J. Math. Soc. Japan
Vol. 49, No. 3, 1997

Asymptotic behavior of spectral functions of elliptic
operators with Holder continuous coefficients

By Yoichi MIYAZAKI

(Received June 22, 1995)

0. Introduction.

In the previous papers [9], [10], we improved the remainder estimate
in the asymptotic formula for the counting function N(¢) of a strongly elliptic
operator A of order 2m defined in a bounded domain £ of R”, whose coefficients
of top order are Holder continuous of exponent z. The notation will be given
in the next section.

Let 2m>n. We obtained

0.1 N@) = pa(@r2m40@m-012my a5 t— o

with 0=7/(r+1) when 0<7r<c. For the second-order operator we obtained
with 8=37/(27+3) when 0<z<3. In a simple case we obtained [0.I)] with
6=t when 0<z<1.

Considering U(t):r e **d,N(s) instead of N(#), we obtained

0.2) Ut) = . mptal@ 40 M) a5 — 40

when 0<z<1, and with the remainder term replaced with O@¢®-™/2™Jog t-1)
when 7=1.

In this paper we will try to obtain similar remainder estimates for the
asymptotic behavior of the spectral function e(?, x, y) of A.

It is known that

(0.3) elt, x, x) = pa(X)t**™+0(0(x) =0 12m) as t — oo

holds with any (0, t/(r+2)) when 0<r< o (Tsujimoto [15]; it is necessary
to assume the smoothness of coefficients of order 2m—1 when 7>>2), and that

holds with 6=1 when r=co (Tsujimoto and Briining [4]) under some
additional assumptions.

Improving the above result, we will obtain the asymptotic formula

(0.4) e(t, x, x) = /,tA(x)tnlzm-}—O( {5(x)"’+log+(5(x)t”2m)}t‘”"”’zm)

as t— oo
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with #=7/(74+1) when 0<{z< oo in the general case (Theorem B), and
(0.5) e(t, x, x) = pa(x)t"*"+0(@(x) "t 12m
+10g,BEEm) {14 §(x) HODIY ) as 1o oo

when 0<z<1 in a simple case (Theorem C).

Considering the asymptotic behavior of the heat kernel U(t, x, v)=
Sw e **d,e(s, x, y) instead of the spectral function, we will obtain the asymptotic
f(_):mula

U(t, X, .X) — cn.mﬂA(x)t—nlzm_*_O(t(rwz)/2m+6(x)—1t(1—~n)/2m)
as t— 40

when 0<7<1 (Theorem A), which suggests that the remainder estimates in
and should be improved.

For the proof of our main results we employ the resolvent kernel method
(see [2], [6]). In the case of the heat kernel we make use of Lemma 4.5, in
which the integral kernel is estimated by four kinds of operator norms.

In the case of the spectral function we need to estimate the resolvent
kernel more elaborately. The key lies in [Lemma 77, in which the integral
kernel of an operator involved with the resolvent kernels is estimated by the
Sobolev norms of the resolvent kernels. It is also important to use the infor-
mation on the spectral function of an operator which is defined in a larger
domain than £ and which approximates A.

1. Main theorems.

Let £ be a (not necessarily bounded) domain in the n-dimensional Euclidean
space R"™ with generic point x=(x,, ---, x,). We denote by a=(a,, -, a,) a
multi-index of length |a|=a;+ --- +a, and use the notation

D =D D2, Dy = —id/dx,, i=~/—1.

For an integer m=0 we denote by H™(2) the space of functions whose distri-
butional derivatives of order up to m belong to L) and we introduce in it
the usual norm
1/2
— a 2
lulma=(], 2 1Dwupdr)”.
H7T(2) denotes the closure of CF(£2) in H™(2).
For >0 we define ®7(2) as follows. Let r=k-+6, where k is an integer

and 0<6<1. @%(Q) is the space of functions u in £ such that D%u are
bounded and continuous for |a|<k and |Du(x)—D*u(y)|/|x—y|’ (x, yeR,
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x+#y) are bounded for |a|=k. We set

{1 ]o,0 = suplu(x)],
zef

ulo= 33, ID"ulogt+ T sup | D*u(x)— D*u(y)|

lai=k xkgﬁl!) [x——y]o

We consider a symmetric integro-differential sesquilinear form of order m:

Blu, v],= S Qas(x)D*uDFv d x

2 jal.1B1sm
and a closed subspace V of H™(2), and assume the following conditions.

(H0) 2m>n; and the boundary 02 of £ is minimally smooth (see [13].
(HD) mMHCVCTH™(Q).

(H2) There are constants C,=0 and 6>0 such that

Blu, u] Z o|ul% o—Collullt. o for any usV,
(H3) The coefficients a,5(x) (Ja|<m, |B|<m) are bounded on £, and for
some 7>>0 the coefficients of top order satisfy

a.sEB(L) (lal=|pl=m).

Let A be the self-adjoint operator associated with the variational triple
{B, V, L¥&)}, that is, u=V belongs to D(A), the domain of A, and Au=7f if

and only if Blu, v]=(f, v) is valid for any v<V. Here (,) denotes the inner
product in L*4).

We use the following notation,
Com = AR, 0, = B aa(en,
0 la|=|8l=m

wae) =@ de pa@) = s,

M, = by Ian",filo,!‘?’*"l ]aaﬂlt,l),

jar. TBIsm al=1B1=m
d(x) = min{dist(x, 02), 1} for x=0,
log.t = max{logt, 0} for ¢>0.
THEOREM A. Let 0<z<1. We assume the conditions (H0)-(H3). Then there
is a constant C depending only on n, m, 8, 7, Co, M, and 2 such that
(U, x, x)—Cn, mpra(x)t™20 | < CEETMIEML§(x)7IEAMI2m)
holds for x&Q and t>0.
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THEOREM B. Let 0<r<co. We assume the conditions (H0)-(H3). Then there
is a constant C independent of x and t such that

le(t, x, x)—pa(x)t™*™| < C{0(x)~? +log,(6(x)H/2m)} -0 /2m
holds with 8=1/(v+1) for x=8Q and t>0.
If we add the condition (H4) below, we can obtain a sharper result than

Theorem B.

