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\S 1. Introduction.

Since Gromov gave in [G1], [G2] an abstract definition of Hausdorff distance
between two compact metric spaces, the Gromov-Hausdorff convergence theory
has played an important role in Riemannian geometry. Usually, Gromov-Haus-
dorff limits of Riemannian manifolds are almost never Riemannian manifolds.
This motivates the study of Alexandrov spaces which are more singular than
Riemannian manifolds since it is observed in [GP1] that the limit spaces are
Alexandrov spaces if the manifolds in the sequence have curvature bounded uni-
formly from below. Alexandrov spaces are finite dimensional inner metric spaces
with a lower curvature bound in the sense of distance comparison. It is now
well known that the topological and geometric properties of Gromov-Hausdorff
limits will reveal those of Riemannian manifolds considered in the sequence.
For a discussion of this viewpoint, see [W1]. In view of this, the investiga-
tion of the topological and geometric properties of Alexandrov spaces has re-
cently attracted a lot of attention; see for example [BGP], [FY], [GP1], [Pe],
[Sh] and [Pt]. The structure of Alexandrov spaces is studied in [BGP], [Pe]

and [Pt]. In particuar, if $P$ is a point in an Alexandrov space $X$, then the
space of directions $\Sigma_{p}$ at $P$ is an Alexandrov space of one less dimension and
with curvature Zl. Moreover, a neighborhood of $P$ in $X$ is homeomorphic to
the linear cone over $\Sigma_{p}$ . One important implication of this local structure
result is that if $\Sigma_{p}$ is a sphere then the point $P$ is a manifold point. However,
the converse is not true. This can be seen from the following example from
[GP2].

EXAMPLE 1. Let $M$ be a non-simply connected homology sphere which is
also a space form of constant curvature 1. For instance, $M$ is the Poincare’s
3-dimensional homology sphere. The spherical suspension $\sum M$ is also an Alex-
androv space with curvature bounded below by 1. It is not a topological
manifold since the two vertices of the suspension are not manifold points. The
Edward double suspension theorem $([D])$ states that the double suspension of a
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homology sphere is a manifold and hence a sphere. Thus the double suspension
$\sum\sum M$ is a manifold, but the spaces of directions of the two vertices are both
$\sum M$ which is not a sphere.

In [GP2] and [Sh], Grove, Peteresen and Shen give some geometric charac-
terizations of sphere to investigate manifold points in an Alexandrov space.
The main purpose of this paper is to give some topological characterization of
manifolds for Alexandrov spaces. In this paper, topological manifolds stand
for topological manifolds without boundary.

THEOREM 1.1. An $n$-dimensional Alexandrov space $X$ is a topological manifold
if and only if it satisfies the following two properties:

(1) $X$ is a homology mamfold. That is, $H_{*}(X, X-p)\cong H_{*}(R^{n}, R^{n}-0)$ for
any $p\in X$, and

(2) in case that $n\geqq 4$, the space of directims $\Sigma_{p}$ at $p$ is srmPly cmnected
for any $p\in X$ .

Example 1 shows that our result is best as one can expect. A local
version of this theorem to characterize manifold points in an Alexandrov space
is the following.

THEOREM 1.2. Let $X$ be an Alexandrov space of dimensim $n$ . Then a point
$p\in X$ is a manifold point if and $mly$ if it satisfies the following two ProPerties:

(1) the point $p$ is a homology manifold point. That is, there exists an open
neighborhood $U$ of $p$ such that $H_{*}(X, X-x)\cong H_{*}(R^{n}, R^{n}-0)$ for any $x\in U$ , and

(2) in case that $n\geqq 4$ the space of directions $\Sigma_{p}$ at $p$ in $X$ is simply cm-
nected.

This result parallels a theorem of R. D. Edwards, which characterizes poly-
hedra which are topological manifolds.

THEOREM (EDWARDS). $A$ finite polyhedron $P$ is a ciosed topological n-mani-
fold if and only if

(1) the link of every vertex of $P$ is simply connected if $n\geqq 3$, and
(2) the link of every Point $p\in P$ has the homology of an $(n-1)$-sphere.

In geometric topology, it is an interesting open problem that if the product
space $X\cross R^{2}$ is a topological manifold, is $X\cross R$ a manifold ’ In section three,
we shall establish this for Alexandrov spaces and use it to prove Theorem 1.1.
TO be more precise, we shall obtain.

THEOREM 1.3. Let $X$ be an Alexandrov space, then the following three state-
ments are equivalent.

(1) $X$ is a homology manifold,
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(2) $X\cross R^{k}$ is a topological manifold for some $k\geqq 1$ , and
(3) $X\cross R$ is a toPological manifold.
In section three, we shall also discuss some applications of these results to

Riemannian manifolds. In particular, we shall show Gromov-Hausdorff limit
spaces of certain class of Riemannian manifolds are indeed topological manifolds.
This will allow one to obtain some finiteness and structure results for Rieman-
nian manifolds

Consider the class $\mathscr{M}$ of compact Riemannian $n$ -manifolds $M$ with sectional
curvature $K_{M}\geqq k$ , diameter $d(M)\leqq D$ and $C(M)\geqq r_{0}>0$ where $C(M)$ denotes the
contractibility radius of $M$ . See section three for the definition of $C(M)$ . Grove,
Petersen and the auther showed in [GPW] that the class $\mathscr{M}$ contains at most
finitely many homeomorphism (resp. homotopy) types for $n\neq 3$ (resp. $n=3$). Let
$X$ be a metric space in $\partial \mathscr{M}$ with respect to the Gromov-Hausdorff topology. It
is conjectured that $X$ must be a topological manifold. As an application of
Theorem 1.1, we shall prove this regularity property for the limit space $X$ .

THEOREM 1.4. Each limit space $X\in\partial_{\mathscr{M}}$ is a topological manifold.
Using the stability theorem in [Pe] one can also obtain this result. However,

the proof we shall present here is quite different from that in [Pe] and appeals
to our characterization theorem. The stability theorem of Perelman also shows
that limit spaces of the class of Riemannian $n$ -manifolds $M$ satifying $K_{M}\geqq k$ ,
$d(D)\leqq D$ , and $vol(M)\geqq v>0$ are also topological manifolds. The technique here
also allows one to verify this when $n\leqq 3$ . For $n\geqq 4$, the author, so far, can
only obtain that each limit space is a topological manifold with at most finitely
many singular points.

