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1. Introduction.

In [3], Chen and Verstraelen treated the classification of (locally) symmetric
spaces admitting a hypersurface with a particular property. Also, in [6], Koiso
treated similar problem among the class of Einstein manifolds.

In this paper we shall treat a similar problem to the above among normal
homogeneous spaces which are known as a generalization of Riemannian sym-
metric spaces of compact type. More precisely, our main purpose is to prove
Theorem A which is a generalization of the following fact (see Chen and Na-

gano [2]).

FacT 1.1. Spheres and hyperbolic spaces are the only simply connected,
irreducible symmetric spaces admitting a totally geodesic hypersurface.

THEOREM A. Let G be a compact ssmple Lie group and K a closed subgroup
of G. If a normal homogeneous space G/K admits a totally geodesic hypersurface,
then G/K has (positive) constant sectional curvature.

We shall prove some properties of root systems of simple Lie algebras in
Section 3. In Section 4 we shall give a description of f (the Lie algebra of K)
in terms of a root system of g (the Lie algebra of G). Particularly, in the case
rk(G)=rk(K)+1, the forms of root spaces with respect to a maximal abelian
subalgebra of { is determined. Using some results in and in Sections 3, 4
we shall prove Theorem A in Sections 7, 8.

Particularly, in the case rk(G)=rk(K), the same result as in Theorem A is
derived from a weaker hypothesis.

THEOREM B. Let G be a compact simple Lie group and K a closed subgroup
of G with rk(G)=rk(K). If there exists a curvature invariant hyperplane V in a
tangent space of the normal space G/K, then G/K has constant sectional curvature.

The above theorem will be proved in section 5. In section 9, we shall give

Recently, Tsukuda has improved Theorem A.
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a counterexample of Theorem B in the case rk(G)>rk(K).

2. Preliminaries.

Let g be a complex semisimple Lie algebra and § a Cartan subalgebra of
g. Put /=dimc}). Let A be the set of nonzero roots of g with respect to §) and
@ the Killing form of g. Since g is semisimple, @ is nondegenerate. Then we
can define H,ef)(asA) by O(H,, H)=a(H) for all HE).

As is well-known, there exist the root vectors {E,: a<A} such that for
all @, €A and for all He),

(2.1) O(Eq, E.o)=1, [Ea E_o] = H,,
[H, E,] =a(H)E,, [E., Eﬂ] = Na,ﬂEa+/3:

where N, g are real numbers satisfying the relation

2.2) Nag=—N-u 5.

Moreover the following holds.

@.3) Nas=Nsy=Npo if atftr=0
2.4) (Vo9 = 142 (a1,

where {f+na: p<n=gq} is the a-series containing 8. Set ag, .,=2a(Hp)/a(H,),
then

(2.5) ag.a = —(p+q)
(2.6) 0<a,pa5.,<3 if H, is not parallel to Hp

(see Helgason for details).
Next, we recall some properties of naturally reductive homogeneous spaces.
Let (M, g)=G/K be a naturally reductive homogeneous space with a Lie
group G and a compact subgroup K of G. Then there exists an Ad(K)-in-
variant decomposition g=f+p of the Lie algebra g of G (f is the Lie algebra of
K) such that for X, Y, Z<p the following holds.

2.7) X, Y], 2>+, [X, Z],> =0

Here <, > denotes the inner product on p induced by g under the canonical
identification of p with the tangent space T,M(o={K}). Then <, > is Ad(K)-
invariant and [f, p]Cp. For Weg we write W=W+W, to identify components
under the decomposition.

As is well-known, 7.(H)=t(exptx)(0) (x&p) is the geodesic of (M, g) such
that 7-(0)=o and yz(0)=x where 7(h) denotes the left transformation of G/K in-
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duced by h&G. Furthermore, the curvature tensor R at o is given by

2.8) RO, V)Z = (X, ¥1o 2045 (01X, Y 20,

P IX IV, 20 LY, OX, 23],

(cf. Kobayashi and Nomizu [5]).

In particular, let G/K be a normal homogeneous space, that is, G/K is a
reductive homogeneous space equipped with a G-invariant metric induced by a
biinvariant metric {, > of compact Lie group G. More precisely, let g=1+p be
the orthogonal decomposition with respect to {, >. Then, since {, > is biin-
variant, we have for X, Y, Zep

<|:X7 Y:Ib’ Z>+<Y; [X, Z:lp> == O

Hence normal homogeneous spaces are naturally reductive. From now on, we
use the same symbol <, > for the biinvariant metric <, ) restricted to p. Then
for X, Yp, we have from

R, V)X, ¥ = 10X, Y1+ ILX, Y.

Therefore we obtain
2.9 (RX, VX, YDP=0[X,Y]=0.

In the remaining part of this section we give some lemmas which are con-
cerned with the totally geodesic hypersurfaces of naturally reductive homoge-
neous spaces (see [7]).

As before, let G/K be a naturally reductive homogeneous space. Define
an isometry e ?x(Xep) of (p, <, >) as follows:

oo i YA
evxry = 5 o)
where ¢x(Y)=(1/2)[X, Y],. Then r(exptX)s«(e ?:x(Y)) is a parallel vector field
along the geodesic z(exptX)(0). (see [7].)
For vep, we say that v satisfies condition (T-G) if there exists a totally
geodesic hypersurface tangent to the hyperplane y* in p at 0. Then the follow-
ing lemmas hold.

LEMMA 2.1. A wvector v satisfies condition (T-G) if and only if for any X&
V(V=y') the following is satisfied .

R(X, e=?x(V))e ?x(v) = {0}
LEMMA 2.2. If v satisfies condition (T-G), then Ad(k)v)(k€K) and e ?x(y)
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(Xeyt) satisfy condition (T-G).
In particular, if v satisfies condition (T-G), then the following holds.

(2.10) RV, V)vcV

3. Simple root systems.

In this section we shall give some properties of the root systems of complex
simple Lie algebras for later use (cf. [4].

Let g be a simple Lie algebra over C and ), A the same as in section 2.
We call g is of type I (resp. of type II) if it is a Lie algebra associated with
one of the following types:

Ay, Dy, Eg, Eq, Eg (resp. B, Cy, F))
Then the following holds.

LEMMA 3.1. Let {B+na: p<n=gq} be the a-series containing B (a, BEA).
Then :

1) 0=qg—p=1if g is of type I

(2) 0=q—p=<2if g is of type IL

(3 0=¢—p=3if g is of type G..

PROOF. By using descriptions of the simple root systems in [4, p. 462-p.
4747, we prove the lemma,

(1) In this case, for any a, 8 = A(a#=*p) we can easily check a(H,)=
‘B(Hﬁ). Hence we get ag .=a. s Then by (2.6), we get |ag.l =0 or L
Therefore we obtain ¢—p < 1. (If ¢g—p=2, {then [ag,pa.a=p—¢. This con-
tradicts the above.) We have thus proved (1).

(2) In this case, for any a, f=A(a#+p) we can see

3.1) BlHg) 49 o L

a(Hy) 2°
From if g—p=3, then we get

Gipa,a = —3.
Then it follows from (2.6) that
A84pp,a = —3, » Ao, pepa = —1.
Therefore we have
BHs) _ 3.
a(H,)

This contradicts and finishes the proof of (2).
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Finally (3) is obvious from (2.6). We have thus proved the lemma. O

Let a;, @, and a; in A such that a,+ +a,. We consider the case where
(Hay—Ha,,) is parallel to (H, —H,,). Set

Hp—H,, = c(Hy—H,) (c & R ¢ +#0),

that is,

(3.2) Hyy = (1—c)H, +cH,,.

Hence

(3.3 as(Ha,) = (1—c)a,(Hy )+ cPay(H, ) +2c(1—c)a(Hy,) .

If g is of type I, then it follows from that
c(1—6) 2=, ap) = 0.

From (1) of Lemma 3.1, we have |a,, .,|<1. Therefore we have c=1 and
as=a, from [3.2). We have thus the following lemma.

LEMMA 3.2. Let g be of type I and a, BEA. If y#+a, £B(yEA), then
(Hy—H,) is not parallel to (H,— Hp).

Next, we shall check the root systems of type II and of type G..

