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$0$ . Introduction.

This paper is a continuation of [BS1] and [BS2], and gives a new method
to investigate the structure of the third reduction, by adjusting the spectral
value (see Definition 1.7).

The first and second reductions (see Definitions 2.1) are studied in [BS1]

and [Fj2]. When we face the third reduction, or equivalently, consider a
reduction series $x_{0^{arrow X_{1}arrow X_{2}arrow X_{3}}}^{\phi_{1}\phi_{2}\phi_{8}}$ , severe difficulties are caused by

(1) the isolated, 2-factorial, terminal singularities of $X_{2}$ ,
(2) the ray contractions of flipping type, through which the third reduction

$\phi_{3}$ factors, and
(3) that $L_{2}$ (see Definitions 2.1) is not necessarily ample, spanned or even

a line bundle.

However if we put some condition on the spectral value $u(X_{0}, L_{0})$ , we can
exclude these bad situations. More precisely, we will use the main theorem,
[BS2, Theorem (3.1.4)], which says that if the third spectral condition: $u(X_{0}, L_{0})$

$>2\lceil(n-1)/3\rceil$ is satisfied, then $\phi_{1}$ and $\phi_{2}$ are isomorphisms. Hence $X_{2}$ is smooth,
and $L_{2}$ is a very ample line bundle, which settle (1) and (3). At the same time,
this condition kills the ray contractions of flipping type in (2). By means of it,
we will have Propositions 2.5, 2.7 which express nice properties of the third
reductions chosen by this condition. The third reduction $\phi_{3}$ : $X_{2}arrow X_{3}$ with the
above third spectral condition is called the spectral third reduction and is denoted
by $\phi:Xarrow Y$ (see Definition 2.2). Applying [Nal, Theorem 1.3, Propositions 2.1,
2.3], the classification of the third adjoint contractions, we will obtain the
structure theorem on the positive dimensional fibers of the spectral third reduc-
tion, the main Theorem 2.3, where it will also be shown that $Y$ has factorial,
terminal singularities.

TO classify the next reduction by the same method, it is important to ask
what spectral condition implies that the third reduction is trivial. This condi-
tion, the fourth spectral condition, is given in Definition 3.1. To prove this,



634 S. NAKAMURA

we make essential use of [Na2, Proposition (1.1), Corollary (1.3)], a criterion
for a non-trivial section of adjoint systems to exist. See Theorem 3.2.

AS an application of the structure theorem of the spectral third reduction,
we will give an interesting example of a birational canonical morphism of a
minimal smooth threefold in Corollary 3.4.

From [KMM, Theorem 3-2-1], there is a unique (up to isomorphisms) ample
line bundle 9 on $Y$ such that $K_{X}+(n-3)L\cong\phi^{*}\Xi^{1}$ (see Proposition 2.5). The
third spectral condition will make it quite easy to prove that the nef value $\tau(9)$

of 9 (see Definition 1.4) satisfies $\tau(9)\leqq n-4$, and to classify the pair $(Y, B)$

when $K_{X}+(n-4)9$ is not big, in Theorem 4.1. (cf. [BS1])
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1. Background material.

We use [KMM] and [Ha] as our main sources of information. A variety
means a separated integral scheme of finite type over the complex number field
$C$ . A subvariety means an integral subscheme of a variety. A point means a
closed point. A normal variety is said to have $m$-factorial singularities if for
every Weil divisor $Z,$ $mZ$ is a Cartier divisor. Note that for a normal, locally
noetherian scheme, 1-factoriality is equivalent to local factoriality with respect
to the Zariski topology, as shown in [AK, p. 139, Proposition (3.10)].

On Cone Theory, our extremal face and extremal ray do not exclude $0,$ $i.e$ .
always $O\in F$ and $O\in R$ in [KMM, Definition 3-2-3]. Let us point out that our
definition of an extremal ray is equivalent to the one defined in [Mo], if the
variety is a smooth projective variety.

DEFINITION 1.1. Let $X$ be an $n$ -dimensional projective variety with terminal
singularities. Assume that $X$ has an extremal ray $R$ . Let $\varphi_{R}$ : $Xarrow W$ be the
ray contraction of $R$ (see [KMM, Definition 3-2-3]) and define the exceptional
locus:

$\tilde{E}:=$ { $x\in X|\varphi_{R}$ is not isomorphic at $x$ }.

Then we say that the ray contraction $\varphi_{R}$ is of fiber type, of divisorial type, or
of flipping tyPe (or equivalently, a small contraction) if $\dim\tilde{E}=n,$ $=n-1$ , or
$\leqq n-2$ , respectively, where ’ $\dim$ denotes the maximum of the dimensions of
irreducible components.
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In the rest of this section, we will repeat to use the following set-up:

Let $X$ be an $n$ -dimensional projective variety with terminal
$(SU)$ singularities, and $\pi:Xarrow S$ a morphism onto a projective

variety $S$ . Also, let $L$ be a $\pi$-ample line bundle on $X$ .

The following is another expression of the discreteness of extremal rays in the
cone theorem (see [KMM, Chap. 4] and [Na3, Section 1.3]).

LEMMA 1.2. Under $(SU)$ , if $F$ is a non-zero extremal face of $\overline{NE}(X/S)$ , then
there exists a finite number of distinct, unique and non-zero extremal rays
$R_{1},$ $\cdots$ , $R_{r}(r\geqq 1)$ of $\overline{NE}(X/S)$ such that $F=R_{1}+\cdots+R_{r}$ .

