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1. Introduction.

The aim of this paper is to show that the /'-factor is completely determined
by the b-function of a simple prehomogeneous vector space satisfying some
conditions, defined over a p-adic number field.

Let K be a p-adic number field. Let (G, p, V) be a regular prehomogeneous
vector space defined over K and Y the Zariski-open p(G)-orbit in V. It is
well-known that the dual (G, o* V*) is also a regular prehomogeneous vector
space, where p* is the contragredient representation of p on the dual vector
space V* of V, [[S-K], §4 Proposition 10, Remark 11]. In this paper, we
assume the following assumption :

ASSUMPTOIN (A): G is K-split and Y x=Y(K) is a single p(G)x-orbit.

Let Z(s), Z*(s) (s€C¥) be the zeta distribution associated with (G, p, V),
(G, p*, V*), respectively. The fundamental theorem of the theory of pre/hgmo—
geneous vector spaces is roughly speaking that the Fourier transform Z(s) of
Z(s) coincides with Z*(s*) for a certain s* up to a constant multiple I x(s)
depending only meromorphically on s:

Z(s) = T'x(s)- Z*(s¥).

When (G, p, V) is a reduced regular irreducible prehomogeneous vector
space, J.-I. Igusa proved that the I'-factor [ x(s) is completely determined by
the b-function b(s) of (G, p, V):

I'k(s) = I;[ Tate y(s—k-+4), b(s)= 1;[ (s+4).

[[Igusa-3]]. We shall show an analogy of Igusa’s result in the case of simple
prehomogeneous vector spaces. We remark that, in order to settle explicit
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Finally, as an application, we might mention that we can calculate explicitly
the Fourier transform of relative invariants over the real number field R from
the explicit form of these Igusa local zeta functions, since the generalized
Iwasawa-Tate theory holds for all regular simple prehomogeneous vector spaces
with the assumption (A) [[Kimura-1], [K-K]].
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NOTATIONS, Throughout this paper, we denote by K a p-adic number
field, namely a finite extension of the p-adic number field @,. Let Ox be the
ring of integers in K, We fix a prime element 7 once and for all, then 7O
is the unique maximal ideal of Ox. The cardinality of the residue field O /7O
is denoted by gq. We denote by |-|x the absolute value on K normalized by
|l x=¢™*. We denote by Ox[x,, ---, x,] the polynomial ring of n variables
over Og.

For a commutative ring R, M(m, n; R) stands for the set of m by n
matrices with entries in R. If m=n, then we write simply M(m ; R) instead of
M@m, m; R). For any x&M(m, n; R), ‘x(€M(n, m; R)) is the transpose of x.
The determinant of x&eM(m ; R) is denoted by det(x). Alt(m; R) stands for the
set of m by m alternating matrices with entries in R; Altim; R)={x&M(m; R)|
tx=—x}. The pfaffian of x&Alt2r, R) is denoted by Pf(x).

As usual, we denote by C and Z, respectively, the complex number field
and the ring of rational integers.

2. Preliminaries.

In this section, let (G, p, V) be a reductive regular prehomogeneous vector
space defined over K, satisfying the assumption (A) [see §1].

Take K-irreducible polynomials Py, ---, Py defining the K-irreducible hyper-
surfaces contained in the singular set of (G, p, V), then they are relative
invariants of (G, p, V). Let X; be the K-rational character of G corresponding
to P;:

Pi(p(g)x) = X(g)P(x) (g€G)

for j=1, ---, N. The polynomials P, ---, Py are called the K-basic relative
invariants of (G, p, V).
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By the regularity of (G, p, V), there exists an element k=(k,, -, £x)E
(1/2- Z)¥ satisfying

det(p(g)* = I 1,()"s (¢EG).

Since we assume that (G, p, V) is reductive, we have K-relatively invariant
irreducible polynomials P¥, ---, P¥ corresponding to the characters X%, -+, X&',
respectively [[S-K], §4 Proposition 24]. They are the K-basic relative invari-
ants of (G, p* V*), which is the dual of (G, p, V). Moreover we have

det(p*(9))" = [T 1(e) ™ (g

Let S(Vx) be the space of Schwartz-Bruhat functions on V. For s=
(s, -+, sy)eC¥, we consider the integral :

2@) =, TP #00u) @SV ),

where p(x)=TIX:|P;(x)|%dx is a Gg-invariant measure on Y, while dx=
dx, - dx, denotes the Haar measure on Vx=K" (n=dim V) normalized by

vol(O%) = SO,}{dx —1.

This integral is absolutely convergent for Re(s;)>«; (=1, ---, N). This integral
can be analytically continued to a meromorphic function of s€C¥ and we
define a tempered distribution

Z(s): @ —> Z(s)(P)

on Vi depending on s meromorphically, which we call the zeta distribution
associated with (G, p, V) over K. Starting from (G, p* V*), we can similarly
define the zeta distribution Z*(s) on V%.

We fix an additive character ¢» of K such that ¢ is non-trivial on 7z 'Og

and trivial on Ox. We define the Fourier transform @A* of @*=S(V%) by
N
Bron = | 0¥0)gx, 3.
Vk
NN
We define the Fourier transform Z(s) of Z(s) by
o~ 2
Z(s)(D*) = Z(s)(@*) (P*&S(V%).

