying Lemma 4.2 in $\S 4$ to the case where $L=H_{1}$ and $Z=Z_{2}$, from Lemma 5, 3 we obtain the following results: the mapping $\left.\left(\eta_{t}^{(2)}\right)_{* q_{01}}\right|_{q_{01}}\left(H_{12}\right): T_{q_{01}}\left(H_{12}\right) \rightarrow T_{q_{01}}\left(H_{12}\right)$ is a \boldsymbol{C}-linear isometry of $T_{q_{01}}\left(H_{12}\right)$, and, for each $v \in T_{q_{01}}\left(H_{12}\right)$, we have

$$
\frac{\partial}{\partial t}\left(\eta_{t}^{(2)}\right)_{* q_{01}} v=-m_{2} c_{2} \cdot J\left(\left(\eta_{t}^{(2)}\right) * q_{01} v\right), \quad t \in \boldsymbol{R}
$$

Hence, by the same argument as in the proof of Lemma 5.2, we can see that H_{12} is an integral submanifold of D_{2} in M. It is easy to see that $H_{12} \cap H_{0} \neq \varnothing$. In fact, assuming that $H_{12} \cap H_{0}=\varnothing$, we will obtain a contradiction as follows: take an arbitrary point $p \in H_{01} \backslash\left\{q_{1}\right\}\left(\subset H_{0}\right)$ and the minimizing geodesic γ from p to the submanifold H_{12}. We set $\gamma(0)=p$ and $\gamma\left(s_{1}\right)=p_{1} \in H_{12}, s_{1}>0$. We put $F^{b} \equiv F \circ b$, where b is the identification map of $T M$ onto $T * M$ induced by g. Since $\dot{\gamma}(0) \notin T_{p}\left(H_{0}\right)$ and $\dot{\gamma}\left(s_{1}\right) \in N_{p_{1}}\left(H_{12}\right)=\left(D_{1}\right)_{p_{1}}$, we have $0<F^{b}(\dot{\gamma}(0))=F^{b}\left(\dot{\gamma}\left(s_{1}\right)\right) \leqq 0$, which is a contradiction. Thus, we have $H_{12} \cap H_{0}=\left\{q_{1}\right\}$. Since H_{12} is totally geodesic, we obtain

$$
H_{12}=\exp _{q_{1}}\left(D_{2}\right)_{q_{1}}=H_{2}
$$

Since the set of points of H_{2} on which Y_{1} vanishes consists of two points q_{1} and q_{02}, we have $q_{01}=q_{02}$. Thus, putting $q_{0} \equiv q_{01}=q_{02}$, we have $H_{1} \cap H_{2}=\left\{q_{0}\right\}$. Besides, we have $m_{1}=m_{11}$.
(Step 3) In this step we will complete the verification of the properties (1), (2) and (6) of Theorem 5, 1. From the arguments in (Step 1) and (Step 2), we have already obtained the following facts:
(1') $H \supset H_{0} \cup H_{1} \cup H_{2}$;
(2') $Q \supset\left\{q_{0}, q_{1}, q_{2}\right\}$;
(6') $H_{i} \subset\left\{p \in M \mid f_{j}(p)=m_{j}\right\}$, where $(i, j) \in\{(1,2),(2,1)\}$.
To establish (1), (2) and (6) it is sufficient to verify the following
Lemma 5.4. For every point p of $M \backslash\left(H_{0} \cup H_{1} \cup H_{2}\right)$ we have

$$
\left(d f_{1}\right)_{p} \neq 0 \quad \text { and } \quad\left(d f_{2}\right)_{p} \neq 0
$$

Proof of Lemma 5.4. Assuming that there exists a point $p \in M \backslash\left(H_{0} \cup H_{1}\right.$ $\left.\cup H_{2}\right)$ such that $\left(d f_{1}\right)_{p}=0$ or $\left(d f_{2}\right)_{p}=0$, we will derive a contradiction.

We can see that the assumption of this reductive absurdity implies the following :

There exists a point $q \in M \backslash\left(H_{0} \cup H_{1} \cup H_{2}\right)$ such that

$$
\begin{equation*}
\left(d f_{1}\right)_{q}=0 \quad \text { and } \quad\left(d f_{2}\right)_{q}=0 \tag{5.3}
\end{equation*}
$$

In fact, let $j \in\{1,2\}$ and assume that $\left(d f_{j}\right)_{p}=0$. We put $\hat{m}_{j}=f_{j}(p)(>0)$ and set $\hat{Z}_{j}=Y_{1}+(-1)^{j+1} \hat{m}_{j} \cdot Y_{2}$, which is an infinitesimal automorphism of (M, g, J; F). It follows that $\left(\hat{Z}_{j}\right)_{p}=0$ and moreover that $\left(\hat{Z}_{j}\right)_{\varphi_{i}^{(2)(p)}}=0$ for all $t \in \boldsymbol{R}$. Notice that $\hat{Z}_{j} \not \equiv 0$ on M. Let \hat{H}_{j} be the connected component including p of the set of points on which \hat{Z}_{j} vanishes. Since \hat{Z}_{j} is an infinitesimal isometry and an infinitesimal holomorphic transformation, \hat{H}_{j} forms a compact, connected totally geodesic 1 -dimensional complex submanifold of (M, g, J). It follows that $\varphi_{t}^{(2)}(p) \in \hat{H}_{j}$ for all $t \in \boldsymbol{R}$. Since \hat{H}_{j} is compact, taking a certain sequence of numbers $\left\{t_{n}\right\}_{n=1}^{\infty}$, we find a point $q \in \hat{H}_{j}$ such that the sequence of the points $\left\{\varphi_{i_{n}}^{(2)}(p)\right\}_{n=1}^{\infty}$ converges to q. It is easy to see that $\left(d f_{1}\right)_{q}=\left(d f_{2}\right)_{q}=0$. Using Assertion (5.2) in (Step 2), we can see that $Q \cap\left(H_{0} \cup H_{1} \cup H_{2}\right)=\left\{q_{0}, q_{1}, q_{2}\right\}$. Assuming that $q \in H_{0} \cup H_{1} \cup H_{2}$, we can conclude that $q \in\left\{q_{0}, q_{1}, q_{2}\right\}$ and hence that $\hat{Z}_{j}=Z_{j}, \hat{H}_{j}=H_{j}$, which is an inconsistency. Hence, we have $q \in M \backslash\left(H_{0} \cup H_{1} \cup H_{2}\right)$. These prove the desired existence.