TO define the nef value, we need the following

LEMMA 1.3 (Rationality theorem, [KMM, Theorem 4-1-1], [BS1, Theorem
(0.8.1)$])$ . Let $X$ be a normal variety with terminal singularities and $\pi:Xarrow S$ a
projective morphis$m$ onto a variety S. Let $L$ be a $\pi$-amPle line bundle on X. If
$K_{X}$ is not $\pi- nef$, then

$\tau:=\min$ {$t\in R;K_{X}+tL$ is $\pi- nef$ }

is a positive ratimal number. Furthermore, defining coPrime Positive integers $u,$ $v$

by $e\tau=u/v$ , we have
$u\leqq e(\delta+1)$ ,

where $e:= \min$ {$m\in N;mK_{X}$ is Cartier} and $\delta:=\max_{\iota\in S}\{\dim\pi^{-1}(s)\}$ .

In the following definition, we will also define the nef value morphisms (cf.
[BS1, (0.8)] $)$ .

DEFINITION 1.4. With the notations as in Lemma 1.3, we call the rational
number $\tau$ the z-nef value of (X, $L$). lf $S$ is a point, it is called simply the $nef$

value of (X, $L$ ). Let us define $F:=(K_{X}+\tau L)^{\perp}\cap\overline{NE}(X/S)$ . Then from the
Kleiman’s criterion on ampleness, for any $\gamma\in F\backslash \{0\}$ , we have $K_{X}\cdot\gamma<0$ . Hence
$F$ is an extremal face on $X$ , and thus from [KMM, Theorem 3-2-1], there exist
a unique (up to isomorphisms) morphism $\phi:Xarrow Y$ onto a normal projective
variety $Y$ and a surjective morphism $\alpha:Yarrow S$ with $z=\alpha\circ\emptyset$ . The morphism
$\phi:Xarrow Y$ is called the $\pi- nef$ value morphism of (X, $L$ ) over $S$, and if $S$ is a
point, it is called simply the $nef$ value morphism of (X, $L$).

The following lemma can be proven by exactly the same method in [BS1,

Lemma (0.8.3) $]$ .
LEMMA 1.5. Under $(SU)$ , assume that $K_{X}$ is not $\pi- nef$ . Then a rational

number $\tau$ is the $\pi- nef$ value of (X, $L$ ) if and only if $K_{iT}+\tau L$ is $\pi- nef$ but not
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$\pi$-ample.

An adjoint system $K_{X}+\tau L$ can be localized in the following sense.

LEMMA 1.6. Under $(SU)$ with $S=$ {$a$ Point}, assume that $K_{X}$ is not $nef$ . Let
$\tau:=\tau(L)$ be the $nef$ value of L. From the extremal face $F=(K_{X}+\tau L)^{\perp}\cap\overline{NE}(X)$ ,
take any extremal ray $R$ , and let $\varphi_{R}$ : $Xarrow W$ be its ray contraction. Assume that
$\dim W>0$ . Then for any hyperplane section $V$ on $W$ and any positive integer $t$ ,

we have $R=(K_{X}+\tau L+t\varphi_{R^{*}}V)^{\perp}\cap\overline{NE}(X)$ .
PROOF. From Lemma 1.2, we have $F=R_{1}+\cdots+R_{r}$ and $R_{j}-R_{+}[C_{j}],$ $j=$

$1,$ $\cdots$ $r$ , where $R_{j}’ s$ are distinct extremal rays and $C_{j}$ is an irreducible curve
for each $R_{j}$ . Say $R=R_{1}$ . Take any $\gamma\in(K_{X}+\tau L+t\varphi_{R^{*}}V)^{\perp}\cap\overline{NE}(X)$ . Since both
$K_{X}+\tau L$ and $\varphi_{R^{*}}V$ are nef, it follows that $(K_{X}+\tau L)\cdot\gamma=0$ and $\varphi_{R^{*}}V\cdot\gamma=0$ .
Hence the first equation implies $\gamma\in F$. Thus we have $\gamma=a_{1}C_{1}+\cdots+a_{r}C_{r}$ , for
some real numbers $a_{j}\geqq 0$ $(j=1, \cdots , r)$ . By the second equation, $0=\varphi_{R^{*}}V\cdot(a_{1}C_{1})$

$+\cdots+\varphi_{R^{*}}V\cdot(a_{r}C_{r})=a_{1}V\cdot\varphi_{R}(C_{1})+\cdots+a_{r}V\cdot\varphi_{R}(C_{r})=a_{2}V\cdot\varphi_{R}(C_{2})+\cdots+a_{r}V\cdot\varphi_{R}(C_{r})$ ,
$since\varphi_{R}(C_{1})isapoint$ . $BecauseR_{j}’ sarealldistinct,$ $\dim\varphi_{R}(C_{2})=\ldots=\dim\varphi_{R}(C_{r})$

$=1$ . Thus the ampleness of $V$ implies $a_{f}=\cdots=a_{r}=0$ . And thus $\gamma=a_{1}C_{1}\in R$ .
On the other hand, for any $\gamma\in R\backslash \{0\}$ , there exists a real number $a_{1}>0$

such that $\gamma=a_{1}C_{1}$ . Since $R\subset F=(K_{X}+\tau L)^{\perp}\cap\overline{NE}(X)$ and $\varphi_{R}(C_{1})$ is a point,
$\gamma\cdot(K_{X}+\tau L+t\varphi_{R^{*}}V)=\gamma\cdot(K_{X}+\tau L)+ta_{1}V\cdot\varphi_{R}(C_{1})=0$ . Thus $\gamma\in(K_{X}+\tau L+t\varphi_{R^{*}}V)^{\perp}$

$\cap\overline{NE}(X)$ . Q. E. D.

The spectral value is the key concept in this paper.

DEFINITION 1.7 $([BS2, (0.4)])$ . Let $X$ be an $n$ -dimensional normal projective
variety with $Q$ -Gorenstein singularities. Let $D$ be a $Q$-Cartier divisor on $X$ .
Then we define $u(X, D):= \sup\{t\in Q$ ; $h^{0}(X, N(K_{X}+tD))=0$ for all integer $N>0$

such that $N(K_{X}+tD)$ is Cartier} and call $u(X, D)$ the unnormalized spectral value
of (X, $D$). In this PaPer, we simply refer to it as the spectral value of (X, $D$).