In section four, we shall also investigate the structure of compact nonnega-
tively curved Alexandrov spaces. Our main result concerning this is

THEOREM 1.5. Let $X$ be an $n$ -dimensional Alexmdrov space wzth curvature
$K_{X}\geqq 0$ . Then the fundamental group of $X$ is, up to a finite quotient, an almost
abelian group of rank $k(1\leqq k\leqq n)$ , i.e., $\pi_{1}(X)$ contains a finite normal subgroup $\Phi$

such that $\pi_{1}(X)/\Phi$ is an almost abelian group of $rmkk$ . Moreover, a finite
covenng $\hat{X}$ of $X$ is homeomorphic to a Product space $V^{*}\cross T^{k}$ , where $V^{*}$ is an
Alexandrov space with $K_{V*}\geqq 0$ and finite fundamental group, and $T^{k}$ is the k-
dimensional torus. In case that $X$ is a topological manifold, then (1) $V^{*}$ is a
topological manifold for $n$ –k$3, and (2) $X$ is homeomorphic to $N\cross T^{k}$ for $n-$

$k\geqq 4$ where $N$ is a topological manifold homotopic to $V^{*}$ .

REMARK. Recall that a group is called an almost abelian group of rank
$k$ if it contains a free abelian group of rank $k$ and finite index. In case that
$n-k\geqq 4$ , one can not hope that $V^{*}$ itself will be a topological manifold even
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when $X$ is a topological manifold. We give an example to illustrate this.

EXAMPLE 2. Let $M$ be a non-simply connected homology manifold as in
Example 1. We take $X$ to be the metric product space of the suspension $\sum M$

of $M$ and the unit circle $S^{1}$ . Then in this case $V^{*}$ is $\sum M$ which is not a
topological manifold. However, the space $X$ is by Theorem 1.1 or Theorem 1.3,
a topological manifold.

\S 2. Main tools.

Since we shall need several results in geometric topology and about Alex-
androv spaces to prove theorems mentioned in the previous section, we list in
this section some important ones. For basic notation and results of Alexandrov
spaces, we refer to Burago, Gromov and Perelman [BGP] [Pe] and Plaut [Pt];

for the definitions and basic results about resolutions, homology manifolds and
local index of Quinn we refer to Daverman [D] and Quinn $[Q1]-[Q4]$ . Recall
that a map $f$ from a topological manifold $M$ to a space $X$ is called a resolution
if it has point inverses compact, nonempty, and contractible inside any neigh-
borhood (cf. $[Q1]-[Q4]$ ). We shall say that such a space $X$ has a resolution.

Let $X$ be an $n$ -dimensional Alexandrov space and $p$ a point in $X$ . It is
shown in [BGP] that the space of directions $\Sigma_{p}$ at $p$ is an $(n-1)$-dimensional
Alexandrov space with curvature 11. The tangent cone at $p$ is defined as the
topological cone over $\Sigma_{p}$ with the following standard cone metric

$d((v, s),$ $(w, t))=\sqrt{}\overline{s^{2}+t^{2}-2ts\cos(\triangleleft:(v,w))}$

for any $v,$ $w\in\Sigma_{p}$ and $s,$
$t\geqq 0$ . We denote the tangent cone at $p$ by $K(\Sigma_{p})$ . The

vertex of $K(\Sigma_{p})$ is still denoted by $p$ . For $r>0$ , let $K_{r}(\Sigma_{p})$ be the open metric
$r$-ball in $K(\Sigma_{p})$ around $p$ . A fundamental result about the local structure of an
Alexandrov space is due to Perelman.

THEOREM 2.1 (Perelman [Pe]). Let $X$ be an Alexandrov space and $p\in X$.
Then there exists a positive number $r_{p}>0$ such that $(B(p, r),$ $S(p, r),$ $p)$ is homeo-
$mOphic$ to $(\overline{K}_{r}(\Sigma_{p}), \Sigma_{p}, p)$ for each $r\in(O, r_{p})$ .

The next three results concern the characterization of topological manifolds.

THEOREM 2.2 (Quinn $[Q1]-[Q4]$ ). Let $X$ and $Y$ be two metnc spaces with
dimensions $\geqq 2$ . Then one has

(I) the product space $X\cross Y$ is a topological manifold if and only if $X$ and
$Y$ are $ANR$ homology manifold of local index 1 in the sense of Quinn;

(II) if $X$ is a metnc space of finite dimension $\geqq 4$ , the following three state-
ments are equivalnet:
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(1) $X$ has a resolution,
(2) $X\cross R^{k}$ is a topological manifold for some $k\geqq 2$ , and
(3) $X\cross R^{2}$ is a topological maniofld.
(M) if $f:Marrow X$ is a resolution and $X$ is a manifold, then for any $a>0,$ $f$

can be $\epsilon$ -approximated by a $homeomo\eta hism$ .
A characterization of topological manifolds takes the following form

THEOREM 2.3 (Edwards-Quinn [D], p. 288). $A$ finite dimensimal space $X$ is
a topological $n$ -manifold, $n\geqq 5$, if and only if

(1) $X$ is an $ANR$ homology manifold of local index 1 in the sense of Quinn,
and

(2) $X$ satifies the disjoint disk property $(DDP)$ .

Let $A$ be a subset of a metric space $X$ and $x\in A\cap(\overline{X-A})$ . We say that
$X-A$ is locally 1-connected at $x$ provided that each neighborhood $U$ of $x$

contains another neighborhood $V$ such that each map of the circle $S^{1}$ into $V-A$

can be extended to a map of the disk $D^{2}$ into $U-A$ . The subset $A$ is said to
be locally l-co-connected (1-LCC) provided that $X-A$ is locally 1-connected at
each $x\in A\cap(\overline{X-A})$ . For related notions, please see Daverman [D].

Let $X$ be a metric space and $S(X)$ denote the set of non-manifold points in
X. Cannon, Bryant and Lacher gave a characterization of topological manifolds
when the dimension $S(X)$ has large co-dimensions.

THEOREM 2.4 (Cannon, Bryant and Lacher [D], p. 286). If $X$ is an n-dimen-
sional $ANR$ homology manifold whose singular set $S(X)$ is l-LCC embedded and
has dimension $k$ where $2k+3\leqq n$ , then $X$ is a topOlogical mmifold.

The next result is about the splitting property of open nonnegatively curved
Alexandrov spaces.

THEOREM 2.5 (Grove and Petersen [GP3], Yamaguchi [Y]). Let (X, $d$ ) be
an Alexmdrov space with curvature $K_{X}\geqq 0$ . Then (X, $d$ ) is isometnc to a metric
product $(V\cross R^{k}, d\oplus||\cdot||)$ for some totally convex subset (V, $d$ ) containing no lines
where $||\cdot||$ is the standard flat metnc of $R^{k}$ .

Theorem 2.1 implies that an Alexandrov space $X$ is a WCS set in the sense
of Siebenmann [S]. Thus main results in [S] imply

THEOREM 2.6 (Siebenmann [S]). The topological gmuP $Hom(X)$ of homeo-
morphisms of a compact Alexandrov space $X$ onto itself is locally cmtractible.
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\S 3. Regularity theorems.

In this section we shall prove Theorems 1.1-1.3. First of all we point out

that an Alexandrov space is always an ANR since it is locally compact, locally
path connected and, by Theorem 2.1, locally contractible. Next we show that
if an Alexandrov space is a homology manifold, then so are all of its spaces of
directions.

