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Introduction.

It is rewarding to investigate riemannian manifolds with completely integrable
geodesic flows, because the behavior of their geodesics can be observed.

In the 19th century, Jacobi investigated the 2-dimensional ellipsoid, and
Liouville generalized this work to the geometry of a class of metrics, the
so-called Liouville line elements, whose geodesic flows are integrable by a certain
first integral. In relation to the present viewpoint, their investigations can be
recognized as a local theory of differential geometry. However, in 1991 K.
Kiyohara began to develop a global theory in this area [1]. In this work he
first defined the compact Liouville surface and classified it; it is defined as a
compact2-dimensional riemannian manifold whose geodesic flow has a first
integral on the cotangent bundle such that (1) the first integral is fiberwise a
homogeneous polynomial of degree 2; (2) the first integral can not be expressed
as a linear combination of the square of a certain vector field and its energy
function. Additionally, K. Sugahara, K. Kiyohara and the author investigated
noncompact Liouville surfaces [2]. Subsequently, Kiyohara generalized this
concept to the higher dimensional manifolds (see [3] for detail) as follows:

A Liouville manifold is defined as a riemannian manifold which has a real
vector space of the first integrals on the cotangent bundle of its geodesic flows
such that (1) all the first integrals are fiberwise homogeneous polynomials of
degree 2; (2) all the first integrals are simultaneously normalizable on each
fiber; (3) the dimension of the vector space is equal to the dimension of the
underlying riemannian manifold.

In the investigation [3] of Liouville manifolds, Kiyohara has assumed the
condition of “properness,” and has classified proper Liouville manifolds of rank
one; he has concluded that a proper4-dimensional real Liouville manifold of
rank one is diffeomorphic with the sphere $S^{4}$ , the real projective space $RP^{4}$ or
the euclidean space $R^{4}$ .

It is known that the geodesic flow of the $n$ -dimensional complex projective
space $CP^{n}$ $(n\geqq 1)$ equipped with the standard metric is completely integrable
(cf. [4], [5]). The author was informed by private communication with Prof.
K. Kiyohara that there is a family of Kahler metrics on $CP^{n}$ whose geodesic
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flows are completely integrable. These facts motivated the author to study
“Liouville structures” on compact K\"ahler manifolds.

The subject of this paper is Liouville structures on compact K\"ahler surfaces.
We say that a quadruplet $(M, g, J;\mathscr{F})$ is a K\"ahler-Liouville surface if $(M, g, J)$

is a complete, connected K\"ahler surface and if $\mathscr{F}$ is a 2-dimensional real vector
space of first integrals on the cotangent bundle $T^{*}M$ of its geodesic flows such
that (1) the vector space $\mathscr{F}$ contains the energy function on $T^{*}M$ ; (2) all the
first integrals contained in the vector space $\mathscr{F}$ are fiberwise homogeneous poly-
nomials of degree 2 and are hermitian with respect to the complex structure $J$ .
For each $p\in M$, we put $F_{p}\equiv F|_{\tau_{p^{M}}^{*}}$ for $F\in \mathscr{F}$ and set $\mathscr{F}_{p}=\{F_{p}|F\in \mathscr{F}\}$ . We call
the points $P$ of $M$ such that $\dim \mathscr{F}_{p}=1$ the singular points of $(M, g, J;\mathscr{F})$ and
denote the set of them by $M_{sing}$ .

In this paper we will study the compact K\"ahler-Liouville surface under the
assumPtlon of Properness’ analogous to the condition of Properness in the
investigation [3] of Liouville manifolds, but not identical to it. We say that a
K\"ahler-Liouville surface $(M, g, J;\mathscr{F})$ is proper if $M_{sing}\neq\emptyset$ and if, for any
$F\in \mathscr{F}$ and $p\in M$ such that $F_{p}=0$ , there exists a covector $w\in T_{p}^{*}M$ such that
$(dF)_{w}\neq 0$ .

We remark that any compact proper K\"abler-Liouville surface can not admit
the structure of the 4-dimensional Liouville manifold of rank one.

The PurPose of this PaPer is to study the structure of the comPact ProPer
K\"ahler-Liouville surface.

The main results in this PaPer can be stated as follows:
Let $(M, g, J;\mathscr{F})$ be a comPact proPer K\"ahler-Liouville surface. Then

(1) The geodesic flow of $(M, g)$ is completely integrable.
(2) $(M, J)$ is bi-holomorphic with the complex Projective Plane $CP^{2}$ .
(3) $(M, g, J)$ has three Points $q_{0},$ $q_{1},$ $q_{2}$ and three totally geodesic l-dimen-

sional complex submanifolds $H_{0},$ $H_{1},$ $H_{2}$ which are bi-holomorphic with
the complex projective line $CP^{1}$ such that
(i) $H_{1}\cap H_{2}=\{q_{0}\},$ $H_{0}\cap H_{1}=\{q_{2}\},$ $H_{0}\cap H_{2}=\{q_{1}\}$ ;
(ii) $H_{0}$ coincides with the subset of $M$ on which $F\in \mathscr{F}$ such that $F_{p}=0$

for $P\in M_{sing}$ is degenerate, and hence includes $M_{sing}$ ;
(iii) $H_{0}\cup H_{1}\cup H_{2}$ is the subset of $M$ on which $F\in \mathscr{F}$ described in (ii)

can be said to be critical in one sense.
(4) $M_{sing}$ forms a compact real submanifold of $H_{0}$ , and hence also of $M$,

and is diffeomorphic with the circle $S^{1}$ .
(5) There exists an effective action $\Phi$ of the 2-dimensional real torus

$S^{1}\cross S^{1}$ on $M$ (as automorphisms of $(M,$ $g,$ $J;\mathscr{F})$ ) such that
$(i)$ $\Phi$ leaves the three points $q_{0},$ $q_{1},$ $q_{2}$ fixed ;
(ii) $\Phi$ leaves the three submanifolds $H_{0},$ $H_{1},$ $H_{2}$ invariant.
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(6) There exists a family $\mathfrak{S}$ of compact totally geodesic 2-dimensional real
submanifolds of $(M, g)$ such that
(i) Each compact real submanifold $S\in \mathfrak{S}$ associated with the Liouville

structure inherited from $\mathscr{F}$ forms a compact real Liouville surface
wbich is diffeomorphic with the real projective plane $RP^{2}$ ;

(ii) The compact real Liouville surfaces belonging to $\mathfrak{S}$ are isomor-
phically transferred to each other by the action $\Phi$ on $M$.

This paper is organized as follows:
In \S 1 we will define the K\"ahler-Liouville surface and demonstrate its con-

dition of properness. In \S 2 we will discuss local structure of the compact
proper K\"ahler-Liouville surface and present lemmas, propositions and formulas,
which will be used is subsequent sections. In \S 3 we will construct the compact
complex submanifold $H_{0}$ on which $F\in \mathscr{F}$ described in (3) (ii) in the above main
results is degenerate. We will subsequently show that $H_{0}$ is bi-holomorphic to
the complex projective line $CP^{1}$ and is totally geodesic, and that $M_{sing}$ is a
real submanifold of $H_{0}$ which is diffeomorphic with the circle $S^{1}$ . In \S 4 we
will study the $S^{1}$-actions naturally generated by the prescribed infinitesimal
automorphisms of $(M, g, J;\mathscr{F})$ and present some lemmas and Propositions which
will be needed in subsequent sections. In \S 5 we will first construct the compact
complex submanifolds $H_{1}$ and $H_{2}$ , wbich may be described as the sets of critical
points, in one sense, and show that $H_{1}$ and $H_{t}$ are bi-holomorphic to the complex
projective line $CP^{1}$ and are totally geodesic. Second, we will establish the
complete integrability of the geodesic flows of $(M, g)$ . Third, we will define
an effective action $\Phi$ of the 2-dimensional real torus $S^{1}\cross S^{1}$ on $M$. In \S 6 we
will prove that $(M, J)$ is bi-holomorphic to the standard complex projective
plane $(CP^{2}, J_{0})$ . In \S 7 we will first discover a family $\mathfrak{S}$ of comPact real
Liouville surfaces naturally imbedded in $M$ which are diffeomorphic with the
real projective plane $RP^{2}$ . Finally, we will see that the torus action $\Phi$ on $M$

induces a transitive action di of the real torus $S^{1}xS^{1}$ on the family $\mathfrak{S}$ and that
the compact real Liouville surfaces belonging to $\mathfrak{S}$ are isomorphically transferred
to each other by the action $\Phi$ on $M$.

Throughout this paper, we assume the differentiability of class $C^{\infty}$ unless
otherwise stated.
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\S 1. The deflnition of K\"ahler-Liouville surfaces.

Let $(M, g, J)$ be a complete, connected K\"ahler surface and let $E$ be its
energy function on $T^{*}M$. We define the complex structure $I^{*}$ of $T^{*}M$ by
$J^{*}=b\circ(-J)\circ b^{-1}$ , where $b$ is the identification map of $TM$ onto $T^{*}M$ induced by

the metric $g$ in an obvious manner.
A quadruplet $(M, g, J;\mathscr{F})$ will be called a K\"ahler-Liouville surface if $\mathscr{F}$ is

a 2-dimensional real vector space of $R$-valued functions on $T^{*}M$ satisfying the
following four conditions $(KL1),$ $\cdots$ (KL4):

(KL1) $E\in \mathscr{F}$ ;
(KL2) For any $F\in \mathscr{F}$ and for any point $p\in M$,

$F_{p}\equiv F|_{\tau_{p^{M}}^{*:}}T_{p}^{*}Marrow R$

is a homogeneous polynomial of degree 2;
(KL3) For any $F\in \mathscr{F},$ $F$ is hermitian, $i.e.,$ $F\circ J^{*}=F$ ;
(KL4) For any $F_{1},$ $F_{l}\in \mathscr{F}$ ,

$\{F_{1}, F_{2}\}=0$ ,

where $\{*, *\}$ is the canonical Poisson bracket on $T^{*}M$.
TWO K\"ahler-Liouville surfaces $(M, g, J;\mathscr{F})$ and $(M’, g’, J’ ; \mathscr{F}’)$ will be

called mutually isomorphic if there exists a holomorphic isometry $\Psi:(M, g, J)$

$arrow(M’, g’, J’)$ such that mapping $\Psi^{*}$ defined by, for $F\in \mathscr{F},$ $\Psi^{*}(F)=F\circ\Psi*$ maps
$\mathscr{F}$ into $\mathscr{F}’$ .

Note that a vector field $Y$ on $M$ is an infinitesimal automorphism of a
K\"ahler-Liouville surface $(M, g, J;\mathscr{F})$ if and only if $Y$ satisfies the following
conditions:

(IA1) $\{Y, E\}=0$ , or equivalently, $X_{Y}g=0$ ;
(IA2) $\mathcal{L}_{Y}J=0$ ;
(IA3) $\{Y, F\}\in \mathscr{F}$ for any $F\in \mathscr{F}$ ,

where $Y$ is considered as both a vector field on $M$ and a fiberwise linear
function on $T^{*}M$, and where $\mathcal{L}_{Y}$ is the Lie derivation with respect to the
vector field $Y$ .

Let $(M, g, J;\mathscr{F})$ be a K\"ahler-Liouville surface. For each Point $P\in M$, we
set $\mathscr{F}_{p}=\{F_{p}=F|_{\tau_{p^{M}}^{*}}|F\in \mathscr{F}\}$ ; it can be also regarded as a real vector space. It
follows that lSdim Fp$2 for any point $p\in M$.

A point $p$ of $M$ such that $\dim \mathscr{F}_{p}=1$ will be called the singular point of
$(M, g, J;\mathscr{F})$ , and the set of them will be denoted by $M_{sing}$ . A point $P$ of $M$

such that $\dim \mathscr{F}_{p}=2$ will be called the regular point of $(M, g, J;\mathscr{F})$ , and the
set of them will be denoted by $M_{reg}$ .
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A K\"ahler-Liouville surface $(M, g, J;\mathscr{F})$ will be called proper if $\mathscr{F}$ satisfies
the following conditions:

(PKLI) $M_{sing}\neq\emptyset$ ;
(PKL2) For any $F\in \mathscr{F}\backslash \{0\}$ and $p\in M$ such that $F_{p}=0$, there exists a

covector $w\in T_{p}^{*}M$ which satisfies $(dF)_{w}\neq 0$ .
We know from [1] that, for a K\"ahler-Liouville surface $(M, g, J;\mathscr{F})$ such

that $M_{sing}\neq\emptyset$ , the condition (KL4) in the definition of the K\"ahler-Liouville

surface yields the following property:
For each $F\in \mathscr{F}$ , there exists a real constant $r$ such that the equality $F_{p}=rE_{p}$

holds for every point $p\in M_{sing}$ .
Thus, for any compact proper K\"ahler-Liouville surface $(M, g, J;\mathscr{F})$ , we can

always find $F\in \mathscr{F}$ such that

(N1) $F\neq rE$ for any $r\in R$ ;
(N2) $F_{p}=0$ if and only if $p\in M_{sing}$ .
In the following sections the element $F$ of $\mathscr{F}$ will be always assumed to

satisfy the conditions (N1) and (N2) above.

\S 2. Local structure of compact proper K\"ahler-Liouville surfaces.

Let $(M, g, J;\mathscr{F})$ be a compact, connected proper K\"ahler-Liouville surface
and let $F$ be an element of $\mathscr{F}$ ; as mentioned at the end of \S 1, $F$ is assumed
to satisfy the conditions (N1) and (N2) in \S 1.

Let $\pi^{*}:$ $T^{*}Marrow M$ be the cotangent bundle over $M$ and let $g^{*}$ be the
contravariant metric tensor corresponding to $g$ . For each $p\in M$, we define the
endomorphism $F_{p}^{e}$ of $T_{p}^{*}M$ by $F_{p}(w)=g^{*}(w, F_{p}^{e}(w))$ for $w\in T_{p}^{*}M$. This induces
the bundle endomorphism $F^{e}$ of $T^{*}M$. The cotangent bundle $T^{*}M$ is regarded
as a complex vector bundle over $M$ by the complex structure $J^{*}$ . Because $F$ is
hermitian, $F^{e}$ can be regarded as the complex bundle endomorphism of $T^{*}M$.

Let $\tilde{\Omega}$ be an arbitrary open subset of $M$ which is equipped with a local
unitary coframe 01, $V_{2}^{*}$ on $M$. Then, $F^{e}$ can be represented on $\tilde{\Omega}$ in the
following form:

(2.1) $(F^{e}(\tilde{V}_{1}^{\star}), F^{e}(\tilde{V}_{2}^{*}))=(V_{1}^{*},\tilde{V}_{2}^{*})(\begin{array}{ll}a_{11} \kappa\overline{\kappa} a_{22}\end{array})$ ,

where $a_{11},$ $a_{22}$ are $R$-valued functions on $\tilde{\Omega}$ and $\kappa$ is a $C$-valued function on $\tilde{\Omega}$ .

We put $A\equiv(\begin{array}{ll}a_{11} \kappa\overline{\kappa} a_{22}\end{array})$ on $\tilde{\Omega}$ .
We can define the $R$-valued continuous functions $f_{1}$ and $f_{2}$ on $\tilde{\Omega}$ by
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(2.2) $\{$

$f_{1}= \frac{a_{11}+a_{22}+\sqrt{(a_{11}-a_{2l})^{2}+4\overline{\kappa}\kappa}}{2}$

$f_{2}= \frac{-a_{11}-a_{22}+\sqrt{(a_{11}-a_{l2})^{2}+4\overline{\kappa}\kappa}}{2}$ .

Notice that $-f_{2}\leqq f_{1}$ and that $-f_{2}$ and $f_{1}$ assign the eigen values of the matrix
$A$ to each point of 9. We can see that $f_{1}$ and $f_{2}$ are globally defined on the
whole of $M$. However, we can not conclude that $f_{1}$ and $f_{2}$ are smooth at a
point of $M_{sing}$ .

From the assumption (N2) of $F$ in \S 1 we obtain the following

LEMMA 2.1. A Pmnt $P$ of $M$ belongs to $M_{sing}$ if and only if $f_{1}(p)=f_{l}(p)=0$ .
In particular, Msing is a closed subset of $M$.

Moreover, we define the $R$-valued functions $h_{1}$ and $h_{2}$ on di as follows:

(2.3) $\{$

$h_{1}\equiv-\det A=-a_{11}a_{22}+\overline{\kappa}\kappa$

$h_{2}\equiv traceA=a_{11}+a_{22}$ .