The relation between the spectral value and the nef value will be established
in the following lemma, the relative version of [BS2, Lemma (0.4.3)]. The same
proof in [ibid.] works also for tbis.

LEMMA 1.8. Under $(SU)$ , assume that $K_{X}$ is not $\pi- nef$ . Let $\theta(L)$ be the $\pi- nef$

value of $L$ , and $\phi$ : $Xarrow Y$ its $\pi- nef$ value morPhism. Then the sPectral value
$u(X, L)$ satisfies that $u(X, L)\leqq\theta(L)$ . Moreover, $u(X, L)=\theta(L)$ if and only if $\phi$

is of fiber type.

Let us introduce special varieties in order to classify nef value morphisms
of fiber type from the adjunction tbeoretic point of view in Section 4.1.
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DEFINITION 1.9. Let $Y$ be a normal projective variety with factorial sin-
gularities. We say that $Y$ is Fano if $-K_{Y}$ is ample. Let 9 be an ample line
bundle on $Y$ and $n:=\dim Y$ . Assume that there exists a morphism $\mu:Yarrow Z$

onto a normal projective variety $Z$ of dimension $m$ with only connected fibers
such that

$K_{Y}+k9\cong\mu^{*}Q$

for some ample line bundle $Q$ on $Z$ and some positive integer $k$ . We call $(Y, 9)$

a scroll if $k=n-m+1$ , a quadnc fibration if $k=n-m$ , a $Del$ Pezzo fibration if
$k=n-m-1$ , a Mukai fibration if $k=n-m-2$, or a Fano fibration of co-index
four if $k=n-m-3$ .

The following lemma is a technical device from Scheme Theory, which will
be necessary in Proofs for Proposition 2.7 and Theorem 3.2. For a proof, see
[Na3, Section 1.2].

LEMMA 1.10. Let $X$ be a locally noetherian scheme of equidimension, and
$D_{1},$ $\cdots$ $D_{r}$ effective Cartier divisors on X. Let $Y=D_{1}\cap\cdot..\cap D_{r}$ be the scheme
theoretic intersection of $D_{1},$ $\cdots$ $D_{r}$ . If $Y$ is equicodimension $r$ and located in the
Cohen-Macaulay locus of $X$, we have

$\mathscr{I}_{Y}/\mathscr{I}_{Y^{2}}\cong[\mathscr{I}_{D_{1}}/\mathscr{I}_{D_{1}}^{2}\otimes \mathcal{O}_{Y}]\oplus\cdots\oplus[\mathscr{I}_{D_{\gamma}}/\mathscr{I}_{D_{\gamma}^{2}}\otimes O_{Y}]$ ,
$or$

$\Re_{Y/X}\cong\Re_{D_{1}/X}|_{Y}\oplus\cdots\oplus\Re_{D_{\gamma}/X}|_{Y}$ .

2. The structure theorem of the sPectral third reduction.

Definitions and some basic properties of reductions are given in the following

DEFINITION 2.1. 1) Let $X_{0}$ be an $n$ -dimensional smooth projective variety
$(n\geqq 2)$ , and $L_{0}$ a very ample line bundle on $X_{0}$ . We assume that $K_{X_{0}}+(n-1)L_{0}$

is nef and big. Then from [KMM, Theorem 3-2-1], there is a unique (up to
isomorphisms) birational contraction

$\phi_{1}$ : $X_{0}arrow X_{1}$

onto a normal projective variety $X_{1}$ . $\phi_{1}$ is called the first reduction. From
[BS1, Theorem (3.1)], $X_{1}$ is smooth, and if we define $L_{1}=(\phi_{1_{*}}L_{0})^{**}$ (the double
dual), then $L_{1}$ is an ample line bundle on $X_{1}$ such that $K_{X_{1}}+(n-1)L_{1}$ is ample,
and that $K_{X_{0}}+(n-1)L_{0}\cong\phi_{1^{*}}(K_{X_{1}}+(n-1)L_{1})$ .

2) Let $n\geqq 4$ . Assume that $K_{x_{1}}+(n-2)L_{1}$ is nef and big, then from [KMM,

Theorem 3-2-1], there is a unique (up to isomorphisms) birational contraction

$\phi_{2}$ : $X_{1}arrow X_{f}$
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onto a normal projective variety $X_{2}$ , and there is an ample line bundle $\mathscr{K}$ on $X_{f}$

such that $K_{X_{1}}+(n-2)L_{1}\cong\phi_{2^{*}}\mathscr{K}$ . $\phi_{2}$ is called the second reduction. We define
$L_{2}=(\phi_{2_{*}}L_{1})^{**}$ (the double dual). From [BS1, Theorem (4.1), Lemma (4.4)] and
[Fj2, (2.5)], $X_{2}$ has 2-factorial, terminal singularities, and $K_{X_{2}}+(n-2)L_{2}\cong \mathscr{K}$ .

3) Let $n\geqq 4$ . Assume that $2[K_{X_{2}}+(n-3)L_{2}]$ is nef and big, then as above
from [KMM, Theorem 3-2-1], there is a unique (up to isomorphisms) birational
contraction

$\phi_{3}$ : $X_{f}arrow X_{3}$

onto a normal projective variety $X_{3}$ . $\phi_{3}$ is called the third reduction.

We introduce the third reduction with a spectral value condition.

DEFINITION 2.2. The $n$ -dimensional third reduction $\phi_{3}$ : $X_{2}arrow X_{3}$ is called the
spectral third reduction if the spectral value $u(X_{0}, L_{0})$ (see Definition 1.7) satisfies

$(*SP)$ $u(X_{0}, L_{0})>2\lceil(n-1)/3\rceil$ .
We denote the spectral third reduction by $\phi:Xarrow Y$ and set $L=L_{2}$ . The con-
dition $(*SP)$ is called the third spectral condition.

