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1. Introduction.

1.1. The automorphism group of a von Neumann algebra reflects the structure of
the algebra in many ways, and this idea was a comerstone in the first pioneering works
of A. Connes (cf. e.g. [1]). In fact the classification of (groups of) automorphisms is
essential to most known classification theorems in von Neumann algebra. A main
reason for the usefulness of this approach is that the automorphism group $Aut(M)$ of a
von Neumann algebra $M$ can be topologized in a very nice way. Of course, several
natural locally convex topologies on $Aut(M)$ can be defined, but one of them is
particularly useful, namely the $u$-topology (cf. [4]). A net $(\alpha_{n})$ in $Aut(M)$ converges to
$\alpha\in Aut(M)$ in the $u$-topology if and only if

$\varphi\circ\alpha_{n}arrow\varphi\circ\alpha$ , $\varphi\in M_{*}$ ,

and we then write $\alpha_{n^{arrow}}^{u}\alpha$ . One nice property is that, in this topology, $Aut(M)$ is a
Polish topological group, in fact in a standard representation $M\subseteq \mathscr{B}(H)$ there is a
multiplicative homeomorphism of $Aut(M)$ onto a closed subgroup of the unitary group
of $H[4]$ .

1.2. Motivated by striking applications in mathematical physics, as well as by quite
surprising connections with mathematical disciplines such as knot theory and quantum
Lie groups, the classification of inclusions of von Neumann algebras has become an
object of intense study over the last 12 years. As an attempt to mimic the auto-
morphism approach for single factors, given an inclusion $M\supseteq N$, one can study the
group $Aut(M, N)$ of automorphisms of $M$ that preserve $N$ globally. This has been
quite successful in an indirect way, but of course we do not get any direct information on
the subalgebras of $M$ since we actually fixed $N$ . In terms of endomorphisms on $M$ , this
corresponds to limit attention to those endomorphisms that map a fixed subalgebra into
itself, or, even more specialized, onto the subalgebra. We shall denote the semigroup
of endomorphisms of $M$ by End$(M)$ , and by End$(M, N)$ we mean the elements of
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End$(M)$ with $N$ as the range algebra. Note that this notation is not consistent with
[9, p. 221].

1.3. The aim of this paper is to consider the natural topological structure of
endomorphism semigroups, and to relate it to some important invariants and con-
structions for endomorphisms, such as Longo’s canonical endomorphisms and Izumi’s
Connes-Takesaki type module. In this study we are naturally inspired by the deep
theory of automorphisms on von Neumann algebras. In particular, we have the
following natural choice of a topology on End$(M)$ :

DEFINITION (Cf. [4]). The $u$-topology on End$(M)$ is given by pointwise convergence
in the predual of $M,$ $i.e$ . if $(\rho_{n})$ is a net in End$(M)$ , then to say that it converges to
$\rho\in End(M)$ means that

$||\varphi\circ n^{-\varphi\circ\rho||}arrow 0$

for all $\varphi\in M_{*}$ . In this situation we write $p_{n}arrow\rho u$ for short.

1.4. Note that if $\rho_{n}arrow\rho u$ as above then it is trivial from the definition that $p_{n}$ will
converge pointwise to $\rho$ in the $\sigma$-weak topology of $M$ , and from this we get in fact
pointwise convergence in $\sigma- strong^{*}$ topology, because the unitary group of $M$ is left
globally invariant by End$(M)$ , and spans $M$ . This weaker pointwise (say, $p-$ ) con-
vergence of $(\rho_{n})$ to $p$ is denoted $\rho_{n}arrow\rho p$ . As we shall see (cf. ex. 3.3), the $\rho$-topology is
less useful for our purposes.