Thus, our task is now to derive a contradiction under the condition that there exists a point $q \in M \backslash\left(H_{0} \cup H_{1} \cup H_{2}\right)$ with the property (5.3), Let q be a point of $M \backslash\left(H_{0} \cup H_{1} \cup H_{2}\right)$ with the property (5.3), Notice that $\left(Y_{1}\right)_{q}=0$. Then, using the formulas (FML1), (FML3), Lemma 2.7 in $\S 2$ and Lemma 4.1 in §4, we can see that, for $k \in\{1,2\}$ and for any $v \in\left(D_{k}\right)_{q}$,

$$
\begin{equation*}
\frac{f_{j}(q)}{\left(f_{1}+f_{2}\right)(q)}\left(\left(W_{k}\right)^{2} f_{k}\right)(q) \cdot J v=\nabla_{v} Y_{1}=\left.\frac{\partial}{\partial u}\left(\psi_{u}^{(1)}\right)_{* q} v\right|_{u=0}=\hat{c}_{1, k}(q) \cdot J v, \tag{5.4}
\end{equation*}
$$

where $\hat{c}_{1, k}(q)$ is a certain real number, $W_{1}, W_{3}, W_{2}, W_{4}$ is an F-adapted frame on a neighborhood of q in M, and j is the integer such that $(j, k) \in\{(1,2),(2,1)\}$. Let γ be the minimizing geodesic joining q and q_{0}. If $\hat{c}_{1,1}(q)=\hat{c}_{1,2}(q)=0$, then the Jacobi field $\left(Y_{1}\right)_{\gamma(s)}$ along γ is the 0 -field, which is an inconsistency. Thus, $\hat{c}_{1,1}(q) \neq 0$ or $\hat{c}_{1,2}(q) \neq 0$. Taking $k \in\{1,2\}$ such that $\hat{c}_{1, k}(q) \neq 0$, we have $\left(\left(W_{k}\right)^{2} f_{k}\right)(q)=\left(\left(f_{1}+f_{2}\right)(q) / f_{j}(q)\right) \hat{c}_{1, k}(q) \neq 0$. Then, by the same argument as in (Step 2), we can see that there exists a compact, connected integral submanifold \hat{H}_{k} of D_{k} in M including q which has the following properties:
(i) $H_{0} \cap \hat{H}_{k} \neq \varnothing$;
(ii) $\left(d f_{j}\right)_{p}=0$ for any $p \in \hat{H}_{k}$, where j is the integer such that $(j, k) \in$ $\{(1,2),(2,1)\}$.
It follows that $\hat{H}_{k}=H_{1}$ or H_{2}, which contradicts $q \in M \backslash\left(H_{0} \cup H_{1} \cup H_{2}\right)$. This proves Lemma 5,4 and hence establishes (1), (2) and (6) of Theorem 5,1.

Recalling (2.13) in § 2, we immediately obtain the following
Corollary 5.5. We have $M_{\mathrm{REG}}=M \backslash H \neq \emptyset$. In particular, M_{REG} is an open dense subset of M.

We are now in position to establish the complete integrability of the geodesic flows of (M, g, J).

Theorem 5.6. Any compact proper Kähler-Liouville surface ($M, g, J ; \mathfrak{F}^{\text {) }}$ has the property that the geodesic flow is completely integrable, that is, regarding Y_{1} and Y_{2} as functions on $T^{*} M$, the functions E, F, Y_{1} and Y_{2} on $T^{*} M$ are functionally independent almost everywhere and the following equalities hold on M :

$$
\begin{aligned}
& \{E, F\}=0, \quad\left[Y_{1}, Y_{2}\right]=0 \\
& \left\{E, Y_{1}\right\}=\left\{E, Y_{2}\right\}=\left\{F, Y_{1}\right\}=\left\{F, Y_{2}\right\}=0
\end{aligned}
$$

Proof. From Corollary 5.5 we know that $M_{\text {ReG }} \neq \varnothing$. Then, it can be seen that the functions $E_{p}, F_{p},\left(\left(Y_{1}\right)^{2}\right)_{p}$ and $\left(\left(Y_{2}\right)^{2}\right)_{p}$ on $T_{p}^{*} M$ are linearly independent over \boldsymbol{R} for each $p \in M_{\text {ReG }}$. This implies the functional independency of those functions on an open dense subset of $T_{p}^{*} M$ for $p \in M_{\text {REG }}$. Since $M_{\text {REG }}$ is dense in M, it follows that $d E, d F, d Y_{1}$ and $d Y_{2}$ are linearly independent almost everywhere. The commutativity is immediate from Lemma 2, 11 and Theorem 2.13 in $\S 2$.

Now, we will discuss the S^{1}-actions on M generated by the prescribed infinitesimal automorphisms of ($M, g, J ; \Psi$).

We recall the S^{1}-action ψ_{1} on M from (4.11) in $\S 4$. Then, by virtue of Theorem 5, 1 and its proof, we can obtain the following

Proposition 5.7. (1) The action ψ_{1} on M leaves the point q_{0} fixed and the submanifold H_{0} fixed pointwise.
(2) The action ψ_{1} on M leaves the submanifolds H_{1} and H_{2} invariant, and its restriction $\left.\psi_{1}\right|_{H_{i}}$ to $H_{i}, \quad i=1,2$, can be recognized as the rotation of the sphere H_{i} whose least period is $2 \pi / c_{1}$ with the pivotal points q_{0} and q_{j}, where j is the integer such that $(i, j) \in\{(1,2),(2,1)\}$.

Then, we have the following
Proposition 5.8. The real constant c_{1} is positive as well as c_{2}.
Proof. Let $(i, j) \in\{(1,2),(2,1)\}$. By Proposition 5.7(2) and the same argument as at (5.4), we can see that, for $v \in\left(D_{j}\right)_{q_{0}}$,

$$
\frac{m_{i}}{m_{1}+m_{2}}\left(\left(W_{j}\right)^{2} f_{j}\right)\left(q_{0}\right) \cdot J v=\nabla_{v} Y_{1}=\left.\frac{\partial}{\partial u}\left(\psi_{u}^{(1)}\right)_{* q_{0}} v\right|_{u=0}=-c_{1} \cdot J v .
$$

Using Lemma 5.3, we have $c_{2}=\left(1 / m_{1}+1 / m_{2}\right) \cdot c_{1}$.
Here we demonstrate two other S^{1}-actions on M. Let $(i, j) \in\{(1,2),(2,1)\}$. From (5.1) in the proof of Lemma 5.2, we recall the infinitesimal automorphisms
Z_{j} on ($M, g, J ; \mathscr{F}$). Let $\left\{\eta_{t}^{(j)}\right\}_{t \in R}$ denote the one-parameter group of automorphisms of ($M, g, J ; \mathscr{F}$) generated by Z_{j}. We moreover recall Lemma 5.2 (iii) and Lemma 5, 3. Then, applying Lemma 4.2 in §4 to the case where $L=H_{i}$ and $Z=Z_{j}$, we see that, for each $p \in H_{i},\left(\eta_{i}^{(j)}\right)_{\left.*_{p}\right|_{N_{p}\left(H_{i}\right)}}$ is a C-linear isometry of $N_{p}\left(H_{i}\right)$ onto itself given by

$$
\begin{equation*}
\left(\eta_{t}^{(j)}\right)_{* p} v=\cos \left(m_{j} c_{2} t\right) \cdot v-\sin \left(m_{j} c_{2} t\right) \cdot J v, \quad v \in N_{p}\left(H_{i}\right) \tag{5.5}
\end{equation*}
$$