TypE II.
Put a;=a;(H,,) (i=1, 2, 3). By for all a=A, there is a positive num-
ber e such that a(H,)=e or 2¢. Then the following eight cases are possible:

(a,, @y, as) =1): (e, e, ¢) (2): (2e, e, &) (3): (e, 2e, ¢)

4): (e, e, 2¢) (5): (2e, 2e, e) (6): (2e, e, 2e)
(7): (e, 2e, 2¢) (8): (2¢, 2e, 2¢)

(1) From [3.3), we get
2¢(1—c){e—a(H,,)} = 0.
Therefore we obtain ¢=1 or a,(H,,)=e. If a;(H,,)=e, then

4¢°
Qay, aylag ey = ~ 5 = 4.
e
Hence we conclude c¢=1, i.e. a;=a..
(2) Since
_ 2ai(Hay)?
2

Qap,aylay a; = and Qo0 € Z,

the possible values of a,(H,,) are 0 and *e. If a,(H,,)=0, then from (3.3
we get ¢c=1 or 1/3. Therefore
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2antay
o

Ay — Ay O

However, by making use of the description of the root systems in [4, p. 462-
p. 473], we can see that (2a;+a3)/3 is not a root.

If a,(H,,)=e, then as=a,.

If a;(H,,)=—e, then

as =a@; OF —p—.

However, we can see that (4a,-+a,)/5is not a root. Consequently, in this case
we have a;=a,.
(3) As in (2), we can check

al(Haz) =0 or +Le.

If a;(H,,)=0, then from we have 3c¢?—2¢=0. hence ¢=2/3(c¢#0). Then
as=(a,+2a;)/3. But it is not a root.

If a;(H,,)=e, then ¢=0. This contradicts the assumption.

If a)(H,,)=—e, then c=4/5, that is, a;=(a,+4a,)/5. But it is not a root.

(4) In this case we have a;(H,,)=0 or *=(e/2). However, for each a,(H,,),
we see that (1—c)a;+ca, is not a root.

(5) In this case we see a;(H,,)=0 or *e.

If a,(H,,)==e, then (1—c)a,+ca, is not a root.

If ai(He.,)=0, then we have ¢=1/2, i.e. a;=(a;+a,)/2. Hence we get

3.4) az = ﬂ%—ﬁ‘ with Aoy ay = 0, -—Zl— =1.
2

(6) Also in this case, we get a;(H,,)=0 or *e.
If a;(H,,)=0 or —e, then we can see that (1—c)a;+ca, is not a root. If
a(H.,)=e, then we obtain as=2a;—a,. Thus we have

(3.5 as = 2a,—a; With aa ey =2, @aya =1.

(7) In this case we get a,(H,,)=0 or *e.
If a,(H,,)=0 or —e, then (1—c)a;+ca, is not a root.
If ai(Hq,)=e, then we find that a;=2a,—a,. Consequently we get

(3.6) ay=2a,—ay With Qa4 =1, gy a, =2.

(8) In this case we see that a\(H,,)=0 or +e. Then for any a,(H,,), we
have ¢(1—c¢)=0. Hence as=a;.

REMARK. Put &,=as, #,:=a, and a;=a, in {3.4). Then we obtain

as =2a,—a, with az :,=1, az, s =2.

L
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Thus, from [3.4), [3.5) and [3.6), we have the following.

LEMMA 3.3. Let g be of type 1. If ay, a,, asSA(,# L a,, ay# ta,, a;+
+a,) satisfy (3.2), then

{ay, a, ast = H{a, B, 7} with Gup=1, apg,=2
where y=2a—f.

TYPE G,.
Under the same notation as in type I, we can assume that a;=e¢ or 3e
(7=1, 2, 3). Then we examine the following eight cases:

(a1, as, az) =(e, ¢, ), (Be, e, e), (e 3¢, o),
(e, ¢, 3e), (3e, 3¢, e), (3e, e, 3o),
(e, 3e, 3e), (3e, 3e, 3e).

By the same computation as in type I, we have the following lemma.

LEMMA 3.4. Let g be of type Goo If @y, s, asSA@,# Ly, as T as, as+
+a,) satisfy (3.2), then {ai, a,, as} is one of the following two cases.

1) e, B, 2a—B} with a. =1, ap .=1.

@) {a, B, 3a—28} with a, g=1, ag =3.

4. Description of (g, ).

Let G/K be a normal homogeneous space with a compact simple Lie group
G and a closed subgroup K of G. Let g and f be the Lie algebras of G and
K, respectively. Then g is isomorphic to a compact real form

Qu = '\/rlf)R—*_ 2 Rf1a+ ERBII
acl acl

of the complexification g, of g, where A,=FE,—FE_,, Ba=+v —1(E.+FE_,) and
hr=2acaRH, (see [4]). Therefore we consider g, as the Lie algebra g of G.
Moreover, since any maximal abelian subalgebra of g is conjugate to +/—1Yp,
we suppose that a maximal abelian subalgebra of ¥ is contained in v/ —19z.

Generally, the dimension of a maximal abelian subalgebra of g is called the
rank of G (denoted by rk(G)).

Let <, > be a biinvariant metric of G. Since G is simple, then {, ) is
unique up to a scalar factor by Schur’s lemma. Thus we put {, >=—@(, )(®
is the Killing form).

Let g.(a=A) be a subspace of g spanned by A, and B,. We note that for
a, pEA
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4.1) [8a) 851 = 8a+pDBa-5.
Moreover the following is immediately given by [2.1):
[Aa, Apl = Na, gAusp—Na,-pgAu-p
4.2) [Ae, Bg]l = Na,gBassg+Na, _pBa-p
[Ba, Bpl = —Ng pAasp—Na -gAa-p
We define subsets A¢, A, and A’ of A as follows:
Ar={acsA: g, CH
Ay={acsA: g, C P}
A" = AN(AUA)
Then the following holds.
LEMMA 4.1. If rk(G)=rk(K), then

acE A or asl,
for each a=A.

PrROOF. See Berger [1]. O

Next, we consider the case rk(G)>rk(K). From the above assumption, we
get the orthogonal decomposition v —1hr=~/—15,B+ —1h, with ~/—15,C¥ and

Let @lacsA) be the restriction of @ to v/ —1%,. For X, X’<g,, we call that
the couple (X, X’) belongs to a (denoted by (X, X)ea) if [V —1H, X]=a(H)X’
and [V —1H, X']=—a(H)X for any H&hz. Obviously, if (X, X’)Ea, then
(X’, X)e —a. For (X, X)ea and v—1He+/—1Y,, we have

[vV=1H, X] = [vV=1H, Xi+X,]
a(HNX' = a(H)X}+a(H)X,.

(4.3) [V —1H, X¢] = a(H)X{
4.4) [v—1H, X,] = a(H)X}.
Similarly we have

(4.5) [vV—1H, X{] = —a(H)X;
(4.6) [vV—1H, X}] = —a(H)X,.

Then the following lemma holds (cf. [L]).
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LEMMA 4.2. If (X, X')€a, then X has the following form.
Xe= 2 pa1Xa2 where:

i€l (a)

1) Al@)={A€A: 1=a} ; ) p1=0; (3) there exist X} such that (X, XDEi; @)
Siea piA(H)=0 for all HEY,.

From and we have the following.
LEMMA 4.3. If (X, X')Ea, then
[Xb Xé] e \/:Ibl-

Under the same notation as in we define a subspace g(a) of g
as follows:

gla)= @D ga.
Asd(a)
pz#o

Particularly, in the case gla)=g.Dgs for some SA’, the following holds.

LEMMA 4.4. If g(a)=g.Dgap, then
a—B &A

PROOF. Take Xi=p X, +psXs and Xi=p Xo+psXs(papp#0) with X,=
Aq, Xo=B,, Xs=aAs+bBy and Xp=aBs—bAs(a®+b*=1). Then

[X:, X1 =2+ —1(p2H,+ p3Hp)
+papp([Ae, aBg—bAg]l+[aAs+bBgs, Bal)
=27 —1(pEHo+p5Hg)+2p2ppNa, -5(aBaegt+bAg-p).

It follows from that N, -5 = 0. This completes the proof of the
lemma. O

From Lemmas 3.2, B.3 and B.4, we can determine the form of g(a) in the
case rk(G)=rk(K)+1.

PROPOSITION 4.5. Suppose rk(G)=rk(K)+1 and asAd’. Then

(1) If g is of type I, then g(a)=g.Dgp for some BSA'.

(2) If g is of type I, then g(a) has one of the following two forms.

(@) g.Dgp for some BEA’.

(b)  8.D8sDgy, where {a, B, y} coincides with {a,, as, as} in Lemma 3.3.