1.5. TO produce examples of $u$-convergent nets of endomorphisms on $M\subseteq \mathscr{B}(H)$ ,

consider the normalizer

$\Lambda’(M)=\{U\in \mathscr{B}(H) : U^{*}U=UU^{*}=1, UMU^{*}\subseteq M\}$

and the endomorphisms $p_{U}=Ad(U)|_{M}$ that it induces. Then, by the same argument as
in [4, 3.8], the map $U\mapsto\rho_{U}$ is continuous when $y(M)$ is provided with strong operator
topology. (For a study of the ‘inverse‘ of this map, see [13].) A waming is in place
here, however: the unitary group is not closed, and if the limit of a net is just an
isometry, then the net of the corresponding endomorphisms is not $u$-convergent in
End $(M)$ .

ACKNOWLEDGEMENTS. It is a pleasure to thank U. Haagerup for a discussion
concerning example 3.4. A part of this work was done at the Fields Institute, and we
wish to thank G. Elliott and the staff for the hospitality extended to us. This paper is a
revised version of our previous preprint ‘Topologizing the semigroup. . .‘, and we are
indebted to M. Izumi for pointing out some errors in that version.

2. Considering a fixed inclusion.

In this section, we study the meaning of the $u$-topology on a fixed inclusion $M\supseteq N$

of von Neumann algebras admitting a conditional expectation $E$ of $M$ onto $N$ .
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We begin by observing that the restriction of the $u$-topology to End$(M, N)$ is just
the natural ’relative’ version of it.

2.1. LEMMA. Let $(\rho_{k})\subseteq End(M, N)$ be a net, and $\rho\in End(M, N)$ . Then $\rho_{k}arrow pu$

if and only if $\varphi\circ\rho_{k}arrow\varphi\circ p$ for all $\varphi\in N_{*}$ .

PROOF. If $\rho_{k}arrow\rho u$ and $\varphi\in N_{*}$ , then $\varphi\circ E\in M_{*}$ , so that

$\varphi 0\rho_{k}=\varphi\circ Eo\rho_{k}arrow\varphi oE\circ p=\varphi op$ .

The converse is equally obvious from restriction of $M_{*}$ . Q.E.D.

Moreover, if $(\rho_{k})\subseteq End(M, N)$ is a convergent net, its limit is automatically in
End$(M, N)$ ; an important special case is $Aut(M)=End(M, M)$ .

2.2. PROPOSITION. The set End$(M, N)$ is a closed subset of End $(M)$ .

PROOF. Assume $(p_{k})\subseteq End(M, N)$ is a net with $\rho_{k}arrow\rho u\in End(M)$ . Let $y\in\rho(M)$

and put $x=p^{-1}(y)\in M$ . Then $\rho_{k}(x)\in N$ and, for all $\varphi\in M_{*}$ ,

$|\varphi 0\rho_{k}(x)-\varphi(y)|\leq||\varphi\circ\rho_{k}-\varphi 0\rho||||x||arrow 0$ ,

proving $y\in N$ . Thus $\rho(M)\subseteq N$ . Conversely, if $y\in N$ , let $x_{k}=\rho_{k}^{-1}(y)$ for all
$k$ . Then

$|\varphi(\rho(x_{k})-y)|=|\varphi(\rho(x_{k})-p_{k}(x_{k}))|$

$\leq||\varphi\circ\rho_{k}-\varphi\circ\rho||||x_{k}||$

$=||\varphi\circ\rho_{k}-\varphi\circ\rho||||y||arrow 0$

for all $\varphi\in M_{*}$ , so that $y= \sigma- weak-\lim_{k}\rho(x_{k})\in\rho(M)$ . Q.E.D.