Using the same argument as at (4.10) in $\S 4$, we can easily obtain the following S^{1}-actions $\eta_{j}, j=1,2$, on M :

$$
\begin{equation*}
\eta_{j}: M \times\left(\boldsymbol{R} / \frac{2 \pi}{m_{j} c_{2}} \boldsymbol{Z}\right) \ni(p, t) \longmapsto \eta_{t}^{(j)}(p) \in M \tag{5.6}
\end{equation*}
$$

We notice that by this action η_{j} the circle $\left(\boldsymbol{R} /\left(2 \pi / m_{j} c_{2}\right) \boldsymbol{Z}\right)$ acts on $(M, g, J ; \Psi)$ as an automorphism group. Then, we immediately have the following

Proposition 5.9. (1) The action $\eta_{j}, j=1,2$, leaves the point q_{i} fixed and leaves the submanifold H_{i} fixed pointwise, where i is the integer such that $(i, j) \in\{(1,2),(2,1)\}$;
(2) The action $\eta_{j}, j=1,2$, leaves the submanifolds H_{0} and H_{j} invariant, and its restriction $\left.\eta_{j}\right|_{H_{k}}, k=0, j$, can be recognized as a rotation of the sphere H_{k} whose least period is $2 \pi / m_{j} c_{2}$ with pivotal points q_{i} and q_{l}, where i is the integer such that $(i, j) \in\{(1,2),(2,1)\}$ and l is the integer such that $(k, l) \in\{(0, j),(j, 0)\}$.

From the fact that $\left[Y_{1}, Y_{2}\right]=0$ on M (in Theorem 5.6), it follows that $\left[Z_{1}, Z_{2}\right]=0$ on M. Hence, we can define an effective action Φ of the 2 -dimensional real torus $\left(\boldsymbol{R} /\left(2 \pi / m_{1} c_{2}\right) \boldsymbol{Z}\right) \times\left(\boldsymbol{R} /\left(2 \pi / m_{2} c_{2}\right) \boldsymbol{Z}\right)$ on M by

$$
\begin{equation*}
\Phi: M \times\left(\boldsymbol{R} / \frac{2 \pi}{m_{1} c_{2}} \boldsymbol{Z}\right) \times\left(\boldsymbol{R} / \frac{2 \pi}{m_{2} c_{2}} \boldsymbol{Z}\right) \ni\left(p, t_{1}, t_{2}\right) \longmapsto \eta_{1}^{(1)}\left(\boldsymbol{\eta}_{t_{2}}^{(2)}(p)\right) \in M \tag{5.7}
\end{equation*}
$$

We notice that by this action Φ the real torus acts on $(M, g, J ; \mathcal{F})$ as an automorphism group. The effectivity of Φ follows immediately from the fact that the orbit $\left\{\eta_{t}^{(j)}(p) \mid t \in\left(\boldsymbol{R} /\left(2 \pi / m_{j} c_{2}\right) \boldsymbol{Z}\right)\right\}, j=1,2$, through the point p of $M_{\text {REG }}$ sufficiently close to q_{0} makes the proper circle in $M_{\text {REG }}$ with the least period $2 \pi / m_{j} c_{2}$.

§ 6. Topology of M.

This section is devoted to the establishment of the following
Theorem 6.1. Let $(M, g, J ; \mathscr{F})$ be a compact, connected proper KählerLiouville surface. Then, the complex surface (M, J) is bi-holomorphic to the standard complex projective plane ($\boldsymbol{C P}^{2}, J_{0}$).

Here we recall from Theorem 5, $1(2)$ in $\S 5$ that $\left(d f_{1}\right)_{q}=\left(d f_{2}\right)_{q}=0$ if and only if $q \in\left\{q_{0}, q_{1}, q_{2}\right\}$. Since $h_{2}=f_{1}-f_{2}((2.4)$ in $\S 2)$, it follows that $\left(d h_{2}\right)_{q}=0$ if and only if $q \in\left\{q_{0}, q_{1}, q_{2}\right\}$. As a well-known application of the Morse Theory (see [6]), we have

Lemma 6.2. The complex surface (M, J) is homotopy equivalent to the standard complex projective plane ($\boldsymbol{C P}^{2}, J_{0}$).

Thus, to establish Theorem 6. 1 , it is sufficient to prove the following
Proposition 6.3. If a compact Kähler surface (M, g, J) is homotopy equivalent to the standard complex projective plane ($\boldsymbol{C P}^{2}, J_{0}$), then (M, J) is bi-holomorphic to ($\boldsymbol{C} P^{2}, J_{0}$).

Proof of Proposition 6.3. Let b_{1} and b_{2} be the first and the second Betti numbers of M respectively. The homotopy equivalence yields

$$
b_{1}=0 \quad \text { and } \quad b_{2}=1
$$

Let p and q be the geometric genus of (M, J) and the irregularity of (M, J) respectively. Then, we have $2 p \leqq b_{2}=1$ and $2 q=b_{1}=0$ and hence

$$
\begin{equation*}
p=0 \quad \text { and } \quad q=0 . \tag{6.1}
\end{equation*}
$$

By a Kodaira's theorem we can see from the fact that $p=0$ that (M, J) is projective algebraic.

Then, we consider Noether's formula:

$$
\begin{equation*}
\left(c_{1}\right)^{2}+c_{2}=12(p-q+1), \tag{6.2}
\end{equation*}
$$

where c_{1} and c_{2} denote the first and the second Chern classes of (M, J) respectively. Since c_{2} is the Euler characteristic of M, we have

$$
\begin{equation*}
\left(c_{1}\right)^{2}=9 \quad \text { and } \quad c_{2}=3 \tag{6.3}
\end{equation*}
$$

Since $b_{2}=1$, one of the following holds: $c_{1}<0 ; c_{1}=0 ; c_{1}>0$. Obviously, the case where $c_{1}=0$ is impossible. Assume that $c_{1}<0$. Then (M, J) admits a unique Einstein-Kähler metric (see [7], [8]). By applying Chen and Ogiue's result ([9] Theorem 2), we can see from (6.3) that (M, J) is of constant holomorphic sectional curvature. Hence, because M is compact and simply connected, (M, J) is bi-holomorphic to ($\boldsymbol{C} P^{2}, J_{0}$), which contradicts the fact that $c_{1}<0$. Thus, we obtain $c_{1}>0$. Denoting by K the canonical bundle of (M, J), we have $K<0$. Since (M, J) is an algebraic surface, (M, J) is bi-holomorphic to ($C P^{2}, J_{0}$) (see [10] Lemma, p. 487).

§ 7. The compact real Liouville surfaces imbedded in M.

For the sake of simplicity, in this section we will use the terms "torus action" to refer to the action of the 2 -dimensional real torus $\left(\boldsymbol{R} /\left(2 \pi / m_{1} c_{2}\right) \boldsymbol{Z}\right) \times$ $\left(\boldsymbol{R} /\left(2 \pi / m_{2} c_{2}\right) \boldsymbol{Z}\right)$ and the terms "real surface" to refer to a 2 -dimensional real submanifold of ($M, g, J ; \mathscr{F}$).

The main objective of this section is to establish the two theorems and corollary which follow.