(H4) The coefficients ang(x) (la|=|8|=m) can be written in the form
aa,g(x)::ba,gp(x)“*ﬁ with some real constants b,s and p(x)=(p.(x), ---,
pa(x)), where p;(x) is a function only of x; for each integer j=[1, n].

THEOREM C. Let 0<z<l. We assume the cogdz'tz‘ons (HO)-(H4). Then there
is a constant C depending only on n, m, 8, 7, Cy, M, and £ such that
le@, x, x)—pa(x)t"*™|
( CHO(x)"+log,(B(x)tremy} tn-orim (0 2<1)
éll Co(x)" {1+log,(@(x)t/em)ppm-nrzm - (z=1)

holds for x&Q and t>0, where

Mr— 2 lbzxﬁ"'*‘jzzjl‘pjlr,!)‘jf‘l 2 IaaBIO,Q-

lai=181=m aj+ipiLem

2. Preliminaries.

In this section we introduce the notation and some remarks required in the
proof of the main theorems.

REMARK 1. We use one and the same symbol C in order to denote
constants which may differ from each other. When we specify that such a
constant C is depending only on parameters, say, n and m, we denote it by
Cn,m.

REMARK 2. Following Maruo and Tanabe [6], we extend A to a bounded
linear operator on V to V*, where V* is the antidual of V, that is, the space
of continuous conjugate linear functionals on V. This extended operator, which
is again denoted by A, is defined by

Blu, v] = (Au, v> for any vel,

where ¢, stands for the duality between V* and V. Identifying L% ) with
its antidual, we may consider VC L¥Q)CV* algebraically and topologically,
and as is easily seen, V is a dense subspace of V* under this convention. The
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resolvent of A thus extended is a bounded linear operator on V* to V.

REMARK 3. According to Stein [13], there is an extension operator E:
BT () — B*(R™) such that |Eu|. zge=C, .|u|. o for any ues 37(£2). Hence by
Garding’s inequality there exXist @.p€ B (R") (|a|=|8|=m) and C,=Cy, n.s.c u,
such that
2.1) daﬂl!) = Qqp, ]éaﬁ | rn = Cn,5,z,Mz.,

(2.2) Gap(x)D*uDPudx = —g—llunfn,m—Clllu“%,Rn

for ue H™(R").

SR” lrrl=|2ﬁx=m

REMARK 4. In the following we assume that C,=0 in (H2) and therefore
that
Blu, u] =z 0|ul%. 0 for any ucV.

Under this assumption we do not lose any generality in the proof of the main
theorems.

We consider another set of a domain £,, a sesquilinear form

Bi[u, v] = S abﬁ(x)D“qux

Q; 1@ 181sm

and a closed subspace V, of H™(R,) satisfying the following.

(H0); £2cQ,; and the boundary of £, is minimally smooth.

(HL), HMLHCV,.CH™R,).

(H2), Bi[u, u]=0|lu|% o, holds for any u<V,, where 0 is the same constant
as in (H2).

(H3), The coefficients azg(x) (|a|<m, | 8| =m) are bounded.

Let A, be the operator associated with {B,, V,, L¥£,)}. Let 1€C\[0, o),
and set d(A)=dist(4, [0, =)). .Let G;=(A—A)"! be the resolvent of A with
kernel G(x, v), and let Gi=(A;—A) be the resolvent of A, with Kkernel

i(x, ).

To evaluate G:(x, y) in comparison with Gi(x, y) we will often use the

constants N, >0, N,>0 and »<(0, 1] satisfying for 0</7<m

—al < j-2m
(2.3) Ial§ﬂ|=jiaa‘5 aaﬂlo,!):Nﬁ’ ,
(2.4) lal§ﬂl=j(laaﬂlo,g+la},ﬁ]o,gl) < Nyi-om,

We take a function g= C7(R") satisfying

supp$ C {x: [x]<1}, ¢O)=1, 0= ¢(x)< 1.
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wWe fix x,=8 arbitrarily and set d=d(x,) and ¢(x)=@(0(x0)"'(x—x,)). Then we
find that supp ¢ £ and that

2.5) 9@ 6.0 < Co.nd™®" for |a] < m.

We simply write || |0 by || [|;, We denote by | |y the norm in a Hilbert
space X. We denote by ||T| x.r the norm of T as a bounded linear operator
on X to Y, and by X[T](x, v) the kernel of T if T is an integral operator.

3. Resolvent equation.

We shall derive the resolvent equation. For any f&V¥ we set w=GifeV..
We note that pweV,CV. Applying Leibniz’s formula for D*(pw) and DA(¢v),
we have for any veV

B <Alpw), vy = Sa Z,80sD(pw) D0 dx

Sa %aaﬁ(@l)aw-f—r%(:)Da-T¢D7‘w>5@ dx

Sa ;ﬂa;ﬁDawsp_ﬁﬁ_vdeFS” ;ﬁ(aaﬁ—aép)tpD“wmdx
+§9 aEﬁ Té(:)aaﬂD“'TchTwmdx

- SQ SaksDw W+SQ E(aaﬁ—aéﬂ)wD“wmdx
+SQ Z %’(?)aaﬂpa-@mu;ﬁﬁ_vdx

1,8 30 rorra e,

For 7 and j with 0</<m and 0<7<m we define the operator P;; on H($,)
to Hi(Q2)* by

3.2) Piw, vy = S (@ag—aig)oDw DPodx .