In the above notations, we obtain the functional equation:

2.1) Z(s) = I'g(s)- Z*(x—s),
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where ['x(s) is a rational function of ¢%, ---, ¢*~. The functional equation [2.I}
is nothing but the p-adic fundamental theorem in the theory of prehomogeneous
vector spaces. The p-adic fundamental theorem is proved by J.-I. Igusa and F.
Sato with the finite orbits condition [[Igusa-4] and [F. Sato]]. Moreover, A.
Gyoja succeeded in proving it without this condition in J. A.M.L. 1992-1993.
We call I'k(s) the [-factor of (G, p, V). Now we shall give the definitions of
b-functions and Igusa local zeta functions. We put

N N
P=1IP;, P*=1]IPF},
=t j=t
then there exists a polynomial b(s) in s, ---, sy of degree deg(P) satisfying

P*@/0x)P**Y(x) = b(s)P*(x),

where we put P*=II¥, Py, P***=II{, Py*" for s=(s;, -, sx). The polynomial
b(s) is called the b-function of (G, p, V). We define the Igusa local zeta function
of (G, p, V) by the analytic continuation of the integral:

N 55
Zx(s)= |, IL 1P ddx

for s=(s,, -, sy)eC?, Re(s))>0 (j=1, ---, N).

3. Igusa’s Result.

In this section, we shall present J.-I. Igusa’s result on [ '-factors ['x(s) of
reduced regular irreducible prehomogeneous vector spaces.

For every reduced regular irreducible prehomogeneous vector space (G, p, V),
the number N of basic relative invariants is 1. Moreover £ is given as follows:

£ = dim V/deg(P) (P: the basic relative invariant)

In [[Igusa-3]], J.-I. Igusa restricts (G, p, V) by the additional assumption :

ASSUMPTION (A)':
G is K-split and all roots of the b-function b(s) are integers.

There exist 8 reduced regular irreducible prehomogeneous vector spaces
satisfying the assumption (A)’. We remark that the assumption (A)’ is equiva-
lent to the assumption (A) [see § 1] in the case of reduced regular irreducible
prehomogeneous vector spaces.

DEFINITION 3.1. We define the Tate local factor Tate y(s) by
Tate y(s) = (1—¢~*7)/0A—¢7%).
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The Tate local factor Tate y(s) is nothing but the /-factor of the prehomo-
geneous vector space (GL(1), A,, K) [[Tate]].

ProposITION 3.1 ([Igusa-3], §6). Let (G, p, V) be the reduced regular irre-
ducible prehomogeneous vector space satisfying the Assumption (A)'. Let I'k(s) be
its ['-factor and b(s) its b-function, then we have (after some normalization),

Ik (s) = 1;[ Tate y(s—&+4), b(s) = IzI (s+4).

The proof of this proposition is based on the computation of Igusa local
zeta functions of such prehomogeneous vector spaces ([Igusa-3], §6 Lemma 5).

4, A classification of simple prehomogeneous vector spaces.

We shall give the definition of simple prehomogeneous vector spaces.
Let G; be a simple algebraic group and we put

G=GL1)'XG, (I=2),
V=V® - -PV, (a direct sum of [ finite-dimensional vector spaces).

We define a finite-dimensional representation p of G on V by

olay, -+, ay; g)x = (ax'.‘)l(g)xl, e al'Pl(e‘J)xl)
for x=(x,, -+, xp)€V and (a,, -, a;: g)G, where each p,: G—GL(V,) is an
irreducible representation of G, on V, (k=1, ---, ). We shall simply write

p=p:D - Dp,. If this triplet (G, p, V)=(GL)'XGs, 0:D - Doi, ViD - BV)
is a prehomogeneous vector space, namely V has a Zariski-open p(G)-orbit, then
we call it a simple prehomogeneous vector space.

We shall consider the [-factors I'x(s) of the regular simple prehomogeneous
vector spaces satisfying the assumption (A) [see §1]. By [[K-K-H], § 2 Theo-
rem 2.19 and Corollary 2.20], there exist 14 such prehomogeneous vector spaces.
Moreover, their basic relative invariants are given in [[Kimura-3], § 3] and we
can easily obtain k=(k,, ---, £y)=(1/2- Z)¥ for them.

PROPOSITION 4.1 ([Kimura-3], [K-K-H1). All regular simple prehomogeneous
vector spaces satisfying

ASSUMPTION (A): G is K-split and Y i is a single p(G)g-orbit.
are given as follows:

(1) (GLAPXSL(n), 4:DAF, V(n)DV (n)%)

(2) (GLO"XSL(m), 4D -+ DA, V()D - DV (n)) (n=2)
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(3) (GLAPXSL(EZm+1), A4,P A, V(im@m—+1)BV(2m+1))
(4) (GLAYXSp(n), 4: A, V(2n)DV (2n))
(5) (GLQ)*xSpin(10), A.PA., V(16)PV(16))
A ; the even half-spin representation
(6) (GLAYPXSL(2Zm), A,DAPA, V(im@2m—1)PV(2m)PV (2m))
(7) (GLQAYPXSLE@m), A,PAPA¥, V(im(2m—1))PV(2m)PV (2m)*)
(8) (GLAZPXSLEZm), A,DPAFPAY, V(im(@2m—1)PV(2m)y*PV(2m)*)
(9) (GLQA)*xSpin(8), the vector repPa half-spin rep, V(8)BV(8))
10) (GLQ)*xSpin(10), the vector repBa half-spin rep, V(10)EV(16))
(11) (GLAYXSL@2m+1), A:DA,PDADA,
V(m@Cm+1))PV(2m+1)BV( 2m+1)DV (2m-+1))