Theorem 7.1. There exists a family \mathfrak{S} of compact, connected totally geodesic 2-dimensional real submanifolds of ($M, g, J ; \mathscr{F}$) such that, for each $S \in \mathbb{S}$, $\left(S, g_{s} ;\left.F\right|_{T * S}\right)$ forms a compact real Liouville surface diffeomorphic with the real projective plane $\boldsymbol{R} P^{2}$, where g_{s} means the induced metric on S from g and where F is an element of \mathscr{F} assumed to satisfy (N1) and (N2) in $\S 1$.

Theorem 7.2. A transitive torus action $\tilde{\Phi}$ on \mathfrak{S} can be naturally induced from the torus action Φ on M.

In particular, from Theorem 7, 2 , we deduce the following
Corollary 7.3. Any two compact real Liouville surfaces belonging to © are isomorphically transferred from one onto the other by Φ.

Recalling from (2.14) in $\S 2$ the distribution D_{+}on $M_{\text {REG }}$, we have
Proposition 7.4. For each point p_{0} of $M_{\text {REG }}$, we can construct the maximal integral real surface $\Sigma_{p_{0}}$ of D_{+}through p_{0} in $M_{\text {REG }}$, which has the following properties:
(1) $\Sigma_{p_{0}}$ has the coordinate system (x_{1}, x_{2}) with origin p_{0} generated by U_{1} and U_{2}, and this coordinate mapping is a diffeomorphism of $\Sigma_{p_{0}}$ onto \boldsymbol{R}^{2};
(2) $\Sigma_{p_{0}}$ is totally geodesic with respect to g.

Proof. (1) Since $U_{1} f_{2}=0$ and $U_{2} f_{1}=0$, we can define the one-parameter
 U_{2}, respectively. Note that U_{1} and U_{2} are linearly independent at each point of $M_{\text {REG }}$ and satisfy $\left[U_{1}, U_{2}\right]=0$ Lemma 2.9 in $\S 2$). Then, we have a coordinate $\left(x_{1}, x_{2}\right)$ in $\Sigma_{p_{0}}$ with origin p_{0} such that $\left(\partial / \partial x_{1}\right)=U_{1},\left(\partial / \partial x_{2}\right)=U_{2}$. This defines a diffeomorphism of $\Sigma_{p_{0}}$ onto \boldsymbol{R}^{2}.
(2) Recalling Lemma 2.10 in § 2, we can see that, for $(i, j) \in\{(1,2),(2,1)\}$, $\nabla_{U_{i}} U_{i}$ and $\nabla_{U_{i}} U_{j}$ can be written as a linear combination of U_{1} and U_{2} for each point of $M_{\text {reg }}$. This implies (2).

We denote by $\widetilde{\mathbb{S}}$ the set of such real surfaces in $M_{\text {REG }}$, that is, $\widetilde{\subseteq}=$ $\left\{\Sigma_{p} \mid p \in M_{\mathrm{REG}}\right\}$. It follows that

$$
\bigcup_{\Sigma \in \tilde{\mathfrak{G}}} \Sigma=M_{\mathrm{REG}} .
$$

For any $\Sigma \in \bar{\varsigma}$ we set $\tilde{\partial} \Sigma=\bar{\Sigma} \backslash \Sigma$, where $\bar{\Sigma}$ is the closure of Σ in M. Then, we can immediately see that $\tilde{\partial} \Sigma=\bar{\Sigma} \cap H$, where H denotes the subset of M defined in the beginning of $\S 5$. For $\Sigma \in \widetilde{\subseteq}$, we put $\sigma_{i}(\Sigma)=\tilde{\partial} \Sigma \cap H_{i}, i=0,1,2$. Since $H=H_{0} \cup H_{1} \cup H_{2}$ Theorem 5.1 (1) in §5), we have $\tilde{\partial} \Sigma=\sigma_{0}(\Sigma) \cup \sigma_{1}(\Sigma) \cup \sigma_{2}(\Sigma)$.

Proposition 7.5. For each $\Sigma \in \widetilde{\Xi}$, the family $\sigma_{0}(\Sigma), \sigma_{1}(\Sigma), \sigma_{2}(\Sigma)$ of the subsets of M forms a geodesic triangle whose vertices are q_{0}, q_{1} and q_{2}.

Proof. It is sufficient to verify that each $\sigma_{i}(\Sigma), i=0,1,2$, forms a geodesic segment joining q_{j} and q_{k}, where j and k are the integers determined by $(i, j, k) \in\{(0,1,2),(1,2,0),(2,0,1)\}$. Let $(i, j) \in\{(1,2),(2,1)\}$ and let $p \in \Sigma$. With the same notation as in the proof of Proposition 7.4, we observe the following integral curves of U_{i} :

$$
\boldsymbol{R} \ni t \longmapsto \xi_{t}^{(i)}\left(\xi_{u}^{(j)}(p)\right) \in \Sigma, \quad u \in \boldsymbol{R} .
$$

Taking the limit as $u \rightarrow+\infty$, we obtain the integral curve segment $\xi_{t}^{(i)}\left(p_{+\infty}\right)$ of U_{i} in H_{i} which joins q_{j} and q_{0}, where $p_{+\infty}$ is the point of H_{i} which $\xi_{u}^{(j)}(p)$ converges as $u \rightarrow+\infty$. Using Lemma 2.10 in §2, we see that the integral curve segment $\xi_{t}^{(i)}\left(p_{+\infty}\right)$ of U_{i} in H_{i} forms a geodesic segment which coincides with $\sigma_{i}(\Sigma)$ set-theoretically. Similarly, taking the limits of $\xi_{t}^{(2)}\left(\xi_{u}^{(1)}\right)$ and $\xi_{t}^{(1)}\left(\xi_{u}^{(2)}\right)$ as $u \rightarrow-\infty$, we can obtain a geodesic segment in H_{0} which coincides with $\sigma_{0}(\Sigma)$ set-theoretically.

For each $\Sigma \in \widetilde{\subseteq}$, we can obtain three pairs of unit vectors

$$
\left(v_{1 i}(\Sigma), v_{2 i}(\Sigma)\right) \in\left(D_{1}\right)_{q_{i}}^{\text {unit }} \times\left(D_{2}\right)_{q_{i}}^{\text {nit }}, \quad i=0,1,2
$$

by the following method:
Denoting by $\sigma_{i}^{j}(s)$ the geodesic segment starting from q_{j} which coincides with $\sigma_{i}(\Sigma)$ set-theoretically, we can define the vectors $v_{i j}(\Sigma)$ by

$$
\begin{aligned}
& \left.v_{10}(\Sigma) \equiv \frac{d}{d t} \sigma_{1}^{0}(0)\right|_{t=0},\left.\quad v_{20}(\Sigma) \equiv \frac{d}{d t} \boldsymbol{\sigma}_{2}^{0}(0)\right|_{t=0}, \\
& \left.v_{11}(\Sigma) \equiv \frac{d}{d t} \boldsymbol{\sigma}_{0}^{1}(0)\right|_{t=0},\left.\quad v_{21}(\Sigma) \equiv \frac{d}{d t} \boldsymbol{\sigma}_{2}^{1}(0)\right|_{t=0}, \\
& \left.v_{12}(\Sigma) \equiv \frac{d}{d t} \sigma_{1}^{2}(0)\right|_{t=0},\left.\quad v_{22}(\Sigma) \equiv \frac{d}{d t} \boldsymbol{\sigma}_{0}^{2}(0)\right|_{t=0}
\end{aligned}
$$