We can also see that $h_{1}$ and $h_{2}$ are globally defined on the whole of $M$. From
(2.2) and (2.3), we immediately obtain the following relations:

(2.4) $h_{1}=f_{1}\cdot f_{2}$ , $h_{2}=f_{1}-f_{2}$ on $M$.

Here we have another expression of the properness condition for
$(M, g, J;\mathscr{F})$ .

LEMMA 2.2. Let $(M, g, J;\mathscr{F})$ be a Kahler-Liouville surface satisfyng that
$M_{sing}\neq\emptyset$ . The condition (PKL2) in the definition of ProPerness for $(M, g, J;\mathscr{F})$

in \S 1 is equivalent to the following condition:

(2.5) $(dh_{2})_{p}\neq 0$ for any $P\in M_{sing}$ .

PROOF. Let $P$ be an arbitrary point of Msing and $\tilde{\Omega}$ an open neighborhood
of $P$ in $M$ which is equipped with a local unitary coframe $\hat{V}_{1}^{*},\tilde{V}_{2}^{*}$ . We set the
orthonormal coframe $V_{1}^{*},$ $V_{3}^{*},$ $V_{2}^{*},$ $V_{4}^{*}$ on di corresponding to the unitary coframe
$\tilde{V}_{1}^{*},\tilde{V}_{2}^{*}$ and the orthonormal frame $V_{1},$ $V_{3},$ $V_{2},$ $V_{4}$ on $\tilde{\Omega}$ which is dual to the
coframe $V_{d}^{*},$ $V_{1}^{*},$ $V_{4}^{*},$ $V_{2}^{*}$ . Notice that $J^{*}V_{1}^{*}=V_{3}^{*},$ $J^{*}V_{2}^{*}=V_{4}^{*}$ and $JV_{1}=V_{3},$ $JV_{2}$

$=V_{4}$ . Recalling (2.1), we have

(2.6) $F=a_{11}\cdot((V_{1})^{2}+(V_{8})^{2})+a_{22}\cdot((V_{2})^{2}+(V_{4})^{2})$

$+2a_{12}\cdot(V_{1}V_{2}+V_{3}V_{4})+2a_{21}\cdot(V_{1}V_{4}-V_{2}V_{3})$ on $\tilde{\Omega}$ ,

where $a_{12}$ and $a_{21}$ are the $R$-valued functions on di such that $\kappa=a_{12}+\sqrt{-1}a_{21}$ .
We notice that $a_{11}(p)=a_{22}(p)=a_{12}(p)=a_{21}(p)=0$ .
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We now verify the desired equivalence.
(I) The implication $(2.5)arrow(PKL2)$ . Observing (2.6), the condition that

$(dF)_{w}=0$ implies that $(da_{11})_{p}=(da_{22})_{p}=0$ . From (2.3), we thus have $(dh_{2})_{p}=$

$(da_{11})_{p}+(da_{2t})_{p}=0$ .
(II) The implication (PKL2)- (2.5). Take a certain $w\in T_{p}^{*}M$ so that $||w||$

$\neq 0$ and $(dF)_{w}\neq 0$ . We can assume that $(V_{1}^{*})_{p}=w/||w||$ . Then, using (2.6), we
obtain $(da_{11})_{p}\neq 0$. From the condition (KL4) $\{E, F\}=0$ in \S 1 we can see that
$(da_{11})_{p}$ can not be obtained by the scalar multiple of $(da_{22})_{p}$ . Thus, we have
$(dh_{2})_{p}=(da_{11})_{p}+(da_{22})_{p}\neq 0$ . $\square$

Going back to the argument for the compact, connected proper K\"ahler-

Liouville surface $(M, g, J;\mathscr{F})$ given at the beginning of this section, we have
the following

PROPOSITION 2.3. The subset $M_{reg}$ of $M$ is a non-empty open subset of $M$.

PROOF. Let $p\in M_{sing}$ . The condition (2.5) in Lemma 2.2 implies that there
exists a point $q$ close to the point $p$ such that $h_{2}(q)=f_{1}(q)-f_{g}(q)\neq 0$ . The
openness is immediate from Lemma 2.1. $\square$

For each point $p$ of $M_{reg}$ , there exist both an open neighborhood $\Omega$ of $P$

and an orthonormal frame $V_{1},$ $V_{3},$ $V_{2},$ $V_{4}$ on $\Omega$ which satisfy the following
conditions:

(1) $\Omega cM_{reg}$ ;
(2) $JV_{1}=V_{3}$ and $JV_{2}=V_{4}$ ;
(3) $F$ and $2E$ are expressed as

(2.7) $\{$

$F=-f_{2}((V_{1})^{2}+(V_{3})^{2})+f_{1}((V_{2})^{2}+(V_{4})^{l})$

$2E=(V_{1})^{2}+(V_{3})^{2}+(V_{2})^{2}+(V_{4})^{2}$ on $\Omega$ .

Such an orthonormal frame $V_{1},$ $V_{3},$ $V_{2},$ $V_{4}$ on $\Omega$ will be called the F-adapted
orthonormal frame on $\Omega$ .

Using the neighborhood $\Omega$ and the $F$-adapted orthonormal frame $V_{1},$ $V_{3},$ $V_{2}$ ,
$V_{4}$ on $\Omega$ , we can define the complex subbundles $D_{1}$ and $D_{2}$ of the tangent
bundle $T(M_{reg})$ over $M_{reg}$ by

(2.8) $D_{1}|\Omega=\langle\langle V_{1}, V_{3}\rangle\rangle$ , $D_{2}|_{\Omega}=\langle\langle V_{g}, V_{4}\rangle\rangle$ ,

where $\langle\langle V_{i}, V_{i+2}\rangle\rangle$ being the distribution on $\Omega$ generated by $V_{i}$ and $V_{i+2},$ $i=1,2$ .
It follows that $T(M_{reg})=D_{1}\oplus D_{2}$ .

NOW, we have

LEMMA 2.4. The functions $f_{1},$ $f_{2}$ and $h_{1}$ are non-negative on $M$.
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PROOF. (1) We recall that $-f_{f}\leqq f_{1}$ . Assume that there exists a point $P$

of Mreg such that $0<-f_{2}(p)\leqq f_{1}(p)$ . Then, observing (2.7), we see that $F_{p}$ is
positive definite. Joining $P$ and a point of Msing by a minimizing geodesic
segment, we can find $v\in T_{p}M$ such that $F_{p}(v)=0$, which is a contradiction.
Likewise, we obtain a contradiction under the assumption that $-f_{2}(p)\leqq f_{1}(p)<0$ .
Thus, we conclude that $-f_{2}(p)\leqq 0\leqq f_{1}(p)$ . Non-negativity of $h_{1}$ follows im-
mediately from the fact that $h_{1}=f_{1}f_{g}$ in (2.4). $\square$

Combining Lemma 2.1 and Lemma 2.4, we can immediately obtain the
following

PROPOSITION 2.5. (1) The subset Msing of $M$ is charactenzed as the set of
$p$mnts on $wh2chf_{1}+f_{2}$ vanzshes.

(2) The subset Mreg of $M$ is charactenzed as the set of Points on which
$f_{1}+f_{l}$ is posrtive.

Moreover, we have the following

PROPOSITION 2.6. The subset Mreg of $M$ is an open dense connected subset
of $M$.

PROOF. (denseness) We take $p_{0}\in M_{reg}$. Let $S_{p_{0}}^{*}M$ be the unit sphere of
the cotangent space $T_{p_{0}}^{*}M$. From (2.7), we can easily see that the set $\Theta$ of
unit covectors at $p_{0}$ where $dE\wedge dF\neq 0$ is dense in $S_{p_{0}}^{*}M$. Let $\pi:T^{*}Marrow M$ be
the natural projection, let $\{\zeta_{t}\}_{\iota\in R}$ be the geodesic flow on $(M, g)$ , let $d\alpha$ be the
canonical symplectic structure on $T^{*}M$ and let $X_{F}$ be the symplectic vector
field on $T^{*}M$ defined by

$i(X_{F})d\alpha=-dF$ ,

where $i(X_{p’})$ is the interior derivation with respect to $X_{F}$ . We take $w\in\Theta$ . We
then consider the geodesic $\gamma(t)=\pi(\zeta_{t}(w))$ and the Jacobi field

$B(t)=\pi_{*}(\zeta_{t})_{*}(X_{F})_{w}$

along it. From the condition (KL4) $\{E, F\}=0$ in \S 1, we can see that

(2.9) $g(\dot{\gamma}(t), \nabla_{(\partial/\partial t)}B(t))=0$ .

Assume that $\dot{\gamma}(t_{0}),$ $B(t_{0})$ are linearly dependent for some $t_{0}$ . Replacing $B(t)$ with
a linear combination of $\dot{\gamma}(t)$ and $B(t)$ , we may assume that $B(t_{0})=0$ . Then, we
can see from (2.9) that $\nabla_{t\partial/\partial t)}B(t_{0})$ is a non-zero vector perpendicular to $\dot{\gamma}(t_{0})$

and hence that $B(t)$ is a non-zero normal Jacobi field along $\gamma(t)$ . Hence, we see
that the times $t$ such that $\dot{\gamma}(t),$ $B(t)$ are linearly dependent appear discretely in
$R$ . Thus, $dF\wedge dE\neq 0$ in a dense subset in $T^{*}M$. This implies that $E,$ $F$ are
linear independent in a dense subset in $M$.
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(connectedness) Take any two points $p_{1},$ $p_{2}$ of $M_{reg}$ . We put $F^{b}=F\circ b$ ,

where $b$ is the identification map of $TM$ onto $T^{*}M$ induced by $g$ . We join the
two points $p_{1}$ and $p_{2}$ by the minimizing geodesic segment $\gamma$ ; we put $\gamma(0)=p_{1}$ ,
$\gamma(t_{2})=p_{2}$ . When $F(\dot{\gamma})\neq 0$, the segment $\gamma$ does not pass through $M_{sing}$ . Wben
$F(\dot{\gamma})=0$ , observing (2.7), Lemma 2.4 and Proposition 2.5 (2), we can take a
geodesic segment $\gamma_{1}$ such that (i) $\gamma_{1}(0)=p_{1}$ ; (ii) $\gamma_{1}(t_{2})$ is in a sufficiently small
neighborhood of $p_{2}$ which is included in $M_{reg}$ ; (iii) $F^{b}(\dot{\gamma}_{1})\neq 0$ . Thus, we con-
clude that Mreg is arcwise connected. $\square$

Let $\Omega$ be an open subset of Mreg equipped with a $F$-adapted orthonormal
frame $V_{1},$ $V_{3},$ $V_{2},$ $V_{4}$ . For $k=1,2$ , we put

$W_{k}=\sqrt{f_{1}+f_{2}}\cdot V_{k}$ , $W_{h+2}=f_{\overline{1}}+f_{2}\cdot V_{i+2}$ on $\Omega$ .

Then, we obtain an orthogonal frame $W_{1},$ $W_{3},$ $W_{2},$ $W_{4}$ on $\Omega$ and the following
relations:

(2.10) $\{$

$-F+f_{1}\cdot 2E=(W_{1})^{2}+(W_{3})^{2}$

$F+f_{2}\cdot 2E=(W_{2})^{2}+(W_{4})^{2}$ on $\Omega$ .

Such a frame will be called the $F$-adapted orthogonal frame on $\Omega$ .
We take an arbitrary open subset $\Omega$ of $M_{reg}$ equipPed with a F-adapted

orthogonal frame $W_{1},$ $W_{3},$ $W_{2},$ $W_{4}$ . Henceforth in this section, we will use this
open subset and this frame on it without further notice.

From the condition (KL4) $\{E, F\}=0$ in \S 1, we can compute

(2.11) $W_{1}f_{2}=W_{3}f_{2}=0$ , $W_{2}f_{1}=W_{4}f_{1}=0$ on $\Omega$

and the following

LEMMA 2.7. There exist functions $\sigma_{12},$ $\sigma_{21},$ $\tau_{12}$ and $\tau_{S1}$ on $\Omega$ such that, for
$(i, ])\in\{(1,2), (2,1)\}$ ,

$[W_{i}, W_{j}]=-\sigma_{ji}W_{i+f}+\sigma_{ij}W_{j+2}$ ,

$[W_{i}, W_{J+2}]=-\tau_{ji}W_{i+2}+\sigma_{ij}W_{j}$ ,

$[W_{t+2}, W_{j+2}]=-\tau_{ji}W_{i}+\tau_{ij}W_{j}$ on $\Omega$ .

Let $\omega$ be the K\"ahler form on $(M, g, J)$ defined by $\omega(X, Y)\equiv g(X, JY)$ for
any point $p$ , and for any vectors, $X$ and $Y$ , tangent to $M$ at $p$ . The K\"ahler

condition $d\omega=0$ yields the following

LEMMA 2.8. There exist functions $\xi_{1}^{1},$ $\xi_{1}^{3},$ $\xi_{2}^{2}$ and $\xi_{2}^{4}$ on $\Omega$ such that, for
$(i, ])\in\{(1,2), (2,1)\}$ ,

$[W_{i}, W_{i+2}]= \xi_{i}^{i}\cdot W_{i}+\xi_{i}^{i+2}\cdot W\cdot+2+\frac{W_{j+\S}f_{j}}{f_{1}+f_{2}}\cdot W_{j}-\frac{W_{f}f_{j}}{f_{1}+f_{2}}W_{jz}+$ on $\Omega$ .
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Let $(i, ])\in\{(1,2), (2,1)\}$ . Using Lemma 2.7 and Lemma 2.8, we have two
expressions of $[W_{j}, [W_{i}, W_{t+2}]]$ and two expressions of $[W_{J+2}, [W_{i}, W_{i+2}]]$ .
Comparing the two expressions of $[W_{j}, [W_{i}, W_{i+2}]]$ and comparing those of
$[W_{j+2}, [W_{i}, W_{i+2}]]$ , we obtain the following formulas on $\Omega$ which will be used
in this section and subsequent sections:

(FMLI) $(W_{j}f_{j}) \xi j=W_{j}W_{j+2}f_{j}--\frac{(W_{j}f_{j})(W_{j+2}f_{j})}{f_{1}+f_{2}}$ ,

(FML2) $\sigma_{\ell j}\xi_{\ell}^{i}+\tau_{ij}\xi_{i}^{i+2}+\frac{W_{j}f_{j}}{f_{1}+f_{2}}\cdot\xi i^{+2}$

$=- \frac{(W_{j})^{2}f_{j}}{f_{1}+f_{2}}+\frac{(W_{j}f_{j})^{2}}{(f_{1}+f_{2})^{2}}W_{i+2}\sigma_{ij}+W_{i}\tau_{ij}$ ,

(FML3) $(W_{j+2}f_{j}) \xi j^{+2}=-W_{j+t}W_{j}f_{j}+\frac{(W_{j}f_{j})(W_{j2}+f_{j})}{f_{1}+f_{2}}$ ,

(FML4) $\sigma_{ij}\xi_{i}^{i}+\tau_{\ell j}\xi 1^{+2}-\frac{W_{j+8}f_{j}}{f_{1}+f_{2}}\xi_{j}^{j}$

$=- \frac{(W_{j+2})^{2}f_{j}}{f_{1}+f_{2}}+\frac{(W_{j+2}f_{j})^{2}}{(f_{1}+f_{2})^{2}}W_{i+2}\sigma_{ij}+W_{i}\tau_{ij}$

for $(i, j)\in\{(1,2), (2,1)\}$ and on $\Omega$ .

NOW, we define the vector fields $U_{1},$ $U_{2},$ $U_{3}$ and $U_{4}$ on Mreg by

(2.12) $\{$

$i( \frac{U_{3}}{f_{1}+f_{2}})\omega=df_{1}$ , $U_{1}=-JU_{3}$ ,

$i( \frac{U_{4}}{f_{1}+f_{2}})\omega=df_{2}$ , $U_{2}=-JU_{4}$ ,

where $i(U)$ is the interior derivation with respect to $U$ . We set

(2.13) MREG $\equiv$ { $p\in M_{Ieg}|(df_{1})_{p}\neq 0$ and $(df_{l})_{p}\neq 0$ }.

It follows that $U_{1},$ $U_{3},$ $U_{2}$ and $U_{4}$ form an orthogonal frame on MREG and that
$D_{i}=\langle\langle U_{i}, U_{i+2}\rangle\rangle,$ $i=1,2$ , on MREG. Here we define a real subbundle $D_{+}$ of the
tangent bundle $T(M_{REG})$ over MREG by

(2.14) $D_{+}=\langle\langle U_{1}, U_{2}\rangle\rangle$ .