PROPOSITION 3.1. Let $X$ be an Alexandrov space of dimension $nmdp\in X$ .
If $P$ is a homology manifold Point, then me has (1) $H_{*}(\Sigma_{p})\cong H_{*}(S^{n-1})$ , and (2) $\Sigma_{p}$

is a homology manifold.
PROOF. (1) According to Theorem 2.1, one can find an $r>0$ such that (a)

$B(p, 2r)$ is a homology manifold, and (b) $(\overline{B}(p, r),$ $S(p, r),$ $p)$ is homeomorphic
to $(\overline{K}_{r}(\Sigma_{p}), \Sigma_{p}, p)$ . The excision theorem in homology theory then gives
$H_{*}(R^{n}, R^{n}-0)\cong H_{*}(X, X-p)\cong H_{*}(\overline{B}(p, r),\overline{B}(p, r)-p)\cong H_{*}(\overline{H}_{r}(\Sigma_{p}),\overline{K}_{r}(\Sigma_{p})-p)$ .
On the other hand the exact sequences for pairs $(\overline{K}_{r}(\Sigma_{p}),\overline{K}_{r}(\Sigma_{p})-p)$ and
$(R^{n}, R^{n}-0)$ give

$H_{j}(\overline{K}_{r}(\Sigma_{p})-p)arrow H_{j}(\overline{K}_{r}(\Sigma_{p}))arrow H_{j}(\overline{K}_{r}(\Sigma_{p}),\overline{K}_{r}(\Sigma_{p})-p)arrow H_{j-1}(\overline{K}_{r}(\Sigma_{p})-p)$

and

$arrow H_{j}(R^{n}-0)arrow H_{j}(R^{n})arrow H_{j}(R^{n}, R^{n}-0)arrow H_{j-1}(R^{n}-0)arrow\ldots$

Since $K_{r}(\Sigma_{p})$ is a cone over $\Sigma_{p}$ , one can easily conclude from these exact
sequences that $H_{*}(\Sigma_{p})\cong H_{*}(S^{n-1})$ .

(2) TO see that $\Sigma_{p}$ is also a homology manifold, we know from (1) that
$B(p, r)-p$ is homeomorphic to $\Sigma_{p}\cross R$ . We endow $\Sigma_{p}\cross R$ with the product
metric. Thus $\Sigma_{p}\cross R$ is an Alexandrov space with curvature $\geqq 0$ and it is a
homology manifold. For any $v\in\Sigma_{p}$ and $0\in R$ the space of directions $\Sigma_{(\emptyset,0)}$ at
$(v, 0)$ in $\Sigma_{p}\cross R$ is the spherical suspension $\Sigma(\Sigma_{v})$ of the space of directions $\Sigma_{v}$

at $v$ in $\Sigma_{p}$ . Note that the dimension of $\Sigma_{v}$ is $n-2$ . From (1) and the suspen-
sion theorem of homology groups [Wh], we have for $j\geqq 2$

$H_{j}(S^{n-1})\cong H_{j}(\Sigma_{(v.0)})\cong H_{j}(\Sigma(\Sigma_{v}))\cong H_{j-1}(\Sigma_{v})$ .
In particular, $H_{*}(\Sigma_{v})\cong H_{*}(S^{n-2})$ . Then Theorem 2.1 for the Alexandrov space $\Sigma_{p}$

at $v\in\Sigma_{p}$ and the argument in (1) imply that $H_{*}(\Sigma_{p}, \Sigma_{p}-v)\cong H_{*}(R^{n-1}, R^{n-1}-0)$ .
Since $v$ is arbitrary, $\Sigma_{p}$ is a homology manifold. $\square$

Recall that an Alexandrov space $X$ is said to have no boundary if all of its
spaces of directions have no boundary. Thus a two-dimensional Alexandrov
space has no boundary if and only if all of its spaces of directions are circles.
Theorem 2.1 then shows that all two-dimensional Alexandrov spaces without
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boundary are topological manifolds. It is also well known (cf. [D]) that all
two dimensional ANR homology manifolds are topological manifolds. An easy
corollary of Proposition 3.1 is

COROLLARY 3.2. Let $X$ be an Alexandrov space. Then $X$ has no boundary
provided that $X$ is a homology manifold.

From now on all of Alexandrov spaces discussed in this paper will be
assumed to have no boundary. Before we investigate the structure of the
singular set $S(X)$ of an Alexandrov space $X$, we discuss the lower dimensional
cases.

PROPOSITION 3.3. Let $X$ be an Alexandrov space of dimensim 3 mu $p\in X$ .
If $p$ is a homology manifold point, then it is a manifold point.

PROOF. Proposition 3.1 and Corollary 3.2 imply that the space of direction
$\Sigma_{p}$ is a two-dimensional homology manifold, and hence a topological manifold,
with $H_{*}(\Sigma_{p})\cong H_{*}(S^{2})$ . Since the sphere $S^{2}$ is the only 2-manifold with this
property, $\Sigma_{p}$ is homeomorphic to $S^{z}$ . Thus Theorem 2.1 implies that for small
$r>0$ the open ball $B(p, r)$ is homeomorphic to the 3-disk $D^{3}$ . This means that
$P$ is a manifold point. $\square$

Next we use some results of Quinn to give a rough estimation of the
dimension of $S(X)$ .

PROPOSITION 3.4. Let $X$ be an Alexandrov space of dimension $n\geqq 4$ . If $X$

is a homology manifold, then one has $\dim$ S(X)$l.

PROOF. Given any point $p\in X$, Theorem 2.1 implies that the space of
directions $\Sigma_{p}$ at $P$ is an Alexandrov space with curvature $\geqq 1$ and for small
$r>0,$ $B(p, r)-p$ is homeomorphic to the product space $\Sigma_{p}\cross R$ . The distance
comparison theorem gives that the diameter of $\Sigma_{p}$ is at most $\pi$ and hence
compact. Applying Theorem 2.1 to the Alexandrov space $\Sigma_{p}$ , we can conclude
that there are finite points $\{v_{i}\}_{i\Rightarrow 1}^{m}$ of $\Sigma_{p}$ such that $\Sigma_{p}\subset U_{i\Leftarrow 1}^{m}B(v_{i}, r_{i})$ and each
open set $B(v_{i}, r_{i})-v_{i}$ in $\Sigma_{p}$ is homeomorphic to a product space $\Sigma_{v_{i}}xR$. Here
$\Sigma_{v_{i}}$ is the space of directions of $v_{i}$ in $\Sigma_{p}$ and has dimension $n-2\geqq 2$ . Theorem
2.1 implies in particular that the set of manifold points is dense in $X$ . Since
the local index of Quinn is locally defined and locally constant (cf. [Q4]), we
know that the $\Sigma_{v_{i}}$ has the local index 1 in the sense of Quinn. Proposition 3.1
also gives that $\Sigma_{v_{i}}$ is an ANR homology manifold. Thus Theorem 2.2 (I) yields
that $\Sigma_{v_{i}}\cross R^{2}$ is a toPological manifold for each $v_{i}$ . From this one can easily
conclude that $S(X)\cap(B(p, r)-p)$ is contained in $\bigcup_{i=1}^{m}v_{i}\cross R$ if we identify
$B(p, r)-p$ with $\Sigma_{p}\cross R$ . Thus $S(X)$ is locally like the Paris railway, hence
locally contractible, and has $\dim S(X)\leqq 1$ . $\square$
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We are now in a position to investigate the product space $X\cross R$ .