(3) If g is type Gs, then g(a) has one of the following four forms.

(@) @.Dgp for some BEA'.

(b) 8aDgs,D8gs, where {a, i, Bo} coincides with (1) in Lemma 3.4.

(©) 84Dgr,D8r,, where {a, 11, r2} coincides with (2) in Lemma 3.4.

(@) 9a®961®962@963, where {a, 0., 05, 0s} = {ai, @y, 2a;—a,, 2a;,—a,} with
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Qayay=0ay a,=1.

PROOF. If g.,Dga.,C8(a), then (a;—a,)(h,)=0. Therefore we have for any
v/ —1He+/—1%, that

(4.7) (V—=1(Hz—H,,), V—1H) = (as—as)(H) = 0.

Since v/ —19, 1 ~/—18, and dim+/—1%,=1, (4.7) gives
‘\/—;_152 = R'V/:i(Hal_Ha2>-

Next, suppose g(@)=gq,D P8a,. From the above argument, (H, —H.,,)
(#=2) must be parallel to (H,,—H,,). Therefore by [Lemma 3.2 and Lemma 3.3,
the statements (1) and (2) in the proposition are obvious.

Similarly, if g is of type G, and m=3, the g(a) has one of the three cases
(a), (b) and (c) in (3).

Finally, we check the case m=4. As in section 3, we can set a;=a;(H,,)
=¢ or 3e for some ¢>0(1<:<m). If {a;, a, as} is of type (1) in Lemma 34
(set as=2a;,—a,), then we can easily see that a,=a,=e¢ and a,;=3e¢. Similarly,
if {a,, as, as} is of type (2) in then we have a,=e¢ and a,=a;=3e.
Therefore by we get for ;=4

{ 3e, if {a,, a,, as} is of type (1)
a; =
e, it {ay, as, as} is of type (2).
Now, we assume that {a;, a,, as} is of type (1). Since {a,, a,, a;} satisfies the
relation we obtain a;=2a,—a, or 2a;—a, by Lemma 3 4. Hence we have
a;=20,—oa(a; Fas).

Next, we assume that {a;, a,, as} is type (2). Then by Lemma 3.4 we can

put as=3a;—2a,. Therefore a;=Q2as+a;)/3. Since {a;, a,, a,} satisfies
implies that a;=Qas+a,)/3 (a;#a,). Hence we have

ay = 2a,—a;, as = 2a;,—a,

With @a,, 2;=@4;«,=1. We have thus proved the proposition. O

5. rk(G) = rk(K)

We devote this section to prove Theorem B.
Let G be a compact simple Lie group and K a closed subgroup of G. Then
the following lemma plays an important part to prove the theorem.

LEMMA 5.1. Let G/K be a normal homogeneous space as in section 2. If
there exists a subspace V of p satisfying (1) [V, p],CV and (2) [§, VICV, then
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V=1{0} or V=p.

ProoOF. Put n=V@H[V, V].. We shall show that n is an ideal of g.
Let v, v, weV and x, y, z&V*. Then if follows from and assump-
tion (1) that
{[u, x]p, vy = —<[u, U]p» x> =0.

Therefore we get
(5.1) v, v+l, = {0}.
Since <, > is Ad(K)-invariant, we have
(5.2) i, Vvilc v+
from assumption (2). Therefore and give

[z, [y, ]l [y, [w, x]Je V",
Similarly, and assumption (2) give

Lw, [x, 11 =[u, [x, y1,]+Lu, [x, y]] € IDV.

On the other hand, it follows from and that

Lu, [x, y1]=—[x, [y, ul1-[y, [u, x]] € V*.
Hence

(5.3 [V, [V+ V1] = {0}.
Similarly we have
(5.4) (v [V, V1= {0}.
For Act, we get

(A, [u, x11= —[u, [x, AJ1-[x, (A, ull € [V, V4],
that is,

(5.5 kL, [V, Vi3 v, V4.
From [5.4), we obtain
Llu, x], v], w> = —<[[u, x], w], v>

=<[[x, w], ul, v>
= —[[x, wl, v], u>
= L[y, x], w], u>
= —([[v, ], u], w>
= —[[u, x], v], w>.
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Therefore we get

(5.6) [Lv, v+, V1= {0}.
Similarly
6.7) (v, v+1, v+1= {0}.

It follows from [5.5), [5.6) and [56.7) that [V, V*] is an ideal of g contained in
f. Since g is simple, it follows that [V, V*+]={0}.
For A<t, we have

[A, [u; U][] = [A: [u7 U]]—-’[A, [uy v]p]
= —[u, [v, AI1-[v, [4, u]]1—[A4, (¥, v],]
en

from the assumptions. -For this reason, we conclude that n is an ideal of g
and V={0} or p. O

COROLLARY 5.2. If a subspace V={x&p: [x, p1,={0}} is not zero, then V
=p and the pair (g, ¥) is symmetric.

ProoF. For A€t x=V and usp, we have

[[4, x], ul, = —[[x, ul, Aly,—[[u, A], x],
= —[[x, ul, Al,=0.
Hence [f, V]CV. Then from Lemma 51, we see V=p. Consequently [, p]C
f and (g, ¥) is symmetric. O
Now, we prove the theorem.

Throughout the remaining part of this section, we suppose that a hyper-

plane V of p satisfies and y(%0) is a vector of p perpendicular to V.

Then R (x, v)x is parallel to v for x&V. Note that Ad{(E)V)(keK) satisfies
(2.10).

At first, we suppose veg, for some a<A,. Considering the isotropy re-

presentation Ad(exp+/—1fg), we may assume that v is parallel to B, (then A,
eV).

For each BeA,(B+#+a), a vector R(A,, Ba.)As is parallel to By from [2.10).
It follows from and that

(5.8) R(Ba, Aa)Ba = —[Ba, [Ba, Ad]]

= 2a(H,)A,.
Then gives

CR(Aa4, Ba)Ap, Bad = <R(Ba, Aa)Ba, Ap> = 0.
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Hence we obtain R(A,, B,)Az=0, i.e.
1 1
(5.9)  [[Ae Bal, A,B]—'Z[Aa; [Ba, AB]p]p+ZEBa: [Aa, Aglply = 0.

From [Corollary 5.2, we consider the case [g., ggl,# {0}. For this reason, we
check the following three cases:

) atped, a—B&A4,
@) a—BEd, at+BeA,
3) axpea,

(1) a+BeEi, a—B &A,.
By computing the coefficient of By in (5.9), we have

1
2‘B(Ha) = _Z”Na. ﬁNa,-»(aﬁS) .

Therefore by and we get

26(Hy) = — 5 (N g = —L8 720 (a1,

where {8+na: p<n=<g} is the a-series containing 8. Then it follows from

that

(5.10) ptq= Ll;-@-.

Since a+p<4,, we get ¢g=1. Furthermore, by lemma 3.1, we obtain 1<¢<3
(p<0). Hence the only pair (p, ¢) satisfying the equation is (—1, 2).

By the same computation as in (1), we get

26(H,) = 5 (Ne, ",

Therefore
(5.11) pt+qg= *ﬁlz:;q)«
In this case we have —3<p<-—1. Consequently implies
(b, )= (=2, 1).
3 atpeA,.

Once more, by making use of the same method as in the above, we have
1
ptg =7 lad—p)+pl+q),

that is, p+¢=0. Therefore, by Lemma 3.1, we have (p, ¢)=(—1,1). Then
the a-series containing a+§ is
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{—a = (a+p)—2a, = (a+B)—pB, B+a}

However, from the above argument, this implies R(A4,, Bs)As.p#0(a+BEA,).
This contradicts (5.9).
We have thus the following lemma.

LEMMA 5.3. Suppose that v € g.(a € 4,) and v* satisfies (2.10). Then each
BEA, (B+ Lt a) satisfies one of the following conditions.

(1) [8as 8p1C 1L

(2) The a-series containing B is {f—a, B, B+a, B+2a} with a+-BEA, and
‘B—’CIEA[.

(3) The a-series containing B is {f—2a, 8—a, B, B+a} with a+BEA; and
B—ac<A,.

REMARK 5.4. Put y=—8 in (3) of Lemma 5/3. Then, since gz=g;, (3) is
reduced to (2). Moreover, from [Lemma 3.1, the Lie algebra g is necessary of
type G. in case (2).