Using (FMLI), (FML2), (FML3), (FML4) and Lemma 2.7, we obtain the fol-
lowing

LEMMA 2.9. For $(i, j)\in\{(1,2), (2,1)\}$ ,
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$[U_{i}, U_{i+2}]= \frac{U_{i}f_{i}}{f_{1}+f_{2}}(U_{i+2}-U_{J+2})$ ,

$[U_{i}, U_{j}]=[U_{i}, U_{j+2}]=[U_{t2}+’ U_{j+2}]=0$ on $M_{reg}$ .

Let $\nabla$ denote the riemannian connection on $M$ with respect to $g$ . A simple
calculation leads to the following

LEMMA 2.10. For $(i, j)\in\{(1,2), (2,1)\}$ , we have

$\nabla_{U_{i}}U_{i}=\frac{1}{2}(\frac{(U_{i})^{2}f_{i}}{U_{i}f_{i}}+\frac{U_{i}f_{i}}{f_{1}+f_{2}})_{2(f}U_{i}--\frac{U_{i}f_{i}}{1+f_{2})}\cdot U_{j}$

on the domain of $M_{reg}$ in which $(df_{i})\neq 0$ holds, and

$\nabla_{U_{i}}U_{j}=\frac{U_{j}f_{j}}{2(f_{1}+f_{2})}U_{i}-\frac{U_{\ell}f_{t}}{2(f_{1}+f_{2})}U_{j}$ on $M_{reg}$ .

We now define the vector fields $Y_{1}$ and $Y_{2}$ on $M$ by the following equations:

(2.15) $i(Y_{1})\omega=dh_{1}$ , $i(Y_{2})\omega=dh_{2}$ ,

where $i(Y)$ is the interior derivation with respect to $Y$ .
Observing (2.4), (2.12) and (2.15), we have

(2.16) $\{$

$Y_{1}+f_{1}\cdot Y_{2}=U_{3}$

$Y_{1}-f_{2}\cdot Y_{2}=U_{4}$ on $M_{e}.$ .

Then, we see that, for $k,$ $J^{=1}2,$ $Y_{k}f_{j}=0$ on $M_{reg}$ . Thus, from (2.4), it follows
that, for $k,$ $J^{=1},2,$ $Y_{k}h_{j}=0$ on $M$.

Using (2.16) and Lemma 2.9, we can compute the following

LEMMA 2.11. The vector fields $U_{1},$ $U_{2},$ $Y_{1}$ and $Y_{2}$ on $M_{reg}$ are mutually
commutative on $M_{reg}$ with respect to the Lie bracket, that is,

$[U_{1}, U_{2}]=0$ , $[Y_{1}, Y_{2}]=0$ ,

$[U_{1}, Y_{1}]=[U_{1}, Y_{2}]=[U_{2}, Y_{1}]=[U_{2}, Y_{2}]=0$ on $M_{reg}$ .
Using (2.16), (FMLI), (FML2), (FML3) and (FML4), we obtain the following

PROPOSITION 2.12. For $i,$ $k=1,2$, we have

$\{(W_{t})^{2}+(W_{i+2})^{2}, Y_{k}\}=0$ on $\Omega$ .

Using Proposition 2.6, (2.10) and Proposition 2.12, we obtain the following

$THEOREM:2.13$ . The vector fields $Y_{1}$ and $Y_{2}$ on $M$ are infinitesimal auto-
morphisms of $(M, g, J;\mathscr{F})$ . Actually, they satisfy
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(1) $\{E, Y_{1}\}=\{E, Y_{2}\}=0$ ;
(2) $\mathcal{L}_{Y_{1}}J=\mathcal{L}_{Y_{l}}J=0$ ;
(3) $\{F, Y_{1}\}=\{F, Y_{t}\}=0$ ,

where $\mathcal{L}_{Y}$ means the Lie derivation with respect to $Y$ on $M$.

\S 3. The submanifold $H_{0}$ including the semi-definite subset of $M$.
Let $(M, g, J;\mathscr{F})$ be a compact, connected proper K\"ahler-Liouville surface.

We now recall the function $h_{1}$ on $M$ defined by (2.3) in \S 2. We define the
subset $H_{0}$ of $M$ by

(3.1) $H_{0}=\{p\in M|h_{1}(p)=0\}$ .

Since $h_{1}$ is non-negative, it follows that $(Y_{1})_{p}=0$ for all $peH_{0}$ . Since $h_{1}=j_{1}f_{2}$ ,
we have $H_{0}\supset M_{sing}$ .

The main objective of this section is to establish the following

THEOREM 3.1. Let $(M, g, J;\mathscr{F})$ be a compact, connected proper Kahler-
Liouville surface and let $H_{0}$ be the subset of $M$ defined above. Then

(1) $H_{0}$ is a complex submanifold of $(M, g, J)$ which is bi-holomorphic with
the complex projective line $CP^{1}$ , and is totally geodestc wzth respect
to $g$ .

(2) $M_{sing}$ is a compact real submanifold of $H_{0}$ , and hence also of $M$, and is
diff omorphic with the circle $S^{1}$ .

(3) $H_{0}$ is divided into the two oPen disks $H_{01}$ and $H_{02}$ by the circle $M_{sing}$ , and
the divided domains $H_{01}$ and $H_{02}$ are integral submanifolds of $D_{1}$ and $D_{2}$

respectively.

We take an arbitrary point $p_{0}$ of $M_{sing}$ . Let $R\ni tarrow\psi\ell^{2)}(p_{0})\in M$ be the
integral curve of $Y_{2}$ through $p_{0}$ ; it is assumed to be $\psi_{0}^{(2)}(p_{0})=p_{0}$ . Since $Y_{2}h_{j}=0$

for $j=1,2$ , we have

LEMMA 3.2. $\psi t^{2)}(p_{0})\in M_{sing}$ for all $t\in R$ .
We define the vector fields $X_{1},$ $X_{2}$ on $M$ by $X_{1}=-JY_{1},$ $X_{2}=-JY_{2}$ . From

(2.16) in \S 2 we have

(3.2) $\{$

$X_{1}+f_{1}\cdot X_{2}=U_{1}$

$X_{1}-f_{2}\cdot X_{2}=U_{2}$ on $M_{eg}$ .
Using Proposition 2.6 and Lemma 2.11 in \S 2, we obtain

(3.3) $[X_{1}, X_{2}]=[Y_{1}, Y_{2}]=[X_{1}, Y_{1}]$

$=[X_{1}, Y_{2}]=[X_{2}, Y_{1}]=[X_{2}, Y_{2}]=0$ on $M$.



Compact Kahler-Liouville surfaces 375

Let $R\ni tarrow\varphi 1^{2)}(p_{0})eM$ be the integral curve of $X_{2}$ through $p_{0}eM_{sing}$ ; it is
assumed to be $\varphi_{0}^{(2)}(p_{0})=p_{0}$ . From the fact that $[X_{2}, Y_{1}]=0$ in (3.3) we obtain

LEMMA 3.3. $\varphi|^{2)}(p_{0})\in H_{0}$ for all $teR$ .

Then, we have the following

PROPOSITION 3.4. There exist points at which $F$ is posrtive semi-definite and
also points at which $F$ is negative semi-definite.

PROOF. Let $p_{0}$ be an arbitrary point of $M_{sing}$ and let $\tilde{\Omega}$ be an open
neighborhood of $p_{0}$ in $M$ equipped with a local orthonormal frame $V_{1},$ $V_{3},$ $V_{2}$ ,
$V_{4}$ such that $JV_{1}=V_{\}$ and $JV_{2}=V_{4}$ . Then, we have

$X_{2}h_{2}=||X_{2}||^{2}=(V_{1}h_{2})^{2}+(V_{3}h_{2})^{2}+(V_{2}h_{2})^{2}+(V_{4}h_{2})^{2}\geqq 0$ on $\tilde{\Omega}$ .

Hence, the condition (2.5) in Lemma 2.2 in \S 2 implies that the function

$R\ni t-h_{2}(\varphi_{t}^{(2)}(p_{0}))\in R$

is a strictly increasing function. Since Lemma 3.3 means that $h_{1}(gE^{2)}(P_{0}))=0$

for all $t\in R$ , we have

(i) when $t>0,$ $F_{\varphi_{t}^{(2)_{(p_{0})}}}$ is positive semi-definite;
(ii) when $t<0,$ $F_{\varphi_{t0}^{(2)_{(p)}}}$ is negative semi-definite. $\square$

PROPOSITION 3.5. There exist points at whech $F$ is indefinite.
This proposition is obtained immediately from the following

LEMMA 3.6. $h_{1}\not\equiv 0$ on $M$.

PROOF. Assume that $h_{1}\equiv 0$ on $M$. For $i=1,2$ , we set $G_{i}\equiv\{p\in M_{reg}|f_{i}(p)$

$=0\}$ . Then, $G_{1}$ and $G_{2}$ have the following three properties: (i) Both $G_{1}$ and
$G_{2}$ are closed subsets of $M_{reg}$ ; (ii) $G_{1}\cap G_{2}=\emptyset$ ; (iii) $M_{reg}=G_{1}\cup G_{2}$ . Because of
the connectedness of $M_{eg}$ (Proposition 2.6 in \S 2), either $G_{1}=\emptyset$ or $G_{2}=\emptyset$

holds. This contradicts Proposition 3.4. $\square$

PROPOSITION 3.7. The subset $H_{0}$ of $M$ is a compact, connected l-dimensional
complex submanifold of $(M, g, J)$ such that

(1) $H_{0}$ is $tn$ -holomorphic to the complex projective line $CP^{1}$ ;
(2) $H_{0}$ is totally geodesic with respect to $g$ .

PROOF. We take an arbitrary point $p_{0}$ of Msing and a sufficiently small
$\epsilon>0$ . Then, for an open interval ] $a,$

$b$ [ we set

$\Pi(]a, b[)\equiv\{\varphi|^{2)}(\psi_{u}^{(2)}(p_{0}))|a<t<b, -\epsilon<u<\epsilon\}$ .
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By Lemma 3.2 and Lemma 3.3, we have $II(]-\epsilon, \epsilon[)\subset H_{0}$ . From the fact tllat
$[X_{2}, Y_{2}]=0$ in (3.3), we see that $\Pi(]-\epsilon, \epsilon[)$ is a local integral surface of the
distribution $\langle\langle X_{2}, Y_{2}\rangle\rangle$ generated by $X_{2}$ and $Y_{2}$ .

NOW, we set
$\tilde{H}_{0}=\{P\in M|(Y_{1})_{p}=0\}$ .

Then, from (3.1) it follows that $H_{0}\subset\tilde{H}_{0}$ . Let $(\tilde{H}_{0})_{0}$ be the connected component
of $\tilde{H}_{0}$ including the point $p_{0}$ . It follows that $( \tilde{H}_{0})_{0}\supset\prod(]-\epsilon, \epsilon[)\ni p_{0}$ . Since $Y_{1}$

is an infinitesimal isometry of $(M, g)$ , by a standard theory of the transforma-
tion group we can assert that $(\tilde{H}_{0})_{0}$ is a closed totally geodesic submanifold
whose codimension is even, namely, that $(H_{0})_{0}$ coincides with one of the fol-
lowing: (i) The total space $M$ ; (ii) A certain 2-dimensional compact totally
geodesic submanifold; (iii) A certain point of $M$. Because of Lemma 3.6 we
have $(\tilde{H}_{0})_{0}\neq M$. Since $(\tilde{H}_{0})_{0}\supset II(]-\epsilon, \epsilon [)$ , $(\tilde{H}_{0})_{0}$ is not one point. We thus con-
clude that $(\tilde{H}_{0})_{0}$ is a compact, connected totally geodesic 2-dimensional real
submanifold. Moreover, since $Y_{1}$ is an infinitesimal holomorphic transformation,
$(\tilde{H}_{0})_{0}$ is a complex submanifold of $(M, J)$ . Since $dh_{1}\equiv 0$ on $(\tilde{H}_{0})_{0}$ , we have
$h_{1}\equiv 0$ on $(\tilde{H}_{0})_{0}$ . Thus, we obtain

$(\tilde{H}_{0})_{0}\subset H_{0}\subset\tilde{H}_{0}$ .

Here, we will verify that $(H_{0})_{0}=H_{0}$ . Assume that $H_{0}\backslash (\tilde{H}_{0})_{0}\neq\emptyset$ and take
$qeH_{0}\backslash (\tilde{H}_{0})_{0}$ . We also take points $p_{-}$ and $p_{+}$ of $\Pi(]-\epsilon, 0[)$ and $\Pi(]0, \epsilon[)$ ,

respectively. Notice that $p_{-},$
$p_{+}e(\tilde{H}_{0})_{0}$ . Let 7- and $\gamma_{+}$ be the minimizing

geodesics from $q$ to $p_{-}$ and from $q$ to $p_{+}$ respectively; they are assumed to
parameterized as $\gamma-(0)=\gamma_{+}(0)=q$ and $\gamma-(s_{-})=P_{-}$ , $\gamma_{+}(s_{+})=P_{+}$ . Since $(\tilde{H}_{0})_{0}$ is
compact and totally geodesic and since $q\not\in(\tilde{H}_{0})_{0}$ , it follows that $\dot{\gamma}_{-}(s_{-}),\dot{\gamma}_{+}(s_{+})$

are not tangent to $(\tilde{H}_{0})_{0}$ . We put $F^{b}=F\circ b$ , where $b$ is the identification map
of $TM$ onto $T^{*}M$ induced by $g$ . Using the same argument as in the proof of
$Pro$position 3.4, we have

$F^{b}(\dot{\gamma}_{-}(0))=F^{b}(\dot{\gamma}_{-}(s_{-}))<0$ , $F^{\triangleright}(\dot{\gamma}_{+}(0))=F^{b}(\dot{\gamma}_{+}(s_{+}))>0$ ,

which contradicts the property that $F$ is semi-definite at $q\in H_{0}$ .
Thus, we conclude that $H_{0}$ is a compact, connected totally geodesic l-dimen-

sional complex submanifold of $(M, g, J)$ .
It remains to verify (1). Since $Y_{2}h_{1}=0$ , it follows that $Y_{2}$ is tangent to $H_{0}$

at any point of $H_{0}$ . Then, we see that $Y_{2}$ is a non-trivial infinitesimal holo-
morphic transformation of $H_{0}$ and hence that $H_{0}$ is bi-holomorphic to $CP^{1}$ or
the 1-dimensional complex torus. Since $Y_{2}$ vanishes at the points at which the
function $f\iota_{2}|_{II_{0}}$ takes the maximal value or minimal value, we can conclude that
$H_{0}$ is bi-holomorphic to the complex projective line $CP^{1}$ . $\square$
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PROPOSITION 3.8. The subset $M_{sing}$ of $M$ is a real submanifold of $H_{0}$ which
is diffeomorphic with the crrcle $S^{1}$ ; actually, there exists a positive real constant
$c_{a}$ such that, for any $p_{0}\in M_{sing}$ ,

$M_{sing}= \{\psi_{u}^{(2)}(p_{0})|u\in(R/\frac{2\pi}{c_{2}}Z)\}$ .

PROOF. Since $h_{1}=f_{1}f_{2}$ , we have $H_{0}\supset M_{sing}$ . As in the proof of Proposition
3.7, for each $peM_{sing}$ , we take the open neighborhood $\Pi_{p}(]-\epsilon, \epsilon[)$ of $P$ in $H_{0}$

as follows:
$\Pi_{p}(]-\epsilon,$ $\epsilon D\equiv\{\varphi 1^{2)}(\psi_{u}^{(2)}(p))|-\epsilon<t<\epsilon, -\epsilon<u<\epsilon\}$ .

Because $\Pi_{p}(]-\epsilon, \epsilon[)\cap M_{sing}=\{\psi_{u}^{(2)}(p)|-\epsilon<u<\epsilon\}$ for each $p\in M_{sing},$ $M_{sing}$ is a
real 1-dimensional regular submanifold of $H_{0}$ . Since $M_{sing}$ is a closed subset of
$H_{0}$ , it follows that $M_{sing}$ is a compact submanifold of $H_{0}$ .

Take an arbitrary $p_{0}\in M_{sing}$ and fix it. Let $(M_{sing})_{0}$ be the connected
component of Msing including $p_{0}$ . Then, it is a compact, connected l-dimen-
sional real manifold, and hence, is diffeomorphic with the circle $S^{1}$ . Thus,
there exists a positive real constant $c_{2}$ such that $(M_{sing})_{0}$ can be expressed as

$(M_{sing})_{0}= \{\psi_{u}^{(2)}(p_{0})|ue(R/\frac{2\pi}{c_{2}}Z)\}$ .