A main tool in modem analysis of $Aut(M)$ is the standard implementation (due to
Araki, Connes and Haagerup independently), cf. [4]. In the simple case of End$(M, N)$

it generalizes without difficulty, assuming that $M$ and $N$ are properly infinite. Namely,
using the Dixmier-Mar\’echal theorem as in [9], we may then assume that $M$ and $N$ act
standardly on the same Hilbert space $H$ , with a common separating and cyclic vector in
$H$ . Let $J_{M}$ and $J_{N}$ denote the corresponding modular conjugations on $H$ , and let $\mathscr{P}^{M}$

and $\mathscr{P}^{N}$ be the associated positive cones in $H$ . Then, from [4, 2.18], there exists for any
$\rho\in End(M, N)$ exactly one unitary $v_{p}$ on $H$ satisfying

$\rho(x)=v_{p}xv_{p}^{*}$ , $x\in M$ ,
$J_{N}=v_{\rho}J_{M}v_{p}^{*}$ and $\mathscr{P}^{N}=v_{p}\mathscr{P}^{M}$ .

Using lemma 2.1 and the fact that $H=\overline{span}\mathscr{P}^{N}$ , the same proof as in [4, 3.6] gets
us the following

2.3. PROPOSITION. The map $\rho->v_{p}$ is a homeomorphism of End$(M, N)$ onto a
closed subset of the unitary group %(H) of $H$, equipped with the weak operator topology.
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In particular End$(M, N)$ is a Polish space, which can also be proved directly and
more generally (cf. e.g. [13, 2.6]).

Using prop. 2.3 and the fact [3, 2.1] that, in the notation above, the unitary $J_{M}v_{\rho}^{*}J_{M}$

induces a conjugate endomorphism $\overline{\rho}$ of $\rho$ , it follows easily that conjugation in
End$(M, N)$ can be chosen u-u-continuous. A different proof is based on the follow-
ing simple observation: if we fix an endomorphism $\rho_{0}\in End(M, N)$ , then any
$\rho\in End(M, N)$ is of the form $p=\rho_{0}\circ\alpha_{\rho}$ where $\alpha_{p}\in Aut(M)$ ; in fact $\alpha_{\rho}=p_{0}^{-1}\rho$ . The
following is obvious.

2.4. LEMMA. The map $\rho\mapsto\alpha_{\rho}$ is u-u-continuous.

NOW we get a continuous choice of conjugates (thus continuity of the conjugation of
sectors); this can also be derived from Cor. 3.6.

2.5. PROPOSITION. Fix a conjugate $\overline{\rho_{0}}$ of $\rho_{0}$ , say $\overline{\rho_{0}}=\rho_{0}^{-1}Ad(J_{N}J_{M})$ , and let
$\overline{p}=\alpha_{\rho}^{-1}\overline{\rho_{0}}$ for all $\rho\in End(M, N)$ . Then the map $\rho\mapsto\overline{\rho}$ is u-u-continuous.

PROOF. Follows immediately from the lemma above. Q.E.D.

The same idea gives a slick proof of the continuity of Izumi’s Connes-Takesaki type
module on End$(M, N)$ (see [7]; we first recall its definition. Assuming now $M\supseteq N$ to
be an inclusion of (infinite) factors with finite index, the module is defined as follows: let
$E_{0}$ : $Marrow N$ be the minimal conditional expectation, let $d=Index(E_{0})^{1/2}$ and let th be a
normal semifinite weight on $M$ . Put

$\tilde{M}=M\aleph_{\sigma^{\psi}}R=(\pi(M)\cup\lambda(R))’’\subseteq B(L^{2}(R, H))$

where $H$ is the Hilbert space on which $M$ acts, A is the left regular representation of $R$

and $\pi$ is the corresponding equivariant representation of $(M, \sigma^{\psi})$ . Then there is by [7] a
canonical extension of any $p\in End(M, N)$ to a $\tilde{\rho}\in End(\tilde{M})$ satisfying

$\tilde{\rho}(\pi(x))=\pi(\rho(x))$ , $x\in M$ ,

$\tilde{\rho}(\lambda_{t})=d^{it}\pi((D\psi\circ p^{-1}\circ E_{0} : D\psi)_{t})\lambda_{t}$ , $t\in R$ .