Next, we examine the case vEg,,®D - Dga,, (m=2). Take a, fla++p) out
of {ay, -+, an} and suppose A, is perpendicular to v as in the case m=1.
Moreover, using the isotropy representation Ad(exptv/—1H)(~/—1H | ~/—1H,,
HeY,), we assume Bgly. Since R(Aq, Bu)A«=2a(H,)B, (as [5.8)), we have

(5.12) R(Aa, v)As = 2a(Hy)y.

Then the coefficient of Az in R(A,, Ap)A, must be equal to 2a(H,). In fact,
if not, then
20+ or 2a—BE {ay, -, an}

because R(3., 85)8.C85P82q+5. However, it is obvious that [gs, 82451 = {0}.
Hence R(Bg, v)Bg=0. This contradicts (substitute By for A,).

Let {8+na: p<n=<g} be the a-series containing B as before. Then 0=
q—p=<3 (p=<0, ¢=0) by Lemma 3.1. We shall compute the coefficient ¢5 of Ag
in R(A., Ag)A,. Since

R(da ApAc=~[As (e, Ag11— ¢ [Ae [Aer AgTyTy,
it follows from that
( (Ng, p)*+(Ng,-p)? (@B &E A
(No g Nl (kB Ay a—fl e A)
cp=| AWNu ) WNa-,  (atBet Ay a—petd)

TN+ N9, (@ A0,
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Hence, we can easily verify that the pair (p, g) satisfying the equation cg=
2a(H,) is one of the following:

(i) (b, 9=(—1,1) with a+B€A,.

(ii) (p, 9=(=2, 1) with a+pB€A;, a—BEA,.

(iii) (p, @)=(—1, 2) with a+p€4,, a—B<A..

REMARK 5.5. We do not distinguish between (ii) and (iii) for the reason
mentioned in Remark 5.4. Moreover, the case (2) in is reduced to
the case (ii) in the above. In fact, take 9=Ad(expg.-g)(v) instead of v in (2),
then

Prg. and Diragg.

LEMMA 5.6. In the case (ii), a normal homogeneous space G/K (G is neces-
sarily of type G.) has constant sectional curvature.

PrOOF. By a similar argument under [5.12), we see that §—2a<A;. Using
the same method as in the above, we see that the B-series containing a is
{a—28, a—B, a, a-+B}.

Let {r:., 7o} be the set of simple roots of type G, with the heighest root
27.4-3r.. Then, by a straightforward computation, it can be checked that
{a, B} is one of the following:

+{re, =172}, Eire, 11H2ret,  A{ritre 71427}

Therefore we have
P = 67, D87, +7,D8r 421,

for any {a, B}. Then, as is well-known, G/K has constant sectional curvature

(cf. [1D. O

From we may assume that for any a, & {ay, -, an}l(vEg,,D
DG, the a-series containing B8 is {f—a, B, f+a} with axf€A,. Then

LEMMA 5.7. For a, B, yEl{ay, -+, an} with a# =+ B, B#+7y and y+ +a, the
following equations hold.

(513) NT,a+ﬁ = NT,—(a+,B) = Nr,a—ﬂ = NT,-—a+;9 =0

Proor. As before, we assume A,, Bgly. Set v, = aA;+bB;(a, bER).

Since
aiiaf € A!(i:'&]‘} Z.: ] = ly Tty m)r
it follows that

(5.14) R(A., Bg)aAy+bBy) = [[Aa, Bgl, aAy+bB;]
- [Na,ﬂBa+,B+Na,—ﬁBa—ﬁ, dAr"]‘bBr]
= Na.ﬁNa+ﬂ.T(—bAa+ﬂ+T+aBa+ﬂ+T>
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_‘Na, ﬂNcH-B, —T(bAa+ﬁ—T+aBa+ﬂ-—T)
+Na, —-ﬁNa-—ﬁ.7(_bAa—ﬁ+T+aBa—ﬁ+T)
_“Na, —ﬁNa—ﬁ. —T(bAa—,B—T"l_aBa-—ﬁ—T)-

In particular, we note that R(A,, Bg)(aA;+bBy)EGarpsrD8a-pxr
For o {a,, -+, an}(@#+a, =5, £7), We see that

R(Aq, Bp)aA;+bBy) LR(Aqa, Bglgs.

(For example, if a+8+yr=a—pB+0, then 6—y=28¢&A. This contradicts 6—y€&
Ay). Hence R(A., Bg)aA;+bBy)=0 by or equivalently by R(V, V)y=0.
Consequently, is derived from (5.14). O

Obviously, an equation N, =0 is equivalent to a relation a-+8¢&A. There-
fore is equivalent to the following :

(5.15) at+BrrEA.

Put v=apAs+asAatZa;4a pXa; Xa;E8q,). Then it follows from that
[8axpy Dajra pXa;1={0}. Therefore it is easy to see that

ve = Ad(exptBa.p)(v)
= 2 ﬁX,,i—l—cosNa,ﬁt-(a,gA,g—l—aaBa)

ag#a,
-—sinN,,, pt'(aaAp—apBa) .

Let #, be a real number such that apcosN, gty = a,SinN, gl,. Then v, is
perpendicular to gg. Thus, by induction, we can see that for some a4, there
exists a vector =g, such that 9§ satisfies [2.10). Therefore, for each Be€A,,
one of (1), (2) and (3) of [Lemma 5.3 holds.

If there is B4, satisfying (2) (or (3)) in then Remark 5.5 and
imply that G/K has constant sectional curvature. Thus we may
assume that (1) of holds for any BeA,. Then, by
the pair (g, ¥) is symmetric and G/K has constant sectional curvature.

We have thus proved Theorem B.

6. Some Lemmas.

In this section we give some lemmas which help us to prove the theorem.

From now on, we assume that rk(G)>rk(K), unless otherwise stated. Let
v be a vector in p such that it satifies condition (T-G).

If y1 ~/—1%, and vLg.(asA’), then there exists v/ —1He +/—18, such that
[+ —1H, v]#0. Therefore by Lemma 2.2, there exists $&p such that ¥ satisfies
condition (T-G) and 94 +/—1%,. (Take Ad(expt[X, v]s) (v) or e ?if%»I(y))
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Similarly, if vigs for some BeA, with S(h.)+0, then there exists f&p such
that it satisfies condition (T-G) and ¥+ +/—1§,. Hence we have the following.

LEMMA 6.1. If there is a vector v in p satisfying condition (T-G), then there
exists D satisfying condition (T-G) such that
Pxr+/—1% or v P g,.

acdy
a(hg)=0

From the above lemma, we suppose vt v/ —1h, or vE@, awp=08a. In the
case where vt +/—1h;, we put v,v=iy,=+/—1H,. Then the following holds.

LEMMA 6.2. If ~/—1H,(aEA,) isnot perpendicular to ~/—1H,, then ~/—1H,
is parallel to ~/—1H,.

PrOOF. Even if v g,, there is a number ¢ such that e¥t4a(y) X g,. There-
fore we may assume vyt g, and vy, is parallel to B,.
For any +~/—1H & +/—1%, which is perpendicular to +/—1H,, we get

(R(~/—1H, v)~/—1H, ~/—1Hyy = {R(V—1H, ~/—1H)~/—1H, v}
=0,
Hence R(—1H, v)~/—1H=0 from [2.10). Therefore
R(~/=1H, B))v/—1H=0,
i.e. a(H)=0. This implies that (~/—1H,), is parallel to ~/—1H, Put
(v —1H,), = ¢~/ —1H,.

Then
(6.1) (V—=1H,—c~/ —1H,, ~—1Hy) = a(Hy)—cl|v/ —1H,|?
= 0.
Since
R(Aay Ba)Aa = —‘[Am [Aa; Ba]f]"—'zll;[Am [Am Ba]p]b
= 2w/, —cHy A+ 1H, 4,
. 3ca(H,)
= {2a(H)— =57} B,
and

R(Aw N =1H)Ay = — 1 [As, [As /=1H},

Hy ,
= ) 1,
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it follows that
6.2) a(Hy) = ca(H,).
From and we obtain a(H,)=c?|+/—1H,|? that is,
IV —1H)* = (v —1Ha)|I".
As a result, a vector ~/—1H, is parallel to ~/—1H,. O

LEMMA 6.3. If v is not perpendicular to g, for some a€A, satisfying a(h,)
=0, then for any BEA’ and for any yEA, satisfying y(hs) #0, the following holds.