Lemma 7.6. For each $\Sigma \in \widetilde{\mathbb{S}}$, we can define the vector fields $R_{0}^{\Sigma}, R_{1}^{\Sigma}$ and R_{2}^{Σ} along the geodesic segments $\sigma_{0}(\Sigma), \sigma_{1}(\Sigma)$ and $\sigma_{2}(\Sigma)$, respectively, such that
(1) $R_{i}^{\Sigma}\left(q_{0}\right)=v_{j 0}(\Sigma), R_{i}^{\Sigma}\left(q_{j}\right)=v_{j j}(\Sigma)$ for $(i, j) \in\{(1,2),(2,1)\}$, and $R_{0}^{\Sigma}\left(q_{1}\right)=v_{21}(\Sigma)$, $R_{0}^{\Sigma}\left(q_{2}\right)=v_{12}(\Sigma) ;$
(2) $R_{i}^{\sum}, i=0,1,2$, is normal to the geodesic segment $\sigma_{i}(\Sigma)$;
(3) $R_{i}^{\Sigma}, i=0,1,2$, is tangent to $\bar{\Sigma}$ and pointing into Σ;
(4) $R_{i}^{\Sigma}, i=0,1,2$, is parallel along the geodesic segments $\sigma_{i}(\Sigma)$.

Proof. Let $(i, j) \in\{(1,2),(2,1)\}$. We put $\sigma_{0 i}(\Sigma) \equiv \sigma_{0}(\Sigma) \cap H_{0 i}$. Let p_{0} be an arbitrary point of Σ. Using the same notation as in the proofs of Proposition 7.4 and Proposition 7.5, we define a vector field R_{i}^{Σ} along $\sigma_{i}(\Sigma)$ and a vector field $R_{0 i}^{\Sigma}$ along $\sigma_{0 i}(\Sigma)$ by

$$
\begin{aligned}
& \left(R_{i}^{\Sigma}\right)_{\xi_{i}^{(i)}\left(p_{+\infty}^{(j)}\right)}=\lim _{u \rightarrow+\infty}\left(-\frac{U_{j}}{\left\|U_{j}\right\|}\right)_{\xi_{u}^{(j)} \xi_{i}^{(i)\left(p_{0}\right)}}, \\
& \left(R_{0 i}^{\Sigma}\right)_{\xi_{l}^{(i)}\left(p_{-\infty}^{(j)}\right)}=\lim _{u \rightarrow-\infty}\left(\frac{U_{j}}{\left\|U_{j}\right\|}\right)_{\xi_{u}^{(j)} \xi_{i}^{(i)\left(p_{0}\right)}},
\end{aligned}
$$

where $p_{+\infty}^{(j)}=\lim _{u \rightarrow+\infty} \xi_{u}^{(j)}\left(p_{0}\right) \in \sigma_{i}(\Sigma)$ and $p_{-\infty}^{(j)}=\lim _{u \rightarrow-\infty} \xi_{u}^{(j)}\left(p_{0}\right) \in \sigma_{0 i}(\Sigma)$.
These vector fields are determined independently of the choice of the reference point $p_{0} \in \Sigma$. From the very above definition we can easily see that R_{i}^{Σ} and $R_{0 i}^{\Sigma}$ are normal to $\sigma_{i}(\Sigma)$ and $\sigma_{0 i}(\Sigma)$ respectively and that they are tangent to $\bar{\Sigma}$ and pointing into Σ. We note that $\sigma_{0}(\Sigma) \cap M_{\text {sing }}$ consists of one point, say $q_{\text {sing }}(\Sigma)$. Since these facts imply that $\lim _{q_{1} \rightarrow q_{\text {sing }}(\Sigma)}\left(R_{01}^{\Sigma}\right)_{q_{1}}=\lim _{q_{2} \rightarrow q_{\text {sing }}(\Sigma)}\left(R_{02}^{\Sigma}\right)_{q_{2}}$, where $q_{1} \in \sigma_{1}(\Sigma), q_{2} \in \sigma_{2}(\Sigma)$, we can construct the vector field R_{0}^{Σ} by combining R_{01}^{Σ} and R_{02}^{Σ}. The properties (1), (2) and (3) are now obvious. Since Σ is totally geodesic, it is easy to verify (4).

Here, from (5.6) in $\S 5$, we recall the S^{1}-actions $\eta_{j}, j=1$, 2 , on M. We denote by $i d$ the identity automorphism of $(M, g, J ; \mathscr{F})$. We put

$$
\tau_{j}=\eta_{\pi / m_{j} c_{2}}^{(j)} \quad j=1,2 .
$$

It follows that $\tau_{j}^{2}=i d, j=1,2$ and $\tau_{1} \tau_{2}=\tau_{2} \tau_{1}$. Hence, $\left\{i d, \tau_{1}, \tau_{2}, \tau_{1} \tau_{2}\right\}$ forms an automorphism group of ($M, g, J ; \mathscr{F}$).

Proposition 7.7. For any $\Sigma \in \widetilde{ভ}$, the compact subset

$$
S_{\Sigma} \equiv \bar{\Sigma} \cup \overline{\tau_{1}(\bar{\Sigma})} \cup \overline{\tau_{2}(\Sigma)} \cup \overline{\tau_{1} \tau_{2}(\Sigma)}
$$

of M forms a compact, connected 2-dimensional real submanifold of M without a boundary, which satisfies
(1) S_{Σ} is totally geodesic with respect to g;
(2) S_{Σ} is diffeomorphic with the real projective plane $\boldsymbol{R} P^{2}$;
(3) $T_{q_{0}}\left(S_{\Sigma}\right)=\left\langle\left\langle v_{10}(\Sigma), v_{20}(\Sigma)\right\rangle\right.$, where the symbol $\left\langle v_{1}, v_{2}\right\rangle$ means the vector space spanned by v_{1} and v_{2}.

Proof. Let $(i, j) \in\{(1,2),(2,1)\}$ and let $\Sigma \in \widetilde{\subseteq}$. From Lemma 2. 11 in $\S 2$, we see that $\left[Z_{j}, U_{1}\right]=\left[Z_{j}, U_{2}\right]=0$. This implies that $\left(\tau_{j}\right)_{*} D_{+}=D_{+}$. Hence, we can see that the automorphism group $\left\{i d, \tau_{1}, \tau_{2}, \tau_{1} \tau_{2}\right\}$ yields four real surfaces $\Sigma, \tau_{1}(\Sigma), \tau_{2}(\Sigma)$ and $\tau_{1} \tau_{2}(\Sigma)=\tau_{2} \tau_{1}(\Sigma)$ which belong to $\widetilde{\subseteq}$. Using Proposition 5.9, we can see that $\tau_{j}(\tilde{\partial} \Sigma)=\tilde{\partial}\left(\tau_{j}(\Sigma)\right)$ and $\tau_{j}\left(\sigma_{i}(\Sigma)\right)=\sigma_{i}\left(\tau_{j}(\Sigma)\right)$. We notice that $\overline{\tau_{j}(\Sigma)}$ $=\tau_{j}(\bar{\Sigma})$, which is a real surface with a boundary.