THEOREM 3.5. Let $X$ be an Alexandrov space. If $X$ is a homology manifold,
then $X\cross R$ is a topological manifold and $\dim S(X)\leqq 0$ .

PROOF. If the space $X$ has $\dim X\leqq 3$ , then we know from Proposition 3.3
that $X$ itself is a topological manifold and so is $X\cross R$ . Thus we can assume
$\dim X\geqq 4$ . Proposition 3.4 shows in particular that the set of manifold points
is dense in $X$. Hence $X$ and $X\cross R$ has the local index 1 in the sense of Quinn

and is an ANR homology manifold.
In view of Theorem 2.3, to prove the $X\cross R$ is a topological manifold we

only need to verify that $X\cross R$ has the disjoint disk property. To do so, we
shall imitate the argument in the proof of Corollary $3C$ in [D], p. 184. Consider
two maps $f_{1},$ $f_{2}$ : $D^{2}arrow X\cross R$ . Let $\pi_{1}$ : $X\cross Rarrow X$ and $\pi_{2}$ : $X\cross Rarrow R$ denote the
projection maps. By Proposition 3.4, we know that $\dim S(X)\leqq 1$ , so $S(X)$ must
be nowhere dense and $0$-LCC in $X$. Thus, the maps $\pi_{l}f_{l}$ and $\pi_{1}f_{2}$ can be
modified to send increasingly dense 1-skeleta of $D^{2}$ into $X-S(X)$ and obtain in
the limit approximations $m_{1},$ $m_{2}$ : $D^{2}arrow X$ such that $m_{t}^{-1}(S(X))(i=1,2)$ is a com-
pact $0$-dimensional set $K_{i}$ . To be more precise, the maps $m_{i}$ can be constructed
as follows. Take a large compact metric ball $K$ in $X$ which contains $\pi_{1}f_{1}(D^{2})$

and $\pi_{1}f_{2}(D^{2})$ . Since $S(X)$ is nowhere dense and $0$-LCC in $X$, given any $\eta>0$

there exists a positive number $\tau(\eta)$ with $\lim_{\etaarrow 0}\tau(\eta)=0$ such that any two points
$x,$ $y$ in $K\cap(X-S(X))$ with $d(x, y)<\tau(\eta)$ can be connected by a curve lying in
the $\eta$ -neighborhood of $x$ in $X-S(X)$ .

NOW consider a sequence of increasingly dense 1-skeleta $K_{n}$ of $D^{2}$ with the
properties (1) the image of each cell of $K_{n}$ under $\pi_{1}f_{i}$ has mesh $<\tau(2^{-n}\epsilon)/4$ ;
(2) $K_{n}|$ is $2^{-n}e$ dense in $D^{2}$ with the usual metric, and (3) a refinement of $K_{n}$

is a subcomplex of $K_{n+1}$ . Then the maps $f_{i,n}$ : $K_{n}arrow X-S(X)$ can be constructed
by induction. If the image of some vertex of $K_{1}$ under $\pi_{1}f_{i}$ is in $S(X)$ then
replace it by a point in $X-S(X)$ within the $\tau(2^{-}\epsilon/4)$ neighborhood of the image
of that vertex. Then by the choice of the number $\tau(2^{-n}\epsilon)$ , we can obtain a
map $f_{i.1}$ : $K_{1}arrow X-S(X)$ . Suppose the map $f_{i.n-1}$ : $K_{n}--- X-S(X)$ is defined. We
set $f_{i.n}|_{IK_{n^{-}1^{1}}}=f_{i.n-1}$ . Then consider the image of the vertice of $K_{n}$ which is
in $S(X)$ . As before, replace them by $\tau(2^{-n}\epsilon)/4$-nearby points in $X-S(X)$ . Again,
the map $f_{i.n-1}$ can be extended to a map $f_{i.n}$ : $K_{n}arrow X-S(X)$ . According to our
construction, it is easy to see that $f_{i,n}$ converges to a continuous map $m_{i}$ : $D^{2}arrow X$

which is $\epsilon$-close to the map $\pi_{1}f_{i}$ and $m_{i}^{-1}(S(X))$ is a compact $0$-dimensional set.
NOW the maps $\pi_{2}f_{i}$ : $K_{i}arrow R$ can be approximated by disjoint embeddings
$g_{i}K_{i}arrow R$, where $g_{i}$ is so close to $\pi_{2}f_{i}|_{K_{i}}$ that $g_{i}$ extends to a map $\alpha_{i}$ : $D^{2}arrow R$

close to $\pi_{2}f_{i}$ : $D^{2}arrow R$ . Define the approximations $h_{1},$ $h_{2}$ : $D^{2}arrow X\cross R$ to $f_{1},$ $f_{2}$

by $h_{i}(x)=(m_{i}(x), a_{i}(x))$ . Hence one has $h_{1}(D^{2})\cap h_{2}(D^{l})\subset(X-S(X))\cross R$ . Since
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$(X-S(X))xR$ is a topological manifold of dimension at least 5, one can further
more produce disjoint approximations and thus the space $X\cross R$ satisfies the
disjoint disk property. Hence $X\cross R$ is a topological manifold. To see that
$\dim S(X)\leqq 0$ we consider any point $p\in X$ . We have for sufficiently small $r>0$

that $B(p, r)-p$ is homeomorphic to the product space $\Sigma_{p}\cross R$ and $\Sigma_{p}$ is also a
homology manifold. Since $\Sigma_{p}\cross R$ is a topological manifold, we can conclude
that the point $P$ is the only possible non-manifold point in $B(p, r)$ . Hence $S(X)$

is either empty or a discrete subset of $X$ . Thus $\dim S(X)\leqq 0$ and the theorem
follows. $\square$

Theorem 1.3 follows basically from Theorem 3.5 and Theorem 2.2.

PROOF OF THEOREM 1.3. Let $X$ be an Alexandrov space. From Theorem
3.5 we have (1) $\Rightarrow(2)$ . To see that (2) $\Rightarrow(3)$ , we know from Theorem 2.2 (I) that
if $X\cross R^{k}$ is a topological manifold for some $k\geqq 2$ , then $X$ is a homology
manifold. Theorem 3.5 then gives that $X\cross R$ is a topological manifold. The
conclusion (3) $\Rightarrow(1)$ again follows easily from Theorem 2.2 (I) and this completes
the proof of Theorem 1.3. $\square$

Since we know $\dim$ S(X)$O, Theorem 2.4 tells us that to prove Tbeorems
1.1 and 1.2 we only need to check the 1-LCC condition for each point $P$ in $S(X)$ .