Q2 jay=i,181=j

In view of we have
3.3) [<Pyjw, v)| < Co, N ™ wlls, g,lIv]l5,
that is,

3.4) 1Pl mtcap-rtw* = Cp mNirt*7=2m,
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For 7, 7 and ! with 0<i<m, 0<j<m, 1=I<m and i+j+I<2m we define
the operator Q;;; on H¥(Q,) to H/(2)* by

3.5) {Qipw, vy = Sa %T (:>aaﬁD“"7¢D7wmdx

i7i=1, 1 B1=J
a>r la-71=1

-, = (P)ass D 70D D7y dx.

lal=t, i71=}

B>r iB-ri=1
In view of and we have
(3.6) KQuuw, )| £ Co, aNer™ 2" dHuwl o llvll4,
that is,
3.7 1Qinllai@p-ni@s < Co mNortH7tim2ng-t,

We set
SZ - GZQD——SDG}?;

which is a bounded linear operator on V¥ to V.

LemMma 3.1.
Si=— 3 GiPyGi— 2 GiQiuGih,
o=st=m 0stsm
0sjsm 0sjsm

1slsmin{m, 2m—-i-j}

PROOF. Since supp ¢C £, we have

3.8) &) Z,aksDw DFgv) dx—2Sgw, v)

= {(Ai—Aw, evivexr, = {f, eWraxr = <o f, V>,

where <, )ysp, stands for the duality between V¥ and V,. Combining [3.I),

and [38), we get
(A=D(pw) = ¢ f+ ;Z; Pijw+i§lQmw,

from which the lemma immediately follows. | 0

4. Estimates for the resolvent kernels—1.

In this section following Maruo and Tanabe [6], we shall estimate the
kernel of S; by four kinds of operator norms |Sillz2p-z2@, IS2llz2@ v and
S0 on.
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LEMMA 4.1. Let 0=<j<m. There is a constant C=C,, n o such that
lull; < CLAL O™ 2™ ((lu || 4| 212l o)
for ues H™() and (1] =1.
ProoOF. See [6]. O

LEMMA 4.2. There is a constant C=C; such that

1 2 1/2
1GallL2-r2 = —3(7)—, 1Gall 2y < Cld(lz)
z 1/2 2
1Galver2 = Cld(l)~> 1Gallysr = C L|i(2|)

PRrROOF. For any feL*2) we set u=G,;f. From the proof of [6, Lemma
3.1] we have

(4.1) lullo < d@7M fllo,
4.2) lullm < V267121221 fllo
(4.3) lullm < (A+V2)871 21 @A) fllve,
(4.4) lulld < v 2d@7 N fllvellwllm.
Combining and we get
4.5) el = @+v2)8721d@) (1 e
Then the lemma follows from 4.2), and [(4.5). 0
LEMMA 4.3. Let 0<j<m. There is a constant C=C, n s 0, Such that
163 1na, = C ALy fhe 16 g = R,
! d(Q) ! 1= d(4) !
for feL¥&)) and |A|=1.
PROOF. The lemma easily follows from and 4.2. O

LEMMA 4.4. There is a constant C=C, n 5 9 0, such that

2 2 3/2

1Sillzop-rzd = Cdi(zl)sza, 1Salle2p-v = Id(lz)zKldr
3/2 2

ISilli-cr < CfLKua,  ISullgr SCHAKig

for |A]|=Zmax {r®™, d~*™}, where
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KZd == N1+N2d"1|2[_”2m-

Proor. For any feL¥R,) we set u=S;f€V and [(u)=|ulln+4]1"2[ule.
Since |a—A]=@2|2])'d(A)(a+|4]) for a>0 [10, Lemma 2.6], we have

“6) |BLu, wl—iw, )] = 58 (BLu, w1411l
= 2O Gllulln+ 1211l = 2 min{d, 113w

|4]
On the other hand, we have
4.7) | BLu, ul—2A(u, w)| = [K(A—AS:f, wl
= 1§<Pijcif, u>+i§l<QmGif, ud| (by

42|

< Cig N2 G f lle ol el

+C 3 Nort 2 d 2 Gaf s ayllull; - (by

|2|1, /zm
d(A)

+C 2 Nzlll @m-i-j-bem| 2| d-n/em -1

= C2 N1 @motnIm— o fllo. 0, | A1 97™ ™ L (u)

i/2m
”d'm 1f o2, 21 9-™12m () (by Lemma 4.1, 4.3)
CAL N, N A1 £ o 0,02 )
d(l) 1 2 0, 1 ’
where we used [=1. Combining and we get
[2'3 /2

lullm+ 1412l = Cm

< C et Ned A1) £l

from which the first two inequalities of the lemma follow. The last two
inequalities are proved in the same way. rl

LEMMA 4.5. Let T be a bounded linear operator on V¥ to V. Then T has
a continuous integral kernel K(x, y) in X2, and there is a constant C=Cyp .m0 0,
such that

2 - - - 2
K(x, )| = CITIEAM I TGRS ™ | Tl Giam &mem | T garem?

for x€Q and ye ..
Furthermore |K(x, -)|m. o, #s a continuous function of x in L.
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PrOOF. Although in our case it does not always hold that 2=£, and
V=V, the existence and the continuity of K(x, y) are proved in the same way
as [1, Lemma 2.1], and the estimate for K(x, y) is derived in the same way as
[6, Lemma 3.2].

It remains to prove the continuity of [|K(x, )|l 2,. By virtue of (HO) there
are constants C=C, n.0 and 6=C,, »,>0 such that for uc H™(2) and x, x'8

lu()—u(x) = Clx—x"|%|ullm.