(84, 8(B)] = {0} and [ga, g;] = {0}

ProoF. At first, we note that v&@j, 1¢,-082. Let X be a vector in g,
such that it is perpendicular to v. For some Y eg,, if [V, v] is not zero, then
by the same method as in the early part of this section, we see that there
exists 9 satisfying condition (T-G) such that 94 +/—1f, and Prg,. Since
(84, v/ —19.]1=1{0}, we get

RX, 9X=0 (X eg, X19).
However, this contradicts the equation
R(X, 91g,)X = 2a(H)9, .

Therefore we obtain [V, v]=0 for any Y «g,.

If [g4, gr1# {0}, then there is a root d(0+# +a) in A, such that v.rg; and
(87, 821 418r, 85]. Therefore by a root 0 is one of {+2y+a}. Then for
any 0, we have [gs;, g.]={0}. However, by the argument under we can
see that this contradicts the assumption v_tg, and vt gs.

Similarly we can get [g., g(8)]=1{0}. We have thus proved the lemma. [

In the following sections we shall prove Theorem A.

7. Type I, II.

In this section we suppose that g is not of type G, and rk(G)>rk(K).

At first, we consider the case vt ~/—19),. Let a be a root in A’ such that
g(a), £v. Put g(a)=8a, D DGa,, (m=2) and v v=p,=+/—1H, as in the previous
section. Then for any +—1H & +/—18, with ~/—1H 1 +/—1H, we have
R(~/—1H, y)a/—1H=0, that is,

(7.1) [v—1H, y]=0.

If vt8s, and vhg,, (1=<i#j=<m), then [(7.I] gives a;(H)=a;j(H)=0. Hence
x/jl(Hai—Haj) is parallel to +/—1H,. Then if follows from Lemmas 3.2
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that g{a) has one of the following two forms:

(D gsDerDes, P - Pes,,-, With v 1g5,¢=1, ---, m—2). Moreover v/ —1H,
is parallel to v/ —1(Hz—H,).

(2) 95P8:D3sDGu,D -+ DBupy_, With v 18e,G=1, ---, m=3), ap =1, a;, 5=
2 and 0=2p—y. Moreover ~/—1H, is parallel to ~/—1(Hz—H,).

We shall examine g(a), more precisely.

Throughout this section, we fix the notation as follows:

8(a) = 8a,D - DBarp
3@ =RXBRX with X= 5p.Xep X

Il

iglpaiXt’li
where X,,=a,,Aa;+ba;Be; and Xo,=a4;Ba;—ba;Ac,(ad,+b%,=1).

THE CASE (1).
If m=3, then for +~/—1H & +/—1}, perpendicular to +/—1H,, we have

[V —1H, gla)hd C gs,.

However, this contradicts the assumption d,A’.
Next, we suppose m=4. For Uct, we set v,=Ad(exptU)(»v). Then for any
small t= R, we see that

vetgs and v, Lg;.

Therefore, by the same argument as in the above, we see that v 1g; (=1, ---,
m—2) and (v),v=i, is parallel to ~/—1H, Hence we have

(7.2) [t v]lgs,(G=1, -, m—2).
Since
X' = 3 paXi €1,

a vector Y =p;,X5,—ps, X5, is in p. We assume that v is perpendicular to Y.
Take He Y, so that (6;—d,)(H)+# 0 and ~/—1H | +~/—1H, Then, since [y,
v/ —1H1=0, we get

0=R(~—1H, Y)
= ([v/=1H, Y, 1+ 5 [V =1H, YT, sly— 3 [V =1H, [¥, 3],

= S [IV=1H, Y], 1+ 5 [[V=1H, V1, o],

+ 3 IVEIH, 1Y, )= [, 1Y, V=IHT,
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= 5LV, Y1y s34 [0, V3, Vo1H )4 L [VE1H, 17, 534,

Therefore, since [+ —1H, ~/—1H,]=0, it follows that
(7.3) 0=<R(~/—1H,Y), ~/—1Hy

1 — .
= (- LV=IH, Y1, o], V1H,).
On the other hand, we have

[v—1H, Y]l= paiéj(H)ng—pajﬁi(H)Xai
and

K[V=1H, Y], X> = 2ps,ps(8,—0.)(H) # 0.
Therefore we get
{vV—=1H,, [[vV/—1H, Y]y, v]>

= vV —1H,, [X, (psXo—paXp)+ T

= {ppXa—paXp, [V —1H, X1)

= c{ppXo—DaXp, pa(H) X0 ppB(H)XE)

= 2¢pappla—B)(H,). (c is some non zero constant.)
Since +~/—1H, is parallel to ~/—1(H,—Hg), we obtain

{~/—=1H,, [[vV/—1H, Y], vI> #+ 0.
However, this contradicts [7.3) and implies m=2, i.e.
7.4 g(a) = g. D as with some B <A’
Now, we may assume
gla)y = RX G RX’

with X = A,4pXs for some p(# 0). Furthermore we suppose that vy, is
parallel to pB,—Xs(=p). Then Lemma 43 implies that

(7.5) [Aa, Xpl+[Xp, Bal=10
(7.6) v =1H,+p*v/—1Hp 1.
Since +/—1(H,—Hp)ep, (1.6) gives

1.7 catpPep =0

where co=a(H,—Hp) and cg=B(H,—Hp).
It follows from [7.5), [7.6) and [7.7) that
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R(pAa—Xg, pBa—Xp)pAa—Xp)

= —[pA,—Xp, 24/ —1(p? a‘%‘Hﬁ)r]*%[ﬁAa‘Xﬁ, 2/ —1(p*H,+Hpg)yl,

= 2V =LHot pHy), pAe—X5T+ 5 (0 DV ~L(Ho—Hy), pAc—X5l,
= 2pa(H,+p*Hp)B,—2B(H,+ p*Hp) X}
+ P peaBacaXahe
Hence gives
7.8) R(pAe—X s, pBa—X3)(pAc—By)
= [2atH - prtp + PV gy,
Similarly we have

(7.9) R(pA—Xp, vV —1(H—Hp))(pAa—Xp)

= {oe,+ PN 1,y

+ _;)L(pz[/la, X%]—[Xﬂ, B.]).

Since [, p] C p, if a+p<=A, then a+p A,. Then by a vector
~/—1H,,s is perpendicular to ~/—1(H,—Hjg). This implies v1g.,5. For this
reason, regardless of whether a+B8<A or a+B¢A, we have from and
that

co = a(H,+p?Hs),

that is,

(7.10) a(Hg) = 0.

Therefore it follows from [7.7) and [7.10) that
a(H,)

7.11 o . @)

(7.11) ) a(H

THE CASE (2).
In this case g is necessarily of type Il
Let

8(a) =85 D e DD g, D D Gup-s
with 0=28—7, as,=1 and a; 3=2. As in case (1), for each w; there exists

v —1He v/ —14(~—1H | ~/—1H,) such that w,(H)#0. At first we prove the
following lemma.
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LEMMA 7.1. If m=4, then
w(Hy) =0  forall i(i=1,--,m—=3).

PrROOF. We note that S(Hg—H;)=0, i.e. v/ —1Hz&t.
By making use of the description of the simple root systems in [4, p. 462-

p. 4741, we prove the lemma.
If g is of type B,({=2), then A can be identified with

(7.12) {+e;(1<i<)); +e;te;(1=5i+5<0)}

where {e,, ---, e;} is an orthonomal basis of (R, <, >,). Moreover there exists
a constant ¢(#0) such that

(7.13) cla, By = a(Hp)

for all @, B=A. Since ag =1 and a; 3=2, we have 28(Hp)=y(H,;). Hence, by
we may assume f=e; for some i(1<i</). Then {y, 6} is necessarily
equal to {e;—e;, e;+e¢;} for some j.

Since v —1Hz<t, we have

<‘By ﬂ>0 = <‘8, wk>0

for each k(1Zk<m—3). Therefore w,=e;+e, or e;—e, for some n(n+i, j, k).
Then
wr(Hg—Hy) = clwr, B—7D0
=0,
This proves the lemma in case where g is of type B,.

By the same way as in the above, we can prove the lemma for the other
cases. [

By a hypothesis that +/—1}, is a maximal abelian subalgebra of %, it is
easy to see that S—yeA, Then we assume wigy_,#0(if vig5_,=0, then take
e~?t48-1(y) instead of v) and Vgg-7 is parallel to Xg_;. Then (4) of Lemma 4.2
gives

ﬁrZT(Hﬁ”Hr)+p625(Hﬁ_Hr) =0.
Therefore, since a; p=2 and ag =1, we obtain p,*=p;%. Thus we may sup-
pose py=ps=1. Then
X;—Xs, X;—Xsep

2 ’ ’ 2 ’
XT—}-X,)—TD—};X‘H, Xr-f—Xa-—*j;‘; BED.