NOW we will state the main theorem of this paper.

THEOREM 2.3 (The structure theorem of the spectral third reduction). Let
$\phi:Xarrow Y$ be the $n$ -dimensional spectral third reduction. Then

a: $Y$ has factonal, terminal singulanties,
$b$ : $n\geqq 9$ ,
$c$ : the excePtional locus $\tilde{E}$ of $\phi$ is a disjoint union of a finite number of

Prime $dimSors$ , and such a Pnme dimsor $E$ is classified as follows.
(1) $\dim\phi(E)=0,$ $L_{E^{n-1}}=3,$ $\omega_{E}^{0}\cong(2-n)L_{E}$, and

$(E, L_{E}, \Re_{E/x})\cong(Hc, O(1),$ $O(-1))$ ,

where $Hc$ is a (not necessarily normal) hypercubic in $P^{n}$ .
(2) $\dim\phi(E)=0,$ $L_{E^{n-1}}=4,$ $\omega_{E}^{0}\cong(2-n)L_{E}$, and

$(E, L_{E}, \Re_{ElX})\cong(l(2,2),$ $O(1),$ $O(-1))$ ,

where $I(2,2)$ is a (not necessarily normal) complete intersection of
two hyperquadrics in $P^{n+1}$ .

(3) $dm\phi(E)=1$ , and for a general fiber $F$ of $Earrow\phi(E)$ ,
$(F, L_{F}, yl_{E/X}|_{F})\cong(Q^{n-2}, 0(1)$ , $0(-1))$ ,

where $Q$ is a normal hyPerquadric in $P^{n-1}$ .

REMARK 2.4. In the cases $c-(1)$ and $c-(2)$ in the above theorem, $(E, L_{E})$ is
a Del Pezzo variety in the sense of [Fjl].
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TO prove the above theorem, we will make an essential use of the classifi-
cation of the third adjoint contractions, [Nal, Theorem 1.3, Proposition 2.1, 2.3].

Let us start with the following proposition which establishes the basic proper-
ties of the spectral third reduction.

PROPOSITION 2.5. If $\phi:Xarrow Y$ is the $n$ -dimensional spectral third reduction,
then it has the four properties:

(1) $X$ is smooth, and $L$ is a very ample line bundle on $X$ .
(2) $K_{X}+(n-3)L$ is a $nef$ and big line bundle such that

$K_{X}+(n-3)L\cong\phi^{*g}$

for a unique (up to isomorphisms)ample line bundle 9 on $Y$ .
(3) $n\geqq 9$ .
(4) If we define $F:=(K_{X}+(n-3)L)^{\perp}\cap\overline{NE}(X)$ , then $F$ is an extremal face,

and $F=R_{1}+\cdots+R_{r}$ for a unique set of distinct extremal rays $R_{1},$ $\cdots$ $R_{r}$ .
Moreover, if we take any $R$ among $R_{1},$ $\cdots$ $R_{r}$ , then $R$ defines birational
ray contraction

$\varphi_{R}$ : $Xarrow W$

whose suPporting divzsor is $K_{X}+(n-3)L’$ for some ample line bundle $L’$ ,

and $\phi$ factors through $\varphi_{R}$ .

PROOF. Since $\phi$ satisfies the condition $(*SP)$ , from [BS2, Theorem (3.1.4)],

the first and the second reductions preceding $\phi$ are trivial. Hence the assertion
(1) is clear.

Definition 2.1 and [KMM, Theorem 3-2-1] imply (2). Hence from Definition
1.4, the nef value of $L$ is less than or equal to $n-3$ , and thus from Lemma 1.8,
we have $u(X, L)\leqq n-3$ . Combining it with $(*SP)$ , we get $n\geqq 9$ , the assertion
(3).

TO prove (4), we assume that $F\neq\{0\}$ . Then from Lemma 1.6, the nef
value of $L$ is equal to $n-3$ . Let $R=R_{+}[C]$ . Since $\phi(C)$ is a point, $\phi$ factors
through the ray contraction $\varphi_{R}$ : $Xarrow W$, $i.e$ . $\phi=\alpha\circ\varphi_{R}$ for some morphism
$\alpha:Warrow Y$ . Note that since $\phi$ : $Xarrow Y$ is birational, $\varphi_{R}$ is also birational. In
Lemma 1.6, $\tau=n-3$ , and thus if we take $t=n-3$ and define $L’=L+\varphi_{R^{*}}V$ ,

then $K_{X}+(n-3)L’$ will be a supporting divisor for $R$ . Q. E. D.

Let us clarify the connection of the spectral third reduction with the bira-
tional third adjoint contractions ( $[Na1$ , Definition 1.1]). Since $\varphi_{R}$ : $Xarrow W$

satisfies all conditions in [ibid., Proposition 2.1], we can use the classification
lists in [ibid., Theorem 1.3 and Proposition 2.1]. Note that $L’$ defined in tbe
above proof is very ample, $L_{F}’\cong L_{F}$ for any fiber $F$ of $\varphi_{R}$ , and $n=\dim X\geqq 9$ .
Hence we can also apply [ibid., Proposition 2.3] to $\varphi_{R}$ : $Xarrow W$ , As a result
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we will obtain the following

LEMMA 2.6. Let $\varphi_{R}$ : $Xarrow W$ be any ray contraction in (4) of Proposition 2.5,
and let $\tilde{E},$ $E$ be the exceptional locus of $\varphi_{R}$ , an irreducible component of $\tilde{E}$ ,
respectively.

a) If $\varphi_{R}$ is of divzsorial type, then $\tilde{E}$ is a pnme divzSor $E,$ $W$ has Q-factonal,
teminal singularities, and $\dim f(E)=0,1$ or 2. Furthermore, one of the following
seven cases possibly occurs:

(1) $\dim\varphi_{R}(E)=0$ :
$(E, L_{E}, 7l_{E/X})\cong(P^{n-1}, 0(1)$ , $O(-3))$ , and $W$ is 3-factorial.
$(E, L_{E}, \Re_{E/X})\cong(Q^{n- 1}, O(1),$ $O(-2))$ , and $W$ is 2-factorial.
$(E, L_{E}, \Re_{E/X})\cong(Hc, \mathcal{O}(1),$ $\mathcal{O}(-1))$ , and $W$ is l-factorial.
$(E, L_{E}, \Re_{E/X})\cong(I(2,2),$ $O(1),$ $O(-1))$ , and $W$ is l-factorial.