Then we have for any feL¥Q))

|| K =K', 0f0)dy| = ITF0—TF)]
= Clx—=x'|ITflin = Clx—x"I Tlsvliflivy,
which yields
[K(x, ) =K', vy < Cla—x' || Tty
This completes the proof. O

LEMMA 4.6. There is a constant C=Cyp n s 00, such that

A n/2m+1
1Gate, 1= Gitx, )] = CHAL U+ Ny 21

for x€8 and |A| Zmax {r-t™, é(x)"*"}.

PrROOF. Recalling the definition of ¢ and d, using:Lemma 414 and 4.5, and
setting x=7y=2x,, we obtain the lemma for x=x,. ]

5. Estimates for the heat kernels.

Let U,{t, x, y) be the heat kernel of A,.

LEMMA 5.1.  There is a constant C=C,, n.s 0.9, such that

(U, x, x)—U(t, x, x)| £ C(N;+N,s0(x) 1gH/2myg-ni2m

for x&8 and 0<t<min {r*™, o(x)*™}.

PrROOF. For ¢>0 we denote by A(a) the oriented curve from oo™ % to

Ooezziﬂ-

(5.1) Aa)={a: 10120, argi=2 or T}

U{Z: |Al=a, zr—garg zg?—}
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Noting that i€ A(™!) implies |A| =max {r~2™, §(x)~2™}, and using the formula

1
U(t; X, x) = ’ziﬂ'SA(t_l)e—tZGl(x, X)dl

and Lemma 4.6, we have
iU(t; X, x)—Ul(t; X, x)]

1
- AQ{Z?SA(PUQ_“ {Ga(x, x)—Gi(x, x)}d2
= SAU"‘) ]e'tl l Cll l 71/2m+1d(1)’2(1\]1+N25(x>"‘ I 2' —1/2m) l le
=

CS:Q_le—t8/2sn/2m—l(N1+N25(x)—ls—1/2m>ds

+CS:’:(t-l)n/zm—l(Nl+N25(x)_1t1/2m)t_1d0
< C(N;+N,o(x) 1griemyg-nizm,
which is the desired result. _
LEMMA 5.2. There is a constant C=C, n.5 0 Such that

U@, x, x)| = Ct=ri=n
for xQ and t>0.

PROOF., From and 4.5 we have

5.2) 1Ga(x, M| < Co s
. X,y = n,.m. 08, 2 d(l) .
Then the lemma is derived from [(5.2) in the same way as Lemma 5 1. O

6. Proof of Theorem A.

We take a function ¢g= C3(R™) satisfying
supp 6C {1 1x1 <1, | gndx=1, | rep(edr aszlai<o

(see for the existence of ¢) and set ¢.(x)=e "d(e*x) for &¢>0. In this
section we do not need the last condition for ¢ since 0<z<1. It will be
essentially used in Section 9. We define a sesquilinear form B, by

B.Tu, v) = 055D U DFodx, a%s=ordas.

R" taj=|Bi1=m
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It is easily seen that for |a|=|Bl=m

(6.1) labs—aaglorn < Crsc u,€5,

(6.2) [D7aGglo.rn < Cop5,c, a0, ™0 107710

(see [9], [10]). Then in view of there is €,=Cn m.s,.. %, (0, 1] such that
if 0<e<e,

(6.3) B.Ju, u] = g—]]u”?,hgn—clﬂujjg,gn for uc H™(R™).

For e<(0, ¢,) let A, be the operator associated with {B.+C,, H™R™, LY R™)},
let Gi=(A.—2)"* with kernel G4, y), and let U.(¢, x, y) be the heat kernel of
A.. Then A, is written in the form of

A5: 2 azsx(x)Da)

la1s2m
where the coefficients a% satisfy

(6.4) [D7a% 0, rn S Comor,o,e, i €™0 77 2mr1a1mIT,

LEMMA 6.1. Let 0<e<e, There are constants C=C, .5 and 0'=Chu.ms .
such that

|Gi(x, y)| < ClA|**™texp(—0'|A|V*™ |x—y])
for x, yeR" and 1< |2 <2d(A).
PRrROOF. See [10]. 0

For sake of simplicity of notation we set

E (¢, )%, a) = exﬁ{-—a(ﬂt_lziy/mm_n}

for xeR"*, t>0 and a>0.

LEMMA 6.2. Let 0<e<eo,. There are constants C=C, ns.n. and &'=
Cr.m.s.c n. Such that

[Uct, x, y)| £ Ct"*me®E (¢, x—y, §')
for x, yeR™ and t>0.

PrROOF. We set

lx__ylzm/(Zm—l)

o= U @m-D y @ =-
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where 7>0 will be specified later. Let A(a) be the curve defined in (5.1). It
is easily checked that if 1= A4(a) then 1< |1—+2|<2d(A—+/2) and |A—+V 2|
>|4|/4. Hence gives

[Gi-vz(x, )| = ClA["*" exp(—0’[A]*™ | x—y])

with appropriate constants C=C, n,; and 6’=Cp m.s. x,. Then noting that
|x—yla'*m=p'*"p, we have

le=™VEU(t, x, y)| = | K[eTtUeVD](x, y)|
— __!‘_ -tdne
- ’ 2t SA(a)e GX—VZ(X’ y)dz

= Qg{re"””Cs"“"“l exp(—a’|x—y|s'?™)ds

1
Tor

< Cexp(—0'|x—y]| allm)gwsn/m—xe—u/zds
a

[estcarm-texp(—o'|x—ylama do

n/4

+ Ct~n/2m(7]p)nlzm exp(np__alvllzmp)
é Ct—n/Zm exp(_5/771/2mp)+ Ctvn/Zm eXp((27] ___5/7]1/2m)p) .

