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1. Introduction

The subject of our study is quadruple of von Neumann algebras with inclusion
$Q$ $\subset$ $K$

relations as indicated in the diagram $\cup$ U. In addition, we assume that
$S$ $\subset$ $R$

$R\not\subset Q$ and $Q\not\subset R$ . When the von Neumann algebra $K$ is equipped with a finite $trace\tau$

and $E_{Q}^{K},$ $E_{R}^{K}$ , and $E_{S}^{K}$ are $\tau$-preserving conditional expectations of $K$ onto $Q,$ $R$ and $S$,
respectively, then a special situation may occur:

$E_{Q}^{K}E_{R}^{K}=E_{R}^{K}E_{Q}^{K}=E_{S}^{K}$ .

$Q$ $\subset$ $K$

Then the diagram $\cup$ $\cup$ is called a commuting square. In the special case,
$S$ $\subset$ $R$

when $S=C$ , the subalgebras $Q$ and $R$ were called orthogonal by S. Popa $([P1])$ . This
case, in the classical probability theory, corresponds to the condition of independence of
two $\sigma- fields$ .

Such diagrams were first introduced and investigated by S. Popa (cf. [P1], [P2]) and,
at present, this concept is linked in a natural way with numerous problems of subfactor
theory. See, for example, [GHD], [K], [P3], [P4], [P5], [PP1], [We], [S], [Su], [SW],
[WW], [Wi].

Everywhere in this work, the von Neumann algebras, which form such a diagram
are type $\Pi_{1}$ factors. This situation was studied by S. Popa in [P3] and by T. Sano and
Y. Watatani in [SW].

In Sections 3 and 4 we discuss sufficient conditions for the commutativity of a
diagram. It may seem a little surprising that for certain inclusions, say $S\subset Q$ , the

$Q$ $\subset$ $K$

diagram $\cup$ $\cup$ of type $\Pi_{1}$ factors with $[K:S]<\infty$ and $S’\cap K=C$ must be a
$S$ $\subset$ $R$

commuting square. We will show several results of this kind.
The notion of commuting square of type $\Pi_{1}$ factors is strictly connected to the

concept of so called co-commuting square of type $\Pi_{1}$ factors, which will be described in
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$Q$ $\subset$ $K$

Section 2. There are plenty of diagrams $\cup$ $\cup$ , which are completely irregular
$S$ $\subset$ $R$

in the sense that $Q\vee R=K,$ $Q\cap R=S$ and they are neither commuting nor co-
commuting squares. We can construct them by “tensoring” degenerate (in the sense of
S. Popa’s [P5] $)$ diagrams. However, when the index $[Q:S]$ is “small” or the second
relative commutant of the inclusion $S\subset Q$

’ is only 2-dimensional, then the situation is
different. For example, we can prove such a result: (See Section 4)

Let
$\mathscr{B}=Q\cup$

$\subset$

$K\cup$

be a diagram of type $\Pi_{1}$ factors with $S’\cap K=C$ and
$S$ $\subset$ $R$

$\lfloor Kr$ : $S$] $<\infty$ . If $[Q:S]=4\cos^{2}(\pi/n)$ , for a prime number $n$ , then the diagram 9 is a
commuting square.

TO our knowledge this is the first attempt of using primeness of $n$ in the sequence
(of index values) $\{\cos^{2}(\pi/n)\}_{n\geq 3}$ . We believe that behind this there must be some
interesting connections to the algebraic number theory.

Also, imposing some conditions on the second relative commutant gives the same
effect. (See Section 3)

Let
$\mathscr{B}=Q\cup$

$\subset$

$K\cup$

be a diagram of type $\Pi_{1}$ factors with $S’\cap K=C$ and
$S$ $\subset$ $R$

$[K:S]<\infty$ . If the second relative commutant of the inclusion $S\subset Q$ is two dimensional
and $[Q:S]>[R:S]$ , then the diagram 9) is a commuting square.

A. Ocneanu’s Fourier transform seems to be a very interesting subject to study for
its own sake. In this work, however, we use it only as a tool or a language helpful in
investigation of the commutativity of a diagram. The crucial observation, stated in
Theorem 2.9, is that Ocneanu’s convolution $E_{Q}^{K}*E_{R}^{K}$ is a scalar multiple of a pro-
jection. Then, we can use results from [SW] or [P3] to show that having the “right
angle” between two subfactors is not so special in certain situations. T. Sano and
Y. Watatani $([SW])$ showed that the commutativity of a diagram is equivalent to the
co-commutativity of another related diagram. Therefore, sufficient conditions for a
diagram to be, for example, a co-commuting square can immediately be reformulated in
terms of a commuting square. We will try then not to repeat ourselves and we will
keep rather to the co-commuting square terminology.

Consequences of the commutativity of a diagram of type $\Pi_{1}$ factors were discussed
in such papers as [P3], [K], [WW] or [Wi]. In Section 5 we will decompose certain von
Neumann algebras, which are naturally associated with a commuting square of type $\Pi_{1}$

factors.
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2. Fourier transforn and convolution

We recall here Ocneanu’s Fourier transform and convolution in the third relative
commutant. We prove also a few properties which will be useful later. We believe
that most of them are known to other persons working in this area.

If $\tau$ is a faithful normal finite trace on a von Neumann algebra $B$ and $A$ is its von
Neumann subalgebra $A\subset B$, then $\tau_{E_{A}^{B}}$ will be the $\tau$-preserving normal conditional
expectation of $B$ onto $A$ . When there is no ambiguity about the trace we will write it
simply $E_{A}^{B}$ or $E_{A}$ . It is convenient to keep in mind a lemma which is an immediate
consequence of [P2, Lemma 1.2.2.] and [PP1, Corollary 4.5].