In this setup, $p$ is said to have Connes-Takesaki module if $Z(\tilde{\rho}(\tilde{M}))=Z(\tilde{M})$ . We
denote the set of such endomorphisms by $End_{CT}(M)$ . In this case the module

mod: $End_{CT}(M)arrow Aut(Z(\tilde{M}))$

is defined by

$mod (\rho)=\tilde{p}|_{Z(\overline{M})}$ , $p\in End_{CT}(M)$

(cf. $[7],[5]$ ).

Notice that the property of having a module is a property of inclusions (sometimes

called the common flow property) rather than of endomorphisms, which makes sense of
the following:
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2.6. PROPOSITION. Assume $M\supseteq N$ has Connes-Takesaki module. Then $mod$ is
continuous on End$(M, N)$ .

PROOF. For $\rho\in End(M, N)$ , we have, in the above notation

$mod (\rho)=mod (\rho_{0}\alpha_{0})=mod (\rho_{0})mod (\alpha_{p})$ .

By [5], $mod (\alpha_{\rho})$ is the usual Connes-Takesaki module, and this is continuous by [2].

NOW the result follows from lemma 2.4. Q.E.D.

A key concept in the theory of (infinite) subfactors is that of the canonical
endomorphisms as defined by Longo (see e.g. [9]). We shall see that, in our present
context, the closure of these endomorphisms play the role of approximately inner
automorphisms in the classical automorphism theory. Assuming now that $M\supseteq N$ is an
inclusion of properly infinite factors, we let

Can$(M,N)=$ {$Ad(u)Ad(J_{N}J_{M})$ : u\in %(N)}.

Then we have the following

2.7. THEOREM. Let $M\supseteq N$ be an irreducible finite index inclusion of infinite $AFD$

factors $M$ and N. Assume that $M\supseteq N$ has Connes-Takesaki module. Then for any
downward basic construction $M\supseteq N\supseteq N_{1}$ of $M\supseteq N$, the inclusion $M\supseteq N_{1}$ has Connes-
Takesaki module. Let as be the set of factors $L$ contained in $N$ and such that
$M\supseteq N\supseteq L$ is a downward basic construction of $M\supseteq N.$ Then, for $p\in End(M)$ , the
following are equivalent:

(i) $\rho\in\overline{Can(M,N)}$ (closure in u-topology).
(ii) $\rho(M)\in\Phi$ and $mod (p)=1$ .

PROOF. Let $\gamma_{0}=Ad(J_{N}J_{M})\in Can(M,N)$ and put $N_{1}=\gamma_{0}(M)$ . Then by, [12, 1.8]

and [10, 4.14], we have $\mathscr{B}=$ { $uN_{1}u^{*}$ : u\in %(N)}. As $\tilde{M}\supseteq\tilde{N}_{1}$ is conjugate to $\tilde{M}_{2}\supseteq\tilde{M}$,

the inclusion $M\supseteq N_{1}$ has Connes-Takesaki module. For u\in %(N),

$(\tilde{M}\supseteq(uN_{1}u^{*})^{\sim})\cong(\tilde{M}\supseteq u\tilde{N}_{1}u^{*})$

and

$Z(u\tilde{N}_{1}u^{*})=uZ(\tilde{N}_{1})u^{*}=uZ(\tilde{M})u^{*}=Z(\tilde{M})$

so that all members of as have Connes-Takesaki module.
Assume now $\rho\in\overline{Can(M,N)}$ with $p= \lim_{k}Ad(u_{k})\gamma_{0}$ in $u$-topology, where all

$u_{k}\in\%(N)$ . Then with $\alpha=\lim_{k}Ad(u_{k})\in Aut(M,N)$ , we have $\rho(M)\in \mathscr{B}$ because