PROPOSITION 3.6. Let $X$ be an Alexmdrov space of dimenszon $n\geqq 3$ and $p\in X$ .
Then $1p$ } is $a$ 1-LCC subset of $X$ if and only if the space of directions $\Sigma_{p}$ at $P$

is simply connected.

PROOF. Suppose that $\{p\}$ is a 1-LCC subset of $X$ . This means that each
neighborhood $U$ of $P$ contains another neighborhood $V$ such that each map of
the circle $S^{1}$ into $V-p$ can be extended to a map of the disk $D^{2}$ into $U-p$ .
Theorem 2.1 implies for sufficiently small $r>0$ that $(B(p, r),$ $p)$ is homeomorphic
to $(K_{r}(\Sigma_{p}), p)$ . Let $U$ be any neighborhood of $P$ with $U\subset B(Pr)$ . We identify
$B(p, r)$ with its image $K_{r}(\Sigma_{p})$ . Then there is an $\epsilon>0$ such that $K_{\epsilon}(\Sigma_{p})\subset V$ .
Note that $\partial K_{\text{\’{e}}}(\Sigma_{p})$ is homeomorphic to $\Sigma_{p}$ and there is a natural map $\pi$ from
$K_{r}(\Sigma_{p})-p$ onto $\partial K_{\epsilon}(\Sigma_{p})$ . Let $f$ be any map from $S^{1}$ into $\partial K_{\epsilon}(\Sigma_{p})$ . We can
extend $f$ to a map $\hat{f}$ from $D^{2}$ into $K_{r}(\Sigma_{p})-p$ . The composition of $\hat{f}$ and $\pi$

gives a map from $D^{2}$ into $\partial K_{\epsilon}(\Sigma_{p})$ and it extends the original map $f$ . This
shows that $\partial K_{\text{\’{e}}}(\Sigma_{p})$ is simply connected and so is $\Sigma_{p}$ .

Next suppose that $\Sigma_{p}$ is simply connected. Theorem 2.1 implies that there
is an $r>0$ such that $B(p, r)-p$ is homeomorphic to the product space $\Sigma_{p}\cross R$ .
Thus $B(p, r)-p$ is also simply connected and any map from $S^{1}$ into $B(p, r)$

extends to a map from $D^{2}$ into $B(p, r)-p$ . Thus $tp$ } is a 1-LCC subset
of X. $\square$
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NOW Theorems 1.1 and 1.2 follow easily from Theorem 2.4, Proposition 3.3,
Theorem 3.5 and Proposition 3.6. Using Theorem 1.2 and Theorem 1.3, we can
extend the double suspension theorem of Edwards to Alexandrov spaces. An
$n$ -dimensional Alexandrov space $X$ with curvature $\geqq 1$ is called an Alexandrov
sphere if it is a homology manifold with $H_{*}(X)\cong H_{*}(S^{n})$ . Theorem 1.2 tells us
that a point $p$ in an Alexandrov space $X$ with $\dim X\geqq 4$ is a manifold point if
and only if the space of directions $\Sigma_{p}$ at $p$ is a simply connected Alexandrov
sphere.

PROPOSITION 3.7. The susPension $\sum X$ of a srmPly cmnected Alexmdrov sPhere
$X$ is a $toPolog7^{Cal}$ mmifold $md$ hence a sPhere.

PROOF. Since $X$ is an Alexandrov space with $K_{X}\geqq 1$ , the suspension $\Sigma X$ is
also an Alexandrov space with curvatures Zl. The suspension theorem for
homology groups then gives that $\Sigma X$ is an Alexandrov sphere. Let $p$ and $q$

denote the two vertices of the suspension $\Sigma X$ of $X$. Thus $\Sigma X-\{p, q\}$ is
homeomorphic to $X\cross R$ and hence, by Theorem 1.3, a topological manifold. To
see that $p$ and $q$ are also manifold points, we know from Theorem 1.2 that it
is sufficient to check the simply connectness of their spaces of directions in
$\Sigma X$. However, it is easy to see that their sPaces of directions are both the
space $X$. Since $X$ is simply connected, Theorem 1.2 implies that $P$ and $q$

are both manifold points. Finally, since the sphere is the only manifold which
is also a suspension, $\Sigma X$ is a sphere. $\square$

Since the suspension of a connected space is always simply connected, this
proposition gives

DOUBLE SUSPENSION THEOREM. The double susPension $\Sigma\Sigma X$ of an Alexmdrov
sphere $X$ is a sphere.

Example 1 in the introduction shows that this proposition is optimal. Next
we shall use these regularity results to investigate Gromov-Haudorff limits under
curvature bounded.

Let $M$ be a compact Riemannian $n$ -manifold. For a point $p\in M$, we define
the distance function at $P$ by $d_{p}(x)=d(p, x)$ . A point $q(\neq p)$ is called a critical
point of $P$ if there is, for any non-zero vector $v\in TM_{q}$ , a minimal geodesic $\gamma$

from $q$ to $P$ making an angle $\triangleleft:(v, \gamma’(0))\leqq\pi/2$ with $v$ . Let $C(p)$ denote the
distance between $P$ and its nearest critical point and let $C(M)= \inf_{p\in M}C(p)$ .
Note that $C(M)$ is bounded below by the injectivity radius of $M$ and hence is
always positive.

The importance of the critical points of the distance function lies in the
fact that the isotopy-type lemma of Morse theory still holds.
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ISOTOPY LEMMA $([G3])$ . Let $M$ be a compact Riemamim manifold of
dimenszm $n$ . One has that $(B(p, r),$ $p)$ is homeomorphic to $(D^{n}, 0)$ for any
$r\in(O, C(M))$ where $D^{n}$ is the unit disk in $R^{n}$ . Moreover, for $0<r_{1}<r_{2}<C(M)$

the mnulus $B(p, r_{2})-B(p, r_{1})$ is homeomorphic to $S^{n-1}\cross R$ .

Recall that $M$ denotes the class of comPact Riemannian $n$ -manifolds $M$ with
sectional curvature $K_{M}\geqq k$ , diameter $d(M)\leqq D$ and $C(M)\geqq r_{0}>0$ . Let $X$ be a
compact metric space in $\partial M$ with respect to the Gromov-Hausdorff topology. That
is, there exists a sequence of manifolds $M_{i}$ in $M$ such that $\lim_{iarrow\infty}d_{GH}(M_{i}, X)=0$ .