(GLAYXSL@m+1), 4,DADAFD AT,
V(m@m+1)BV @m+1PV Cm~+1)*BV 2m+1)*)

n+1i n+1

(13} (GLM"XSL(n), 4:B - DAy, V(n)D - BV(n))

n

(GLO***XSL(n), 4D - @ADAF, V(n)D - BV ()DV (n)*).
Their basic relative invariants and k<(1/2-Z%) are given as follows:
(1) N=1
PX)=<x, y> X=(x, ) EV()BV(n)*.
KE=n.
(2) N=1 n
P(X)=det(X) (XeM(n; K)=Vn)® - DV (n)).
Kk=n.
(3) N=1
PX)=Pf(X) (X Alt@m+2; K)=Vm@Cm+1)PV2m+1)).
k=2m-+1. :
(4) N=1
PO=PfCX]oX), where [.=(_4 ¢) XeMen, 2; K)
=V 2n)DV (@2n)). i
£=2n.
(5) N=1
We take as the basic relative invariant P(X) the polynomial given in
[[Kimura-4], §4 Proposition 4-2].
k=8,



(6)

(7)

(8)

(9)

(1)

Igusa local zeta functions 571

For type (6), (7) and (8), we identified the representation space with
(X =(x, v, 2)|xcAltCm ; K), y, zeK*™}.

N=2
P(X)=Pf(x), P(X)="'yA(x)z,
in which, for any x Alt@m ; K), we define the alternating matrix A(x) by

Alx) x = x-A(x) = Pf(x)*1sm.

k=(1, 2m).

N=2

Pi(X)=Pf(x), P(X)=<y, 2>.
£=02m—1, 2m).

N=2

P(X)=Pf(x), P(X)="yxz.
£=(2m—3, 2m).

N=2

Pi(X)=q:(x), Po(X)=g:(y) quadratic forms (X=(x, y)V @DV (8)).
=4, 4).

N=2

P(X)=q(x) quadratic form on V(16),

Py(X)=<x, Q(3)>, Q)="Q:(3), -, Quo(¥)).
For an element y of V(16) is of the form

5
Y= Yo+ 20 Yijese;t+ 2 y¥ek
15i<j<5 k=1

where eef=e, - e5 (k=1, -+, 5), let Y=C(v;;) be the alternating matrix
obtained from y, and Y, the 4X4 alternating matrix obtained from
(—DYY by crossing out its i-th row and column (=1, ---, 5). We define
ten quadratic forms Q;(y) on V(16) by

b
Qi(y) =]§ Visd5
and
Qivs = yoy;!‘"f‘Pf(Yi)

for i=1, ---, 5 [[S-K], p. 119 and [Kimura-4], p. 21].
£=(1, 8).
N=4
x 'y
PaX)=Pf(_% ) for k=123,
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P=Pf(*,3) =0 35 39
(X=(x, y1, ¥, ¥9)EAUCMA-1)DK* " DK *™ ' PK*™*).
12) N=4
PO=PA( %, 3, PX=Cy, 2, PAX)=C, wd, P(X)=tzxu
X=(x, , z, w)EARCm+1)PK " PR DK™+,
(13) N=n-+1

Py(X)=det(x,, -+, x3, -+, Xn.1) for k=1, -, n+1, where “~” means
n+1

crossing out (X=(x,, -, X, )EM(n, n+1; K)=Vn)® - BV (n)).

n+1
r——
k=(1, -, 1).
(14) N=n+1

Po(X)=Lxs, y> for k=1, -+, n, Py (X)=det(x,, ---, x,)
X=(xy, =, X3 WEMn ; K)=V(n)D - RV (n)PV (n)*).
=, -, 1), n—1).

S. Kasai determines the d-functions of the prehomogeneous vector spaces in
Proposition 4.1, except for type (11) and [[Kasai]].

PRrROPOSITION 4.2 ([Kasai]). Let (G, p, V) be one of the simple prehomo-
geneous vector spaces given in Proposition 4.1, except for type (11) and (12). The
b-function b(s) of (G, p, V) has the following expression in the terms of the
gamma function ['(s):

(4.1) b(s) = cy(s+1)/7(s)
where ¢ is a non-zero constant and y(s) is given by

7(s) = l;[ I'(azs+bi) (finite product),

N .
a;s+b; = gla}si-i—b;, ai=1or 0, b= Z, and b;>0.

We remark that s-+1 in the right hand side of (2.1) means
s+1=(s;+1, -, sy+1)
for s=(sy, -+, sm)€C¥. Moreover the set {as+ba} is given as follows:
(1) {s+1, s+n} (s€C)
(2) A{st+jlj=L -, n} (s€C)
(3) As+2j—-1lj=1, -, m+1} (s€C)
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(4) {s+1, s+2n} (s€C)

(5) {s+1, s+4, s+5, s+8 (s€C)

(6) {s;+1, s;+s:+27—1 2=Z7<m), s,+1, sy+2m} (s=(s4, s;)=C?

(7) {si+2j—1 (A=7Em), so+1, so+2m} (s=(sy, s2)=C?)

(8) {si4+2/—1 (A<jEm—1), s;+s,+2m—1, s,+1, sp+2m} (s=(s,, $5)=C?
(9) {s;+1, s;+4, s;+1, s;+4} (s=(s1, s9)=C?)

(10) {s;+1, s;+s:+5, so+1, s:+8 (s=(sy, $5)=C?