(2) $\dim\varphi_{R}(E)=1$ : For any fiber $F$ of $Earrow\varphi_{R}(E)$ over a smooth point of a
curve $\varphi_{R}(E)$ ,

$(F, L_{F}, yl_{E/X}|_{F})\cong(P^{n- 2}, 0(1)$ , $O(-2))$ , and $W$ is 2-factorial.
For a general fiber $F$ of $Earrow\varphi_{R}(E)$ ,

$(F, L_{F}, \Re_{E/X}|_{F})\simeq(Q^{n- 2}, \mathcal{O}(1),$ $O(-1))$ , and $W$ is l-factorial.
(3) $\dim\varphi_{R}(E)=2$ : For a general fiber $F$ of $Earrow\varphi_{R}(E)$ ,

$(F, L_{F}, 7l_{E/X}|_{F})\cong(P^{n-3}, 0(1)$ , $\mathcal{O}(-1))$ , and $W$ is l-factorial.

b) If $\varphi_{R}$ is of flipping type, then $\tilde{E}$ is a disjoint union of its irreducible
components $E$ , which satisfy $\dim\varphi_{R}(E)=0$ and

$(E, L_{E}, \Re_{E/X})\cong(P^{n-2}, \mathcal{O}(1),$ $\mathcal{O}(-1)\oplus O(-1))$ .
The third spectral condition excludes several cases among the ray contractions in
Lemma 2.6.

PROPOSITION 2.7. Let $\varphi_{R}$ : $Xarrow W$ be any ray contraction in (4) of Proposition
2.5. Then $W$ has factonal, terminal srngulanties, and $\varphi_{R}$ is of divisorial type
whose exceptional divzsor $E$ has the following classification.

(1) If $\dim\varphi_{R}(E)=1$ , then for a general fiber $F$ of $Earrow\varphi_{R}(E)$ ,

$(F, L_{F}, \Re_{E/X}|_{F})\cong(Q^{n- 2}, 0(1)$ , $\mathcal{O}(-1))$ .
(2) If $\dim\varphi_{R}(E)=0$, then

$(E, L_{E}, \Re_{E/x})\cong(Hc, 0(1)$ , $O(-1))$ , or
$(E, L_{E}, \Re_{E/X})\cong(I(2,2),$ $O(1),$ $O(-1))$ .
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PROOF. 1. We will exclude the case of flipping type in b) of Lemma 2.6.
Assuming the existence of this case, we would like to have a contradiction.
TO apply [Na2, Corollary (1.3)], we use the same notation there: $(Z, L_{Z}, \Re_{z/X^{*}})$

$\cong(P^{n-2}, O(1),$ $O(1)\oplus O(1))$ . Hence we would have $r=2,$ $e=1$ and $a_{1}=a_{2}=1$ . Then
from [ibid., (1)], we would have $h^{0}(X, K_{X}+\lceil n/2\rceil L)>0$, which contradicts the
third spectral condition $(*SP)$ which asserts $h^{0}(X, K_{X}+\lceil n/2\rceil L)=0$ since
$2\lceil(n-1)/3\rceil\geqq\lceil n/2\rceil(n\geqq 9)$ .

2. We will exclude the two projective space cases in $a-(2)$ and $a-(3)$ of
Lemma 2.6. As above assume the existence of $a-(2)$ , $(Z, L_{Z})\cong(P^{n-2}, O(1))$ .
Then since $Z=F=E\cap\varphi_{R^{*}}V$ for some hyperplane section $V$ on $W$, Lemma 1.10
would deduce $yl_{Z/X}\cong 0\oplus \mathcal{O}(-2)$ . Hence $r=2,$ $e=1,$ $a_{1}=0$ and $a_{2}=2$ . Thus from
[ibid., (2)], we would have $h^{0}(X, K_{X}+\lceil(n+3)/3\rceil L)>0$, which contradicts $(*SP)$

since $2\lceil(n-1)/3\rceil\geqq\lceil(n+3)/3\rceil(n\geqq 9)$ .
Assuming the existence of the other case in $a-(3)$ , similarly, Lemma 1.10

would imply $(Z, L_{Z}, \Re_{Z/x^{*}})\cong(P^{n-3}, O(1),$ $0\oplus 0\oplus o(1))$ . Hence $r=3,$ $e=1,$ $a_{1}=a_{2}$

$=0$ and $a_{3}=1$ . Thus from [ibid., (1)], we would have $h^{0}(X, K_{X}+|^{-}(n+1)/2\rceil L)$

$>0$ , which contradicts $(*SP)$ since $2\lceil(n-1)/3\rceil\geqq\lceil(n+1)/2\rceil(n\geqq 9)$ .
3. We will exclude the projective space case and the hyperquadric case in

$a-(1)$ of Lemma 2.6. From $(Z, L_{Z}, \Re_{z/x^{*}})\cong(P^{n-1}, \mathcal{O}(1),$ $\mathcal{O}(3))$ , we would have
$r=1,$ $e=1$ and $a_{1}=3$ . Thus from [ibid., (1)], we would have $h^{0}(K_{X}+\lceil(n+3)/4\rceil L)$

$>0$ , which contradicts $(*SP)$ since $2\lceil(n-1)/3\rceil\geqq\lceil(n+3)/4\rceil(n\geqq 9)$ .
From $(Z, L_{Z}, \Re_{Z/X^{*}})\cong(Q^{n-1}, O(1),$ $o(2))$ , we would have $r=1$ and $a_{1}=2$ .