Our next aim is to obtain a regularity property for limiting spaces $X$ of $M$.
Grove, Petersen and the author show in [GP1] and [GPW] that the limit space
$X$ has the following important properties:

(1) $X$ is an Alexandrov space of dimension $n$ and with $K_{X}\geqq k$ and $d(X)\leqq D$ .
(2) $X$ is a $LGC(\rho)$ space with the function $\rho(\epsilon)=\epsilon,$ $\epsilon\in(0, r_{0})$ . In particular,

there are $\epsilon_{0}>0$ and $m\geqq 1$ such that if $h_{0}$ and $h_{1}$ are maps from $S^{1}$ into
$X$ with $d(f_{0}(s), f_{1}(s))\leqq\epsilon\leqq\epsilon_{0}$ for all $s\in S^{1}$ , then there exists a homotopy
$h_{t},$ $t\in[0,1]$ from $h_{0}$ to $h_{1}$ with $d(h_{0}(s), h_{t}(s))\leqq m\epsilon$ for any $s\in S^{1}$ and
$t\in[0,1]$ .

(3) $X$ is an ANR homology manifold with local index 1 in the sense of
Quinn.

(4) $Thereexistforlargeihomotopyequivalencesf_{i}:Xarrow M_{i}andg_{i}:M_{i}arrow X$

which have for any $x,$ $y\in X$ and $\overline{x},\overline{y}\in M_{i}$

$|d(x, y)-d(f_{i}(x), f_{i}(y))|<\epsilon_{i}$ ,

$|d(\overline{x},\overline{y})-d(g_{\ell}(\overline{x}), g_{i}(\overline{y}))|<\epsilon_{i}$ ,

with $\epsilon_{i}arrow 0$ as $iarrow\infty$ .

THEOREM 1.4. Each limit sPace $X\in\partial M$ is a topological mmifold.
PROOF. In view of Theorem 1.1 we only need to show that the space of

directions $\Sigma_{p}$ of any point $p\in X$ is simply connected if $n\geqq 4$ . Proposition 3.6
tells us that this is equivalent to check the 1-LCC condition for the subset $\{p\}$ .

Given any neighborhood $U$ of $P$ in $X$ , choose $r>0$ so small that 100 $r<r_{0}$

and $B(p, 100r)\subset U$ and set $V$ to be the open ball $B(p, r)$ . Let $h$ be any map
from $S^{1}$ into $V-p$ . Choose $\eta>0$ so that $d(p, h(s))\geqq\eta$ for all $s\in S^{1}$ and choose
also an $i$ so large that $100rn\epsilon_{i}<\eta$ and $d_{GH}(M_{i},X)<\eta/100$ where $m\geqq 1$ is the
number as in Property (2) of $X$ .

Fix an admissible metric $d$ on the disjoint union $M_{i}IIX$ such that the
Hausdorff distance $d_{H}(M_{i}, X)\leqq\eta/100$ and choose a point $p_{i}\in M_{t}$ with $d(p, p_{i})$

$\leqq\eta/100$ .
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Next we push the map $h$ to $M_{i}$ by setting $h_{i}=f\circ h:S^{1}arrow M_{i}$ . The triangle
inequality gives that $h_{i}(S^{1})\subset B(p_{i}, 2r)-B(p, (\eta/2))$ . Since $C(M_{i})\geqq r_{0}\geqq 100r$ and
$n\geqq 4$, the isotopy lemma gives that $h_{i}$ can be extended to a map, still denoted
by $h_{i}$ from $D^{2}$ into $B(p_{i}, 2r)$ $B(p, (\eta/2))$ . Pull the map $h_{i}$ back to the space
$X$ by setting $\hat{h}=g_{i}\circ h_{i}$ . Note that $f_{i}$ and $g_{i}$ are the maps as in Property (4) of
X. The triangle inequality again gives $\hat{h}(D^{2})\subset B(p, 3r)-B(p, (\eta/4))$ . Moreover,
the restriction of A to $S^{1}(=\partial D^{2})$ is $(10\epsilon_{i})$-close to the original map $h:S^{1}arrow X$ .
That is, $d(\hat{h}(s), h(s))\leqq 10\epsilon_{i}$ for all $s\in S^{1}$ . Thus Property (2) of $X$ implies that
$\hat{h}$ can be deformed to $h$ through a homotopy inside $B(p, 4r)-B(p, (\eta/8))$ since
$10m\epsilon_{i}<(\eta/10)$ .

This homotopy along with the map $\hat{h}:D^{2}arrow X$ provides the extension of
the map $h:S^{1}arrow V-p$ to a map from $D^{2}$ into $B(p, 4r)-B(p, (\eta/8))$ which is
contained in $U-p$ . This shows that $\{p\}$ is a 1-LCC subset of $X$ and the
theorem follows. $\square$

One can use this regularity theorem to obtain some finiteness and structure
$re$sults for Riemannian manifolds. However, we shall not pursue them here and
leave them to interested readers.

\S 4. Compact nonnegatively curved Alexandrov spaces.

In this section we investigate the fundamental group and the topological
structure of an Alexandrov space $X$ with $K_{X}\geqq 0$ . $ln$ [Pe] Perelman constructed
an example to indicate that the soul theorem of Cheeger and Gromoll [CG] does
not hold for Alexandrov spaces. However, we shall show in the compact cate-
gory that the results of Cheeger and Gromoll still hold to some extent. To
prove the structural part of Theorem 1.5, we shall not follow the argument of
Cheeger and Gromoll but, instead, use a method developed in [W2]. See also
[SW] for a discussion about Riemannian manifolds with almost nonnegative
curvature.

Let $X$ be a compact Alexandrov space with $K_{X}\geqq 0$ and let $\tilde{X}$ be its universal
covering with the pull-back metric. Thus $\tilde{X}$ is still an Alexandrov space with
$K_{\tilde{X}}\geqq 0$ and the fundamental group $\pi_{1}(X)$ acts isometrically on $\tilde{X}$ as deck trans-
formations.

Theorem 2.5 implies that $\tilde{X}$ splits isometrically as a product space $V\cross R^{k}$

where $V$ is a totally convex subset of $\tilde{X}$ and contains no lines. Thus $V$ is also
an Alexandrov space with $K_{V}\geqq 0$ . The space $\tilde{X}$ is simply connected and so is
V. Since $\tilde{X}$ covers a compact space, we can obtain that $V$ is compact.

LEMMA 4.1. The space $V$ is compact.
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PROOF. Indeed, if $V$ is not compact, there exists a sequence of points $p_{i}$

in $V$ such that $d(p_{1}, p_{i})=l_{\grave{l}}arrow\infty$ . Let $\gamma_{i}$ : $[0, l_{i}]arrow V$ be a sequence of minimal
geodesics from $p_{1}$ to $p_{i}$ . Set $y_{i}=\gamma_{i}(l_{i}/2)$ and fix a point $z\in R^{k}$ . Note that the
points $(p_{i}, z)$ and $(y_{i}, z)$ are in $\tilde{X}$ . Since $X$ is compact, one can find, for each
$i$, an element $h_{i}$ in $\pi_{1}(X)$ so that $d(h_{i}(y_{i}, z),$ ( $p_{1}$ , z) $)$ $d(X) where $d(X)$ denotes
the diameter of $X$ . Let $\pi_{1}$ and $\pi_{2}$ denote the projections of $\tilde{X}=V\cross R^{k}$ onto the
first and second factors, $V$ and $R^{k}$ , respectively. Set $\overline{y}_{i}=\pi_{1}h_{i}(y_{i}, z)$ . Thus
$d(\overline{y}_{i}, p_{1})\leqq d(X)$ . NOW consider the minimal geodesics $\overline{\gamma}_{i}=\pi_{1}h_{i}\gamma_{i}$ in $V$ . A sub-
sequence of these minimal geodesics $(\overline{\gamma}_{i},\overline{y}_{i})$ converge to a line $(\gamma, y)$ in $V$ with
$d$ ( $p_{1}$ , y)$d(X). Since $V$ contains no lines, this leads to a contradiction. There-
fore, $V$ is compact. $\square$

TO sbow that $\pi_{1}(X)$ is, up to a finite quotient, almost abelian, we need
another lemma.