(11) unknown case

(12) unknown case

(13) {s;+1, A=i<n+D), si+ - +spats, CS7<n)}
(s=(s1, -, Spr)EC™ )

{s;+1, A=i=Zn), spat7, AS7En—=1), s+ - +sp+n}
(s.——‘(sl, Tty sn+1)ecn+1)-

5. The Main Theorem and its Proof.
The main theorem of this paper is as follows:

THEOREM 5.1. Let (G, p, V) be one of simple prehomogeneous vector spaces
given in Proposition 4.1, except for type (11) and (12). Let Z x(s) be the Igusa
local zeta function and I'g(s) the I-factor of (G, p, V), then we have

®G.1D Zx(s) = IAI (1—¢7%2)/(1—g~(@astd )
and
(52) FK(S) = IXI Tate r(az(s—fuf)—i—bz),

where the set {a,s+b;} is given in Proposition 4.2.
If @, denotes the characteristic function of O%, then we have
Z(s)( @) = Zg(s—k),

in which Z(s) is the zeta distribution associated with (G, p, V) [see §2]. Since
the Fourier transform @, of @, equals @, and the zeta distribution Z*(s) asso-
ciated with (G, p*, V*), coincides with Z(s) in our case, we have

2()(@o) = Z(s)( Do) = Zx(s—k),
and
Z¥k—3)(Do) = Z(k—s) (Do) = Z k(—s).

By evaluating both sides of the functional equation at @,, we have
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I'k(s) = Zg(s—&)/ Zg(—s).
Therefore, if is proved, we have

FK(s) = ]_;[ (1-—q‘123‘b2)/(1_q"a1(3*5)‘02) .

From [Proposition 4.1] and 4.2, we have

{ars—bi} = {ai(s—k)+b1—1}.

Hence we have (5.2). Therefore our task is to prove [5.1).

For type (1), (2), (3), (4) and (5) (i.e., the case of N=1), (5.1) has been already
proved, because we can find out the same Igusa local zeta function which can
be computed [[Igusa-2]]. For example, the Igusa local zeta function of type

(2) coincides with the Igusa local zeta function of the reduced regular irreducible
prehomogeneous vector space:

(GXGL(m), p&A:, V(m)QV (m)),

where p:G—GL(V(m)) is an m-dimensional irreducible representation of a
connected semi-simple algebraic group G. We can immediately obtain for

type (7) and (9) from the above results. For type (6), (8), and [14), we
shall prove by case by case computation.
We shall collect some propositions.

ProprOSITION 5.1 ([S-K], §2 Proposition 9). Let G be a linear algebraic
group and let p: G—GL(V(m)) be a faithful irreducible representation of G on
the m-dimensional vector space V(m). Let n be a positive integer with m>nz=1.
Then a triplet (GXSL(n), pQA4,, Vim)QV (n)) is a prehomogeneous vector space
if and only if (GXSL(m—n), p*QA,, Vim)*QV(m—n)) is a prehomogeneous
vector space.

We say that two triplets (G XSL(n), p&@4,, V(m)QV (n)) and (GXSL(@n—n),
p*Q A, V(m)*QV (m—n)) are castling transforms of each other. We assume that
they are prehomogeneous vector spaces.

PROPOSITION 5.2 ([S-K7, §4 Proposition 18). There is a one-to-one corre-
spondence between the relative invariants P(x) of (GXSL(n), pQA4,, V(m)QV(n))
(m>n=1) and the relative invariants ﬁ(f) of its castling transform (GXSL(m—n),
0*QR A, Vim)*QV (m—mn)). If P(x) is irreducible, then f’(%) s also irreducible.

By [Proposition 5.2, the number of basic relative invariants of (G XSL(n),
o®A,, V(m)@V(n)) is equal to the number, say N, of basic relative invariants
of its castling transform (G XSL(m—n), p*Q4,, Vim)*QV(m—n)). Let Py(x),
-+, Py(x) be the basic relative invariants of (GXSL(n), pQA4,, V(m)QV(n)),
and Py(%), -, Py(%) the basic relative invariants of (GXSL(m—n), p*®4,,
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Vim)*®V(im—n)). Let Zx(s), Z x(s) be the Igusa local zeta function of
(GXSL(n), pQA;, Vim)QV (n)), (GXSL(m—n), p*QA,, V(m)*QV (m—n)) respec-
tively :

N o ~
Zu(s) = | o I IP0IHdx, Zio) =1
j=i 7

mn
Ok

ProprosITION 5.3 ([Igusa-1], §8). In the above notations, if m—n>n, we
have

6.3) Z k()] Z x(s) = n<£[m_n(1_q—i)/(1_q—(d.wj)) ,

where we put deg(P;=d;-n, deg(ﬁj):a’j-(m—n) for j=1, ---, N, and ds=d,s,+
- +dysn.

J.-1. Igusa proves this proposition in the case of N=1. However, his proof
holds in the case of N=2.
We put

N S
1=, WIFx D)ddzdy

K

for s=(si, -+, sw), Re(s)>0 (=1, ---, N), where we take N polynomials F;(x, y)
(=1, ---, N) from Og[x, y]=0xk[x1, =, Xn, Y1, =", Ym]. We define subsets D,
(¢=1, ---, n) of O% by

D - {(x(l) ) x'l.—l) Hiy X 1+)11 ) ’Cn))EO l(x(” e x‘gi—)l)en-okl}-

PRrOPOSITION 5.4 ([Kimura-2], § 1 Theorem 1.2). In the above notations, we
have

n N N
(5.4) I(s) = ; SD com 3 _H |F§d(x, y)|Zdx®dy),
where we put

Fi(x, y) = Fi(pax{?, -, pax{®y, ps, paxi®y, o, iz, )
and
dx® = |p| kK dpsdx(P - dxiPridx{Py - dxfP,

for i=1, ---, n, j=1, ---, N.