$\alpha^{-1}(\rho(M)\subseteq N\subseteq M)=(\gamma_{0}(M)\subseteq N\subseteq M)$

and $\gamma_{0}\in \mathscr{B}$ . Further,

$mod (\rho)=mod (\lim_{k}Ad(u_{k}))mod (\gamma_{0})=mod (\gamma_{0})$

by continuity of $mod$ . So to get $mod (\rho)=1$ it suffices to see $mod (\gamma_{0})=1$ . However,
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by [7, 5.1] there is an isometry $v\in N$ satisfying

$v^{*}\gamma_{0}(x)v=x$ , $x\in M$ ,

and by [7, 2.3.3] we then get

$v^{*}\tilde{\gamma}_{0}(x)v=x$ , $x\in\tilde{M}$ .

It follows that

$\tilde{\gamma}_{0}(x)=x$ , $x\in Z(\tilde{M})$ ,

i.e. $mod (\gamma_{0})=1$ .
Conversely, assume u\in %(N) and $\gamma\in End(M, uN_{1}u^{*})$ has $mod (\gamma)=1$ . Then

Of $=Ad(u^{*})\gamma\in End(M, N)$ . Put $\beta_{\gamma}=\sqrt{}\gamma_{0}^{-1}\in Aut(N_{1})$ . As $mod (\gamma_{0})=1$ by the first
part of the proof, we get $mod (\beta_{\gamma})=1$ so that $\beta_{\gamma}\in\overline{Int}(N_{1})$ by $[1],[8]$ . Hence there is a
net $(u_{k})\subseteq\%(N_{1})$ so that $\beta_{\gamma}=\lim_{k}Ad(u_{k})$ in $u$-topology, and therefore

$\gamma=Ad(u)\sqrt{}=Ad(u)\beta_{\gamma}\gamma_{0}=\lim(Ad(uu_{k})\gamma_{0})\in\overline{Can(M,N)}$ ,

finishing the proof. Q.E.D.

2.8. REMARK. The general problem of determining Ker(mod) $\subseteq End_{CT}(M)$ is left
open. Note however that this kemel can contain endomorphisms of arbitrary allowed
dimensions by composing with an automorphism of opposite Connes-Takesaki module.
However, it seems likely that, in general, the canonical endomorphisms are not dense
in Ker(mod).

3. Martingale type convergence.

When we consider the full endomorphism semigroup End $(M)$ of a von Neumann
algebra $M$ , convergence of a net in the right topology should imply the convergence of
the range algebras in some sense. In order to maintain some control over the sub-
algebras involved, it is natural to focus a first discussion on monotone nets, that is
nets with increasing or decreasing range. We shall write $\rho_{k}\nearrow\rho u$ if a net $(\rho_{k})\subseteq End(M)$

converges to $\rho\in End(M)$ in $u$-topology and $(\rho_{k}(M))$ is an increasing net. Similarly we
define $\rho_{k}\backslash ^{u}\rho$ .

At the basis of our discussion in this section is the following

3.1. THEOREM. Let $M$ be a von Neumann algebra, let $\rho\in End(M)$ and let
$(\rho_{k})_{k\in I}\subseteq End(Mu)$ be a net.

(i) If $\rho_{k}\nearrow\rho$ then $\rho(M)=(\bigcup_{k\in I}\rho_{k}(M))’’$

$u$

(ii) If $\rho_{k}\backslash \rho$ then $\rho(M)=\bigcap_{k\in I}\rho_{k}(M)$ .