LEMMA 4.2. Let $Y$ be a compact Alexmdrov space with $K_{Y}\geqq 0mdR^{k}$ be the
Euclidean $k$ -space. Let $X$ be the product space of $Y$ and $R^{k}$ with the product
metnc. Then any isometry $\Phi$ of $X$ can be wntten as $(\Phi_{1}, \Phi_{2})$ where $\Phi_{1}$ is an
isometry of $Y$ and $\Phi_{2}$ is an isometry of $R^{k}$ ; in terms of isometry grouPs, Isomn $(X)$

$=Isom(Y)\cross Isom(R^{k})$ .
PROOF. We note first that $X$ is an Alexandrov space with $K_{X}\geqq 0$ . For any

isometry $\Phi$ on $X$ one can write $\Phi(y, v)=(\Phi_{1}(y, v),$ $\Phi_{2}(y, v))$ for any $(y, v)\in X$ .
TO prove the lemma, we only need to check that $\Phi_{1}(y, v)$ and $\Phi_{2}(y, v)$ are
independent of $v$ and $y$ respectively. Given any non-zero vector $v$, consider the
line $1(t)=(v/||v||)t$ in $R^{k}$ . Since $\Phi$ is an isometry, $\Phi(y, l(t))$ is also a line in $X$ .
Theorem 2.5 gives that this line is perpendicular to the factor $Y$ , and hence
$\Phi_{1}(y, l(t))$ is independent of $t$ and $\Phi_{2}(y, l(t))$ is again a line in $R^{k}$ . This shows
that $\Phi_{1}(y, v)$ is independent of $v$ .

Next fix a point $z\in Y$ . For any $y\in Y$ choose a minimal geodesic $\gamma(s)$ from
$z$ to $y$ . For any $v\in R^{k}$ consider a line $1(t)$ in $R^{k}$ with $l(O)=v$ . Hence the
geodesics $(\gamma(s), v)$ and $(z, l(t))$ in $X$ are perpendicular, and so are $\Phi(\gamma(s), v)$ and
$\Phi(z, l(t))$ . AS discussed above, $\Phi(z, l(t))$ is still a line in $X$ and lies in
$\Phi(z, v)\cross R^{k}$ . Since the line 1 with $l(O)=v$ is arbitrary, $\Phi(\gamma(s), v)$ lies in $Y\cross\Phi(z, v)$ .
This gives tbat $\Phi_{2}(7^{(S)}, v)$ is independent of $s$ and in particular $\Phi_{2}(y, v)=\Phi_{2}(z, v)$ .
Hence, $\Phi_{2}(y, v)$ is independent of $y$ and the lemma follows. $\square$

The kernel of the natural projection $\Phi$ : $\pi_{1}(X)\subset Isom(V)\cross Isom(R^{k})arrow Isom(R^{k})$

is finite since Isom(V) is compact. Consider the covering $\tilde{X}=VxR^{k}arrow X^{*}=$

$\tilde{X}/ker\Phi=V^{*}\cross R^{k}$ and the corresponding isometry group Isom $(V^{*}\cross R^{k})=$

$Isom(V^{*})\cross Isom(R^{k})$ . Note that $V^{*}$ is an Alexandrov space with curvature $\geqq 0$

and finite fundamental group $\pi_{1}(V^{*})=ker\Phi$ . This is the space we ne$ed$ for
Theorem 1.5.
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The projection $\Phi^{*}:$ Isom $(V^{*})\cross Isom(R^{k})arrow Isom(R^{k})$ maps $G^{*}=\pi_{1}(X)/ker\Phi\subset$

$Isom(V^{*}\cross R^{k})$ isomorphically into a discrete uniform subgroup of Isom $(R^{k})$ .
Note that $V^{*}\cross R^{k}arrow R^{k}$ induces a continuous map $X=X^{*}/G^{*}arrow R^{k}/\Phi^{*}G^{*}$ , hence
$R^{k}/\Phi^{*}G^{*}$ is compact. Thus the Bieberbach theorem implies that $G^{*}$ contains
a normal free abelian rank $k$ subgroup $\Gamma$ of finite index where $\Phi^{*}\Gamma$ is a lattice
in the subgroup $T$ of translations in Isom $(R^{k})$ . Therefore, $\pi_{1}(X)$ is, up to finite
quotient, almost abelian and this prove the first part of Theorem 1.5 concerning
the fundamental group $\pi_{1}(X)$ .

Next we verify the structural part of Theorem 1.5. Let $Z^{k}=Ze_{1}\oplus Ze_{2}\oplus$

$...\oplus Ze_{k}$ be the normal free abelian subgroup $\Gamma$. Note that $Z^{k}$ can be viewed
as a lattice in the subgroup $T$ of translations on $R^{k}=Re_{1}\oplus Re_{2}\oplus\cdots Re_{k}$ . Set
$\overline{X}=X^{*}/Z^{k}$ . The space $\overline{X}$ is a finite covering of $X$ .

The action of $Z^{k}$ on $x*$ gives the fibration $V^{*}arrow\overline{X}arrow T^{k}$ where $T^{k}$ is the
flat torus $R^{k}/Z^{k}$ . This fibration is, in general, not trivial. Namely, the action
of $Z^{k}$ on the first factor $V^{*}$ of $x*$ is, in general, not trivial. Thus we inves-
tigate the fibration in a more detailed way.

Since $Z^{k}$ is a lattice in the subgroup of translations on $R^{k}$ , we can decompose

tbis fibration into $k$ small fibrations:

$\int W_{k-2}arrow W_{k.-1}arrow.S_{k-.1}^{1}$

$|_{V^{*}arrow W_{1}arrow S_{1}^{1}}W_{1}arrow W_{\mathfrak{g}}arrow S_{2}^{1}$

where $W_{i}$ inherits a metric from $\overline{X}$ and $S_{i}^{1}$ is the circle $Re_{i}/Z_{i}$ , induced by the
action of $Z_{i}$ for $i=1,2,$ $\cdots$ , $k$ . Note that $W_{i}’ s$ are also Alexandrov spaces with
nonnegative curvature.