This proposition is proved by T. Kimura, hence we call the formula [5.4
Kimura’s integral formula.

We define some new notations.
For j=1, we put

(N =1=q¢77, (Ne=14q".
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We put
U,=0%—n0%
for any n=1. Then we can easily obtain the following proposition.

PROPOSITION 5.5. (1) wvol(U,)=(n). n
(2) U, is the GL(n; Og)-orbit of e,=%1,0, -, 0): U,=GL(n; Og)-e,.
(8) O%=\Urzom*U, (disjoint union).

Type 6): (GLQ)*XSLZm), A,DA,DA, V(imZm—1)DV2m)DV (2m))
We shall consider the computation of the Igusa local zeta function:

Zx(s) = S | PFx) %1 yA@)z | dxd ydz.

zealt@m, Oy, ye0y :c03

Since the polynomial ‘yA(x)z is homogeneous of degree 1 with respect to y, we
have

Zk(s)= (Zm)/(l—tf“’z”"")-g o | PO R P01 A(x)2 | Rd xd 2.

reAlt(em, O), zeOK

In fact, by [Proposition 5.5, we have

|PF(0) |1 vA()2| $dxdz}dy

Zx(s)= Eo S!/eﬂkUZm{SxeAuﬂm; 0k 20t
— —(sg+2m)k |, 11t S
{29 F s B vams o scat PRI 9AGRZ 2 xd2}dy

= {2 gewmrvolUsm)- | |PF() 13 ez | Bdxdz

Ezo0 zedit@em; 0g), 204"

= @m)/A—g¢rm).| |PFCI2 el (x)z | B xdz.

zealtem; Og), 204

If we write z€0%" as z:(ilk), with z2,€0k, z¥=0%"*, then the polynomial
‘eA(x)z:‘elA(x)(z;) is homogeneous of degree 1 with respect to z*, hence we
have

|Pf(x)1%'e:A(x)z| Bdxdz

SzeAlt @m; O gy, ec0%*

= @m—1)/(1—q D). | |Pre 1R ea)(3) e nde,

reAlt(em; 0>, 2€0 g

2m—1
where we put ef='(1, 0, ---, 0). By a suitable variable exchange, we have
(5.5) Zg(s) = 2m)(2m—1)/(1—q@2**™)(1—qCe**m=D). [ (s),

where we define 7,(s) by
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In(s) = S PIGPf (famram .

zEAlt (2m; O

Notation. For 1<i<j<2m, we denote by Pf(x); ; the pfaffian of the submatrix
of x which is obtained from x by crossing out its 7-th and j-th rows and columns,
then A(x) is given by

A(x) = (D™ Pf(x)i. hrsi<ssom -

It is sufficient to compute the integral I,(s). We ,shall compute it by the
induction on m.
When m=1, we have

(5.6) Ii(s) = (1)/(1—g~¢1*D).

When m=2, the polynomials Pf(x) and Pf(x)sm-1,2m are homogeneous of
degree 1 with respect to the 2m—1 variables xs, Xis, ***, X12m-1, X12m, and the
2 variables Xjs;-1, X12m disappear in the polynomial Pf(x)sm-1,0n. We apply
Kimura’s integral formula to /,(s) with respect to the 2m—1 variables x5, xis,
-+, X1am-1, X12m, in this order, then we have

6.7 In(s) = D/ —g-erswnm).{ & gmo-n. [y ()},
For k=2, ---, 2m, J.(s) is defined as follows:

T3 = {IPFCOIRIPSom 1 om | 5.

with
0 | xmfx; 1 ‘x,
" — X,
X 1 o ,

where the domain of integral is defined by
x, € 0%2 x, € 0%, x” € Alt@m—1; Ok).
We have
Im—-l(s> (k:Z, Ty 2m_2)
(5.8) Jr(s) =
g2 (2m—3)/(1—g=C2*2m=0. [ _,(s) (k=2m—1, 2m)

In fact, for k=2, ---, 2m—2, we have
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il Syrwies(ly 8). o

x’ 0 x

I =

= Im-l(s)

z'€Alt@2m—-2; O g)

by a suitable variable exchange. For k=2m-—1, 2m, by a suitable variable
exchange, we have

]2m—1(s) - ]2m(5)
- x'  z* 0 ‘tx* ’
=4q 'ZS|Pf(__tz* 0)“KI|Pf<_x* x,)l;%dx dx*dz*'
where the domain of integral is defined by

x' € Alt(2m—3; Ok), x*, z* € 0% 3.

tk

Since the polynomial Pf(_gc* x') is homogeneous of degree 1 with respect to

x* we have

]2m—1(s) = jzm(s)

= fl"*'(2m~3)/(1—f1“’2“m’3’)-s o | Pf(x)| R Pf(x)r,21 Rdx

xEAlLt(2m-2; 0

= ¢7"2-(2m—3)/(1—q~2*2™=). I, _(s).
By and [5.8), we have the induction formula
(5.9) ‘ I (s) = [m—l(s)'cm(s) (ng),

where we put cn(s)=(2m—3)/(1—g~¢2*2m=9). (1 —g~G2+2m-1) /(] — g~ #1Fsz+2m-1))