PROOF. By the standard argument we may assume $M$ is $\sigma- finite$ , i.e. that $M$

possesses a faithful normal state $\varphi$ . Then

$d_{\varphi}(x,y)=\varphi((x-y)^{*}(x-y))^{1/2}$ , $x,y\in M$
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defines a metric on $M$ which induces the $\sigma$-strong topology on bounded subsets of $M$ .
(i): The inclusion $\subseteq$ follows clearly from just pointwise convergence of the net in

the $\sigma$-weak topology, so we work on the opposite inclusion.
Let $k_{0}\in I$ be arbitrary; to prove the inclusion 2 of (i), it suffices to prove that any

unitary element of $\rho_{k_{0}}(M)$ is contained in $\rho(M)$ . Let $y$ be such an element, and let
$\epsilon>0$ . We denote by $\varphi_{y^{*}}$ the normal functional $x-\varphi(y^{*}x)$ . Choose a majorant $k_{1}\in I$

of $k_{0}$ such that

$|| \varphi_{y^{*}}0\rho_{k_{1}}-\varphi_{y^{*}}0\rho||\leq\frac{\epsilon^{2}}{2}$

AS $y\in\rho_{k_{0}}(M)\subseteq\rho_{k_{1}}(M)$ we put $x=\rho_{k_{1}}^{-1}(y)$ . Also let $z=\rho(x)$ . Then

$d_{\varphi}(y, z)^{2}=\varphi((y-z)^{*}(y-z))$

$=\varphi(1-y^{*}z-z^{*}y+1)$

$\leq|\varphi(1-y^{*}z)|+|\varphi(1-z^{*}y)|$

$=2|\varphi(1-y^{*}z)|$

$=2|\varphi_{y^{*}}(y-z)|$

$=2|\varphi_{y^{*}}\circ\rho_{k_{1}}(x)-\varphi_{y^{*}}\circ\rho(x)|$

$\leq 2||\varphi_{y^{*}}\circ\rho_{k_{1}}-\varphi_{y^{*}}\circ\rho||\leq\epsilon^{2}$ .

This proves $y\in\rho(M)’’=\rho(M)$ .
(ii): The inclusion $\subseteq$ follows from choosing, for given $x\in M$ and $\epsilon>0$ , a $k_{0}\in I$

such that

$d_{\varphi}(\rho_{k}(x),\rho(x))\leq\epsilon$ whenever $k\geq k_{0}$ ,

since this shows

$\rho(x)\in\bigcap_{k\geq k_{0}}|\rho_{k}(M)=\bigcap_{k\in I}\rho_{k}(M)$
.

TO prove the reverse inclusion in the decreasing case, an argument similar to what
we did in the increasing case works. Q.E.D.

3.2. COROLLARY. The set of irreducible endomorphisms on $M$ is closed under
increasing convergence in the u-topology.

3.3. REMARK. If $M$ is a $\sigma- finite$ factor and $(\rho_{k})\subseteq End(M)$ is an increasing net
with $d(\rho_{k_{0}})<\infty$ for some $k_{0}$ , then $d(\rho_{k})<\infty$ for all $k\geq k_{0}$ . In this situation, $\rho_{k}(M)$

becomes eventually constant because, if $d(\rho_{k_{0}})<2^{n}$ , there can be at most $n-1$ factors
sitting in an increasing proper sequence between $\rho_{k_{0}}(M)$ and $M$ . Thus the study of
increasing finite dimensional nets on factors reduces to the case considered in Sec.
2. We thank M. Izumi for pointing this out to us.
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3.4. EXAMPLE. Let $F$ be a von Neumann algebra with a state $\emptyset$ . Let $F_{n}=F$,
$\phi_{n}=\emptyset$ for all $n\in N$ , and consider the infinite tensor product

$M= \bigotimes_{n=1}^{\infty}(F_{n}, \phi_{n})$ .

Recall that this von Neumann algebra is a factor if $F$ is so, and by definition it is
the von Neumann algebra generated by the algebraic tensor product in the GNS-
representation corresponding to the product state, hence it is generated by the ele-
mentary tensors

$x_{1}\otimes x_{2}\otimes$ $\cdot$ . . $x_{k}\otimes 1\otimes 1\otimes\cdots$

where $k$ runs through $N$ and each $x_{j}\in F_{j}$ .
Define a sequence $(\rho_{k})\subseteq End(M)$ by its action on elementary tensors:

$p_{k}(x_{1}\otimes x_{2}\otimes\cdots)=x_{k}\otimes x_{1}\otimes x_{2}\otimes\cdots\otimes x_{k-1}\otimes x_{k+1}\otimes x_{k+2}\otimes$ $\cdot$ . .

and let $\rho\in End(M)$ be similarly given by

$\rho(x_{1}\otimes x_{2}\otimes\cdots)=1\otimes x_{1}\otimes x_{2}\otimes\cdots$ .