Taking 7 so that 2p=27'0"9'*" or p=(9"/4*™/ ™Y, we get the lemma. O

We set
aix, )= 3 at(xf" (O=hks2m),

adx, § = atnlx, )= 3 aks(0)§?.
From we have
(6.5) a.x, §) = (0/3)|&]*™ for xeR" and é=R".

LEMMA 6.3. Let 0<e<e,. For a multi-index o there are constants C=
Cn,m,a.ﬁ,:.MT and 5/:Cn,m,5,r,Mr such that

lS ei(x‘y)esae_“lg(x'f)ds S Ct'(n+|a|)/2mEm<t x...y 5’)
Rn = 2 )

for x, yeR™ and t>0.
Proor. See [5]. O

LEMMA 6.4. Let a>—1, b>—1and ' >0. Thereis a constant C=C, n.q.5.5
such that
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[(t—symmsesnimmaags(  Bot—s, x—z, 8)En(s, 2=, 9)dz
< Ctrigmraddrip (4 x—y, 6'/2)
for x, yeR" and t>0.

ProOOF. See [5]. O
LEMMA 6.5. Let 0<e<e, There is a constant C=Cyp m.s.. u, Such that
[Ue(t, X, X)—Cn, mpa (X)) < CEETmIER

for x=8 and 0<t<e*™,

PrOOF. Since the proof is similar to that of [11, Proposition 7.1], we give
only the outline of the proof. From the theory of pseudo-differential operators
and the theory of semigroups we have

66 U x 0= H, 5 »-{ds|_Ut—s, 5, DR, 2, 9)dz,

where

Hy(t, x, y) = (27r)‘"SRnei(“ng—tas(x.E)dS,

Rt x, y) = (Zn)‘"gkne“"‘y’s gwgffagagm_,,pg fertas 0} d¢
with the sum taken over 0<k<2m, 0=Z|a|<2m—%k and k+|a|=l. From
and we have
(6.7) [R(t, x, ¥)| = Clz% grmk-laip-izm—k-lab/2mpr (f, x—7y, 6')
< Cte-mim-ip (@, x—y, d').
Combining Lemma 6.2, 6.4, and we get the lemma. 0

We are now ready to prove Consider first the case of 0<t<
min{0(x)?™, 2™}. Let us apply with 2,=R", V.=H™R"), A,=A.,
Ni=Cpn m.s.c3,6, No=Crn m.s . and r=e. Then we have

U@, x, x)=U, x, x)| £ C(eft™ ™2™ 4-0(x) 1t A-m/2m)
when 0<t<e?™ and 0<e<s, This combined with gives
U@, x, X)—Cn, m, pa(x)t™ 2"
< UG, x, x)=Ut, x, x)|+1Ut, x, X)—Cn, mpra (x)t7 2™ |

Fen,ml pra(X)—pa(x) g2
_g C(ert—nlzm+5(x>—1t(1-n)/2m_l_t(r—n)/Zm)'l,
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where we used |p4,(X)—pa(x)|<Ce (see [9]). Setting e=t*", we get the
desired estimate.

When {=min{d(x)*™, ¢2™}, we easily obtain the desired estimate from
Thus we complete the proof of Theorem A.

7. Estimates for the resolvent kernels—2.

In order to derive a sharper estimate for G;(x, v)—Gji(x, y) than that in
Lemma 4.6 we shall evaluate |G-, y)l;.0, and |Gi(-, »)|; for each y&£ and
each integer j=[0, m] by using the information on the asymptotic behavior of
the spectral function e,(t, x, v) of A,. To this end, we suppose (HS) below in
addition to (H0)-(H3) and (HO0),~(H3),.

(HS) There are constants ¢<(0, 1] and N,;>0 such that for x&£, and t=0

{ el(t; x, x) —_ #Al(x>tn/2m+rl(t’ x)
I7:(t, x)| < Ntn-or/em,

We note that e,(¢, x, x)=0 for ¢t<J because of (H2),.

LEMMA 7.1. Suppose (i) a=0 and k>a-+1, or (i) —1<a<l and k=2.
Then we have

7.1) r s* 417

[N < C AL
o|s— R4S = Cak gipi=i-

PrROOF. Case (i). We denote by [ the left hand side of [7.1). Set A=t+7u.
First let t<0. Since |s—2A|?=s?+|4|% we have

o0 sa co Sa
< —— — at+l-k T i @
I = So (sz_l_ulz)k/z ds 1'” SO (Sz+1>k/2d‘5‘
Next let t>>0. Since ||uis+t|<|ul|s|+1t|<]41(]s|+1), we have

{7 st g UnisEtul
- SO {(s—t)°++u}*/? ds = S—t/m || (s> 1)*/2 ds

o sl
= d(l)k_l _w(52+1)k/2

Therefore follows.
Case (ii). We set A=|4|e*® with 0<f#<2zx. Then by complex integration

we have
_ mlAl*sin(m—0)a
sin @ sin(wa)

from which follows. ]

2
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LEMMA 7.2. Let 0<j<m. There is a constant C=C,, m. 5.0 0 Such that

“G}(-, y)ll,-,gl = CAlul(f—m)/zm
for ye8,, where

u‘n/m

H‘ (n-a)/2m+1 172
d(A) )

Ar= ( dQ)?

+Ns

Proor. By virtue of we have only to prove the lemma when
7=0 or j=m.
Since GX(x, ¥)=G5(y, x), we have

(7.2) 1G5 2, = SQIGE(% x)Gi(x, y)dx = K[GGH(y, ).