By and (6.9), we have

Ii(s) = (1)/(1—g~¢1*V),
and

In(s) = (1)/(1—g~*1*P)-(1)/(1—g~ #2*D)

><:@1(2]'~1)/(1'—q'"1“””‘”)‘(1—0"(‘2+2"‘"’)/(1~—(I'"’1”2”"‘"”),
for m=2. Hence, by [5.5), we have our result:
Zx(s) = (/=g )- [T @j—D)/(1—g-¢r++25-0)
XD)@m)/(1—q= 2 D)(1—g~ Earim),

Type 8): (GL1)*XSL(@Zm), ADAFDAE, V(im@2m—1)BV (2m)*PV (2m)*)
We shall consider the computation of the Igusa local zeta function:
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Zx(s)=| |PF()I % yxz| 2dxd ydz.

zeattem; 0g). yeOH 2205
We can compute Z(s) by the same way with type (6).

Since the polynomial *yxz is homogeneous of degree 1 with respect to y,
we have

Zx(s) = @m)/(1—g~¢++m).| |Pf(x)| %] terxz| Bdxdz.

zedlt@m; 0 ). 2s04

0T, with €08, 2 e Alt@m—
1
1; Ok), then the polynomials Pf(x) and ‘e,xz are homogeneous of degree 1 with

respect to x;,. Hence we have

If we write xeAlt(2m ; Ok) as x=(

|Pf(x)|%|'e1xz| Rdxdz

SxeAu(Zm; 0K); zeo%m

— (zm__l)/(l__q—<31+32+2m—1)) S ]Pf(x”) | ;} 1z, |‘1?dx”d21

T7cAlt(em~2; 0). 2,€0 g
= (2m—1>/<1—q-(’x”z*zm-%-ﬁ(zj'—l)/(l—q-<~*1+2f-*>)-(1>/<1—q-<*2“>>.
J=

Therefore we have our result:

Zg(s) = :Ij:(Z]-_l)/(l—q" @ +2i=0Y (1) (2m) /(1 — g~ G2 D) (1 —g~ C2+2m)
X(@2m—1)/(1—q~ Gr+serem-by

Type [10): (GLQ1)*xSpin(10), the vector repPa half-spin rep, V(10)PHV(16))
We shall consider the computation of the Igusa local zeta function:

Ze=1_ 1%, QUY | Rdxdy

10 16
€0y, yeEO Y

Since the polynomial <{x, Q(v)> is homogeneous of degree 2 with respect to
y, we have

(5.10) Zg(s) = 1/(1—q=@*19).I(s),

where we define

1=\, _ 1a®I¥<, Qu)dIRdxdy.
€0x 16
We define

Vi= {yeUs|Q)Er*Us} (kz0),

then we have
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Use = ( k\zjovk)u{y'eUm\Q(y):()} (disjoint union).

Since the measure of the subset {y&U|Q(y)=0} of U, is 0, we have
(5.11) I(s) = 33 I4(s),

k20
where we put

L=\ . 10@I31¢ Qu)Ikdrdy.
€05 yEV

LEMMA 5.1 ([Igusa-3], § 7). In the above notations, we have
(1) Vi is the Spin,o(Ok)-orbit of 1+m*e¥.

_[ ©®®  (¢=0
@) U"’(Vk>—{(3)+(5)(8)q‘“ (k1)

@) QU+ce)="O, -, 0, o).

By Lemma 5.1, we have

L=\ _ ., la@I%icx QUtare fdxdy

z€0%, ye

= vol(V)-{__, la(0) 17 ol 2 x
Telk

B { ®)&)-J(s) (k=0)

3):BG)8)q7*%2- J(s) (kz=1),
where we define

J6) =yl mmet - xomol ¥l miol 2
K

By (5.11), we have
| 1(s) = Iy(s)+ 3 Iu(s)
k21

= E®@-{14+@, 2 g1} J(s)
k21
= (0)(8): (14¢g~¢2*®)/(1—g~2*D). J(s).
Hence we have, by [5.10),

(5.12) Z x(s) = (0)(®)/(1—g~2*™)(L—¢~ ™). J(s).

It is sufficient to consider J(s). The polynomials x,x¢+ -+ +x5x10 and x,,

are homogeneous of degree 1 with respect to the 5 variables xg, -:-, x5, We
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apply Kimura’s integral formula to J(s) with respect to the 5 variables x;,, x,,
-+, X¢ in this order, then we have

5
—_— N ¢ ] T89+ . - (k-1 .
J(s) = /=g erw)-{ 3 gD o)},
where we define
Ji(s) = S010]x1xe+ +x5|i<1dx.
K
and

Je(s) = Somixxxs’*‘ Xkt +7T$75x10|‘;{li7fx1o‘slgdx (k=2, -+, 5).

K
We can easily obtain
(1)/(L—g= D) (k=1)
Jr(s) = {
gt U/ U—gm D) (D) (1—g~ V) (k=2, -, 5).