Since vl1g8,,(¢=1, -, m—3), then vy & gsPa,Pgs. If v1gs then considering
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Ad (expt+/—1Hg)(v), we can assume g, is parallel to (X;—X;). Then since
R(Xp_y, vV—1(Hg—H)X}_;

- —T}IEX%_T, [(Xp-r, v/ —1(Hs—Hp)]]

— Hf/;j(%éf:g 2 VI(Hs—Hy)

+=0,

we see that [Xj3-,, X;—X;5](=gp) is not zero. Hence we get

e "t XB-1(v) kg

for small teR. (e ?t¥B-7(v),v=ys, is parallel to +/—1(Hz—H,)). For this reason,
we suppose vt gs and vy, is parallel to Xj. Set

Y = psXa,— b, Xs( L).
Then implies that [V, ~/—1(Hs—H,)]J=0. Hence we get
RY,v)Y =0,
that is, [V, vJ=0. On the other hand, we have
LY, v], v—1Hg) = ([~ —1Hg, Y], v>
= w(Hg)ppXo,— BHp)puw; X3, v>
= —B(H)pu <X}, v> # 0.

This contradicts the fact [V, v]=0, and we have

(7.14) g(a) = gsParDas

with ag =1, a;,3=2 and 0=28—7.
In the following, we shall investigate the case (1), (2) in an early part of
this section, more precisely.

THE CASE g(a) = ¢45Pg;Dg;.
From (4) of Lemma 4.2, we can set

g(a) = R(pAs+ X, +Xo)DR(pBs+X;+X5) (p + 0)

where X;=aA,+bB; and Xs=a;A;+bsBs(a*+b*=a}+b3=1). Then Lemma 4.3
and give
[pAg+X,+ X5, pBe+X;+X}]
= 24/ —1(p*H s+ Hy+ Hj;)
+p([As X;4+X51—[Bg, X;+X5])



804 K. Tojo

& v/ —1b,.
Hence [Ag, Xi-+X5]=[Bs, X,+X5], that is

(aNg,r+asNg,_5)Bg_y+(bNg, .y—bsNg, _5)As—;
= —(aNg,-r+asNpg, _5)Bg_s+(bsNp, -5—bNg, 1) Ap-;.

Hence we obtain

(715) dNﬁ,_r = —(ZaNﬁ,__a, bNﬁ,_r = baN‘s_ -5
Then by we can see that

(7.16) [X,—X,,, X,+X5-%A5] —0

7.17) [X;—Xg, X+ Xj— %Bﬂ] =0.

If v1(X;,—X;5) and v1(X;—X}), then (suppose vigw is parallel to X;+Xs—
(2/p)Ap) from we get

R(XT—X5; V)(XT"‘X,;) - 0;
that is, [X;,—X;, v]=0. However,
X=X, v], Xi+Xp = —<[X,—X5, X;3+X5], v>
= — Qv —1(H;—H;), v)
# 0.

Next, if v 1 (X;+X5—2/p)Ap), (X;+X5—(2/p)Bg), then, by using isotropy re-
presentation Ad(exp+/—18;,), we may assume vk (X;—X;) and vk (X;—Xj).
Then, also by [7.16), we get

[X,—}-X,;——ZP—A,S, v]=0.

However, it follows that

4

— <[vfi (Hg—H,), Xﬁ%—%&a} v>

<[XT+X5— —2—/1;;, y], v —1 (Hﬁ—Hr)>

= — B(HpXX;— X3, v>
# 0.
Consequently, we have

v £ R(X;—X5)DR(X;—Xj)
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and
v & R(Xrt Xo— 2 A) OR(Xi+-X5— 2 By).

Furthermore we assume v | (X;—Xj;), as before.
In the following we compute

2 ’ ’
R(Xr—X,;) (X;‘{“Xé_‘ _5 Bﬁ) and R(XT—X,))(XT—X(?) ,

where Ry(-)=R(X, )X.
Since y(Hp)=48(H;) and ~/ —1(H,+Hj)<t, it follows that

(7.18) R xy-xpX;—X5) = —[X;—Xs, 24/ —1(Hy+ Hj)]

= 2y(H)(X;—X3).
From [7.15) we obtain

— 2
[X,—X;, X;—}—X,;——%B,g] = 2/ =Tty —Ho-+ - [Bs, Xr—Xi)
= 2/ =1 (Hy—X3)— %(bNﬁ,_,+b5Nﬁ,_5)Aﬁ_T
2
— ;(aNﬁ, _7—05N5, _5)35_7«

== 2\/ji (HT_HJ)"— %(bNﬁ -TAﬁ_,—i—aNﬁ, —TBﬁ—7) .

Hence gives
2
Rxy-xp (XH'X&— ;Bﬁ)
1 . 4Ny, _
= _Z[X,—Xﬁ, 2«/—1(HT—H»—~——f§~’<bAﬁ—r+aBﬂ—r>]p
H Ng N
T( 7) (X X)y— #_L_;l, -9 (abs+asb)(Ap),
N,g,_y _
+ = 5 ( Nﬁ’_T—}—aa(;Nﬁ,_a—bbaNﬁ.—5)(3;9);1'

Then it follows from [2.3), [2.4) and [7.15) that

/ 2 (Hy) n_ 2(Ng, 1)
(7.19) R(XT Xy (X +X5—?)—B ) {T T (X +X) (;J_Q;B‘B}p

T(Hr) (X’-i-Xa—;B )

Considering (7.19) together with (7.18), a vector R(x,-x»(v) is not parallel to y.
This contradicts [(2.10). Consequently, v must be normal to g(a).
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From and the above argument we have the following.

LEMMA 7.2. Let acA’. If there exists y=p satisfying condition (T-G) such
that v v/ —1%, and v xgla), then g(a) has the following form.

(@) = 8.6D8p
for some BEA’ satisfying the property axBEA.

At first we assume that there are @, S&A’ such that g(a)=g.Das, a(H,)+
B(Hp) and vg(a). Then G is necessarily of type Il. We determine the pair
(g, ) by case by case check.

We call that for y, A the pair (7, ) satisfies condition (%) if

7(Hy) = 0(H;) and y=d & A.
C.,(i=3).
In this case we can identify A with

{*+2e;, +e;+ej.

(see [4D. _

Without loss of generality, we suppose a(H,)>p(Hs) and put a=2e;. Then
B is one of {£e;tes(@+#7, k) from It is easy to see that (@, B)
is the only pair (up to sign) which satisfies condition (*) and the difference is
propotional to a—p. Then y must be in Rv/—1(H,—Hg)+g(a),. In fact, if
there is y=A’ such that v 4g(y), then by there is d=A’ such that
y+0¢A and y—0 is parallel to a—fB. For example, set f=e;-+e,. It can be
easily seen that {y, d} is equal to {e;—e;, ex—e;} or to {e;—e;, e;—ex}. How-
ever, this contradicts the condition y--d&A.

Since Z2e; (and Z2e,) is not normal to a— g, the root 2¢; must be in A’ (see
Lemma 6.2). Thus, since [+ —1(H,—Hp), 82.,)] #0, there exists Xeg(2e;) such
that [ X, v]#0. Therefore the same argument as in the early part of section

6 implies that there is 9P such that P rg(a) and D+ g(2¢;). However, there is
no yEA such that 2e;—y is proportional to a—§p.
Consequently, this case is not possible.

F..
Ju— l L
A= +ey, ieiie,-, E—(ieu_eziegi-e,;)}.

Let (a, B) be a pair satisfying condition (*¥). Then we may suppose a is one
of {e;+e;}. Moreover B is one of the following.

. . 1
iek(k'—'ﬁzy ])J i_z'(elteziesie4).

In the following we show that there is no vector satisfying condition (T-G) in
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the case where a=¢;+e;. (Similarly we can prove it when a=e;—e;).

(1) The case where B=e, or —e,.

Set (@, B)=(ei;+ej, ex). Then the pair satisfying condition (x), whose dif-
ference is propotional to a—p, is one of the following.