By the definition of A; we have for f& L*$,)

(7.3) OGS . 2, = BiLGAS, Gif]
= (A\Gif, Gif)rzap = (GiAxGﬁf, ez -

Because of Gi(x, y)=G(y, x) and we find that [|Gi(+, lm.o, is a
continuous function of y in £, and that X [G1A,G1] is continuous in 2,%X9,.
Let ¢. be the function defined in Section 6. Then setting f=¢.(-—y) in (7.3)
for fixed y=®,, and letting ¢ —0, we get

(7.4) 1GA(-, .0, £ 0 K[GLAGIG, ).

In view of [(7.2)and we find that the proof of the lemma is reduced to the
estimate for X[G}A{G](y, y) with a=0 or a=1.

Using the spectral resolution of A,, integration by parts, Lemma 711 and
(HS), we have

oo

KIG3A:GH0, 3) = |2 mdaets, 3, 3)

o|s—

sa.
= 50 ‘l‘g:;—'z-l—zds(”‘{l(y)snlzm_{._rl(s} y))

n o Sn/2m+a.—1 o a 280'
[ I - . (m-ocy/em
< g, I ds+So<ls—2|2+|s—Zl3)Nss s
< CAj|A]*.
This completes the proof. O

LEMMA 7.3. Let 0<j<m. There is a constant C=C, m.5 0 such that the
following hold.
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(i) VCDAP™CH/(Q) and

lull; < Cllullpcairzmy  for ue D(AIP™),
(i) H/(Qy*CD(A"*™*CV* and

llpirzmys < Cllullgige for ue H/(Q)*.

REMARK 5. When we treat the fractional power of A, we consider A as
a self-adjoint operator in L2(2) (not the extended operator on V* to V).
Proor. (i) The assertion is clear when j=0. It is known that
{Mm®=Vcme

Ollulln < Blu, ul = [AV?ullf < [ulbave,

(7.5)

which is the assertion for j=m.
Let 0<j<m. Since A=0, the complex interpolation method gives

{ D(A*m) = [L¥8), D(AY®)]j/m

“u”ELz(Q).D(AIIZ)]j/m é (6—”2+1)"u”D(Ajl2m) .

(7.6)

From we have

amn { [L*(R2), D(AY*)]ym C [L*2), H™(2)]j/m
Muellezz, ™ @iy, = 077 ™ U lc22@ . a1, -

By virtue of (H0) we have

{ (L), H™()]ym = H/(Q)
(7.8)

lully < Com.alluliczz, am1;,,, -
jlm

Combining 7.6), [7.7) and [7.8), and noting V=D(AY®)CD(A’"*™), we get the
assertion for 0<j<m.
(ii) easily follows from (i). O

LEMMA 7.4. Let 05a<l,

(1) NA%ulo=lullpusry =@ 2+ A%l for usD(A®).
(i) (@ *+DNA ulo=lullpcass* <A~ %ulls for ue L*LQ).

PrOOF. Since ||u|pusy=|ullo+||A*ul, and A=4d, we easily get (i).
Setting v=A"*f for any f=L*f), we have
|(w, V)| _ [(A™%u, )]

7.9 U ayx = SU TS = su '
(7.9) ot e Wloues — s TAFla+ /1o
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Since (i) implies
Ifle = 1A f o+l flle = (@ ¢+DI fllo,

(i) immediately follows from [7.9). 0
LEMMA 7.5. For 0=<a=<1 we have
2|4
[A%Gallz @2 = Ti(ll)_ .

PROOF. From the spectral theory we have

sa
S—.

1

= sup
0

21Al\e 1 201
é(d<,1)) AN = 4w

e 1
1AGall 22 = Ssl;(?‘ t s—2 l ls—A|'e

which is the desired result. OdJ

LEMMA 7.6. Let 0=7<m and 0=k<m. There is a constant C=C, s such
that

(k+j)/2m
IIG/ZHD(Ajlzm)*—»D(A"/2m) = CB‘L*"" -

a@

ProOOF. From and 7.5 we have for any ue L¥£)
G 2ullparrzmy < @2+ DA G aul,
S (@ EDIAC NG @2 I AT ™l
S (ORI 1)2| 2] FEDERGQ) IO A 1) ||| padremyx .
Since L*{) is dense in D(A’/*™)* we get the lemma. O

LEMMA 7.7. Let 0=i=<m, 0=j=<m and 0<k<m. Let P be a bounded linear
operator on H¥R,) to H/(2)*. Then the following estimates hold.

(i) There is a constant C=C, n.5 0 such that for ye,

IKLG PG, e

< CllGalipwdrzmys.parrzmy | Plutcop - wi s |GI(+, )i 0,.
(ii) For ‘xEQ and ye £,
| KLG2PG(x, )| = 1Ga(x, sl Platap-rn! @G-, Ml 0.
Proor. By Lemma 713 we have
(7.10) 1G2PGifx = ClIGallpcairrmys.pariemy | Platcgy.nian*|Gif 1.0, .
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Since (Gw, g)=<w, G;g)> holds for any weV* and any g L*({), we have
for any f, g L¥Q)
(GaPGyf, 8) =<PGif, Gig>,

and therefore

(7.11) [(GaPGif, @) = |Plutp-ai @ lGiflli o lGigl;.