We here set $\Xi_{0}=\{\varphi_{t}^{(2)}(\psi_{u}^{(2)}(p_{0}))|t\in R, u\in(R/(2\pi/c_{2})Z)\}$ , which forms an open
submanifold of $H_{0}$ diffeomorphic with the cylinder. Using Lemma 2.10 in \S 2,
we can easily see that, for each $u\in(R/(2\pi/c_{2})Z)$ , the curve $R\ni tarrow\varphi_{t}^{(2)}(\psi_{u}^{(2)}(p_{0}))$

$eH_{0}$ coincides with a geodesic segment whose initial vector is $(X_{2}/||X_{2}||)_{\psi_{u}^{(2)_{(p_{0})}}}$

set-theoretically. Since $H_{0}$ is compact, we can find two points $q_{1}$ and $q_{2}$ of $H_{0}$

by taking the limit as $\lim_{tarrow-\infty}\varphi_{t}^{(2)}(p_{0})=q_{2},$ $\lim_{tarrow+\infty}\varphi_{t}^{(2)}(p_{0})=q_{1}$ . Since $Y_{2}$ is a
non-trivial infinitesimal isometry of the 2-dimensional sphere $H_{0}$ , we can see
that $\{q\in H_{0}|(Y_{2})_{q}=0\}=\{q_{1}, q_{2}\}$ . Hence, it is easy to see that $H_{0}=\{q_{2}\}\cup\Xi_{0}\cup\{q_{1}\}$

and therefore
$M_{sing}=(M_{sing})_{0}$ . $\square$

From the proof of Proposition 3.8, together with the proof of Proposition
3.4, we obtain the following

PROPOSITION 3.9. The circle $M_{sing}$ divides the sphere $H_{0}$ into two domains
$H_{01}$ and $H_{02}$ such that

(1) $H_{0i},$ $i=1,2$ , is an integral submanifold of $D_{t}$ ;
(2) $F$ is posrtive semi-definite on $H_{01}$ , and negative semi-definite on $H_{02}$ ;
(3) $H_{0i},$ $i=1,2$ , is diffeomorphic to the 2-dimensional real open disk with

ongin $q_{i}$ ;
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(4) the function $f_{i}|_{H_{0}},$ $i=1,2$ , takes the maximal value, say $m_{t}$ , at $q_{i}$ , and
$f_{i}=0,$ $df_{i}=0$ on $H_{0j}$ , where $J$ is the integer such that $(i, ])e\{(1,2), (2,1)\}$ .

Therefore, combining Proposition 3.7, Proposition 3.8 and Proposition 3.9,
we obtain Theorem 3.1.

Observing the proof of Proposition 3.8, we moreover obtain the following

PROPOSITION 3.10. The one-parameter group $t\psi_{u}^{(2)}\}_{u\in R}$ of automorphisms of
$(M, g, J;\mathscr{F})$ generated by $Y_{2}$ defines an $S^{1}$ -action $\psi_{2}$ on $H_{0}$ with the least period
$2\pi/c_{2}$ given by

$\psi_{2}$ : $H_{0} \cross(R/\frac{2\pi}{c_{2}}Z)\ni(p, u)rightarrow\psi_{u}^{(2)}(p)\in H_{0}$ ,

where $c_{2}$ is the Posrtive real constant stated in Proposition3.8; this action can be
recogmzed as the rotation of the sphere $H_{0}$ which leaves the two $p\dot{\alpha}ntsq_{1}$ and $q_{2}$

fixed as its pivotal $p_{(}nnts$ .

\S 4. $S^{1}$-actions on $(M, g, J;\mathscr{F})$ .
For a submanifold $L$ of $M$ we denote by $N_{p}L$ the normal vector space to

$L$ at $p\in L$ in $(M, g)$ ; we will use this symbol in this section and subsequent
sections. From Theorem 2.13 in \S 2, we recall that the vector fields $Y_{1}$ and $Y_{2}$

defined by (2.15) in \S 2 are infinitesimal automorPhisms of $(M, g, J;\mathscr{F})$ .
We begin with the following

LEMMA 4.1. Let $Z$ be an infiinitesrmal automorPhism of $(M, g, J;\mathscr{F})$ described
as $Z=\overline{m}_{1}\cdot Y_{1}+\overline{m}_{2}\cdot Y_{2}$ , where $\overline{m}_{1},\overline{m}_{2}\in R$ , and let $\{\eta_{i}\}_{t\in R}$ be the one-parameter
group of automorphisms of $(M, g, J;\mathscr{F})$ generated by Z. If a $p\alpha ntP$ of $M_{reg}$

satisfies $Z_{p}=0$ , then, for $i=1,2$ , there ensts a real number $\hat{c}_{i}(p)$ such that the
$map\mu ng(\eta_{t})_{*p}|_{(D_{i^{)}p}},$ $t\in R$ , is expressed as

$(\eta_{t})_{*p}v=\cos(\hat{c}_{i}(p)t)\cdot v+\sin(\hat{c}_{i}(p)t)\cdot Jv$ for any $v\in(D_{i})_{p}$ ,

which is a $C$-linear isometry of the complex vector space $(D_{i})_{p}$ onto itself.
PROOF. We take a neighborhood $\Omega$ of $p$ in Mreg which is equipped with

an F-adapted orthogonal frame $W_{1},$ $W_{3},$ $W_{2},$ $W_{4}$ . From Proposition 2.12 in \S 2, it
follows that, for $i=1,2,$ $\{Z, (W_{i})^{2}+(W_{i+2})^{2}\}=0$ on $\Omega$ . This is equivalent to the
following statement: there exists a function $\hat{c}_{i}$ on $\Omega$ such that $[Z, W_{i}]=$

$-\hat{c}_{i}W_{i+2},$ $[Z, W_{i+\S}]=\hat{c}_{i}W_{i}$ on $\Omega$ . This implies that, for any $ve(D_{i})_{p}$ ,

$\frac{\partial}{\partial t}(\eta_{t})_{*p}v=\hat{c}_{t}(p)\cdot J((\eta_{t})_{*p}v)$ , $t\in R$ .

Integrating this equation, we obtain the desired equation. $\square$
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LEMMA 4.2. Let $(i, ])e\{(1,2), (2,1)\}$ . Let $L$ be a connected integral sub-

manifold of the distribution $D_{i}$ in $M_{e}$. such that $(df_{j})_{p}=0$ for all $peL$ , and let
$\tilde{m}_{f}$ denote the constant value which $f_{j}$ takes on the whole of L. Let $Z$ be an
infiinitesrmal automorphism of $(M, g, J;\mathscr{F})$ defined by $Z=Y_{1}+(-1)^{j+1}\tilde{m}_{j}Y_{2}$ and
let $\{\eta_{t}\}_{c\in R}$ denote the one-parameter group of automorphisms of $(M, g, J;\mathscr{F})$

generated by $Z$ .
Then, there exists a real constant $c$ such that

(1) for each $p\in L$ , the mapping $(\eta_{t})_{*p}|_{N_{p}L},$ $t\in R$ , is a $C$-linear isometry of
$N_{p}L$ onto itself given by

$(\eta_{t})_{*p}v=\cos(ct)\cdot v+\sin(ct)\cdot Jv$ for any $v\in N_{p}L$ ;

(2) we have

$((W_{j})^{2}f_{j})(p)=((W_{j+2})^{2}f_{j})(p)=c$ for all $p\in L$ ,

where $W_{1},$ $W_{3},$ $W_{2},$ $W_{4}$ is an $F$-adapted orthogonal frame on a certain
neighborhood of $P$ in $M_{reg}$ .

PROOF. Let $p$ be an arbitrary point of $L$ . From the condition that $(df_{j})_{p}$

$=0$ and $f_{j}(p)=\tilde{m}_{j}$ we obtain

(4.1) $Z_{p}=0$ .
Then, applying Lemma 4.1, we can see that $(\eta_{t})_{*p}|_{N_{P}L},$ $t\in R$ , is a C-linear
isometry of $N_{p}L$ onto itself and that there exists a real number $c(p)$ such that

(4.2) $\frac{\partial}{\partial t}(\eta_{t})_{*p}v=c(p)\cdot J((\eta_{t})_{*p}v)$ for all $teR$ and $veN_{p}L$ .

Note that $T_{p}L=(D_{i})_{p}$ and $N_{p}L=(D_{j})_{p}$ . Using the formulas (FMLI) and (FML3)

in \S 2, we obtain

(4.3) $\frac{\partial}{\partial t}(\eta_{t})_{*p}v|_{t=0}=\nabla_{v}Z=((W_{j})^{2}f_{j})(p)\cdot Jv$ for any $v\in N_{p}L$ .

By the formulas (FML2), (FML4) in \S 2, we have $((W_{j})^{2}f_{j})(p)=((W_{j+2})^{2}f_{j})(p)$ .
Combining (4.2), (4.3) and this equality, we obtain

(4.4) $c(P)=((W_{j})^{2}f_{j})(p)=((W_{j+2})^{2}f_{j})(p)$ .
Using Lemma 2.7 and the formulas (FMLI), (FML3) in \S 2, we can easily see
that $(W_{i})_{p}((W_{j})^{2}f_{j})=(W_{i+2})_{p}((W_{j})^{2}f_{j})=0$ . This implies that $c(p)$ is independent of
the choice of the point $P$ of $L$ ; we thus obtain the desired real constant $c$ .
Therefore, (4.2) and (4.4) means the properties (1) and (2), respectively. $\square$

NOW, as an application of Lemma 4.2, we have the following
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PROPOSITION 4.3. There exists a non-zero real constant $c_{1}$ such that
(1) the one-parameter group $t\psi|^{1)}\}_{t\in R}$ of automorphisms of $(M, g, J;\mathscr{F})$

generated by $Y_{1}$ possesses the property that, for any $teR$ and for any
$p\in H_{0},$ $(\psi|^{1)})_{*p}|_{N_{p^{(H_{0})}}}$ : $N_{p}(H_{0})arrow N_{p}(H_{0})$ is a $C$-linear isometry of $N_{p}(H_{0})$

which satisfies
$\frac{\partial}{\partial t}(\psi 1^{1)})_{*p}v=c_{1}\cdot J((\psi 1^{1)})_{*p}v)$

for any $teR$ and for any $v\in N_{p}(H_{0})$ and $p\in H_{0}$ ;

(2) for $(i, j)\in\{(1,2), (2,1)\}$ , we have

$((W_{j})^{2}f_{j})(p)=((W_{j+2})^{2}f_{j})(p)=c_{1}$ for any $p\in H_{0i}$ ,

where $W_{1},$ $W_{3},$ $W_{2},$ $W_{4}$ is an F-adapted orthogonal frame defined on a
neighborhood of $P$ in $M$.

PROOF. Since $(Y_{1})_{p}=0$ for all $p\in H_{0}$ , we can see that, for each $t\in R$ ,
$\psi_{t^{1)}}^{(}|_{H_{0}}$ is the identity transformation of $H_{0}$ . Let $p$ be an arbitrary point of
$H_{0}$ . We note that $T_{p}M=T_{p}(H_{0})\oplus N_{p}(H_{0})$ and that $N_{p}(H_{0})$ is a l-dimensional
complex subspace of $T_{p}M$ which is perpendicular to $T_{p}(H_{0})$ . Since $\psi_{t^{1)}}^{(},$ $t\in R$ ,
is an automorphism of $(M, g, J;\mathscr{F})$ and hence a holomorphic isometry of
$(M, g, J)$ onto itself, we can obtain a $C$-linear isometry $(\psi_{t}^{(1)})_{*p}|_{N_{p^{(H_{0})}}}$ : $N_{p}(H_{0})$

$arrow N_{p}(H_{0}),$ $t\in R$ . Hence, there exists a real number $c_{1}\sim(p)$ such that

(4.5) $\frac{\partial}{\partial t}(\psi 1^{1)})_{*p}v=\delta_{1}(p)\cdot J((\psi\ell^{1)})_{*p}v)$

for each $teR$ and $veN_{p}(H_{0})$ .

Notice that $c_{1}\sim(p)$ is independent of the choice of $t$ and $v$ .
Let $(i, j)\in\{(1,2), (2,1)\}$ . From Proposition 3.9 in \S 3 we recall that $T_{p}(H_{0i})$

$=(D_{i})_{p},$ $f_{j}(p)=0$ and $(df_{j})_{p}=0$ for each $p\in H_{0i}$ . Then, aPPlying Proposition 4.2
to the case where $L=H_{0i}$ and $\tilde{m}_{j}=0$ , we can find a real constant $c_{1.i}$ which
satisfies the properties (4.6) and (4.7) as follows:

(4.6) $\frac{\partial}{\partial t}(\psi_{t}^{(1)})_{*p}v=c_{1.i}\cdot J((\psi_{t}^{(1)})_{*p}v)$

for all $t\in R,$ $v\in N_{p}(H_{0t})$ and for all $p\in H_{0i}$ ;

(4.7) $((W_{f})^{2}f_{j})(p)=((W_{J+2})^{2}f_{j})(p)=c_{1,i}$ for all $p\in H_{0i}$ ,

where $W_{1},$ $W_{3},$ $W_{2},$ $W_{4}$ is an $F$-adapted orthogonal frame defined on a neighbor-
hood of $p$ in $M$.

Observing the fact that $H_{0}=H_{02}\cup M_{sing}\cup H_{01}$ and Msing $=H_{02}\cap^{H_{01}}$ , we obtain
$C_{1}(p)=c_{1,1}=c_{1,2}$ for all $peH_{0}$ . Thus, putting $c_{1}=c_{1,1}=c_{1,t}$, from (4.5) and (4.7)

we obtain the properties (4.8) and (4.9) as follows:
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(4.8) $\frac{\partial}{\partial t}(\psi_{t}^{(1)})_{*p}v=c_{1}\cdot J((\psi_{t}^{(1)})_{*p}v)$

for all $t\in R,$ $v\in N_{p}(H_{0i})$ and for all $P\in H_{0t}$ ;

(4.9) $((W_{j})^{2}f_{j})(p)=((W_{j+}\theta^{2}f_{j})(p)=c_{1}$ for all $p\in H_{0i}$ .

NOW we verify that $c_{1}\neq 0$ . Assume tbat $c_{1}=0$ . We take an arbitrary point
$q$ of $M\backslash H_{0}$ and the minimizing geodesic segment $\gamma(s),$ $0\leqq s\leqq s_{1}$ , from the point
$q$ to the compact submanifold $H_{0}$ ; it may be assumed to be $\gamma(s_{1})=q$ and $\gamma(0)=$

$p_{1}\in H_{0}$ . It follows that $\dot{\gamma}(0)\in N_{p_{1}}(H_{0})$ . Putting $v_{1}=\dot{\gamma}(0)$ , we have $\gamma(s)=\exp sv_{1}$ ,
$0\leqq s\leqq s_{1}$ . Since $\psi_{t}^{(1)},$ $t\in R$ , is an isometry, we have

(4.10) $\psi_{t}^{(1)}(\gamma(s))=\psi_{t}^{(1)}(\exp sv_{1})=\exp(s\cdot(\psi_{t}^{(1)})_{*p}v_{1})$

for $s\in[0, s_{1}]$ and $t\in R$ .
Using (4.8) and the assumption that $c_{1}=0$ , we obtain

$(Y_{1})_{q}= \frac{\partial}{\partial t}\psi\ell^{1)}(\gamma(s_{1}))|_{t=0}=s_{1}\cdot(\exp)_{*s_{1}v_{1}}(\frac{\partial}{\partial t}(\psi|^{1)})_{*p_{1}}v_{1})=0$ .