Then $\rho_{k}arrow\rho p$ and as in fact $(\rho_{k})\subseteq Aut(M)$ the sequence is trivially increasing and
decreasing. Hence

$\rho(M)\neq M=(\bigcup_{k\in N}\rho_{k}(M))’’$

showing that the conclusion of theorem 3.1 does not hold assuming just pointwise
convergence; and in fact $(p_{k})$ does not converge to $\rho$ in $u$-topology (this is also
immediate from Prop. 2.2).

Note also from this example that, although $u$-topology coincides with $p$-topology on
$Aut(M)$ for $M$ a finite factor (see [4 3.13]), this is not the case on all of End$(M)$ when
$M$ is the hyperfinite factor of type $II_{1}$ .

It is natural to investigate the behaviour of canonical endomorphisms in the present
picture (cf. also Sec. 2), because they depend only on range algebras, and these converge
nicely by theorem 3.1. In order for canonical endomorphisms to exist, we assume that
$M$ is separable and properly infinite. Both assumptions are very mild, in particular the
essential objects in subfactor theory, as well as in its applications to quantum physics,
are hypetfnite and of type $III_{1}$ . In our context, the basic observation that justifies this
claim is the observation that, for a net $(\rho_{k})\in End(M)$ and $N$ another von Neumann
algebra (say of type $III_{1}$ , the net $(\rho_{k}\otimes 1)\in End(M\otimes N)$ converges to $p\otimes 1$ (where
$\rho\in End(M))$ if and only if $\rho_{k}arrow\rho u$ . This is because $M_{*}\otimes N_{*}$ is total in $(M\otimes N)_{*}$ .

3.5. DEFINITION. A family of endomorphisms on $M$ is called standard if $M$ can be
represented on a Hilbert space that contains a common separating cyclic vector for $M$

and all the range algebras associated to the family. The canonical endomorphisms
associated to a standard family and a choice of common separating cyclic vector are
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called a standard choice of canonical endomophisms for the family. (A similar notion of
standard nets was considered in [11].)

AS an application of theorem 3.1 and non-commutative martingale theory we now
have, as a stronger version of prop. 2.5:

$u3.6$ . COROLLARY. Let $(\rho_{k})_{k\in I}\subseteq End(M)$ be a net and assume that
$\rho_{k}\nearrow\rho\in End(M)$ . Then there is a standard choice $\gamma_{p},$

$\gamma_{p_{k},u}$ of canonical endomorphisms
for $\rho$ and a tail $(\rho_{k})_{k\geq k_{0}}$ of the net, which satisfies $\gamma_{p_{k}}arrow\gamma_{p}$ .

PROOF. In our present assumptions, any increasing net in End$(M)$ has a standard
subnet, because we can choose a common separating cyclic vector for $M$ and the ramge
algebra of any particular member of the net, and then this vector is automatically
separating and cyclic for all subsequent range algebras, so that in fact any ‘tail’ of the
net is standard. Our result now follows from theorem 3.1 and the Hiai-Tsukada
martingale theorem [6, Thm. 3] because the generalized conditional expectations cor-
responding to the common standard vector are in fact just canonical endomorphisms.
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NOTE ADDED IN PROOF.

The result of Theorem 3.1 has been considerably generalized in Cor. 2.14 of “The
Effros-Mar\’echal topology in the space of von Neumann-algebras” by Uffe Haagerup
and the author (to appear in Amer. Math. J.).
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