We will now establish that the closures $\bar{\Sigma}, \overline{\tau_{1}(\Sigma)}, \overline{\tau_{2}(\Sigma)}$ and $\overline{\tau_{1} \tau_{2}(\Sigma)}$ of these real surfaces are united into one compact, connected real surface S_{Σ} without a boundary. The surface S_{Σ} is constructed as follows:

Using Proposition 5.9 in $\S 5$, (5.5) in $\S 5$ and Lemma 7.6, we obtain

$$
\begin{aligned}
& \sigma_{i}(\Sigma)=\sigma_{i}\left(\tau_{j}(\Sigma)\right) \\
& R_{i}^{\Sigma}+R_{i}^{\tau_{j}(\Sigma)}=0 \quad \text { along } \sigma_{i}(\Sigma)
\end{aligned}
$$

From these facts, together with the totally geodesicity of Σ and $\tau_{j}(\Sigma)$ (Proposition 7.4 (2)), we see that the two real surfaces $\bar{\Sigma}$ and $\tau_{j}(\bar{\Sigma})$ with boundaries are smoothly joined with joint $\sigma_{i}(\Sigma)=\tilde{\partial} \Sigma \cap \tilde{\partial}\left(\tau_{j}(\Sigma)\right)$. We can see that $\sigma_{0}(\Sigma) \cup$ $\sigma_{0}\left(\tau_{j}(\Sigma)\right.$) forms a geodesic circle in H_{0} through the two points q_{1}, q_{2} and hence that

$$
\begin{equation*}
\sigma_{0}(\Sigma)=\sigma_{0}\left(\tau_{1} \tau_{2}(\Sigma)\right), \quad \sigma_{0}\left(\tau_{1} \Sigma\right)=\sigma_{0}\left(\tau_{2}(\Sigma)\right) \tag{7.1}
\end{equation*}
$$

We can also see that $\sigma_{j}(\Sigma) \cup \sigma_{j}\left(\tau_{j}(\Sigma)\right)$ forms a geodesic circle in H_{j} through the points q_{0}, q_{i} and hence that $v_{j i}(\Sigma)+v_{j i}\left(\tau_{1} \tau_{2}(\Sigma)\right)=0$. Hence, the parallelism of $R_{0}^{\Sigma}, R_{0}^{\tau_{1}(\Sigma)}, R_{0}^{\tau_{2}(\Sigma)}$ and $R_{0}^{\tau_{1} \tau_{2}(\Sigma)}$ along $\sigma_{0}(\Sigma), \sigma_{0}\left(\tau_{1}(\Sigma)\right), \sigma_{0}\left(\tau_{2}(\Sigma)\right)$ and $\sigma_{0}\left(\tau_{1} \tau_{2}(\Sigma)\right)$ respectively implies

$$
\begin{equation*}
R_{0}^{\Sigma}+R_{0}^{\tau_{1} \tau_{2}(\Sigma)}=0, \quad R_{0}^{\tau_{1}(\Sigma)}+R_{0}^{\tau_{2}(\Sigma)}=0 . \tag{7.2}
\end{equation*}
$$

Since $\Sigma \in \widetilde{ভ}$ is totally geodesic, we see from (7.1) and (7.2) that $\bar{\Sigma}$ and $\overline{\tau_{1} \tau_{2}(\Sigma)}$ are smoothly joined with joint $\sigma_{0}(\Sigma)$, and likewise $\overline{\tau_{1}(\Sigma)}$ and $\overline{\tau_{2}(\Sigma)}$ with joint $\sigma_{0}\left(\tau_{1}(\Sigma)\right)=\sigma_{0}\left(\tau_{2}(\Sigma)\right)$. These arguments establish that $S_{\Sigma} \backslash\left\{q_{0}, q_{1}, q_{2}\right\}$ forms a totally geodesic smooth real surface. The totally geodesicity of Σ also ensures the smoothness of S_{Σ} at the points q_{0}, q_{1} and q_{2}. Thus, we conclude that S_{Σ} forms a compact, connected 2 -dimensional real submanifold of M without a boundary.

From the very construction of S_{Σ}, the properties (1), (2) and (3) are now obvious.

Here, we set

$$
\mathfrak{S}=\left\{S_{\Sigma} \mid \Sigma \in \widetilde{S}\right\}
$$

Then, we moreover have the following

Proposition 7.8. For any $S \in \mathbb{S}$, the triplet $\left(S, g_{S} ;\left.F\right|_{T * S}\right)$ forms a compact real Liouville surface with two singular points, which is diffeomorphic with the real projective plane $\boldsymbol{R} P^{2}$, where g_{S} means the induced metric on S from g and where F is an element of \mathscr{T} assumed to satisfy (N1) and (N2) in $\S 1$.

Proof. We notice that each $S \in \mathbb{S}$ is almost completely composed of four real surfaces belonging to $\widetilde{\mathbb{S}}$. For each $\Sigma \in \widetilde{\mathbb{S}}$, we denote by \widetilde{E}_{Σ} the energy function on $T^{*} \Sigma$ with respect to the induced metric g_{Σ} on Σ. Recalling from [1] the definition of the compact real Liouville surface, we can see that it is sufficient for the verification that, for any $S \in \mathbb{S},\left(S, g_{S} ;\left.F\right|_{T * S}\right)$ forms a compact real Liouville surface to verify the following conditions for each $\Sigma \in \widetilde{\Xi}$:
(i) $\left\{\tilde{E}_{\Sigma},\left.F\right|_{T * \Sigma}\right\}=0$ on Σ;
(ii) For each $p \in \Sigma,\left.F\right|_{r_{p}^{*} \Sigma}$ is a homogeneous polynomial on $T_{p}^{*} \Sigma$ of degree 2;
(iii) $\left.F\right|_{T_{p}^{*} \Sigma}$ is not of the form $r_{1} \cdot V^{2}+r_{2} \cdot \tilde{E}_{\Sigma}$, where $r_{1}, r_{2} \in \boldsymbol{R}$ and V is a vector field on Σ.