Since $q$ is an arbitrary point of $M\backslash H_{0}$ , we obtain $Y_{1}\equiv 0$ on $M$, which contradicts
Lemma 3.6 in \S 3. Thus, we obtain the desired non-zero real constant $c_{1}$ .
Therefore, (4.8) and (4.9) prove Proposition 4.3. $\square$

Reconsidering the argument at (4.10), we can see that the mapping $R\ni t\succarrow$

$\psi_{t}^{(1)}(q)eM$ is periodic with the period $2\pi/c_{1}$ and that $\psi_{t}^{(1)}$ defines an $S^{1}$-action $\psi_{1}$

(as automorphisms of $(M,$ $g,$ $J;\mathscr{F})$) in the following form:

(4.11) $\psi_{1}$ : $M \cross(R/\frac{2\pi}{c_{1}}Z)\ni(p, t)rightarrow\psi_{t}^{(1)}(p)\in M$ ,

which leaves the submanifold $H_{0}$ fixed pointwise.
On the other hand, recalling Proposition 3.10 in \S 3, we moreover have the

following

PROPOSITION 4.4. Let $i\in\{1,2\}$ . For any $v\in T_{q_{i}}(H_{0})=(D_{i})_{q_{i}}$ we have

$\frac{\partial}{\partial u}(\psi_{u}^{(2)})_{*q_{i}}v=(-1)^{i}c_{2}\cdot J((\psi_{u}^{(2)})_{*q_{i}}v)$ , $ue(R/ \frac{2\pi}{c_{2}}Z)$ ,

where $c_{2}$ is the positive real constant stated in Propost tion 3.8 and ProPoxtion 3.10
in \S 3.

PROOF. Let $(i, j)\in\{(1,2), (2,1)\}$ . We recall that $T_{q_{i}}(H_{0})=(D_{i})_{q_{\{}}$ , $N_{q_{i}}(H_{0})$

$=(D_{j})_{q_{i}}$ and $(Y_{2})_{q_{i}}=0$ . Then, applying Lemma 4.1 to the case where $Z=Y_{2}$ , we
can see that $(\psi_{u}^{(2)})_{*q_{i}}|_{\tau_{q_{i}}tH_{0})}$ is a $C$-linear isometry of $T_{q_{i}}(H_{0})$ onto itself and
that there exists a real number $c_{2}$ . such that
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$\frac{\partial}{\partial u}(\psi_{u}^{(2)})_{*q_{i}}v=c_{2.2}\cdot J((\psi_{u}^{(2)})_{*q_{i}}v)$ , $u \in(R/\frac{2\pi}{c_{2}}Z)$ ,

for all $veT_{q_{i}}(H_{0})$ . Since $q_{2}$ and $q_{1}$ are the pivotal points of the rotation of the
sphere $H_{0}$ which are antipodal to each other, it follows that $c_{z,z}=-c,,$ $1=c_{2}$ .
Thus, we obtain the desired equation. $\square$

\S 5. Submanifolds $H_{1}$ and $H_{2}$ .
We set $H\equiv$ { $p\in M|(dh_{1})_{p},$ $(dh_{2})_{p}$ are linearly dependent} and $Q\equiv\{q\in M_{reg}|$

$(df_{1})_{q}=(df_{2})_{q}=0\}$ . We recall from Corollary 3.9 (4) in \S 3 that, for $i=1,2,$ $f_{i}|_{H_{0}}$

takes the maximal value $m_{i}$ at $q_{i}$ .
The first objective of this section is to prove the following

THEOREM 5.1. There exist a $p\alpha ntq_{0}$ of $M$ and complex submanifolds $H_{1}$

and $H_{2}$ of $M$ which have the following properties:

(1) $H=H_{0}\cup H_{1}\cup H_{2}$ ;
(2) $Q=\{q_{0}, q_{1}, q_{2}\}$ ;
(3) $H_{1}\cap H_{2}=\{q_{0}\},$ $H_{1}\cap H_{0}=\{q_{2}\}$ and $H_{2}\cap H_{0}=\{q_{1}\}$ ;
(4) $H_{i},$ $i=1,2$ , is a totally geodestc complex submanifold of $(M, g, J)$ which

is bi-holomorphic to the complex $pro_{J}$ ective line $CP^{1}$ ;
(5) $H_{i},$ $i=1,2$ , is a (maximal) integral submanifold of $D_{i}$ ;
(6) $H_{i},$ $i=1,2$ , is the set of the points on which $f_{j}$ takes the maximal value

$m_{j}$ , where $j$ is the integer such that $(i, j)\in\{(1,2), (2,1)\}$ .

PROOF. We divide the proof into several steps.

(Step 1) In this step we will construct $H_{1}$ and $H_{2}$ , and study their proper-
ties. We begin with the following

LEMMA 5.2. Let $(i, j)\in\{(1,2), (2,1)\}$ . There exist both a compact, connected
complex submanifold $H_{\ell}$ of $(M, g, J)$ including $q_{j}$ and a point $q_{0\ell}$ of $H_{i}$ such that

(i) $H_{i}$ is $bi$-holomorphic to the comPlex Projective line $CP^{1}$ , and is totally
geodesic with respect to $g$ ;

(ii) $H_{i}$ is an integral submanifold of $D_{i}$ in $M$ ;
(iii) $f_{j}(p)=m_{j}>0,$ $(df_{j})_{p}=0$ for all $peH_{i}$ ;
(iv) $H_{i}\cap H_{0}=\{q_{j}\}$ ;
(v) $f_{i}|_{H_{i}}$ takes the maximal value, say $m_{ii}>0$ , at the Point $q_{0i}$ of $H_{i}$ , and

we have $(df_{t})_{q_{0i}}=0$.

PROOF OF LEMMA 5.2. We will first construct the desired submanifold $H_{\ell}$ .
We define a function $\tilde{h}_{j}$ on $M$ by $\tilde{h}_{j}\equiv(f_{i}+m_{j})(f_{j}-m_{j})$ , and a vector field $Z_{j}$

on $M$ by $i(Z_{j})\omega=d\tilde{h}_{j}$ . It follows that
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(5.1) $Z_{j}=Y_{1}+(-1)^{j+1}m_{j}\cdot Y_{2}$ .
Since $Y_{1}$ and $Y_{2}$ are infinitesimal automorphisms of $(M, g, J;\mathscr{F})$ , so is $Z_{j}$ .
Here we set $H_{i}\equiv\{peM|(Z_{j})_{p}=0\}$ . It is easy to see that $\tilde{H}_{i}\cap H_{0}=\{q_{1}, q_{2}\}$ and
hence that $\tilde{H}_{i}\subset M_{reg}$ . Let $H_{i}$ denote the connected component of $\tilde{H}_{i}$ including
the point $qj$ . Since $Z_{j}$ is an infinitesimal holomorphic transformation of $(M, J)$

and an infinitesimal isometry of $(M, g),$ $H_{i}$ is a compact, connected totally
geodesic complex submanifold of $(M, g, J)$ whose codimension is even. We
note that $H_{i}\subset M_{reg}$ . We have

$T_{q_{j}}(H_{i})=\{X\in T_{q_{j}}M|[Z_{j}, X]_{q_{j}}=0\}$ ,

where $X$ apPearing in the equality $[Z_{j}, X]_{q_{j}}=0$ is regarded as a vector field
which is extended on a certain open neighborhood of $q_{j}$ in $M$. Since $[Z_{j}, X]_{q_{j}}$

$=0$ for $X\in(D_{i})_{q_{\oint}}$, we have $(D_{i})_{q_{j}}\subset T_{q_{f}}(H_{i})$ . Thus, we can conclude that $H_{i}$ is
a compact, connected totally geodesic 1-dimensional complex submanifold of
$(M, g, J)$ and that $(D_{i})_{q_{j}}=T_{q_{j}}(H_{i})$ .

We will now verify the property (i). Since $H_{i}$ is totally geodesic, we have

$\exp_{q_{j}}(D_{\ell})_{q_{j}}=H_{i}$ .
Let $\hat{p}$ be an arbitrary point of $H_{i}\backslash \{q_{j}\}$ . We can take a geodesic $\gamma_{q_{f^{\hat{p}}}}$ from $q_{j}$

to $\hat{p}$ such that $\gamma_{q_{j^{\hat{p}}}}(0)=q_{j}$ and $\dot{\gamma}_{q_{f^{\hat{p}}}}(0)\in(D_{i})_{q_{j}}$ ; we set $v=\dot{\gamma}_{q_{j^{\hat{p}}}}(0)$ and $\gamma_{q_{j^{\hat{p}}}}(\hat{s})=\hat{p}$ .
We denote by $\{\psi_{1}^{(1)}\}_{\iota\in R}$ the one-parameter group of automorphisms of $(M, g, J;\mathscr{F})$

generated by $Y_{1}$ . From Proposition 4.3 (1) in \S 4 and the fact that $\psi_{t}^{(1)},$ $t\in R$,
is an isometry of $(M, g)$ , we have

$(Y_{1})_{\hat{p}}=(\exp_{q_{1}})_{*|v}\wedge(\hat{s}c_{1}\cdot Jv)\in T_{\hat{p}}(H_{t})$ .
Since $c_{1}\neq 0$ and $s\neq 0$, if $\hat{p}$ is sufficiently close to $qj$, then $(Y_{1})_{p}\neq 0$ . Thus, $Y_{1}$ can
be regarded as a non-trivial infinitesimal holomorphic transformation of $H_{i}$ .
Since $(Y_{1})_{q_{j}}=0$, we can conclude that $H_{i}$ is bi-holomorphic to the complex
projective line $CP^{1}$ , thus proving (i).

Here we can find the point $q_{oi}$ of $H_{i}$ . Since $Y_{1}$ is a non-trivial infinitesimal
isometry of the 2-dimensional sphere $H_{i}$ , the set of points in $H_{i}$ on which $Y_{1}$

vanishes consists of two points: one is the point $q_{j}$ ; the other we denote by $q_{oi}$ .
We will verify the properties (ii), (iii), (iv) and (v). Since $(Z_{j})_{p}=0$ for all

$p\in H_{i}$ , we have $(df_{j})_{p}=0$ for all $p\in H_{i}$ . This, together with tbe fact that
$f_{j}(q_{j})=m_{j}(>0)$ , implies $f_{j}(p)=m_{j}>0$ for all $peH_{i}$ , thus proving (iii). From (iii),

we can see that, for each $p\in H_{i}$ ,

$(Y_{1})_{p}= \frac{m_{j}}{f_{i}(p)+m_{f}}\cdot(U_{i+l})_{p}e(D_{i})_{p}$ .

Since $Y_{1}$ is tangent to $H_{i}$ and $(Y_{1})_{p}\neq 0$ for all $p\in H_{i}\backslash \{q_{j}, q_{0i}\}$ , we can see that
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$T_{p}(H_{i})=(D_{i})_{p}$ for all $p\in H_{i}$ , which means (ii). From (iii) and the fact that
$\tilde{H}_{i}\cap H_{0}=\{q_{1}, q_{2}\}$ , we obtain (iv). Let $\gamma_{0}$ be a geodesic in $H_{i}$ joining $q_{j}$ and $q_{oi}$ ;
we set $\gamma_{0}(0)=q_{j}$ and $\gamma_{0}(l_{i})=q_{oi}$ . The family $\{\gamma_{t}(s)\equiv\psi_{t}^{(1)}(\gamma_{0}(s))\}_{t\in G}$ , where $G=$

$(R/(2\pi/c_{1})Z)$ , of the geodesic joining $q_{j}$ and $q_{oi}$ forms a polar coordinate in $H_{i}$

with poles $q_{j}$ and $q_{oi}$ such that each geodesic $\gamma_{t}$ is a meridian curve. Since
7 $t(S)$ is perpendicular to $(Y_{2})_{\gamma_{t}t\epsilon)}$ and since $f_{i}(\gamma_{t}(0))=f_{i}(q_{j})=0$ , it follows that
7 $t(s)=(U_{i+2}/||U_{i+2}||)_{\gamma_{t}(S)}$ and 7 $t(s)f_{i}>0$ for all $s\in$ ] $0,$ $l_{i}$ [ and $t\in(R/(2\pi/c_{1})Z)$ .
Hence, the function $f_{i}|_{H_{i}}$ takes the maximal value $m_{ii}$ at the point $q_{ot}$ . Thus,
we obtain (v). This completes the proof of Lemma 5.2.

(Step 2) In this step we will verify the following

ASSERTION. We have

(5.2) $q_{01}=q_{02}$ , denoted as $q_{0}$ , and $H_{1}\cap H_{2}=\{q_{0}\}$ .

This, together with Lemma 5.2 (iv), means the property (3) of Theorem 5.1.
TO establish Assertion (5.2) we need the following

LEMMA 5.3. Let $(i, ])\in\{(1,2), (2,1)\}$ . For each $peH_{\ell}$ , we have

$((W_{j})^{2}f_{j})(p)=((W_{j+2})^{2}f_{j})(p)=-m_{j}c_{2}(<0)$ ,

where $W_{1},$ $W_{3},$ $W_{2},$ $W_{4}$ is an $F$-adapted orthogonal frame on a certain neighbor-
hood of $p$ in $M$.

PROOF OF LEMMA 5.3. AS in the proof of Lemma 4.2 in \S 4, we can see
that $((W_{j})^{2}f_{j})(p)=((W_{j+2})^{2}f_{j})(p)$ for all $p\in H_{i}$ and that

$((W_{j})^{2}f_{j})(q_{j})\cdot Jv=\nabla_{v}Z_{j}=(-1)^{j+1}m_{j}\cdot\nabla_{v}Y_{2}=-m_{j}c_{g}\cdot Jv$

for any $v\in(D_{j})_{q_{j}}=T_{q_{j}}(H_{0})=N_{q_{j}}(H_{i})$ .
Notice that $m_{j}>0$ and $c_{2}>0$ (Proposition 3.8 in \S 3). Since $H_{i}$ is an integral
submanifold of $D_{i}$ , we obtain

$((W_{j})^{2}f_{f})|_{H\ell}=$ a constant function on $H_{i}=-m_{j}c_{2}(<0)$ ,

which proves Lemma 5.3.
We will now proceed to verify Assertion (5.2). We recall from Lemma 5.2

(v) that $f_{1}|_{H_{1}}$ takes the maximal value $m_{11}$ at qoi. We define a function $\tilde{h}_{11}$ on
$M$ by $\tilde{h}_{11}=(f_{2}+m_{11})(f_{1}-m_{11})$ and a vector field $Z_{11}$ on $M$ by $i(Z_{11})\omega=d\tilde{h}_{11}$ . It
follows that $Z_{11}$ is an infinitesimal automorphism of $(M, g, J;\mathscr{F})$ . By the same
argument as in the proof of Lemma 5.2, we see that the connected component
of the set $\{p\in M|(Z_{11})_{p}=0\}$ including the point $q_{01}$ forms a compact totally
geodesic 1-dimensional complex submanifold of $(M, g, J)$ , which is denoted by
$H_{12}$ , and that $H_{12}$ satisfies the following: (i) $\exp_{q_{01}}(D_{2})_{q_{01}}=H_{12}$ ; (ii) $(df_{1})_{p}=0$,
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$f_{1}(p)=m_{11}(>0)$ for all $p\in H_{12}$ ; (iii) $H_{1}\cap H_{12}=\{q_{01}\}$ .
Let $\{\eta_{t}^{(2)}\}_{t\in R}$ denote the one-parameter group of automorphisms of ($M,$ $g,$ $J$ ;

$\mathscr{F})$ generated by $Z_{2}=Y_{1}-m_{2}Y_{2}$ . Applying Lemma 4.2 in \S 4 to the case where
$L=H_{1}$ and $Z=Z_{2}$ , from Lemma 5.3 we obtain the following results: the mapping
$(\eta_{t}^{(2)})_{*q_{01}}|_{T_{q_{01}}(H_{12})}$ : $T_{q_{01}}(H_{12})arrow T_{q_{01}}(H_{12})$ is a $C$-linear isometry of $T_{q_{01}}(H_{12})$ , and,
for each $v\in T_{q_{01}}(H_{12})$ , we have

$\frac{\partial}{\partial t}(\eta_{t}^{(2)})_{*q_{01}}v=-m_{2}c_{2}\cdot J((\eta_{t}^{(2)})_{*q_{01}}v)$ , $teR$ .

Hence, by the same argument as in the proof of Lemma 5.2, we can see that
$H_{12}$ is an integral submanifold of $D_{2}$ in $M$. It is easy to see that $H_{12}\cap H_{0}\neq\emptyset$ .
In fact, assuming that $H_{12}\cap H_{0}=\emptyset$ , we will obtain a contradiction as follows:
take an arbitrary point $p\in H_{01}\backslash \{q_{1}\}(cH_{0})$ and the minimizing geodesic 7 from
$P$ to the submanifold $H_{12}$ . We set $\gamma(0)=p$ and $\gamma(s_{1})=P_{1}\in H_{12},$ $s_{1}>0$ . We put
$F^{b}\equiv F\circ\beta$ , where $b$ is the identification map of $TM$ onto $T^{*}M$ induced by $g$ .
Since $\dot{\gamma}(0)\not\in T_{p}(H_{0})$ and $\dot{\gamma}(s_{1})\in N_{p_{1}}(H_{1l})=(D_{1})_{p_{1}}$ , we have $0<F^{b}(\dot{\gamma}(0))=F^{b}(\dot{\gamma}(s_{1}))\leqq 0$,
which is a contradiction. Thus, we have $H_{12}\cap H_{0}=\{q_{1}\}$ . Since $H_{12}$ is totally
geodesic, we obtain

$H_{12}=\exp_{q_{1}}(D_{2})_{q_{1}}=H_{2}$ .