In what follows, we shall show that there are finite coverings $\hat{W}_{1}$ and $\hat{S}_{1}^{1}$ of
$W_{1}$ and $S_{1}^{1}$ such that $\hat{W}_{1}$ is homeomorphic to $V^{*}x\hat{S}_{1}^{1}$ . If the action of $Ze_{1}$ on $V^{*}$

is trivial, then $W_{1}$ is isometric to the metric product space $V^{*}\cross S_{1}^{1}$ . However,
this may not be the case. Hence, we need to deform the action of $Ze_{1}$ to a
trivial action, and then this will imply that $W_{1}$ is, topologically, a product space.

Since the isometry group Isom $(V^{*})$ is compact, there is, for any $\epsilon_{1}>0$, an
integer $m(\epsilon_{1})$ such that the isometry $m(\epsilon_{1})e_{1}$ of $V^{*}$ is $\epsilon_{1}$-close to the identity
map, $Id$ , on $V^{*}$ . On the other hand, Isom $(V^{*})\subset Hom(V^{*})$ , and $Hom(V^{*})$ is, by
Theorem 2.6, locally contractible. Hence, we can choose $\epsilon_{1}$ so small that there
is a path $\theta$ : $[0,1]arrow Hom(V^{*})$ inside the $\epsilon_{1}$-neighborhood of the identity map $Id$

of $V^{*}$ in $Hom(V^{*})$ with $\theta(0)=m(\epsilon_{1})e_{1}$ and $\theta(1)=Id$ . We now consider the $m(\epsilon_{1})$-fold
coverings $\hat{W}_{1}$ and $\hat{S}_{1}^{1}$ of $W_{1}$ and $S_{1}^{1}$ , respectively. Endow these two coverings
with the pull-back metrics and then $\hat{W}_{1}$ is also an Alexandrov spaces.
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By using these homeomorphisms $\theta(t),$ $t\in[0,1]$ , one can deform the fibration

$V^{*}arrow\hat{W}_{1}arrow\hat{S}_{1}^{1}$

to a trivial fibration.
NOW we move to the second level:

$W_{i}arrow W_{2}arrow S_{2}^{1}$ .

First, we take the $m(\epsilon_{1})$-fold covering $\overline{W}_{2}$ of $W_{2}$ and endow it with the pull back
metric. Thus it is again an Alexandrov space with curvature $\geqq 0$ . We have the
fibration

$\hat{W}_{1}arrow\overline{W}_{2}arrow S_{2}^{1}$ .

Once again, we can proceed with the same argument as above. Since the
isometry group Isom $(\hat{W}_{1})$ is compact, there is, for any $\epsilon_{2}>0$, an integer $m(a_{2})$

such that the isometry $m(\epsilon_{2})e_{2}$ of $\hat{W}_{1}$ is $\epsilon_{2}$-close to the identity map, $Id$ , of $W_{1}$ .
Since $Hom(\hat{W}_{1})$ is locally contractible, we can choose $\epsilon_{2}$ so small that there is a
path $\theta$ : $[0,1]arrow Hom(\hat{W}_{1})$ insid $e$ the $s_{2}$-neighborhood of the identity map $Id$ in
$Hom(\hat{W}_{1})$ with $\theta(0)=m(\epsilon_{2})e_{2}$ and $\theta(1)=Id$ . Consider the $m(\epsilon_{2})$-fold covering $\hat{W}_{2}$

(resp. $\hat{S}_{2}^{1}$ ) of $\overline{W}_{2}$ (resp. $S_{2}^{1}$) associated to $m(e_{2})e_{2}$ .
The homeomorphisms $\theta(t),$ $t\in]0,1]$ , allow us to deform the fibration

$\hat{W}_{1}arrow\hat{W}_{2}arrow\hat{S}_{2}^{1}$

to a trivial fibration.
NOW we can proceed with the same argument on the third level, then the

fourth, and so on. Finally, we shall reach the top level and obtain a trivial
fibration

$\hat{W}_{k-1}arrow\hat{X}arrow\hat{S}_{k}^{1}$

where $\hat{X}$ is a $(m(\epsilon_{1}), m(\epsilon_{2}),$ $\cdots$ , $m(\epsilon_{k}))$-fold covering of $\overline{X}$ . Therefore, we have

$\hat{X}=homeo\hat{W}_{k-1}\cross\hat{S}_{k}^{1}$

homeo
$\approx$

$\hat{W}_{k-2}\cross\hat{S}_{k-1}^{1}\cross\hat{S}_{k}^{1}$

$homeo\approx V^{*}\cross\hat{S}_{1}^{1}\cross\hat{S}_{2}^{1}\cross$
$\hat{S}_{k}^{1}$ .

This means that $\hat{X}$ is homeomorphic to the product space $V^{*}\cross T^{k}$ . We denote
this homeomorphism by $H:\hat{X}arrow V^{*}\cross T^{k}$ .

Next we investigate the regularity part in Theorem 1.5. If the Alexandrov
space $X$ is a topological manifold, then so is $\hat{X}$. Hence if $\dim V^{*}=n-k\geqq 4$ ,

Theorem 2.2 (II) implies that $V^{*}$ has a resolution. Let $f:Narrow V^{*}$ be a resolution



756 J.-Y. WU

of $V^{*}$ . Hence $N$ is a manifold with $\dim N=n-k$ and homotopic to $V^{*}$ .
Therefore $F=f\cross Id:N\cross T^{k}arrow V^{*}\cross T^{k}$ is again a resolution of $V^{*}\cross T^{k}$ where
$Id$ denotes the identity map of $T^{k}$ . Theorem 2.2 (III) implies for any positive $\epsilon$

that there exists a homeomorphism $G:N\cross T^{k}arrow V^{*}\cross T^{k}$ which is $\epsilon$-close to $F$.
Thus the composition of $G$ with $H^{-1}$ provides us a homeomorphism from $N\cross T^{k}$

onto $\hat{X}$ and this completes the proof of Theorem 1.5.
Let us conclude this note by a corollary of Theorem 1.3 and 1.5.

COROLLARY 4.3. Let $X$ be a compact Alexandrov space wzth $K_{X}\geqq 0$ . If $X$ is
a homology mmifold $md\pi_{1}(X)$ is infinite, then $X$ is a topological manifold.

PROOF. We know from Theorem 1.4 that a finite covering $\hat{X}$ of $X$ is
homeomorphic to a product space $V^{*}\cross T^{k}$ where $V^{*}$ is an Alexandrov space
with curvature IO and its fundamental group is finite. Since $\pi_{1}(X)$ is infinite,
then so is $\pi_{1}(\hat{X})$ . Hence one has $k\geqq 1$ . Since $X$ is a homology manifold,
Theorem 2.2 (I) implies that $V^{*}$ is also a homology manifold. Then Theorem
1.3 gives that $\hat{X}=V^{*}\cross T^{k}$ is a topological manifold. In tum, $X$ is a topological
manifold. $\square$
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