Then the lemma follows from (7.10) and (7.11) by setting f=¢.(- —y) and
g=¢,-—x) for fixed x, y and letting ¢ —0 (see the proof of [7.4)). O

LEMMA 7.8. Let 0sk=m. There is a constant C=Cp, m,s.0 00, Such that
1Ga(x, e = CAzJa(x)|R] - /2m
for x&8 and || Zmax {r—*™, d(x)"*"}, where

1]
d(d)

Ill 1-1/2m

jl(x) = 1+N1

PrROOF. Let |A|zmax{r—*", d-*"}. From 7.2, 7.6 and we
have
(7.12) [KLG2PyGRIC, D)l

= ClGallpcatrzmys.parizmy | Pyjll it cop - nd |G-, i, 2,
lll (k+j)/2m

=CTam

|Z| (k+my/2m

< CN = o

1\]17,114-_7’—-27)1-AZ ]2| (i-my/2m

In the same way we have

!21 (k+f)/2m

(7.13) I KLG2QinGRI(-, Mlx = C*‘”a—a‘)“““Nﬁ’Hﬁl—md"lAz [A]@morem

['u (k+m-1)/em

g CNZAZ—d(Z)d )

where we used /=1. It is easily seen that

(7.14) lGi(-, Ml = CAz|2] E=mrem

by using Lemma 712 and [2.5). Combining Lemma 31, [7.12), (7.13) and
we have

14

6 +N,

| 2! l—l,lZTn)

IG (-, 3)pls < CA |2 ¢~ (14N, i
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Recalling the definition of ¢ and d, setting y=x, and noting Gz, y)=
Gi(y, x), we obtain the lemma for x=x,. O
LEMMA 7.9. There is a constant C=Cy m 5.6, 0 0, Such that
|Ga(x, x)—Gi(x, x)] = C(N1+No0(x)™* ] 712 ™)A Ja(x)
for x&82 and || Zmax {r ™, 9(x) 2"},

ProoF. Let |A|=max{r " d~*"}. Combining Lemma 3.1, 7.7, 7.2, 7.8,
and [3.7), we have

1Ga(x, V(3 —p(x)Gi(x, )|
= DI K[GaPyGI(x, NI+ 3 1 K[GaQinGi(x, 3]
= Z1GaCx, Dl Pislatop-mi@+IGiC, Mo,
+,2 162 sl Qiallat @p-ui @G, ¥l 0,
< B CAi()1A U-myamN pititmA, | 2] (-m)/2m
+,3, CAL() 1] Umm/am N piriti=eamd=lp, | 3| o /em
< C(N1+Nod=1|2]712™)A% Ja(x),

where we used /=1. Recalling the definition of ¢ and d, and setting x=y=x,,
we get the lemma for x=ux,. I

8. Estimates for the spectral functions.
LEMMA 8.1. Let 0<0=1. There is a constant C=Cyp, n.s.0.0 9, Such that
8.1 le(t, x, x)—eit, x, x)| £ C(0(x) 0t /2m . Npm-arizm)
+ Ct™2™ (N, + Noo(x) 1t~ 12™) Ky (t, x)
for x&8 and t=zmax{r—*™, o(x)"*"}, where
Ky, x) = 14Nyt @=2/2m)(14-N,t%/2m 4 Ny)+log(6(x)t/2™) .
PrROOF. We take A so that Re A=t and 0<Im A<t. Then we see that
8.2) t< |2l <42, d@A)=Ima.
Let L(A) be the oriented curve from 2 to A:
L) = {z:Rez=t, dADZ|Imz| <t} U {z: |z]=+ 2t Rez<t}.

Setting
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I =dD)IGYx, x)|, L=dQR)|Gailx, x)—Gix, x)|,

1
L= |5, . 1Gux, —Gitx, x)hdz |,

and using Pleijel’s formula (see [2])

‘e(t, X, x)———z-l;lrSLmG,(x, x)dz\ <L 2d(AD))Gax, x|,
we have
8.3) le(t, x, x)—ei(t, x, x)| =< 2d(D|Ga(x, )| +2d(D|Gix, x)|+1,

< 4L +21,+1,.

By integration by parts we have
1 . 1
Gl(xy x) = "771‘dsel(s’ x, x)
0o s—A

= Cu. mf‘Al("’X“l)n/m‘1+Sj](lls(-s—’,lj)c2> ds.

This combined with and (HS) gives
(8.4) I < Cd@)) 2| Mm=1 Ny | 2] - iem),

Noting that zeL(1) implies /2 |1|=|z|=t=max{r ?™, §(x)2"}, and using
and the inequality

|z|@ { Ca k| Al*d)** (k>1)
[, orldzl =
r d(z) Colal*{l+log(12]/d)}  (k=1),

where a=0, we have

8.5) 21,41, < C(N,-+N,o( )—1|]|-1/2m)<|1]n/zm_i_NMz_mji
8. 2 3 = 1 20(X 3 FIo) )
IZ[ I2[1—1I2‘m
X (LN, 4 +N25(x)d(/’l))

+C(Ny-+Neb(x)7H 2] 71 Em) | 2| e {14-Tog (1 21/ d ()} .

Combining [8.2), (8.3}, [8.4) and [8.5), and setting A=t+t(t"/*™d(x))"? or d()=
1(#?™(x))~%, we obtain the lemma. O

LEMMA 8.2. Let 0<0=1. Instead of (HS) we assume that there is a con-
stant b>0 such that

et, x, x) = pa,(X)t—=b)Y*™  for x&f, and t=R,

where t,=max{t, 0}. Then there is a constant C=Cyp n s 0 0, Such that
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le(ty x} x)_el(t: x} x)‘
< Co(x)0tm=01m 4 Ceram(N, +Nod(x) 712 Ko (1, %)
for x&8 and t=max {r *™, o(x)™*", 2b}, where

Ko(t, x) = 14+ N, 012 4 N,+log(8(x)t1/*™) .

PROOF. Let us again evaluate |Gi(-, ¥)l; ¢, and Gi(x, x) under the condi-
tion |A]=2b.

Using Lemma 711 and the inequalities d(A—b)=d(2), |2|/2<|A—b]<£312]/2,
we have for a=0 or a=1

m, 78_?__ _—h\n/2m\ — m_.,_(;g_ji)L, n/2m
Jo jog(s—prm = | P s
oo Sd+ba njom |2__b|n/2m+a-1+ball__bln/zm.—l
gSols—(z—b)|’=d(s =C dG—b)
]'zlnlzmi-a—l
= C—"W—.