Since the set of points of $H_{2}$ on which $Y_{1}$ vanishes consists of two points $q_{1}$

and $q_{02}$ , we have $q_{01}=q_{02}$ . Thus, putting $q_{0}\equiv q_{01}=q_{02}$ , we have $H_{1}\cap H_{2}=\{q_{0}\}$ .
Besides, we have $m_{1}=m_{11}$ .

(Step3) In this step we will complete the verification of the properties (1),

(2) and (6) of Theorem 5.1. From the arguments in (Step 1) and (Step 2), we
have already obtained the following facts:

(1) $H\supset H_{0}\cup H_{1}\cup H_{2}$ ;
(2) $Q\supset\{q_{0}, q_{1}, q_{2}\}$ ;
(6’) $H_{p}c\{peM|f_{j}(p)=m_{j}\}$ , where $(i, ])e\{(1,2), (2,1)\}$ .

TO establish (1), (2) and (6) it is sufficient to verify the following

LEMMA 5.4. For every Pmni $P$ of $M\backslash (H_{0}\cup H_{1}\cup H_{2})$ we have

$(df_{1})_{p}\neq 0$ and $(df_{2})_{p}\neq 0$ .

PROOF OF LEMMA 5.4. Assuming that there exists a point $p\in M\backslash (H_{0}\cup H_{1}$

$\cup H_{2})$ such that $(df_{1})_{p}=0$ or $(df_{2})_{p}=0$, we will derive a contradiction.
We can see that the assumption of this reductive absurdity implies the

following:
There exists a point $q\in M\backslash (H_{0}\cup H_{1}\cup H_{2})$ such that

(5.3) $(df_{1})_{q}=0$ and $(df_{2})_{q}=0$ .
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In fact, let $j\in\{1,2\}$ and assume that $(df_{j})_{p}=0$ . We put $\hat{m}_{j}=f_{j}(p)(>0)$ and
set $\hat{Z}_{j}=Y_{1}+(-1)^{j+1}\hat{m}_{j}$ . Y2, which is an infinitesimal automorphism of ($M,$ $g,$ $J$ ;
$\mathscr{F})$ . It follows that $(\hat{Z}_{j})_{p}=0$ and moreover that $(\hat{Z}_{j})_{\varphi_{t^{2=}}^{()(p)}}0$ for all $t\in R$ .
Notice that $\hat{Z}_{j}\not\equiv 0$ on $M$. Let $\hat{H}_{j}$ be the connected component including $P$ of
the set of points on which $\hat{Z}_{j}$ vanishes. Since $\hat{Z}_{j}$ is an infinitesimal isometry
and an infinitesimal holomorphic transformation, $\hat{H}_{j}$ forms a compact, connected
totally geodesic 1-dimensional complex submanifold of $(M, g, J)$ . It follows
that $\varphi_{t}^{(2)}(p)\in\hat{H}_{j}$ for all $t\in R$. Since $\hat{H}_{j}$ is compact, taking a certain sequence
of numbers $\{t_{n}\}_{n\approx 1}^{\infty}$ , we find a point $qe\hat{H}_{j}$ such that the sequence of the points
$\{\varphi_{\iota_{n}}^{(l)}(p)\}_{n=1}^{\infty}$ converges to $q$ . It is easy to see that $(df_{1})_{q}=(df_{\epsilon})_{q}=0$ . Using
Assertion (5.2) in (Step 2), we can see that $Q\cap(H_{0}\cup H_{1}\cup H_{2})=\{q_{0}, q_{1}, q_{l}\}$ . As-
suming that $q\in H_{0}vH_{1}\cup H_{2}$ , we can conclude that $qe\{q_{0}, q_{1}, q_{2}\}$ and hence that
$\hat{Z}_{j}=Z_{j},\hat{H}_{j}=H_{j}$ , which is an inconsistency. Hence, we have $q\in M\backslash (H_{0}\cup H_{1}\cup H_{2})$ .
These prove the desired existence.

Thus, our task is now to derive a contradiction under the condition that
there exists a point $q\in M\backslash (H_{0}\cup H_{1}\cup H_{2})$ with the property (5.3). Let $q$ be a
point of $M\backslash (H_{0}\cup H_{1}\cup H_{2})$ with the property (5.3). Notice tbat $(Y_{1})_{q}=0$ . Then,
using the formulas (FMLI), (FML3), Lemma 2.7 in \S 2 and Lemma 4.1 in \S 4,

we can see that, for $k\in\{1,2\}$ and for any $ve(D_{i})_{q}$ ,

(5.4) $\frac{f_{j}(q)}{(f_{1}+f_{2})(q)}((W_{k})^{2}f_{i})(q)\cdot Jv=\nabla_{v}Y_{1}=\frac{\partial}{\partial u}(\psi_{u}^{(1)})_{*q}v|_{u\Leftarrow 0}=\hat{c}_{1.k}(q)\cdot Jv$ ,

where $\hat{c}_{1.i}(q)$ is a certain real number, $W_{1},$ $W_{3},$ $W_{2},$ $W_{4}$ is an $F$-adapted frame on
a neighborhood of $q$ in $M$, and $j$ is the integer such that $(j, k)\in\{(1,2), (2,1)\}$ .
Let 7 be the minimizing geodesic joining $q$ and $q_{0}$ . If $\hat{c}_{1,1}(q)=\hat{c}_{1,2}(q)=0$, then
the Jacobi field $(Y_{1})_{\gamma s)}$( along 7 is the O-field, which is an inconsistency. Thus,
$\hat{c}_{1,1}(q)\neq 0$ or $c_{1,2}(q)\neq 0$ . Taking $ke\{1,2\}$ such that $c_{1,k}(q)\neq 0$, we have
$((W_{\iota})^{2}f_{k})(q)=((f_{1}+f_{2})(q)/f_{j}(q))\hat{c}_{1.k}(q)\neq 0$ . Then, by the same argument as in
(Step 2), we can see that there exists a compact, connected integral submanifold
$\hat{H}_{k}$ of $D_{k}$ in $M$ including $q$ which has the following properties:

(i) $H_{0}\cap\hat{H}_{l}\neq\emptyset$ ;
(ii) $(df_{j})_{p}=0$ for any $p\in\hat{H}_{k}$ , where $j$ is the integer such that $(j, k)\in$

$\{(1,2), (2,1)\}$ .
It follows that $\hat{H}_{k}=H_{1}$ or $H_{2}$ , which contradicts $q\in M\backslash (H_{0}\cup H_{1}\cup H_{2})$ . This proves
Lemma 5.4 and hence establishes (1), (2) and (6) of Theorem 5.1. $\square$

Recalling (2.13) in \S 2, we immediately obtain the following

COROLLARY 5.5. We have MREG $=M\backslash H\neq\emptyset$ . In particular, MREG is an open
dense subset of $M$.
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We are now in position to establish the complete integrability of the
geodesic flows of $(M, g, J)$ .

THEOREM 5.6. Any compact ProPer Kahler-Lioumlle surface $(M, g, J;\mathscr{F})$

has the Property that the geodesic flow is completely integrable, that is, regard-
ing $Y_{1}$ and $Y_{2}$ as functions on $T^{*}M$, the functions $E,$ $F,$ $Y_{1}$ and $Y_{2}$ on $T^{*}M$ are
functimally independent almost everywhere and the followzng equalities hold
on $M$ :

$\{E, F\}=0$ , $[Y_{1}, Y_{2}]=0$ ,

$\{E, Y_{1}\}=\{E, Y_{l}\}=\{F, Y_{1}\}=\{F, Y_{2}\}=0$ .

PROOF. From Corollary 5.5 we know tbat $M_{REG}\neq\emptyset$ . Then, it can be seen
that the functions $E_{p},$ $F_{p},$ $((Y_{1})^{2})_{p}$ and $((Y_{2})^{2})_{p}$ on $T_{p}^{*}M$ are linearly independent
over $R$ for each $p\in M_{REG}$ . This implies the functional independency of those
functions on an open dense subset of $T_{p}^{*}M$ for $p\in M_{REG}$ . Since MREG is dense
in $M$, it follows that $dE,$ $dF,$ $dY_{1}$ and $dY_{2}$ are linearly independent almost
everywhere. The commutativity is immediate from Lemma 2.11 and Theorem
2.13 in \S 2. $\square$

NOW, we will discuss the $S^{1}$ -actions on $M$ generated by the prescribed
infinitesimal automorphisms of $(M, g, J;\mathscr{F})$ .

We recall the $S^{1}$-action $\psi_{1}$ on $M$ from (4.11) in \S 4. Then, by virtue of
Theorem 5.1 and its proof, we can obtain the following

PROPOSITION 5.7. (1) The action $\psi_{1}$ on $M$ leaves the point $q_{0}$ fixed and the
submanifold $H_{0}$ fixed pointwise.

(2) The action $\psi_{1}$ on $M$ leaves the submanifolds $H_{1}$ and $H_{2}$ invariant, and
its restriction $\psi_{1}|_{H_{i}}$ to $H_{t},$ $i=1,2$, can be recognized as the rotation of the
sphere $H_{i}$ whose least period is $2\pi/c_{1}$ with the pivotal points $q_{0}$ and $q_{j}$ , where $j$

is the integer such that $(i, ])e\{(1,2), (2,1)\}$ .

Then, we have the following

PROPOSITION 5.8. The real constant $c_{1}$ is Posrtive as well as $c_{2}$ .
PROOF. Let $(i, j)\in\{(1,2), (2,1)\}$ . By Proposition 5.7 (2) and the same argu-

ment as at (5.4), we can see that, for $v\in(D_{j})_{q_{0}}$ ,

$\frac{m_{i}}{m_{1}+m_{2}}((W_{j})^{2}f_{j})(q_{0})\cdot Jv=\nabla_{v}Y_{1}=\frac{\partial}{\partial u}(\psi_{u}^{(1)})_{*q_{0}}v|_{u=0}=-c_{1}\cdot Jv$ .

Using Lemma 5.3, we have $c_{2}=(1/m_{1}+1/m_{2})\cdot c_{1}$ . $\square$

Here we demonstrate two other $S^{1}$-actions on $M$. Let $(i, ])e\{(1,2), (2,1)\}$ .
From (5.1) in tbe proof of Lemma 5.2, we recall the infinitesimal automorphisms
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$Z_{j}$ on $(M, g, J;\mathscr{F})$ . Let $\{\eta_{t}^{(j)}\}_{t\in R}$ denote the one-parameter group of automor-
phisms of $(M, g, J;\mathscr{F})$ generated by $Z_{j}$ . We moreover recall Lemma 5.2 (iii)

and Lemma 5.3. Then, applying Lemma 4.2 in \S 4 to the case where $L=H_{i}$

and $Z=Z_{f}$ , we see that, for each $p\in H_{i},$ $(\eta_{t}^{(j)})_{*p}|_{N_{p^{(H_{i})}}}$ is a $C$-linear isometry
of $N_{p}(H_{i})$ onto itself given by

(5.5) $(\eta|^{j)})_{*p}v=\cos(m_{j}c_{2}t)\cdot v-\sin(m_{j}c_{l}t)\cdot Jv$ , $v\in N_{p}(H_{i})$ .

Using the same argument as at (4.10) in \S 4, we can easily obtain the following
$S^{1}$-actions $\eta_{j},$ $j=1,2$, on $M$ :

(5.6) $\eta_{j}:M\cross(R/\frac{2\pi}{m_{j}c_{2}}Z)\ni(p, t)-\eta_{t}^{(j)}(p)\in M$ .

We notice that by this action $\eta_{j}$ the circle $(R/(2\pi/m_{j}c_{2})Z)$ acts on $(M, g, J;\mathscr{F})$

as an automorphism group. Then, we immediately have the following

PROPOSITION 5.9. (1) The action $\eta_{j},$ $j=1,2$ , leaves the Pnint $q_{i}$ fixed and
leaves the submanifold $H_{i}$ fixed pointwise, where $i$ is the integer such that
$(i, j)e\{(1,2), (2,1)\}$ ;

(2) The action $\eta_{j},$ $j=1,2$ , leaves the submanifolds $H_{0}$ and $H_{j}$ invariant, and
its restriction $\eta_{f}|_{H_{k}},$ $k=0,$ $j$ , can be recognized as a rotation of the sphere $H_{S}$

whose least period is $2\pi/m_{j}c_{2}$ with pivotal points $q_{i}$ and $q_{t}$ , where $i$ is the integer
such that $(i, j)\in\{(1,2), (2,1)\}$ and $l$ is the integer such that $(k, l)\in\{(0, ]), (j, 0)\}$ .

From the fact that $[Y_{1}, Y_{2}]=0$ on $M$ (in Theorem 5.6), it follows that
$[Z_{1}, Z_{2}]=0$ on $M$. Hence, we can define an effective action $\Phi$ of the 2-dimen-
sional real torus $(R/(2\pi/m_{1}c_{l})Z)\cross(R/(2\pi/m_{2}c_{l})Z)$ on $M$ by

(5.7) $\Phi:M\cross(R/\frac{2\pi}{m_{1}c_{2}}Z)\cross(R/\frac{2\pi}{m_{l}c_{2}}Z)\ni(p, t_{1}, t_{2})rightarrow\eta_{1}^{(1)}(\eta_{t_{2}}^{(2)}(p))\in M$ .

We notice that by this action $\Phi$ the real torus acts on $(M, g, J;\mathscr{F})$ as an
automorphism group. The effectivity of $\Phi$ follows immediately from the fact
that the orbit $\{\eta_{t}^{(j)}(p)|t\in(R/(2\pi/m_{j}c_{2})Z)\},$ $j=1,2$ , through the point $P$ of MREG
sufficiently close to $q_{0}$ makes the proper circle in MREG with the least period
$2\pi/m_{j}c_{2}$ .

\S 6. Topology of $M$.
This section is devoted to the establishment of the following

THEOREM 6.1. Let $(M, g, J;\mathscr{F})$ be a compact, connected proper Kahler-
Liouville surface. Then, the complex surface $(M, J)$ is $h$ -holomorphic to the
standard complex projective plane $(CP^{2}, J_{0})$ .
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Here we recall from Theorem 5.1 (2) in \S 5 that $(df_{1})_{q}=(df_{2})_{q}=0$ if and only
if $q\in\{q_{0}, q_{1}, q_{2}\}$ . Since $h_{2}=f_{1}-f_{2}$ ((2.4) in \S 2), it follows that $(dh_{2})_{q}=0$ if and
only if $q\in\{q_{0}, q_{1}, q_{2}\}$ . As a well-known application of the Morse Theory (see

[6] $)$ , we have

LEMMA 6.2. The complex swface $(M, J)$ is homotoPy equivalent to the
standard complex projective plane $(CP^{2}, J_{0})$ .

Thus, to establish Theorem 6.1, it is sufficient to prove the following

PROPOSITION 6.3. If a compact Kahler surface $(M, g, J)$ is homotoPy equiv-
alent to the standard complex projective plane $(CP^{2}, J_{0})$ , then $(M, J)$ is bi-holo-
morphic to $(CP^{2}, J_{0})$ .

PROOF OF PROPOSITION 6.3. Let $b_{1}$ and $b_{2}$ be the firSt and the SecOnd Betti
numbers of $M$ respectively. The homotopy equivalence yields

$b_{1}=0$ and $b_{2}=1$ .

Let $P$ and $q$ be the geometric genus of $(M, J)$ and the irregularity of $(M, J)$

respectively. Then, we have $2p\leqq b_{2}=1$ and $2q=b_{1}=0$ and hence

(6.1) $p=0$ and $q=0$ .
By a Kodaira’s theorem we can see from the fact that $p=0$ that $(M, J)$ is
projective algebraic.