Thus from [ibid., (2)], we would have $h^{0}(K_{X}+(2\lceil(n-2)/4\rceil+1)L)>0$ , which
contradicts $(*SP)$ since $2|^{-}(n-1)/3\rceil\geqq 2\lceil(n-2)/4\rceil+1(n\geqq 9)$ . The proof of Prop-
osition 2.7 is completed. Q. E. D.

PROOF OF THEOREM 2.3. From Propositions 2.5 and 2.7, it follows that
$n\geqq 9$ and there exist only the ray contractions of divisorial type whose image
$W$ has factorial, terminal singularities. Therefore, the same argument as in
the proof of [BS1, (3.1.4)] ilnplies our assertion. Q. E. D.

3. The fourth spectral condition and an application
of the structure theorem.

It is natural to ask when the spectral third reduction is trivial. As a
matter of fact, for the (not necessarily spectral) third reduction we will have
a sufficient condition, which is given by the following

DEFINITION 3.1. A condition:
$u(X_{0}, L_{0})> \max\{3\lceil(n-2)/4\rceil, 4\lceil(n-2)/5\rceil\}$

is called the fourlh spectral condition.
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NOW we will show that the fourth spectral condition is sufficient for the
third reduction to be an isomorphism.

THEOREM 3.2. Assume that there exists the third reduction $\phi_{3}$ : $X_{2}arrow X_{s}$ , or
$\phi_{1}$ $\phi_{2}$ $\phi_{3}$

the reduction series, $X_{0}arrow X_{1}arrow X_{2}arrow X_{3}$ . Then this series is trivial, and $n\geqq 9$,

Provided that the fourth spectral condition holds true.

PROOF. $0$) Note that since $u(X_{0}, L_{0})>4\lceil(n-2)/5\rceil\geqq 2\lceil(n-1)/3\rceil$ for $n\geqq 4$,
$\phi_{3}$ : $X_{2}arrow X_{3}$ turns out to be the spectral third reduction $\phi:Xarrow Y$ , and thus from
Theorem 2.3, $X_{3}$ is factorial, and $n\geqq 9$ . If $\phi_{3}$ were not an isomorphism, then from
Theorem 2.3 we would have the three distinct types of non-trivial fibers of $\phi_{3}$ .

1) $(E, L_{E}, \Re_{E/X})\cong(Hc, O(1),$ $\mathcal{O}(-1))$ , and $L_{E^{n-1}}=3$ . In the notations of [Na2,
Proposition (1.1) $]$ , since $d=3$ and $m=1$ , we would have $\omega_{E}^{0}+t(d+m)L_{E}=$

$[-(n-2)+4t]L_{E}$ and $d$ would not divide $m$ . Hence applying the last statement
in [ibid.], it would follow that $h^{0}(X, K_{X}+3\lceil(n-2)/4\rceil L)>0$ . However it con-
tradicts the fourth spectral condition above.

2) $(E, L_{E}, \Re_{E/X})\cong(I(2,2)$ , 0(1), $\mathcal{O}(-1))$ , and $L_{E}^{n-1}=4$ . As above, since we
would have $d=4$ and $m=1$ , from [ibid.], $h^{0}(X, K_{X}+4\lceil(n-2)/5\rceil L)>0$ . Hence,
contradiction.

3) $(F, L_{F}, \Re_{E/X}|_{F})\cong(Q^{n-2}, O(1),$ $O(-1))$ . Note that $Q$ is of higher codimen-
sion and possibly singular. From Lemma 1.10, $y\iota_{F/X}\cong 0\oplus o(-1)$ . Here we apply
[Na2, Corollary $(1.3)-(2)$] with $r=2,$ $a_{1}=0$ and $a_{2}=1$ so that we would have
$h^{0}(X, K_{X}+(2\lceil(n 2)/3\rceil+1)L)>0$ . But it contradicts the fourth spectral condition
since $2\lceil(n-2)/3\rceil+1\leqq 4\lceil(n-2)/5\rceil$ for $n\geqq 9$. Thus $\phi_{3}$ must be an isomorphism.

Q. E. D.

After cutting out $X,$ $(n-3)$-times, by general hyperplane sections of $L$ , we
will obtain a birational canonical morphism $f:Varrow Z$ from a smooth threefold
V. Although $K_{V}$ is $nef,$ .the structure of a positive dimensional fiber of $f$ will
remain the same as the one of $\phi$ : $Xarrow Y$ , and thus $f$ gives an interesting
example of a birational canonical morphism for a minimal smooth threefold. Let
us recall first the definition of a canonical morphism.

DEFINITION 3.3 (cf. [KMM, Definition 0-4-1]). A morphism $f:Varrow Z$ from
a normal complete variety $V$ with canonical singularities onto a variety $Z$ is
called canonical if $f$ is defined by the linear system $|mK_{V}|$ for some integer
$m\gg O$ . Note that in this case, $V$ is a minimal variety and $Z$ is a normal variety.

We will state precisely the structure of the three-dimensional canonical
morphism $f:Varrow Z$ which comes from the spectral third reduction.