Since F is a homogeneous polynomial on $T_{p}^{*} M$ of degree 2 for each $p \in M$, (ii) is obvious. We define the vector fields $\widetilde{W}_{1}, \widetilde{W}_{2}, \widetilde{W}_{3}$ and \widetilde{W}_{4} on $M_{\text {REG }}$ by

$$
\widetilde{W}_{k}=\frac{U_{k}}{\sqrt{U_{k} f_{k}}}, \quad \widetilde{W}_{k+2}=\frac{U_{k+2}}{\sqrt{U_{k} f_{k}}}, \quad k=1,2 .
$$

Then, from (2.10) and (2.12) in $\S 2$, we can see that $\widetilde{W}_{1}, \widetilde{W}_{2}, \widetilde{W}_{3}$ and \widetilde{W}_{4} form an F-adapted orthogonal frame on $M_{\text {REG }}$. We notice that the vector fields \widetilde{W}_{1} and \widetilde{W}_{2} are tangent to the surface Σ for each $\Sigma \in \widetilde{\Xi}$. Then, $\left.E\right|_{T * \Sigma}$ and $\left.F\right|_{T * \Sigma}$ can be expressed as

$$
\left\{\begin{array}{l}
\left.E\right|_{T_{* \Sigma}}=\frac{1}{\left.\left(f_{1}+f_{2}\right)\right|_{\Sigma}}\left(\left(\left.\widetilde{W}_{1}\right|_{\Sigma}\right)^{2}+\left(\left.\widetilde{W}_{2}\right|_{\Sigma}\right)^{2}\right) \\
\left.F\right|_{T_{* \Sigma}}=-\frac{\left.f_{2}\right|_{\Sigma}}{\left.\left(f_{1}+f_{2}\right)\right|_{\Sigma}}\left(\left.\widetilde{W}_{1}\right|_{\Sigma}\right)^{2}+\frac{\left.f_{1}\right|_{\Sigma}}{\left.\left(f_{1}+f_{2}\right)\right|_{\Sigma}}\left(\left.\widetilde{W}_{2}\right|_{\Sigma}\right)^{2},
\end{array}\right.
$$

on Σ. From this expression of $\left.F\right|_{T * \Sigma}$, it is easy to check (iii). We can see that $\left.\left(\widetilde{W}_{1} / \sqrt{f_{1}+f_{2}}\right)\right|_{\Sigma},\left.\left(\widetilde{W}_{2} / \sqrt{f_{1}+f_{2}}\right)\right|_{\Sigma}$ form an orthonormal frame on Σ and hence that $\tilde{E}_{\Sigma}=\left.E\right|_{T * \Sigma}$. Hence, we can easily compute $\left\{\tilde{E}_{\Sigma},\left.F\right|_{T * \Sigma}\right\}=0$ for each $\Sigma \in \widetilde{ভ}$, which completes the verification of (i). Thus, we conclude that, for each $S \in \subseteq$, $\left(S, g_{S} ;\left.F\right|_{T * S}\right)$ forms a compact real Liouville surface.

From the very construction of $S \in \mathbb{S}$ in the proof of Proposition 7.7, we can see that the set of the singular points of ($S,\left.g\right|_{S} ;\left.F\right|_{T * S}$) is $S \cap M_{\text {sing }}$, which consists of two points. Recalling Proposition 7.7 (2) or using the classification of the compact real Liouville surfaces in [1], we see that S is diffeomorphic with $\boldsymbol{R} P^{2}$.

Thus, by virtue of Proposition 7.7 and Proposition 7.8, we establish Theorem 7.1.

We will now proceed to establish Theorem 7.2, Let $P_{q_{0}} M$ be the set of the 2 -dimensional real vector subspace $\left\langle v_{1}, v_{2}\right\rangle$ of $T_{q_{0}} M$ spanned by $v_{1} \in\left(D_{1}\right)_{q_{0}}^{\text {unit }}$ and $v_{2} \in\left(D_{2}\right)_{q_{0}}^{\text {unit. We need the following }}$

Proposition 7.9. There exists a one to one correspondence between \subseteq and $P_{q_{0}} M$ as follows:

$$
\mathfrak{S} \ni S \longleftrightarrow T_{q_{0}}(S) \in P_{q_{0}} M .
$$

Proof. From Proposition 7.7 (3), for each $S \in \mathbb{S}$, we can assign $T_{q_{0}} S \in P_{q_{0}} M$.
Conversely, we can see that, for any $K \in P_{q_{0}}(M)$, there exists a unique $S_{K} \in \mathbb{S}$ such that $T_{q_{0}}\left(S_{K}\right)=K$ as follows:

Take a pair of unit vectors $\left(v_{1}, v_{2}\right) \in\left(D_{1}\right)_{q_{0}}^{\text {unit }} \times\left(D_{2}\right)_{q_{0}}^{\text {unit }}$ at q_{0} such that $K=$ $\left\langle v_{1}, v_{2}\right\rangle$. We put $v_{0}=(1 / \sqrt{2}) v_{1}+(1 / \sqrt{2}) v_{2} \in S_{q_{0}} M$, where $S_{q_{0}} M$ denotes the unit sphere in the tangent vector space $T_{q_{0}} M$. We define a geodesic γ_{0} by $\gamma_{0}(s)=$ $\exp \left(s v_{0}\right)$. Taking a sufficiently small $s_{0}>0$, we may assume that the geodesic segment $\left.\gamma_{0}\right|_{\left[0, s_{0}\right]}$ is a minimizing geodesic segment from q_{0} to $p_{0}=\gamma_{0}\left(s_{0}\right)$. We denote by Σ_{0} the real surface belonging to \subseteq through the point $p_{0}=\gamma_{0}\left(s_{0}\right)$. It is easy to see that $\gamma_{0}(] 0, s_{0}[) \subset \Sigma_{0}$. In fact, from the fact that Y_{1} and Y_{2} are infinitesimal isometries of (M, g), we can see that the vector fields $\left(Y_{1}\right)_{r_{0}(s)}$ and $\left(Y_{2}\right)_{r_{0}(s)}, 0 \leqq s \leqq s_{0}$, are non-zero normal Jacobi fields along $\left.\gamma_{0}\right|_{\left[0, s_{0}\right]}$ and hence that $\dot{\gamma}_{0}(s) \in\left(D_{+}\right)_{\gamma_{0}(s)}$ for all $\left.\left.s \in\right] 0, s_{0}\right]$. As in the proof of Proposition 7.7, we can construct $S_{\Sigma_{0} \in \subseteq}$ by setting $S_{\Sigma_{0}}=\overline{\Sigma_{0}} \cup \overline{\tau_{1}\left(\Sigma_{0}\right)} \cup \overline{\tau_{2}\left(\Sigma_{0}\right)} \cup \overline{\tau_{1} \tau_{2}\left(\Sigma_{0}\right)}$. We note that the geodesic $\gamma_{0}(s)$ lies on $S_{\Sigma_{0}}$. Using Proposition 7.7 (3), we have

$$
\begin{equation*}
\frac{1}{\sqrt{2}} v_{1}+\frac{1}{\sqrt{2}} v_{2}=v_{0}=\dot{\gamma}_{0}(0)=a_{1} \cdot v_{10}\left(\Sigma_{0}\right)+a_{2} \cdot v_{20}\left(\Sigma_{0}\right), \tag{7.3}
\end{equation*}
$$

where a_{1} and a_{2} are real numbers such that $\left(a_{1}\right)^{2}+\left(a_{2}\right)^{2}=1$. Since $T\left(M_{\text {reg }}\right)=$ $D_{1} \oplus D_{2}$ (direct sum), comparing D_{1}-component of (7.3) and comparing D_{2}-component of (7.3), we have $v_{10}\left(\Sigma_{0}\right)= \pm v_{1}, v_{20}\left(\Sigma_{0}\right)= \pm v_{2}$. Thus, from Proposition 7.7 (3), we obtain

$$
T_{q_{0}}\left(S_{\Sigma_{0}}\right)=\left\langle\left\langle v_{1}, v_{2}\right\rangle\right\rangle=K .
$$

Since $\exp _{q_{0}} K=S_{\Sigma_{0}}$, the uniqueness of this surface is obvious.
We denote by $S(K)$ the surface belonging to \mathbb{S} which corresponds to $K \in P_{q_{0}} M$.