Then, we consider Noether’s formula:

(6.2) $(c_{1})^{2}+c_{2}=12(p-q+1)$ ,

where $c_{1}$ and $c_{2}$ denote the first and the second Chern classes of $(M, J)$ respec-
tively. Since $c_{2}$ is the Euler characteristic of $M$, we have

(6.3) $(c_{1})^{2}=9$ and $c_{2}=3$ .
Since $b_{2}=1$ , one of the following holds: $c_{1}<0;c_{1}=0;c_{1}>0$ . Obviously, the
case where $c_{1}=0$ is impossible. Assume that $c_{1}<0$ . Then $(M, J)$ admits a
unique Einstein-K\"ahler metric (see [7], [8]). By applying Chen and Ogiue’s
result ([9] Theorem 2), we can see from (6.3) that $(M, J)$ is of constant holo-
morphic sectional curvature. Hence, because $M$ is compact and simply con-
nected, $(M, J)$ is bi-holomorphic to $(CP^{2}, J_{0})$ , which contradicts the fact that
$c_{1}<0$ . Thus, we obtain $c_{1}>0$ . Denoting by $K$ the canonical bundle of $(M, J)$ ,

we have $K<0$ . Since $(M, J)$ is an algebraic surface, $(M, J)$ is bi-holomorphic
to $(CP^{2}, J_{0})$ (see [10] Lemma, p. 487).
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\S 7. The compact real Liouville surfaces imbedded in $M$.
For the sake of simplicity, in this section we will use the terms “torus

action” to refer to the action of the 2-dimensional real torus $(R/(2\pi/m_{1}c_{2})Z)\cross$

$(R/(2\pi/m{}_{2}C_{2})Z)$ and the terms “real surface” to refer to a 2-dimensional real
submanifold of $(M, g, J;\mathscr{F})$ .

The main objective of this section is to establish the two theorems and
corollary which follow.

THEOREM 7.1. There exists a family $\mathfrak{S}$ of compact, connected totally geo-
desic 2-dimensional real submanifolds of $(M, g, J;\mathscr{F})$ such that, for each $S\in \mathfrak{S}$ ,
$(S, g_{S} ; F|_{\tau*s})$ forms a compact real Lioumlle surface diffeomorphic wzth the real
Projective Plane $RP^{2}$ , where $g_{S}$ means the induced metric on $S$ from $g$ and
where $F$ is an element of $\mathscr{F}$ assumed to satisfy $(N1)$ and $(N2)$ in \S 1.

THEOREM 7.2. A transrtive torus action $\tilde{\Phi}$ on $\mathfrak{S}$ can be naturally induced
from the torus action $\Phi$ on $M$.

In particular, from Theorem 7.2, we deduce the following

COROLLARY 7.3. Any two compact real Liouvzlle surfaces belonging to $\mathfrak{S}$ are
isomorphically transferred from one onto the other by $\Phi$ .

Recalling from (2.14) in \S 2 the distribution $D_{+}$ on MREG, we have

PROPOSITION 7.4. For each point $p_{0}$ of MREG, we can construct the maximal
integral real surface $\Sigma_{p_{0}}$ of $D_{+}$ through $p_{0}$ in MREG, which has the following
properties:

(1) $\Sigma_{p}0$ has the coordinate system $(x_{1}, x_{2})$ with origin $p_{0}$ generated by $U_{1}$

and $U_{2}$ , and this coordinate mapping is a diffeomorphism of $\Sigma_{p_{0}}$ onto $R^{f}$ ;
(2) $\Sigma_{p_{0}}$ is totally geodestc with respect to $g$ .

PROOF. (1) Since $U_{1}f_{2}=0$ and $U_{2}f_{1}=0$, we can define the one-parameter

groups $\{\xi_{t^{1)}}^{(}\}_{t\in R}$ and $\{\xi_{t}^{(2)}\}_{t\in R}$ of transformations of MREG generated by $U_{1}$ and
$U_{2}$ , respectively. Note that $U_{1}$ and $U_{2}$ are linearly independent at each point
of MREG and satisfy $[U_{1}, U_{2}]=0$ (Lemma 2.9 in \S 2). Then, we have a coordi-
nate $(x_{1}, x_{2})$ in $\Sigma_{p_{0}}$ with origin $p_{0}$ such that $(\partial/\partial x_{1})=U_{1},$ $(\partial/\partial x_{2})=U_{I}$ . This
defines a diffeomorphism of $\Sigma_{p_{0}}$ onto $R^{2}$ .

(2) Recalling Lemma2.10 in \S 2, we can see that, for $(i, ])e\{(1,2), (2,1)\}$ ,
$\nabla_{U_{i}}U_{i}$ and $\nabla_{\sigma_{i}}U_{j}$ can be written as a linear combination of $U_{1}$ and $U_{2}$ for each
Point of $M_{REG}$ . This implies (2). $\square$

We denote by $\overline{\mathfrak{S}}$ the set of sucb real surfaces in MREG, that is, $\overline{\mathfrak{S}}=$

$\{\Sigma_{p}|p\in M_{REG}\}$ . It follows that
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$\bigcup_{\Sigma_{\in\tilde{\mathfrak{S}}}}\Sigma=M_{REG}$
.

For any $\Sigma\in \mathfrak{S}$ we set $\tilde{\partial}\Sigma=\overline{\Sigma}\backslash \Sigma$ , where $\overline{\Sigma}$ is the closure of $\Sigma$ in $M$. Then, we
can immediately see that $\tilde{\partial}\Sigma=\overline{\Sigma}\cap H$, where $H$ denotes the subset of $M$ defined
in the beginning of \S 5. For $\Sigma\in\overline{\mathfrak{S}}$ , we put $\sigma_{i}(\Sigma)=\tilde{\partial}\Sigma\cap H_{i},$ $i=0,1,2$ . Since
$H=H_{0}\cup H_{1}\cup H_{2}$ (Theorem 5.1 (1) in \S 5), we have $\tilde{\partial}\Sigma=\sigma_{0}(\Sigma)\cup\sigma_{1}(\Sigma)\cup\sigma_{2}(\Sigma)$ .

PROPOSITION 7.5. For each $\Sigma\in\tilde{\mathfrak{S}}$ , the famly $\sigma_{0}(\Sigma),$ $\sigma_{1}(\Sigma),$ $\sigma_{2}(\Sigma)$ of the
subsets of $M$ forms a geodesic triangle whose vertices are $q_{0},$ $q_{1}$ and $q_{2}$ .

PROOF. It is sufficient to verify that each $\sigma_{i}(\Sigma),$ $i=0,1,2$ , forms a geodesic
segment joining $q_{j}$ and $q_{k}$ , where $j$ and $k$ are the integers determined by
$(i, j, k)e\{(0,1,2), (1,2,0), (2,0,1)\}$ . Let $(i, j)e\{(1,2), (2,1)\}$ and let $p\in\Sigma$ .
With the same notation as in the proof of Proposition 7.4, we observe the
following integral curves of $U_{i}$ :

$R\ni t-\xi 1^{i)}(\xi_{u}^{(j)}(p))e\Sigma$ , $ueR$ .

Taking the limit as $uarrow+\infty$ , we obtain the integral curve segment $\xi_{t}^{(i)}(p_{+\infty})$ of
$U_{i}$ in $H_{i}$ which joins $qj$ and $q_{0}$, where $p_{+\infty}$ is the point of $H_{i}$ which $\xi_{u}^{(j)}(p)$

converges as $uarrow+\infty$ . Using Lemma 2.10 in \S 2, we see that the integral
curve segment $\xi_{t}^{(i)}(p_{+\infty})$ of $U_{i}$ in $H_{i}$ forms a geodesic segment which coincides
with $\sigma_{i}(\Sigma)$ set-theoretically. Similarly, taking the limits of $\xi_{t}^{(2)}(\xi_{u}^{t1)})$ and $\xi_{t}^{(1)}(\xi_{u}^{(2)})$

as $uarrow-\infty$ , we can obtain a geodesic segment in $H_{0}$ which coincides with $\sigma_{0}(\Sigma)$

set-theoretically. $\square$

For each $\Sigma\in\overline{\mathfrak{S}}$ , we can obtain three pairs of unit vectors

$(v_{1i}(\Sigma), v_{2i}(\Sigma))e(D_{1})_{q_{i}^{nit}}^{u}\cross(D_{2})_{q_{i}}^{unit}$ , $i=0,1,2$

by the following method:
Denoting by $\sigma_{i}^{j}(s)$ the geodesic segment starting from $q_{j}$ which coincides

with $\sigma_{l}(\Sigma)$ set-theoretically, we can define the vectors $v_{ij}(\Sigma)$ by

$v_{10}( \Sigma)\equiv\frac{d}{dt}\sigma_{1}^{0}(0)|_{t=0}$ ,

$v_{11}( \Sigma)\equiv\frac{d}{dt}\sigma_{0}^{1}(0)|_{t=0}$ ,

$v_{12}( \Sigma)\equiv\frac{d}{dt}\sigma_{1}^{2}(0)|_{t=0}$ ,

$v_{20}( \Sigma)\equiv\frac{d}{dt}\sigma_{2}^{0}(0)|_{t=0}$ ,

$v_{21}( \Sigma)\equiv\frac{d}{dt}\sigma_{2}^{1}(0)|_{t=0}$ ,

$v_{22}( \Sigma)\equiv\frac{d}{dt}\sigma_{0}^{2}(0)|_{t=0}$ .

LEMMA 7.6. For each $\Sigma e\overline{\mathfrak{S}}$ , we can define the vector fields $R_{0}^{\Sigma},$ $R_{1}^{\Sigma}$ and
$R_{2}^{\Sigma}$ along the geodestc segments $\sigma_{0}(\Sigma),$ $\sigma_{1}(\Sigma)$ and $\sigma_{2}(\Sigma)$ , respectively, such that
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(1) $Rf(q_{0})=v_{j0}(\Sigma),$ $Rf(q_{j})=v_{fj}(\Sigma)$ for $(i, J)\in\{(1,2), (2,1)\}$ , and $R_{0}^{\Sigma}(q_{1})=v_{21}(\Sigma)$ ,
$R_{0}^{\Sigma}(q_{f})=v_{12}(\Sigma)$ ;

(2) $R\xi,$ $i=0,1,2$ , is normal to the geodestc segment $\sigma_{i}(\Sigma)$ ;
(3) $R_{i}^{\Sigma},$ $i=0,1,2$ , is tangent to X and Pointing into $\Sigma$ ;
(4) $R?,$ $i=0,1,2$ , is parallel along the geodeszc segments $\sigma_{i}(\Sigma)$ .

PROOF. Let $(i, ])e\{(1,2), (2,1)\}$ . We put $\sigma_{0i}(\Sigma)\equiv\sigma_{0}(\Sigma)\cap H_{0i}$ . Let $p_{0}$ be
an arbitrary point of $\Sigma$ . Using the same notation as in the proofs of Proposi-
tion 7.4 and Proposition 7.5, we define a vector field $R_{i}^{\Sigma}$ along $\sigma_{i}(\Sigma)$ and a
vector field $R_{0i}^{\Sigma}$ along $\sigma_{0i}(\Sigma)$ by

$(R?)_{\xi\downarrow^{i)}(p_{+\infty}^{(j)})}= \lim_{uarrow+\infty}(-\frac{U_{j}}{||U_{j}||})_{\xi_{u}^{(j)}\epsilon 1^{i)}(p_{0})}$

,

$(R_{0i}^{\Sigma})_{\xi\downarrow^{i)}(p_{-\infty}^{(j)})}=_{uarrow-\infty}1_{\dot{1}} m(\frac{U_{j}}{||U_{j}||})_{\epsilon_{u}^{(j)}\epsilon 1^{i)}(p_{0})}$

,

where $p_{+\infty}^{(j)}=lim_{uarrow+\infty}\xi_{u}^{(j)}(p_{0})\in\sigma_{i}(\Sigma)$ and $p_{-\infty}^{(j)}=lim_{uarrow-\infty}\xi_{u}^{(j)}(p_{0})\in\sigma_{0i}(\Sigma)$ .
These vector fields are determined independently of the choice of the ref-

erence point $p_{0}\in\Sigma$ . From the very above definition we can easily see that $R_{i}^{\Sigma}$

and $R_{0i}^{\Sigma}$ are normal to $\sigma_{i}(\Sigma)$ and $\sigma_{0i}(\Sigma)$ respectively and that they are tangent
to X and pointing into $\Sigma$ . We note that $\sigma_{0}(\Sigma)\cap M_{sing}$ consists of one point,
say $q_{sing}(\Sigma)$ . Since these facts imply that $\lim_{q_{1^{arrow q}sing^{(\Sigma)}}}(R_{01}^{\Sigma})_{q_{1}}=\lim_{q_{2}arrow q_{sing^{(\Sigma)}}}(R_{02}^{\Sigma})_{q_{2}}$ ,

where $q_{1}e\sigma_{1}(\Sigma),$ $q_{2}e\sigma_{2}(\Sigma)$ , we can construct the vector field $R_{0}^{\Sigma}$ by combining
$R_{01}^{\Sigma}$ and $R_{02}^{\Sigma}$ . The properties (1), (2) and (3) are now obvious. Since $\Sigma$ is totally
geodesic, it is easy to verify (4). $\square$

Here, from (5.6) in \S 5, we recall the $S^{1}$-actions $\eta_{j},$ $j=1,2$ , on $M$. We
denote by $id$ the identity automorphism of $(M, g, J;\mathscr{F})$ . We put

$\tau_{j}=\eta_{\pi’ m_{j^{c_{2}}}}^{(j)}$ $j=1,2$ .

It follows that $\tau_{f}^{2}=id,$ $j=1,2$ and $\tau_{1}\tau_{2}=\tau_{2}\tau_{1}$ . Hence, $\{id, \tau_{1}, \tau_{2}, \tau_{1}\tau_{2}\}$ forms an
automorphism group of $(M, g, J;\mathscr{F})$ .

PROPOSITION 7.7. For any $\sum\in \mathfrak{S}$ , the compact subset

$S_{\Sigma}\equiv\overline{\Sigma}\cup\overline{\tau_{1}(\Sigma)}\cup\overline{\tau_{2}(\Sigma)}\cup\overline{\tau_{1}\tau_{2}(\Sigma)}$

of $M$ forms a comPact, connected 2-dimensional real submanifold of $M$ without a
boundary, which satisfies

(1) $S_{\Sigma}$ is totally geodesic with respect to $g$ ;
(2) $S_{\Sigma}$ is diffeomorphic with the real projective plane $RP^{2}$ ;
(3) $T_{q}(S_{\Sigma})=\langle\langle v_{10}(\Sigma)0’ v_{20}(\Sigma)\rangle\rangle$ , where the symbol $\langle\langle v_{1}, v_{2}\rangle\rangle$ means the vector

space spanned by $v_{1}$ and $v_{2}$ .
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PROOF. Let $(i, J)\in\{(1,2), (2,1)\}$ and let $\Sigma\in\tilde{\mathfrak{S}}$ . From Lemma 2.11 in \S 2,
we see that $[Z_{j}, U_{1}]=[Z_{j}, U_{2}]=0$ . This implies that $(\tau_{j})_{*}D_{+}=D_{+}$ . Hence, we
can see that the automorPhism grouP $\{id, \tau_{1}, \tau_{2}, \tau_{1}\tau_{2}\}$ yields four real surfaces
$\Sigma,$ $\tau_{1}(\Sigma),$ $\tau_{2}(\Sigma)$ and $\tau_{1}\tau_{2}(\Sigma)=\tau_{l}\tau_{1}(\Sigma)$ which belong to $\overline{\mathfrak{S}}$ . Using Proposition 5.9,
we can see that $\tau_{j}(\tilde{\partial}\Sigma)=\tilde{\partial}(\tau_{j}(\Sigma))$ and $\tau_{j}(\sigma_{i}(\Sigma))=\sigma_{i}(\tau_{j}(\Sigma))$ . We notice that $\overline{\tau_{j}(\Sigma)}$

$=\tau_{j}(\overline{\Sigma})$ , which is a real surface with a boundary.