(7.20) +(e;+ey, er), +(er—ey, ey), +(er—ej, €).
Suppose v ¥ R(H,—Hp) and v 4 g(@) (9(a)=8.,Dge;+c,). Then by Lemma 72
(721) ve g(a)pEBgej@gek—eiaageingek—ej@R\/:T(Ha"H,B)-

If e;eA, ({5, 7, &, I} =11, 2, 3, 4}), then since
<R(Ael, )J)Ael, '\/;—1<Ha—Hﬂ>> = <R(Aep \/jl(Ha_Hﬁ))Aelr )J>
=90,
it follows that [A,,, v]J=0. On the other hand, by (7.21)

LA, v]148epse, -
We have thus e;&A,.
Next, suppose ¢;A;. Set

gla) = R(Aek +pXei+ej>@R(Bek+pX;i+ej) .
Then [A.,, Ae,+DXere;]=[Ae;, Ae,] is in f. However, since [f, pJCp,

1
[ A0 = | ey Ay Xepury| €.

Consequently e;&A:.
Assume that e,=A’. If [g(e), v]1#0, then there exists P=p satisfying con-

dition (T-G) such that 9 rg(a), 9 xg(e)) and 9 vz, is parallel to v/ —1(H,—Hp).
However, this contradicts [7.20). Therefore [y, g(e,),]=0. Since

[gel’ y]Cgeltei@ge[tej@geliek
and
<[gel; v], geltek> #0,

there is y€A such that g,Cg(e;) and

(7.22) <L8y, v], 8eyre,> # 0.

Since g,Cg(e;) and v/ —1(H,+2Hg)Et (by it follows that
{7, eite;+2er> = ey, ei+e;+2e,> = 0.

Therefore 7 is one of

1
{i(ei—ej) ; £ -z—(e,,—e,-~ejie,)}.
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Therefore by it is easy to check that there is no y satisfying
Thus, this case is not possible.

(2) The case where f={+1/2(e;—e;terte)}.
For example, set 3=1/2(e;—e;+e,+e;). Then the pair satisfying condition
(x), whose difference is propotional to a— g, is one of the following.

1 1
+ (ei+ej, 'Z_(ei—ej+ek+el))’ =+ (ej—‘ek, ‘i(ez“e/“er—ei))

+ (e,—e,, %(ek——e,—ef—e;)>.

Then +/—1H,, is_not normal to ~/—1(H,—H;). Therefore by the
root e¢; is not in A,. Moreover ¢;&A; since [f, p]JTp. Thus we have e;€A’.
Let yEA such that g,Cg(e;). Since ~/—1(H,+2Hp) is in t, we have

<r; a+zﬁ> = <eiy a+2/3>
=<ey, 2e;tete)=2.
Therefore 7 is one of

1
{ek"l"el, "Z'(ei+ek+el+ej), 19}.
By the same method as in (1) we get

(7.23) [a(es)y, v]1 =0.
Since
v € R(H,— Hp)Ds(a)yDge;-e,D8e -,
@Quzcel—ej—ek—ei)@gl/z(ak-ej—ei—ep )

(g, v1Lge,.

However, regardless of whether y=e,-te, or 1/2(e;4-¢;4-¢.+e,), we can see
Ly, v]lae,.

This contradicts [7.23).
By(1=3).

A= {te;*Te;; *es}.

In this case a is one of {*e;+e;} and B=e, or —ey(k+4, j). For example
set (@, B)=(e;-+e;, ex). Then the pair satisfying condition (), whose difference
is propotional to @—p, is one of the following.

(estej, ewr), (er—ej, €1), (er—ey, €5).

Then since vt g(a), and vt R(H,—Hjp), implies
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(7.24) v € R/ —1(H,—Hp)Pg(a),Da.,
@geg@gek—ejeagek—ei .

At first we suppose [=4.
If e,€4,, then since [g.,, v/ —1(H,—Hp)]=0 we have

[gen’ V] - 0'

However, we see that [ge,, v]£8c,ze,. Thus e,&A,.
Suppose e,A;. Put v;=Ad(exptA,,)v). Since

L4, /=151 =0 and I:Ae,,’ gla)] = Be,xep

there is ¢t € R such that vig(a), vek ge :e, and + —lhs-component of v, is
parallel to ~/—I(H,—Hp). This contradicts [7.24). Therefore e,#A:.
Take yEA so that g;Cg(e,). Since v/ —1(Hg e, +2H,,) is in f, we obtain

{y, eitej+2ery = <en, e;t+e;+2e,> = 0.
Therefore 7 is one of
(7.25) {teptey; +(ei—ej); te} (P, q, rEL, J, k}).

As before, since

[g(en)y, vJ]=0 and [genx V]_’tgentek ’
it follows that

(7.26) Lar, U].’tgenxek .

However, by [7.24) we can easily check that there is no root in [7.25) satisfying
(7.26

Finally we investigate the case where g is of type Bs. Since e;, e;ra—p,
we get e;, e;&A’. Moreover, by similar argument as above, we obtain [g(e;),,
v]#0 and [g(es)y, v]#0. Therefore, it follows from that

8(e:) = 8¢,DBe,-c; and g(e;) = 8e;PGey-e; -
Then by (7.11) we get
V —1(Hepypey+2H,,), ~—1(Heyoi+2H, ), ~—1(H,, -, +2H,) < 1.

(Then /' —1H,,_.;, ¥ —1He, e;;, ¥V —1H,,..;t). Therefore e;—ej, ex+e;, exte;
&A’, since

e;—ey, e;—ey =2
{ei—ey, eptey =1

(e;—ej, eptep = —1.
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Finally we prove e¢;—ej, ex+e;, er+e;=A;. We assume that

vigla) and vrg(e,)Dele)).
If e;—e;EAs, then [g.,-.;, v]=0 since {e;—e;, a—p>=0. However, since

[8ei-ep 8(e)] = 8(es),  [8eg-ep 8(e)] = gles)
[8e;-e; 8(a@)] = {0},
we can see [ge,—e;, v1#0. Thus e;—ej, ex+e;, er+e;€A: and
t=R~—1H, .+ R~ —1H,,  o;+8e;-c;F8epse;
+8ep+e;T8(e)et0(e)et0(es):.
Then (G/K, <, >) has constant sectional curvature. (The pair (g, ¥) coincides
with (Bs, Gg) in [1, p. 2207).

Consequently, if there is a<A’ such that v £g(a) with a(H,)# p(Hs) (g(a)=
g.+8p), then G/K is a space with constant sectional curvature.

Next we assume that a(H,)=p(Hg). Then by and Lemma 42 we
may put

g8(a) = R(Aa+Xp)DR(B,+Xp).

(Then A,—Xp, Bo—XsED).
As before, suppose vig is parallel to (B,—Xj).

If there is a number d such that d(a—p)EA (then necessarily d(a+g)eA
from [7.10)), then from [7.13) we get

IV —=1Hs@-p |I* = d¥a(Ha)+B(Hp))
=2d% (a(H.) = B(Hp) = o).

Since g is either of typeI or typeII, then 2d*=1, 2 or 1/2, that is, d=+(~+/2/2),
+1 or +(1/2). However +(a—pf) and +(+/2/2)(@—p) are not roots. Thus we
have d=+(1/2). As mentioned under the proof of Lemma 71, a root (a—B)/2
is in A, and we assume viga-p/2=X(a-prj2. Moreover, since [A,+Xp, 8ca-psz]
is contained in a(q+p /2 a root (a-+p)/2 is necessarily in A,. Hence we get

[g(a+ﬁ)12, v]= {0} and v1iga+prin
because [8easpr/z vV —1(H,—Hg)]={0}. Furthermore Lemma 22 implies
(7.27) [(Xa-prres Ba—Xp]1=0.

(If not, then e~?:¥ca~p>2(y) is not perpendicular to gi+py/2 and its +/—I1f,-com-
ponent is parallel to ~/—1(H,—Hpg). This contradicts Lemma 6.3). Therefore

(7.28) R(X (a-py12 V)X a-prs2 = 0.
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On the other hand, we can see that R(X(,-g)/2, v —1(Ho—Hg))X (a-gs2 is parallel
to ~/—1(H,—Hp) and not zero. This contradicts [7.28). Hence we conclude

(7.29) dlatpB)EA forall deR.

Now, suppose a, f(a, BEA’) satisfy [7.29) and v+ g(a)=8.Pgs. Then since
a+fB¢&A and a(H,)=p(Hp), it is easy to check that

[V —1(H,—Hg), g(a)p]CH.
Then we shall prove [+ —1(H,—Hp), p]Ct in the following.