Hence as for ||Gi(-, Y0, Lemma 7.2 remains valid if we reset A=
(|22 d(2)~1)ve,
As for Gi(x, x), we have

|Gi(x, x)| < Cla|™/*mt,

since Gi(x, £)=Cp, npa,(x)(b—A"*"2,
Therefore the proof of remains valid if we replace N, with 0
and add the condition #=2b. O

9. Proof of Theorem B.

We are now ready to prove [Theorem B. Let A. be the operator defined in
Section 6, and let e.(f, x, y) be the spectral function of A.. We note that A,
satisfies the following conditions :

(i) the ellipticity condition [(6.5);

(ii) the estimate for G4(x, y) as in [Lemma 6.1;

(i) |Da%lo.rn=Cn mr.5,c. u 21711 (see [6.4).

According to Tsujimoto [17], these conditions guarantee that there is a constant
C, independent of x, f and ¢ such that for x&R™ and =0

{ es(t) X, x)= #A5<x)tn/2m+re(tr x)

Ire(ty x)l g Czs—lt(n—l)lzm_
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Consider first the case of t>max{0(x)™*™, ;2™ ¢*Y}, Let us apply
8.1 with leRn’ Vi=H™R"), A=A, Nl:Cn.m.é,z.M.,sry N2=Cn.m,5,r.M,’ Ny=
Coe™!, r=¢%, 0=1 and 0=1/(r+1). We note that e=t?b/>™ implies et?/?"=1,
t=g M@t >p-2m and 0<e<e,. Hence setting e=t?@»/?™ we have
[e(t: X, x)—.—#A(x)tnlzml
< let, x, x)—e(t, x, x)[+17e@, 2)1 4| pa (2™ — py(x)t™2™ |
é c(a(x>—0t(n—0)/2m+E-1t(n—1)/2m)
+Ctn/2m(st+5(x)-lt—1/2m)
X {(L4-e71@-bremy(1 4g7tl/2m) 4 log(8(x )t 2™}
+C2€—1t(n—1)/2m+certn/2m
< C{o(x)~7 +log(@(x)tt/am)} n=trizm
which is the desired estimate.

Consider next the case of 0<t=max{d(x)™*", &*™*V}  Using [5.2), we
have

e, x, 1) _ S de(s, x, x) _ Sﬁéfﬁ&,ﬁﬂ
2t — Jo s+t — Jo s+t

- G—l(x’ x) é Ct~1+n/2m’

which yields
(9.1) 0= et x, x) < Ctrizm,

Then the desired estimate easily follows from [9.1). Thus we complete the
proof of Theorem B.

10. Proof of Theorem C.

In the same way as in Remark 3, we find that there exist p;= 87 (R")
(1<7<n) and C3=Cn, m.s,. &, Such that p; is a function only of x; for each j
and

ﬁjl!):pj: |§j|1,R"§ Cn,é,t.ilry
for o 33 DB P D% D dx 2 il n— Colllt,

for us H™(R™),
where H(x)=(pr(x), -+, Pa(x)).

We set pi(x)=@*p;(x), where ¢. was defined in Section 6. We define L¢,
B.[u, v] and a%pg(x) by
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Ls(x, D) = (L{(x’ D): Tty L:l(x} D))’

1
Li(x, D) = pj(x)D,+7Dj;b§(x) ,

B.u, v] = S bagLé(x, D)*u Lé(x, D)Pvdx
R jai=|B1=m
:S > af,,g(x)D"umdx.
R™ |a|. |BIsm
It is seen that
Iafxﬂ—'baﬁﬁaJrﬁlo,Rn = Cn,m.ﬁ,t,b?rer (|a|= |/8[:m),

ladglo rn < Comog o, €072 1R (Ja|<m, |Bl=m)

(see [10]). Using the interpolation inequality, we find that there are e,=
Cn,m,&,uﬂre(oy 1] and C4:Cn,m,5,z,ilz.>0 such that if 0<8<€0

Bulw, w12 Sl s Cos ™ ulian for ucH (R,

Let A. be the operator associated with {B.+C. %", H™(R"), L} R")}. By
virtue of [11, Lemma 8.1] the spectral function of A, is given by

ee(t, x, x) = pa (x)t—Ces?™)7*™ for x&R" and teR.

Consider first the case of #>max{d(x)*™, e;?™, (2C,)*™/7}. Let us apply
With leRn, V1:H7IL(R’IZ), A1:A5, N1=Cn,m,5,r,ﬂtar; Nz———cn,m.ﬁ,z,ﬂﬂ
r=¢, b=C,e"?™ and f@=7. We note that e=t"V2™ implies t=r "™, t=2C™ ™
=2b and 0<<e<e, Hence setting ¢=¢"'*™, we have

let, x, x)— pa(x)tr/>m |
= le(t, x, x)—e (t, x, x) |+ |(pa (x)—pa(x))(t—Ce™?™) 2™ |
| () (1 C e emyziem)|
é Ca(x)—-rt(n—r)/Zm_i__ctn/Zm(s'r_I_a(x)—lt—l/Zm)
><(1>+_srtr/Zm+10g(5(x)t1/2m))+Csrtn/2m+Ctn/2mt—18r—2m
g Ca(x)——z't(n—r)/Zm_{_Ctn/Zm(lt—r/Zm+5(x)-1t—l/2m)(l+log(5(x)t1/2m))’
from which we get the desired estimate.

When 0<t<max{d(x)*™, ;™ (2C,)*™/7}, the desired estimate easily follows
from [9.1). Thus we complete the proof of Theorem C.
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