We will now establish that the closures $\overline{\Sigma},$ $\overline{\tau_{1}(\Sigma)},$ $\overline{\tau_{2}(\Sigma)}$ and $\overline{\tau_{1}\tau_{2}(\Sigma)}$ of these
real surfaces are united into one compact, connected real surface $S_{\Sigma}$ without a
boundary. The surface $S_{\Sigma}$ is constructed as follows:

Using Proposition 5.9 in \S 5, (5.5) in \S 5 and Lemma 7.6, we obtain

$\sigma_{i}(\Sigma)=\sigma_{i}(\tau_{j}(\Sigma))$ ,

$R_{i}^{\Sigma}+R_{i}^{\tau_{j^{(\Sigma)}}}=0$ along $\sigma_{i}(\Sigma)$ .
From these facts, together with the totally geodesicity of $\Sigma$ and $\tau_{j}(\Sigma)$ (Prop-

osition 7.4 (2) $)$ , we see that the two real surfaces X and $\tau_{j}(\overline{\Sigma})$ with boundaries
are smoothly joined with joint $\sigma_{i}(\Sigma)=\tilde{\partial}\Sigma\cap\tilde{\partial}(\tau_{j}(\Sigma))$ . We can see that $\sigma_{0}(\Sigma)\cup$

$\sigma_{0}(\tau_{j}(\Sigma))$ forms a geodesic circle in $H_{0}$ through the two points $q_{1},$ $q_{2}$ and hence
that

(7.1) $\sigma_{0}(\Sigma)=\sigma_{0}(\tau_{1}\tau_{2}(\Sigma))$ , $\sigma_{0}(\tau_{1}\Sigma)=\sigma_{0}(\tau_{2}(\Sigma))$ .
We can also see that $\sigma_{j}(\Sigma)\cup\sigma_{j}(\tau_{j}(\Sigma))$ forms a geodesic circle in $H_{j}$ through the
points $q_{0},$ $q_{i}$ and hence that $v_{ji}(\Sigma)+v_{ji}(\tau_{1}\tau_{2}(\Sigma))=0$ . Hence, the parallelism of
$R_{0}^{\Sigma},$ $R_{0^{1}}^{\tau(\Sigma)},$ $R_{0^{2(\Sigma)}}^{r}$ and $R_{0^{1^{t}2(\Sigma)}}^{r}$ along $\sigma_{0}(\Sigma),$ $\sigma_{0}(\tau_{1}(\Sigma)),$ $\sigma_{0}(\tau_{2}(\Sigma))$ and $\sigma_{0}(\tau_{1}\tau_{2}(\Sigma))$

respectively implies

(7.2) $R_{0}^{\Sigma}+R_{0}^{\tau_{1^{f}2(\Sigma)}}=0$ , $R_{0^{1}}^{\tau(\Sigma)}+R_{0^{2(\Sigma)}}^{f}=0$ .
Since $\Sigma\in\overline{\mathfrak{S}}$ is totally geodesic, we see from (7.1) and (7.2) that 2 and $\overline{\tau_{1}\tau_{l}(\Sigma)}$

are smoothly joined with joint $\sigma_{0}(\Sigma)$ , and likewise $\overline{\tau_{1}(\Sigma)}$ and $\overline{\tau_{2}(\Sigma)}$ with joint
$\sigma_{0}(\tau_{1}(\Sigma))=\sigma_{0}(\tau_{2}(\Sigma))$ . These arguments establish that $S_{\Sigma}\backslash \{q_{0}, q_{1}, q_{2}\}$ forms a
totally geodesic smooth real surface. The totally geodesicity of $\Sigma$ also ensures
the smoothness of $S_{\Sigma}$ at the points $q_{0},$ $q_{1}$ and $q_{2}$ . Thus, we conclude that $S_{\Sigma}$

forms a compact, connected 2-dimensional real submanifold of $M$ without a
boundary.

From the very construction of $S_{\Sigma}$ , the Properties (1), (2) and (3) are now
obvious. $\square$

Here, we set
$\mathfrak{S}=\{S_{\Sigma}|\Sigma\in\tilde{\mathfrak{S}}\}$ .

Then, we moreover have the following
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PROPOSITION 7.8. For any $Se\mathfrak{S}$ , the triplet $(S, g_{S} ; F|_{T*s})$ forms a comPact
real Lioumlle surface with two srngular points, which is diffeomorphic wzth the
real projective plane $RP^{2}$ , where $g_{S}$ means the induced metric on $S$ from $g$ and
where $F$ is an element of $\mathscr{F}$ assumed to satisfy $(N1)$ and $(N2)$ in \S 1.

PROOF. We notice that each $S\in \mathfrak{S}$ is almost completely composed of four
real surfaces belonging to G5. For each $\Sigma\in\overline{\mathfrak{S}}$ , we denote by $\tilde{E}_{\Sigma}$ the energy
function on $\tau*\Sigma$ with respect to the induced metric $g\Sigma$ on $\Sigma$ . Recalling from
[1] the definition of the compact real Liouville surface, we can see that it is
sufficient for the verification that, for any $S\in \mathfrak{S},$ $(S, g_{S} ; F|_{\tau*s})$ forms a compact
real Liouville surface to verify the following conditions for each $\Sigma\in\overline{\mathfrak{S}}$ :

(i) $\{\tilde{E}_{\Sigma}, F|_{r*\Sigma}\}=0$ on $\Sigma$ ;
(ii) For each $p\in\Sigma$ , $F|_{\tau_{p}^{*}\Sigma}$ is a homogeneous polynomial on $T_{p}^{*}\Sigma$ of

degree 2;
(iii) $F|_{\tau_{p}^{*}\Sigma}$ is not of the form $r_{1}\cdot V^{2}+r_{2}\cdot\tilde{E}_{\Sigma}$ , where $r_{1},$ $r_{2}\in R$ and $V$ is a

vector field on $\Sigma$ .
Since $F$ is a homogeneous polynomial on $T_{p}^{*}M$ of degree 2 for each $peM$,

(ii) is obvious. We define the vector fields $\tilde{W}_{1},\tilde{W}_{2},\tilde{W}_{3}$ and $\tilde{W}_{4}$ on MREG by

$\tilde{W}_{k}=\frac{U_{k}}{\sqrt{U_{k}f_{k}}}$ , $W_{i+2}= \frac{U_{i+}}{\sqrt{U_{k}f_{k}}}2-$ $k=1,2$ .

Then, from (2.10) and (2.12) in \S 2, we can see that $\tilde{W}_{1},\tilde{W}_{2},\tilde{W}_{3}$ and $\tilde{W}_{4}$ form
an $F$-adapted orthogonal frame on MREG. We notice that the vector fields $\tilde{W}_{1}$

and $\tilde{W}_{2}$ are tangent to the surface $\Sigma$ for each $\Sigma e\overline{\mathfrak{S}}$ . Then, $E|_{\tau*\Sigma}$ and $F|_{T*\Sigma}$

can be expressed as

$\{$

$E|_{\tau*\Sigma}= \frac{1}{(f_{1}+f_{2})1_{\Sigma}}((\tilde{W}_{1}|_{\Sigma})^{2}+(\tilde{W}_{2}|_{\Sigma})^{2})$

$F|_{\tau*\Sigma}= \frac{f_{2}1_{\Sigma}}{(f_{1}+f_{2})1_{\Sigma}}(\tilde{W}_{1}|_{\Sigma})^{2}+\frac{f_{1}1_{\Sigma}}{(f_{1}+f_{2})1_{\Sigma}}(\tilde{W}_{2}|_{\Sigma})^{2}$ ,

on $\Sigma$ . From this expression of $F|_{T*\Sigma}$ , it is easy to check (iii). We can see
that $(\varpi_{1}/\sqrt{f_{1}+f_{2}})|_{\Sigma},$ $(\tilde{W}_{2}/\sqrt{f_{1}+}f_{2})|_{\Sigma}$ form an orthonormal frame on $\Sigma$ and hence
that $\tilde{E}_{\Sigma}=E|_{\tau*\Sigma}$ . Hence, we can easily compute $\{\tilde{E}_{\Sigma}, F|_{\tau*\Sigma}\}=0$ for each $\Sigma\in\overline{\mathfrak{S}}$ ,
which completes the verification of (i). Thus, we conclude that, for each
$S\in \mathfrak{S}$ , $(S, g_{S} ; F|_{\tau*s})$ forms a compact real Liouville surface.

From the very construction of $Se\mathfrak{S}$ in the proof of Proposition7.7, we can
see that the set of the singular points of $(S, g|_{S} ; F|_{\tau*s})$ is $S\cap M_{sing}$ , which
consists of two points. Recalling Proposition 7.7 (2) or using the classification
of the compact real Liouville surfaces in [1], we see that $S$ is diffeomorphic
with $RP^{2}$ . $\square$
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Thus, by virtue of Proposition 7.7 and Proposition 7.8, we establish Theo-
rem 7.1.

We will now proceed to establish Theorem 7.2. Let $P_{q_{0}}M$ be the set of the
2-dimensional real vector subspace $\langle\langle v_{1}, v_{2}\rangle\rangle$ of $T_{q_{0}}M$ spanned by $v_{1}e(D_{1})_{q_{0}}^{unit}$ and
$v_{2}e(D_{2})_{q_{0}}^{unit}$ . We need the following

PROPOSITION 7.9. There exists $a$ one to one correspondence between $\mathfrak{S}$ and
$P_{q_{0}}M$ as follows:

$\mathfrak{S}\ni S-T_{q_{0}}(S)\in P_{q_{0}}M$ .

PROOF. From ProPosition 7.7 (3), for each $S\in \mathfrak{S}$ , we can assign $T_{q_{0}}S\in P_{q_{0}}M$.
Conversely, we can see that, for any $K\in P_{q_{0}}(M)$ , there exists a unique

$S_{K}\in \mathfrak{S}$ such that $T_{q_{0}}(S_{K})=K$ as follows:
Take a pair of unit vectors $(v_{1}, v_{2})\in(D_{1})_{q_{0}}^{unit}\cross(D_{2})_{q_{0}}^{unit}$ at $q_{0}$ such that $K=$

$\langle\langle v_{1}, v_{2}\rangle\rangle$ . We put $v_{0}=(1/\sqrt{2})v_{1}+(1/\sqrt{2})v_{2}eS_{q_{0}}M$, where $S_{q_{0}}M$ denotes the unit
sphere in the tangent vector space $T_{q_{0}}M$. We define a geodesic $\gamma_{0}$ by $\gamma_{0}(s)=$

$\exp(sv_{0})$ . Taking a sufficiently small $s_{0}>0$, we may assume that the geodesic
segment $\gamma_{0}|_{[0,s_{0}]}$ is a minimizing geodesic segment from $q_{0}$ to $p_{0}=\gamma_{0}(s_{0})$ . We
denote by $\Sigma_{0}$ the real surface belonging to $\mathfrak{S}$ through the point $p_{0}=\gamma_{0}(s_{0})$ . It
is easy to see that $\gamma_{0}(]0, s_{0}[)\subset\Sigma_{0}$ . In fact, from the fact that $Y_{1}$ and $Y_{2}$ are
infinitesimal isometries of $(M, g)$ , we can see that the vector fields $(Y_{1})_{\gamma_{0^{(i)}}}$ and
$(Y_{2})_{\gamma_{0^{(S)}}},$ $OSs\leqq s_{0}$ , are non-zero normal Jacobi fields along $70|_{[0,s_{0}]}$ and hence
that $\dot{\gamma}_{0}(s)e(D_{+})_{\gamma_{0}(s)}$ for all $s\in$ ] $0,$ $s_{0}$]. As in the proof of Proposition 7.7, we
can construct $S_{\Sigma_{0}}\in \mathfrak{S}$ by setting $S_{\Sigma_{0}}=\overline{\Sigma_{0}}\cup\overline{\tau_{1}(\Sigma_{0})}\cup\overline{\tau_{2}(\Sigma_{0})}\cup\overline{\tau_{1}\tau_{2}(\Sigma_{0})}$ . We note that
the geodesic $\gamma_{0}(s)$ lies on $S_{\Sigma_{0}}$ . Using Proposition 7.7 (3), we bave

(7.3) $\frac{1}{\mathcal{F}2}v_{1}+\frac{1}{\sqrt{2}}v_{2}=v_{0}=\dot{\gamma}_{0}(0)=a_{1}\cdot v_{10}(\Sigma_{0})+a_{2}\cdot v_{20}(\Sigma_{0})$ ,

where $a_{1}$ and $a_{2}$ are real numbers such that $(a_{1})^{2}+(a_{2})^{2}=1$ . Since $T(M_{reg})=$

$D_{1}\oplus D_{2}$ (direct sum), comparing $D_{1}$-component of (7.3) and comparing $D_{2^{-}}compo-$

nent of (7.3), we have $v_{10}(\Sigma_{0})=\pm v_{1},$ $v_{20}(\Sigma_{0})=\pm v_{2}$ . Tbus, from Proposition 7.7
(3), we obtain

$T_{q_{0}}(S_{\Sigma_{0}})=\langle\langle v_{1}, v_{2}\rangle\rangle=K$ .
Since $\exp_{q_{0}}K=S_{\Sigma_{0}}$ , the uniqueness of this surface is obvious. $\square$

We denote by $S(K)$ the surface belonging to $\mathfrak{S}$ which corresponds to
$K\in P_{q_{0}}M$.

Recalling the effective torus action $\Phi$ on $M$ from (5.7) in \S 5, we denote by
$\Phi_{(t_{1},t_{2})}$ the automorphism of $(M, g, J;\mathscr{F})$ defined by $M\ni p\mapsto\Phi(p, t_{1}, t_{2})\in M$.
Observing (5.5), (5.6) and (5.7) in \S 5, we can obtain the transitive torus action
$\hat{\Phi}$ on $P_{q_{0}}M$ expressed as
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$\hat{\Phi}$ : $P_{q_{0}}(M) \cross(R/\frac{2\pi}{m_{1}c_{2}}Z)\cross(R/\frac{2\pi}{m{}_{2}C_{2}}Z)\ni(K, t_{1}, t_{2})$

$-(\Phi_{(t_{1},t_{2})})_{*q_{0}}KeP_{q_{0}}M$ .
Hence, by virtue of Proposition 7.9, we immediately obtain the following tran-
sitive torus action $\tilde{\Phi}$ on $\mathfrak{S}$ :

$\tilde{\Phi}$ : $\mathfrak{S}\cross(R/\frac{2\pi}{m_{1}c_{2}}Z)\cross(R/\frac{2\pi}{m_{2}c_{2}}Z)\ni(S(K), t_{1}, t_{2})$

$arrow S(\hat{\Phi}_{(t_{1},t_{2})}(K))\in \mathfrak{S}$ ,

thereby establishing Theorem 7.2.
Finally, we verify Corollary 7.3 as follows:
From the definition of the torus action $\tilde{\Phi}$ on $\mathfrak{S}$ , we can obtain

$\tilde{\Phi}(S(K), t_{1}, t_{2})=\Phi_{(t_{1},t_{2})}(S(K))$

for any $K\in P_{q_{0}}M$ and for any $(t_{1}, t_{2})\in(R/(2\pi/m_{1}c_{2})Z)\cross(R/(2\pi/m_{2}c_{2})Z)$ . This,
together with the transitivity of the action $\tilde{\Phi}$ on $\mathfrak{S}$ , implies that any two
surfaces belonging to $\mathfrak{S}$ are transferred diffeomorphically from one onto the
other by $\Phi$ . Since $[Z_{j}, U_{k}]=0$ , $i,$ $k=1,2$ (Lemma 2.11 in \S 2), we have
$(\Phi_{(t_{1}.t_{2})})_{*}(D_{+})=D_{+}$ . Hence, we see that, for each $(t_{1}, t_{2})e(R/(2\pi/m_{1}c_{2})Z)\cross$

$(R/(2\pi/m_{2}c_{2})Z),$ $\Phi_{(t_{1}.t_{2})}$ maps diffeomorphically a surface $\Sigma e\overline{\mathfrak{S}}$ onto a certain
surface $\Sigma’e\tilde{\mathfrak{S}}$ . Then, using Theorem 2.13 (3), we have

$F|_{T\}\circ(\Phi_{(t_{1}.t_{2})})^{*}|_{\tau_{p^{\Sigma}}^{*=F|_{\tau_{p}^{*}\Sigma}}}(t_{1}, t_{2})^{(p)^{\Sigma’}}$
$p\in\Sigma$ ,

where $F$ is an element of $\mathscr{F}$ assumed to satisfy (N1) and (N2) in \S 1. This
implies that, for any $S\in \mathfrak{S}$ and for any $(t_{1}, t_{l})\in(R/(2\pi/m_{1}c_{2})Z)\cross(R/(2\pi/m_{2}c_{2})Z)$ ,
the mapping $\Phi_{(t_{1}.t_{2})}|_{S}$ : $Sarrow\Phi_{(t_{1},t_{2})}(S)$ is an isomorphism of the compact real
Liouville surface $(S, g|_{S} ; F|_{\tau*s})$ belonging to $\mathfrak{S}$ onto the compact real Liouville
surface $(\Phi_{(t,.t_{2})}(S), g|_{\Phi_{(t_{1},t_{2})^{(S)}}} ; F|_{T*(\Phi_{(t_{1}.t_{2})^{(S))}}})$ belonging to S.
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