Hence we have
(5.13)  J(s) = (1)/(L—g=C1*D)-(1)/(1—g~ @)« (1—q~ ¢2*D)/(1—g~ “17727D),
By and (5.13), we have our result:

Zx(s) = 1)/A—qC*D)-(1)@)/(1—g~¢2*V)(1—g~ “2*)- (5)/(L—g~ 17>,

n+1 n+
e

1
Type [B]: (GLW™'XSL@), 4D B4, VB - BV ()
We consider the prehomogeneous vector space:
(GLD™, o, V(n+1),
where we define the representation p of GL(1)"*! on Vin+1)=K"*! by
o(ay, +y @p )X = @ X1, 0,y Appr Xnpr) (X=HHy, 0, Xpa)E K™Y,

This is the castling transform of our prehomogeneous vector space. The Igusa
local zeta function of (GL(1)**!, p, V(n+1)) is as follows

n+1 . n+1
Zx(s) = SO"“ I_[l | x| %dx = ]:1 (1)/(1—g~ @)y,
K = i=

Let Z x(s) be the Igusa local zeta function of our prehomogeneous vector space:

n+

Zx(s) = g TT | Py(x) | ddx,

07;{("«*’1) F=1

where the basic relative invariants P,(x) (=1, ---, n+1) are given in Proposi-
tion 4.1.
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By [Proposition 5.3, we have our result:

ZK(S) = 7;[—;[1 1)/A—g~¢itD). j]zI2 (7)/(L—g= Cr+=+sns10y

Type [14): (GLD***XSL(n), 4:D - DADAF, V(n)D --- BV (n)DV (n)*)
We shall consider the computation of the Igusa local zeta function:

n

Zx(s) = g TT 1<xs, v) 1% 1det(x) 2 dxdy,

Z=(Tp e Ep)EM(n; Og)s yeOT}{ i=1

The polynomials <{x;, ¥> (=1, ---, n) are homogeneous of degree 1 with
respect to y. We apply Kimura’s integral formula to Z x(s) with respect to v,
then we have

.14 Zx(s) = M/U—g~r1nem){ 53 g0 I(5)},

where we define

If(s>=s ﬁ I<xi) t(ﬂyl) Tty i: ) yn)>|;{t|det(x)|;z"dXdy-

zeM(n; Og). ye0T, i=1
By a suitable variable exchange, we have

Iy(s) = S I x5 det(F 0 2d - dadx’,

‘(zl.---,zn)eo?(,x'eM(n-x, n; Og) i=1 x’

hence I,(s) is independent of the index 7. We denote by I(s) this integral. We
have, by ((5.14),

(5.15) Zx(8) = (n)/(L—g~ 7 inim). [(s).

It is sufficient to consider I(s). The polynomials x,, ---, x, and det(x; --- x,/x’)
are homogeneous of degree 1 with respect to the »n variables x,, ---, x,. We
apply Kimura’s integral formula to I(s) with respect to these »n variables x,,
-+, X, then we have

(5.16) I(S) — (1)/(1—-(]"(51+"'+8n+1+”)). { élq~(k—1) .]k(s)} ,

where we define

Jr(s) = (1“’1+"'”"“"S 1 | x| | det(x)| @ dxy - dxy - dandx”,

15isn,1

where the domain of integral is defined by
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t(xl) Ty x;y ) Xn) = O?(—I: x" e M(n’—l; OK)

We can obtain

61D Jae)=g e L OfA—g ) T G)/A—gern),

isisn. t#k

By [5.15), and (5.17), we obtain our result:

Zk(s) = }211 1)/(1—g~@*h). jl:[:,(f)/(l—q'(s"“”’)'(n)/(l—q"“1+"'”"+‘+”’) :

6. On type (11) and (12).

In this section, we consider the prehomogeneous vector spaces of type (11)

and [12):

A1) (GLAPXSLEm+1), AD4,DA:D A4,
V(im@m+1)BV (2m+1DBV(2m+1SV 2m+1),

(12} (GLA)XSL@m+1), ADADAFDAL,
V(m@m~+1)PV 2m+DDVem+D*QV (2m+1)%),

which are excepted from our main theorem—{Theorem 5.1,
The b-functions of them are still unsettled, hence we can not conclude that
[Theorem 5.1 holds for them. However we can settle the Igusa local zeta

function of type [1Z).

PROPOSITION 6.1. Let Zk(s) be the Igusa local zeta function of the prehomo-
geneous vector space of type (12):

¢t
Ze = 1P 5, ) 1RO, DI, wylliaxw s dydzdw,

where the domain of integral is defined by
x € Alt2m+1; Og), v, z, w € OFH,

then we have
Zx(s) = [1 Qi=1)/(L—g™ 7). (1)/(L—=q~ *+™)- )/ (L—g~%++)
><(1)(2m)/(1___q—(84+l))(1__q—-(34+2m))'(zm_l_l)/(l_q—(31+82+83+34+2m+1)).

t
PROOF. Since the polynomials Pf(_fcy 8’), {y, z> and <y, w), are homo-
geneous of degree 1 with respect to y, then we have

6.1) Zx(s) = @m~+1)/(1—q= Crreersstini). [, (s).
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where we define

In(s) = {IPAG) 21zl 21w 2l o 20( 0

X, X

,‘>(zj) |%dx'dx,dzydz,dwodw, ,

where the domain of integral is given by

x'e Alt@2m; Og), 2o, Wo € Og, X1, 21, W, = OF".