COROLLARY 3.4. Let $\phi:Xarrow Y$ be the $n$-dimenszonal sPectral third reductim,
and $V$ the intersectim of $(n-3)$-general hyperplane sections of $|L|$ . We denote the
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restriction $\phi|_{V}$ : $Varrow\phi(V)$ by $f:Varrow Z$ . Then

a: $f$ is a canonical morphism from a three dimenstonal smooth minimal pro-
jective variety $V$ onto a three dimenstonal normal projective vanety $Z$ ,

$b$ : $Z$ has factonal, canonical srngularities (which is not terminal),
$c$ : the exceptional locus fi of $f$ is a disjoint union of a finite number of

Prime divzsors, and such a Prime divzsor $D$ is classified as follows.
(1) $\dim f(D)=0,$ $L_{D^{2}}=3,$ $\omega_{D}^{0}\cong-L_{D}$, and

$(D, L_{D}, \Re_{D/X})\cong(Hc, O(1),$ $O(-1))$ ,

where $Hc$ is a hypercubic in $P^{8}$ .
(2) $\dim f(D)=0,$ $L_{D^{1}}=4,$ $\omega_{D}^{0}\cong-L_{D}$ , and

$(D, L_{D}, \Re_{D/x})\cong(I(2,2),$ $O(1),$ $O(-1))$ ,

where $I(2,2)$ is a complete intersectim of two hyperquadncs in $P^{4}$ .
(3) $\dim f(D)=1$ , and for a general fiber $G$ of $Darrow f(D)$ ,

$(G, L_{G}, \Re_{D/x}|_{G})\cong(Q, O(1),$ $O(-1))$ ,

where $Q$ is a smooth conic in $P^{2}$ .

PROOF. From the assumption, it follows by induction that $K_{V}\cong(K_{X}+$

$(n-3)L)|_{V}$ , and thus $f$ is canonical. Here, an essential use is made of Base
Point Free Theorem, [KMM, Theorem 3-1-1, Remark 3-1-2]. Furthermore,
since $L_{E}\cong O_{Hc}(1)$ or $O_{I(2.l)}(1)$ , and $L_{F}\cong O_{Q}(1)$ , we can recover the same classifi-
cation as the one of Theorem 2.3 for $f:Varrow Z$ . For a full detail, see [Na3,

Section 4.2]. Q. E. D.

4. The classification of the polarized variety $(Y, P)$ .
Let $\phi:Xarrow Y$ be the $n$ -dimensional spectral third reduction and let P be

the unique ample line bundle defined in (2) of Proposition 2.5. When $K_{Y}$ is not
nef, it will be shown quite easily by virtue of the third spectral condition that
the nef value $\tau(P)$ of the polarized variety $(Y, P)$ is no greater than $n-4$ .
Furthermore, we will classify ( $Y$ , Si‘) in the case that $K_{Y}+(n-4)P$ is not big.

THEOREM 4.1. Let $\phi$ : $Xarrow Y$ be the $n$-dimensional sPectral third reduction
with $K_{X}+(n-3)L\cong\phi^{*}B$ for a unique (up to isomorphisms)ample line bundle P
$on$ Y. We define $X=(\phi_{*}L)^{**}$ (the double dual). Assume that $K_{Y}$ is not $nef$ . Let

$\mu:Yarrow Z$

be the $nef$ value morphism of $(Y, P)$ . Then
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a: $X$ is a $\mu$-ample line bundle, and the $nef$ value $\tau(9)$ of 9 and the $\mu- nef$

value $\theta(X)$ of $\mathcal{L}$ satisfy $\tau(9)\leqq n-4,$ $\theta(X)\leqq n-4$ and $\theta(\mathcal{L})\in N$

$b$ : $n=13$ $or\geqq 15$ , and
$c$ : $K_{y}+(n-4)9$ is big unless one of the following cases occurs:

(1) $Y$ is a Fano $n$-fold with $K_{Y}\cong-(n-4)9\cong-(n-4)\mathcal{L}$ , and $\mathcal{L}$ is an
ample line bundle on $Y$ .

(2) $(Y, 9)$ is a Fano fibration of $co$-index four over a smooth curve $Z$ .
(3) $(Y, B)$ is a Mukai fibration over a normal surface $Z$ .
(4) $(Y, 9)$ is a $Del$ Pezzo fibration over a normal three fold $Z$ such

that for a general fiber $F$ of $\mu,$
$(F, 9_{F})$ is an $(n-3)$-dimenstonal

smooth $Del$ Pezzo vanety in the sense of [Fjl].
(5) $(Y, \varphi)$ is a quadnc fibration over a nomal four fold $Z$ such that

for a general fiber $F$ of $\mu,$
$(F, 9_{F})\cong(Q^{n-4}, \mathcal{O}(1))$ , where $Q$ is a

smooth hyperquadric in $P^{n-3}$ .
(6) $(Y, 9)$ is a scroll over a normal $J^{\wedge}lve$ fold $Zsuc’\tau$ that for a general

fiber $F$ of $\mu,$
$(F, 9_{F})\cong(P^{n-5}, \mathcal{O}(1))$ .

Under the same assumption of the above theorem $l\iota\iota th\tau:=\tau(9)$ and $\theta$ $:=\theta(\mathcal{L})$ , we
will prepare Lemmas 4.2 and 4.3.

LEMMA 4.2. 1) $\mathcal{L}=(\phi_{*}L)^{**}$ is a $\mu$-ample line bundle on $\}^{\nearrow}$ .
2) $K_{Y}+\tau f\cong(1+\tau)(K_{Y}+[(n-3)\tau/(1+\tau)]X)$ .

PROOF. From Theorem 2.3, $Y$ is factorial, and thus $\mathcal{L}$ is a line bundle on
Y. Since $K_{X}+(n-3)L\cong\phi^{*}9$ , $[K_{Y}+(n-3)\mathcal{L}]|_{Y_{reg}}\cong[K_{X}+(n-3)L]|_{\phi^{-1}(Y_{reg})}\cong$

$\underline{c}P|_{Y}$ Hence $K_{Y}+(n-3)\mathcal{L}\cong\varphi$ . Define $FK_{y}NE(Y)$ , and from
[

$KM\dot{M}reg$

Lemma 3-2-4], we have NE$(Y/Z)=F$. Take any $\gamma\in\overline{NE}(1’/Z)\backslash \{0\}$ , and
$(K_{Y}+\tau 9)\cdot\gamma=0$ . Then from $K_{Y}+(n-3)\mathcal{L}\cong B$ , we get $\mathcal{L}\cdot\gamma=(9-K_{Y})\cdot\gamma/(n-3)=$

$(1+\tau)\varphi\gamma/(n-3)>0$, which shows the first assertion.
Again $K_{Y}+(n-3)\mathcal{L}\cong g)$ implies $K_{1’}+\tau 9\cong(1+\tau)(K_{Y}+[(n-3)\tau/(1+\tau)]\mathcal{L})$ .