Recalling the effective torus action Φ on M from (5.7) in $\S 5$, we denote by $\Phi_{\left(t_{1}, t_{2}\right)}$ the automorphism of ($M, g, J ; \mathscr{F}$) defined by $M \ni p \mapsto \Phi\left(p, t_{1}, t_{2}\right) \in M$. Observing (5.5), (5.6) and (5.7) in §5, we can obtain the transitive torus action $\hat{\Phi}$ on $P_{q_{0}} M$ expressed as

$$
\begin{aligned}
& \hat{\Phi}: P_{q_{0}}(M) \times\left(\boldsymbol{R} / \frac{2 \pi}{m_{1} c_{2}} \boldsymbol{Z}\right) \times\left(\boldsymbol{R} / \frac{2 \pi}{m_{2} c_{2}} \boldsymbol{Z}\right) \ni\left(K, t_{1}, t_{2}\right) \\
& \longmapsto\left(\Phi_{\left(t_{1}, t_{2}\right)}\right)_{* q_{0}} K \in P_{q_{0}} M
\end{aligned}
$$

Hence, by virtue of Proposition 7.9, we immediately obtain the following transitive torus action $\widetilde{\Phi}$ on \widetilde{S} :

$$
\begin{aligned}
\tilde{\Phi}: \subseteq \times\left(\boldsymbol{R} / \frac{2 \pi}{m_{1} c_{2}} \boldsymbol{Z}\right) \times\left(\boldsymbol{R} / \frac{2 \pi}{m_{2} c_{2}} \boldsymbol{Z}\right) & \ni\left(S(K), t_{1}, t_{2}\right) \\
& \longrightarrow S\left(\hat{\Phi}_{\left(t_{1}, t_{2}\right)}(K)\right) \in \mathbb{S}
\end{aligned}
$$

thereby establishing Theorem 7.2.
Finally, we verify Corollary 7.3 as follows:
From the definition of the torus action $\tilde{\Phi}$ on \mathbb{S}, we can obtain

$$
\widetilde{\Phi}\left(S(K), t_{1}, t_{2}\right)=\Phi_{\left(t_{1}, t_{2}\right)}(S(K))
$$

for any $K \in P_{q_{0}} M$ and for any $\left(t_{1}, t_{2}\right) \in\left(\boldsymbol{R} /\left(2 \pi / m_{1} c_{2}\right) \boldsymbol{Z}\right) \times\left(\boldsymbol{R} /\left(2 \pi / m_{2} c_{2}\right) \boldsymbol{Z}\right)$. This, together with the transitivity of the action $\tilde{\Phi}$ on \mathbb{S}, implies that any two surfaces belonging to \mathbb{S} are transferred diffeomorphically from one onto the other by Φ. Since $\left[Z_{j}, U_{k}\right]=0, j, k=1,2$ Lemma 2.11 in $\S 2$, we have $\left(\Phi_{\left(t_{1}, t_{2}\right)}\right)_{*}\left(D_{+}\right)=D_{+}$. Hence, we see that, for each $\left(t_{1}, t_{2}\right) \in\left(\boldsymbol{R} /\left(2 \pi / m_{1} c_{2}\right) \boldsymbol{Z}\right) \times$ $\left(\boldsymbol{R} /\left(2 \pi / m_{2} c_{2}\right) \boldsymbol{Z}\right), \Phi_{\left(t_{1}, t_{2}\right)}$ maps diffeomorphically a surface $\Sigma \in \widetilde{\subseteq}$ onto a certain surface $\Sigma^{\prime} \in \widetilde{\mathbb{S}}$. Then, using Theorem 2.13 (3), we have
where F is an element of \mathcal{F} assumed to satisfy (N1) and (N2) in §1. This implies that, for any $S \in \mathbb{S}$ and for any $\left(t_{1}, t_{2}\right) \in\left(\boldsymbol{R} /\left(2 \pi / m_{1} c_{2}\right) \boldsymbol{Z}\right) \times\left(\boldsymbol{R} /\left(2 \pi / m_{2} c_{2}\right) \boldsymbol{Z}\right)$, the mapping $\left.\Phi_{\left(t_{1}, t_{2}\right)}\right|_{S}: S \rightarrow \Phi_{\left(t_{1}, t_{2}\right)}(S)$ is an isomorphism of the compact real Liouville surface $\left(S,\left.g\right|_{S} ;\left.F\right|_{T * S}\right)$ belonging to \subseteq onto the compact real Liouville surface $\left(\Phi_{\left(t_{1}, t_{2}\right)}(S),\left.g\right|_{\Phi_{\left(t_{1}, t_{2}\right)}(S)} ;\left.F\right|_{T *\left(\Phi_{\left(t_{1}, t_{2}\right)}(S)\right)}\right)$ belonging to \mathbb{S}.

References

[1] K. Kiyohara, Compact Liouville surfaces, J. Math. Soc. Japan, 43 (1991), 555-591.
[2] M. Igarashi, K. Kiyohara and K. Sugahara, Noncompact Liouville surfaces, J. Math. Soc. Japan, 45 (1993), 459-479.
[3] K. Kiyohara, Global structure of Liouville manifolds, preprint.
[4] K. Ii and S. Watanabe, Complete integrability of the geodesic flows on symmetric spaces, Geometry of geodesics and related topics, Adv. Stud. Pure Math., 3 (1984), 105-124.
[5] A.S. Mishchenko, Integration of geodesic flows on symmetric spaces, Math. Notes, 31 (1982), 132-134.
[6] J. Eells and N. Kuiper, Manifolds which are like projective planes, Inst. Hautes Études Sci. Publ. Math., 14 (1962).
[7] T. Aubin, Équations du type Monge-Ampère sur la variétés kähleriennes compactes, C. R. Acad. Sci. Paris, 283 (1976), 119-121.
[8] S.T. Yau, On Calabi's conjecture and some new results in algebraic geometry, Nat. Acad. Sci. USA., 74 (1977), 1798-1799.
[9] B. Y. Chen and K. Ogiue, Some characterizations of complex space forms in terms of Chern classes, Quart. J. Math. Oxford, 26 (1975), 459-464.
[10] P. Griffiths and J. Harris, Principles of algebraic geometry, A Wiley-Interscience publication, John Wiley \& Sons, New York-Chichester-Brisbane-Toronto.

Masayuki Igarashi
Faculty of Industrial
Science \& Technology
Science University of Tokyo
Oshamanbe, Yamakoshi-gun
Hokkaido 049-35
Japan