¢ ) )
The polynomials z, and (z,, ”z,)(_ox ;C}X;‘)") are homogeneous of degree 1 with
1 1
respect to z, and z,. We apply Kimura’s integral formula to /,(s) with respect

to z, and z,, then we have

6.2) In(s) = U/A—gesrsemm) { 3 gk [y ()},
where we define

0 ‘x,

Joo) = | IPfenwal @i X)) idr dndwedu,,

2m+1

x'e Alt2m; Ok), wo € Ok, x1, w, € 0¥ (e,="(1, 0, ---, 0)),

and

T =g I PAG R 20l ol

0 "xy\(Wo\ s
t % 4 ’
](77.'20, el)(_xl X’)(U}l)lex dxleoddewl,
2m
x' € Alt@m; Ox), zo, wy € Ok, %1, w, € O (e¥=41, 0, ---, 0)).

for k=1, ---, 2m.

Since
0 bx Wy
iy ) = e = oy,
——."Cl X w]
we have
Jos)=| PRI fwolidwe [ e, wd R,
z'cAltem; Og) wos0 g z, w05

= ﬁl (2;'___1)/(1_q—(31+2i—1)) . (1)/(1_q—(s3+1))
X (1)(2m)/(l_q-(84+1))(1~_q—(s4+2m)) )

For k=1, ---, 2m, the integral J,(s) is independent of the index k, we

t..7
denote by J(s) this integral. If we write x'€Alt(2m; Og) as x’:(_ox{ ;“,})
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!

with x{€0¥-t x"cAlt@m—1; Ok), and w,=0%¥" as wlz(z,‘,> with wieOk,
1

w!e=0%", then we have

t
(720 ‘e?*)( 0 x1)<w°) = m2o(Xy, WiO—Wwelxy, eF>+{x], wi).

—x; x"/\w,

The polynomials Pf(x'), z,, w, and 7z,{x,, wiy—wexy, eF>+<{x1, w,» are homo-
geneous of degree 1 with respect to the 2m+-1 variables w,, *x1=(x1s, ->*, X12m), Zo-
We apply Kimura’s integral formula to J(s) with respect to these variables in
the above order, then we have

J(s) = g2 (1)/(1—g~ @r*sa*sarsgramel)y
AT Hg 7 ToS)b o 07O Ty ()07 Ty}

By suitable variables exchanges, we can compute Ji,(s), J7,,(8), =+, J%215.(S),
J2,(s) as follows:

Joi®) = | | PR3 20l 12 3 dvod

x'edlt@em; Og), Tg. 200 g

— ﬁ (2i—1)/(1_q—(81+2i—1)),(1)/(1__q—(szﬂ))‘(l)/(l_q_.(hﬂ)) ,

L (8) = l]“s'S | Pf(x")| % 20] % wol Blws| #dx” dzodwod s
i zreAlt(@m-2; Og). 29, W woEO0 i

— q‘”'EI(ZZ'—].)/(]-"Q_(%*.N“I))
X(1)/A—=q=@2™)-(1)/(1—q~¢*D)-(1)/(A—q ), (j=2, -, 2m)
Ji(s) = g-ereaso

|PF(x) R 1wol 1<xy, wi) | Rdx"dwoed x,dw,

Sr’eAlt(Zm; Og) woslg. . wleOZKm
— q—(sl+33+s4) ﬁ (Zi_l)/(l_q—(sl-wi—l))
i=1
X(1)/(A—g=¢s™)-(1)(2m)/(1—g~ ¢4+ D)(1—q~ Ca*2m),
Therefore we have,
J(s) = g5 TT Qi—1)/(1—q~17*-0)

XD/ (L—g=02"0)-(1)/(1—g~¢s*D)- (1)/(L—g~ #+*D)
XIV/(].—“C]— (s4+2m))(l_q—(31+32+33+34+2m+1)) ,

where we put

1\7 — (l__q— (sl+s3+2m)><1_q‘(34+2m))+q—(sl+33+34+2m) _<2m>.(1__q—- (82-+-1)> X
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By and and the above result, we have our result. Q.E.D.
Let Z x(s) be the Igusa local zeta function of type (11):

X

e D)dsds,

Zx(s)= | 11 1PA(

where the domain of integral is defined by
x € Alt2m+1; Og), y = (Y1, Y2 ¥3) € M(Zm+1, 3; Ok),

then we have
6.3) Zx(s)= il;IBl(1)/(1“(1_(3"“))'(1)(2771)/(1—(]—<s4+1))(1__q—<s4+2m>)
Xzij;(zf—l)/(l—q‘(‘1+32+83+84+2i—1>>’

for m=1,2. We can prove it by Igusa’s Key lemma [[Igusa-4], §7] and
Kimura’s integral formula. However we can not prove it for m=3.
At the end of this paper, we shall give some conjectures:

(C-1) [6.3) holds for every m=3.
(C-2) The b-functions of prehomogeneous vector spaces of type (11) and [12) are
of the form: '

b(s) = cy(s+1)/7(s), y(s)= l;I I'(a;s+by).

Moreover the sets {a,s+b;} are given by

a1 {s;+27—1 A=i<m),s,+1, ss-+1, s,+1, s,+2m,
S1+Se+ss+si+2m+1},
(12)  {s1+1, se+1, ss+1, s4+1, si+2m, s;+5o+53+s.4+27—1
@2=j<m+1)}.
If the above conjectures (C-1) and (C-2) hold, then we can conclude that our

main theorem—Theorem 5.1 holds for every simple prehomogeneous vector
space satisfying the assumption (A). We shall give it as our last conjecture:

(C-3) For every simple prehomogeneous vector space (G, p, V) defined over a
p-adic number field K, satisfying that G is K-split and Y x is a single p(G)k-
orbit, the I'-factor is completely determined by the b-function.
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