Q. E. D.

LEMMA 4.3. Define $u,$ $v,$ $a,$ $b\in N$ by $u/v=\tau,$ $(u, \iota’)=1$ and $a/b=\theta,$ $(a, b)=1$ .
Then

1) $u,$ $a\leqq n+1$ and
2) $2\lceil(n-1)/3\rceil<\theta=a/b=(n-3)u/(u+v)$ .

PROOF. The first assertion is just the rationality theorem, Lemma 1.3.
For the second assertion we will first show that the spectral value $u(Y, \mathcal{L})$

of $(Y, \mathcal{L})$ satisfies $\theta\geqq u(Y, \mathcal{L})=u(X, L)>2\lceil(n-1)/3\rceil$ . Since from Lemma 4.2-1)
$\mathcal{L}$ is $\mu$-ample, the first inequality is straightforward from Lemma 1.8 if we take
$\pi=\mu$ there. Since $Y$ has terminal singularities, and $\phi:Xarrow\}’$ is a desingulari-
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zation of $Y$ , by [KMM, Definition 0-2-6], we have $K_{X} \cong\phi^{*}K_{Y}+\sum a_{i}E_{i}$ for
some $0<a_{i}\in Q$ . [BS2, Lemma (0.4.4)] thus implies $u(X, L)=u(Y, \mathcal{L})$ , and thus
we are done by the tbird spectral value condition (Definition 2.2).

From Lemma 4.2-2), $K_{Y}+\tau 9\cong(1+\tau)(K_{Y}+[(n-3)u/(u+v)]X)$ , which is nef
but not $\mu$-ample. Hence from Lemma 1.5, we conclude that $\theta=(n-3)u/(u+v)$ .

Q. E. D.

PROOF OF THEOREM 4.1. Note that from Proposition2.5, we have $n\geqq 9$ .
From Lemma 4.3 we have $2(n-1)/3<(n+1)/b$ and thus $b<3(n+1)/2(n-1)<2$ .
Hence $b=1$ and $\theta=a\in N$ Again from Lemma 4.3-2) we have $a/1=(n-3)u/$

$(u+v)$ and thus $av=(n-3-a)u$ , which implies $n-3-a\geqq 1$ . Thus we have
$\theta=a\leqq n-4$ .

If $\tau>n-4$, then $u>(n-4)v$ . From $av=(n-3-a)u>(n-3-a)(n-4)v,$ $a>$

$(n-3-a)(n-4)=(n-3)(n-4)-(n-4)a$ , and thus $(n-3)a>(n-3)(n-4)$ . Hence
$a>n-4$ , which contradicts the previous fact: $a\leqq n-4$ . Therefore, we have
proven that $\tau\leqq n-4$ .

From $2\lceil(n-1)/3\rceil<a\leqq n-4$ , putting $n=3k+i(i=0,1,2)$ , we have $2\lceil(i-1)/3\rceil$

$\leqq k+i-5$ . It results in $k\geqq 4(i=1)$ or $k\geqq 5(i=0,2)$ . If $k=4$, then $i=1$ , and
thus $n=13$ . If $k\geqq 5$ , then $i=0,1,2$ , and thus $n\geqq 15$ . Thus we have $n=13$ or
$\geqq 15$ .

TO prove the last part, we can assume that $\tau=n-4$ . Note that $K_{Y}+(n-4)9$

$\cong\mu^{*}Q$ for some ample line bundle $Q$ on $Z$ .
For (1). Assume that $\dim Z=0$ . Since from Lemma 4.2-1) $\mathcal{L}$ is $\mu$-ample,

$X$ is really ample. From $(n-3)[K_{Y}+(n-4)X]\cong K_{Y}+(n-4)9\cong O_{Y}$ (Lemma 4.2-2) $)$ ,
the nef line bundle $K_{Y}+(n-4)\mathcal{L}$ defines the same extremal face as $K_{Y}+(n-4)g$

does, and thus from [KMM, Theorem 3-2-1], we have $K_{Y}+(n-4)\mathcal{L}\cong \mathcal{O}_{Y}$ . That
is, we are in the case 1).

For (2) through (6). Assume that $m:=\dim Z\geqq 2$ . From Theorem 2.3,
$\dim Y_{sing}\leqq 1$ . Hence by means of the generic smoothness ([$Ha$ , Chapter 3,
Corollary 10.7 and Theorem 10.2]), a general fiber $F$ of $\mu$ is a smooth projec-
tive variety and $K_{F}\cong K_{Y}|_{F}$ (the adjunction formula). It thus follows that
$K_{F}+(n-4)9_{F}\cong \mathcal{O}_{F}$ . It shows that $n-4$ is the nef value of $9_{F}$ , and thus from
the rationality theorem, Lemma 1.3, $n-4\leqq\dim F+1$ . Thus $n-5\leqq\dim F$, or
$m\leqq 5$ . If $m=4,5$ , from [BS1, Theorem (1.3)], we have $(F, 9_{F})\cong(Q^{n-4}, O(1))$ ,
$(P^{n-5}, O(1))$ , respectively. If $m=3$ , from [Fjl, (6.4)], $(F, 9_{F})$ is asmooth Del
Pezzo variety.

Since $K_{Y}+(n-m-(4-m))9\cong\mu^{*}Q$, from Definition 1.9 of the special varie-
ties, according as $m=1,2,3,4$ and 5, we are in the case (2), (3), (4), (5) and (6).

Q. E. D.
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