If [g(d)y, v1+# {0} for d=4’, then, as before, we may assume v g(d),. (Smce

vxg(a), then v vz, must be parallel to +/—1(H,—Hpg)). Therefore, in this
case, we have

as above.
Suppose [v, §(0),]1= {0} (a(0)=85,D-Dgs,,). If there exist d; and d; such that

0(H,—Hpg) +0 and 0;(H,—Hg)+ 0,
then

(7.30) [pa,Xs,— Do Xsp /' —1(Ho—Hp)]

= p5,05(Ho—Hpg)X5,— p3,0:(H.— Hp)X3,

+0.
Therefore, since [ps,;Xs,—ps,Xs; v]=0, there exists a unique (up to sign) root
o such that vrg, and [ga, 85,1485, In fact, if there exists another root o’
such that v4g,- and [gu, 85,1485, then @ (and ) is one of {+0,%4;}. On the
other hand, since [y, v—1H]=0 for Heb, with v —1H1 ~/—1(H,—Hp), we
get w(H)=w'(H)=0. This implies that 0,(H)=0;H)=0, i.e. V——l(Hai—Hbj)
is parallel to ~/—1(H,—Hg). Howe,ver since d;—d; is a root (it is one of

{+®, +w’}), this contradicts Lemma 7.2.
Now we write

v=«—1(H,—Hg)+aBo+, (a+0).

Then from the above argument and the assumption [y, g(d),]J=1{0}, it follows
that

[V —1(Hy—Hp)+aBua, ps,Xs,—0s,;X5,1185,D8s,
and, by considering isotropy representation Ad(exp+/—1%,), we also get
[V —1(H,—Hpg)+aAw, ps,Xsy—ps;Xs,1 L 05,D8s; .
Therefore we get

(7.31) [Aw—Ba, p8,Xs,—08,X5;] L85, Das,.-



812 K. ToJo

However, by a straightforward computation, we can see that implies
ps;=ps,—0 (@ is one of {£d;+d;}). This is a contradiction. As a result, we

obtain
[V —1(H,—Hp), g(8),] = {0}.
Consequently, in this case, we have
[vV—1(H.—Hp), pICt

and hence (g, f) is symmetric by [Corollary 5. Therefore G/K is a space of
constant sectional curvature.

Finally, in the case where vt +/—1%;, we suppose that v tg, for some ye
A,. Then y,s=, must be parallel to ~/—1H, by Furthermore v is

contained in R+ —1H,@g, from and the argument below
Set

Yy = a ’\/—'jIHr"l—bAr“*"cBr, X = bBr“‘“cAT

(a+#0, b*+c*=1). Then we have by a straightforward computation that

(7.32) e~?tX(y) = cos \/I(—ZHL)J y

_ «/Zrl( ) sin \/ 7(57) t- {ay(Hy) (bA;+cBy)—2+/ —1H,}.

As before, for all Y(ep) perpendicular to R+ —1H,Pg,, we get [V, v]=0, and
also we have

(7.33) LY, e ?ex(p)] =0 for all t= R.
Then (7.32) and give
(7.34) [Rv—1H,Pg;, Y] = {0}.

Since <, > is biinvariant, gives
[, RV —1H,®Pg,] € R~/ —1H,Dg;.
Therefore [Lemma 51 implies that
p = RV —1H,®g,.
Since g is simple, we find that
g = Rv/—1H,Dg,(=8u(2)),

and (G, <, >) has constant sectional curvature.
This completes the proof of the case y 4 +/—1),.

Next, we suppose that vy 1 ~/—19,. Then from Lemma 6.1, we may assume
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v E gq@ @gtl

with 7;€4, and 7,(%,)=0(G=1, -+, [). Furthermore we assume v £g.,(¢=1, ---, ).
If there exist 7, j(1=i # ¢<!) such that 7,+7; € A’, then there exist ¥ € g,,..,
such that

X, v, V> =—([X, Y], w+0Xecg, X1y

because [X, Y]eg,;, and gsrpye; Ly, (If goryur, £y, then from we
have 2t;+7;€A,. On the other hand, [g.; 82;+:;1=1{0}. This contradicts the
assumption v g.,). However, this contradicts Hence for any ¢, 7,
we have 7,+7;£A’. For this reason, we may assume yveg, for some 7€4,
with 7(9,)=0. (cf. the proof of Theorem B). Moreover, by the proof of Theorem
B and the above argument, we have for any 1A, and for any a<A’ that

v, g2y = {0}, [y, gla)y] = {0}.

Thus, by and Fact 1.1, we have proved Theorem A in the case

where v v/ —1bs.
Consequently, if g is of type I or of type II, then G/K has constant sectional

curvature.

8. Type Gs.

In this section we shall prove the following lemma which completes the
proof of Theorem A.

LEMMA 8.1. Let g be of type G, and t a Lie subalgebra of g such that rk(g)
>tk(§) (then necessarily tk(¥)=1). Then there is no vector satisfying condition
(T-G).

PROOF. Since rk(f)=1, t is isomorphic either to R or to 8u(2). Then there
exist at most one root space g, such that

[V —1bs, g1 = {0}

because rk(G)=2. Therefore, if a=A,(a(h)=0) and vrg,, then
implies that [g,, pJC*t.

Next, we assume vt +/—15,.

If =R, then acA, for all acA. However, this contradicts
Hence there is no vector in p satisfying condition (T-G).

If f=8u(2), then from [Proposition 4.5 we see that f has one of the following
forms:

(1) R~ —1H;Pg, for some i=A.

(2) ~/—1h,Pg(a); is one of (a), (b), (c), (d) of (3) in Proposition 4.5, Then
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the above argument and [Lemma 6.2 imply that the number of positive roots in
A, are at most two. Therefore in the case (a), (b), (c) and =R+ —1H;Pg,,
there are no vectors in p satisfying condition (T-G).

Finally we examine the case (d) in the above. In this case it is easy to
see that

A= {ta;, Tas; ta;Tas; =Ca;—as), +Ca—a,)}
8(a) = 84,D8a,DY2a,-a;Db2ag-4a,
v/ —1f, = Rx/:I(Hal—Haz).

Then we note that

[9a1+a2’ gal__J = ga2) [9a1+a2: ga2] = gal
[ga1+a2y gZal—azj = B2ag-a;> [ga1+a2, 92112—011] = Q2a;-ay
[ga1+a2, N/:lkf)z@ga,-az] = {0}.

Hence, for any X<g(a),, we obtain
8.1 [X, Gayea,] # {0} .

However, as before, implies that there exists a vector P satisfying con-
dition (T-G) such that

D4~ —15:Dga;-a,Pa(@y .

This contradicts Consequently, for any %, there is no vector satisfy-
ing condition (T-G). O

9. Some Remarks.
By the Proofs of Theorems A, B we can see the following.

REMARK 9.1. Let G be a compact simple Lie group and K a closed sub-
group of G. Assume that the pair (G, K) is not symmetric and a normal
homogeneous space GG/K has constant sectional curvature. Then the pair (g, )
is one of the following (cf. [1]).

(311(2), {O} )) (GZ: A2), (B3y Gz)-

Next, we shall show that if rk(G)>rk(K), then Theorem B is not true.

Let (g, ) be a Hermitian symmetric pair of compact type, where g is a
simple Lie algebra (g is not isomorphic to 8u(2)). p denotes the orthogonal com-
plement of f with respect to the Killing form. As is well-known, there exists
1-dimensional center of f (denoted by RZ). Then set
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Y =RZ®Pp.

Let ¥ be the orthogonal complement of »’. Then the hyperplane p of p’ is
curvature invariant. In fact, let X, ¥ be in p. Since [x, y]&f and [Z, ¥']=0,
we have

R(X, V)Z = [[X, V1o, Z1+ 50X, Yy, Z1y
—F X, IV, ZL, 0y 4 1Y, IX, 23,

— _%[X, [Y, Z]w]»ri&[lﬁ [X, Z 1y -

Moreover, since [p, Z]Cg, we see that [g, [g, Z], ], are parallel to Z. On
the other hand R(X, Y)Z is perpendicular to Z. Thus p is curvature invariant
hyperplane of g’. Let G be a compact, connected simple Lie group with Lie
algebra ¢ and K’ be the connected Lie subgroup of G with Lie algebra ¥.
Then by Remark 9.1, we can see that a normal homogeneous space G/K’ is not
a real space form.
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