LEMMA 2.1. Let $K\subset A\subset B\subset L$ be all type $\Pi_{1}$ factors and let the inclusion $K\subset L$

be extremal with $[L:K]<\infty$ . If $\tau$ and $\tau’$ are the traces on $L$ and on $K’$ , respectively,
then for any $x\in K’\cap B$,

$\tau_{E_{A}^{B}(x)=^{\tau}E_{K’\cap A(x)=^{\tau}\acute{E}_{K\cap A}^{K’\cap B}(x)}^{K’\cap B}}$

and for any $x\in A’\cap L$ ,

$\tau_{\acute{E}_{H}^{A’}(x)=^{\tau}\acute{E}_{B’\cap L(x)=^{\tau}E_{B’\cap L}^{A’\cap L}(x)}^{A’\cap L}}$ .

We will often use this lemma without referring to it.
Let $S\subset K$ be an irreducible inclusion of type $\Pi_{1}$ factors with $[K:S]=\gamma^{-1}<\infty$ .

Consider the corresponding Jones tower

$S\subset K\subset^{e_{S}}L\subset^{e_{K}}L_{1}$ .

From [PP2] the inclusion $S\subset L_{1}$ is extremal, and so Lemma 2.1 can be applied to any
intermediate subfactors between $S$ and $L_{1}$ .

DEFINITION 2.2. The mapping $\mathscr{F}$ : $K’\cap L_{1}arrow S’\cap L$ given by

$\mathscr{F}(x)=\gamma^{-3/2}E_{L}(xe_{S}e_{K})=\gamma^{-3/2}E_{S’\cap L}(xe_{S}e_{K})$

will be called the Fourier transform of $K’\cap L_{1}$ into $S’\cap L$ . By the inverse Fourier
transform we mean the mapping $\mathscr{F}^{*}$ : $S’\cap Larrow K’\cap L_{1}$ defined by

$\mathscr{F}^{*}(y)=\gamma^{-3/2}E_{K’\cap L_{1}}(ye_{K}e_{S})$ .

We will show that the name “inverse Fourier transform” is justified. The algebra
$S’\cap L_{1}$ has the canonical Hilbert space structure determined by the $trace\tau_{L_{1}}=$

$\tau_{S’\cap L_{1}}$ . Let us consider $S’\cap L$ and $K’\cap L_{1}$ as its Hilbert subspaces.

PROPOSITION 2.3. The mappings $\mathscr{F}$ and $\mathscr{F}^{*}$ are Hilbert space isomorphisms between
$S’\cap L$ and $K’\cap L_{1}$ . Moreover,

$\mathscr{F}\mathscr{F}^{*}=Id_{|S’\cap L}$ and $\mathscr{F}^{*}\mathscr{F}=Id_{|K’\cap L_{1}}$ .

In [W] was shown a property of a Pimsner-Popa basis, which is very useful in proof
of the above proposition.
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LEMMA 2.4. Let $N\subset M$ be a finite index extremal inclusion of type $\Pi_{1}$ factors. If
$\{m_{i}\}_{i}$ is a Pimsner-Popa basis of $N’$ over $M’$ , then the trace preserving conditional
expectation $E_{N}^{M}$ of $M$ onto $N$ is expressed as follows:

$E_{N}^{M}(x)=[M:N]^{-1} \sum_{i}m_{i}xm_{i}^{*}$ .

PROOF OF PROPOSITION 2.3. First, we show that $\mathscr{F}\mathscr{F}^{*}=Id_{|S’\cap L}$ . Let $\{m_{i}\}_{i=0}^{n}$ be
a Pimsner-Popa basis of $K$ over $S$ such that $m_{0}=1$ . The preceding lemma
gives: $E_{K}^{S’},(y)= \gamma\sum_{i}m_{i}ym_{i}^{*}$ for the trace preserving conditional expectation $E_{K}^{S’},$ .
From this and by Lemma 2.1 we have

$\tau_{\acute{E}_{K’\cap L_{1}(ye_{K}e_{S})=E_{K’}^{S’}(ye_{K}e_{S})=\gamma}^{S’\cap L_{1}}}$

$i$

$m_{i}ye_{K}e_{S}m_{i}^{*}$ ,

for $y\in S’\cap L$ . Hence

$\gamma^{3}\mathscr{F}\mathscr{F}^{*}(y)=\gamma E_{L}(\sum_{i}m_{i}ye_{K}e_{S}m_{i}^{*}e_{S}e_{K})=\gamma E_{L}(\sum_{i}m_{i}ye_{K}E_{S}(m_{i}^{*}m_{0})e_{S}e_{K})$

$=\gamma E_{L}(ye_{K}e_{S}e_{K})=\gamma^{2}E_{L}(ye_{K})=\gamma^{3}y$ .

We show now that $\mathscr{F}^{*}$ is a contraction. For $y\in S’\cap L$ ,

$||\mathscr{F}^{*}(y)||_{2}^{2}=\gamma^{-3}\tau(E_{K’\cap L_{1}}(ye_{K}e_{S})E_{K’\cap L_{1}}(ye_{K}e_{S})^{*})$

$= \gamma^{-1}\sum_{i,j}\tau(m_{i}ye_{K}e_{S}m_{i}^{*}m_{j}e_{S}e_{K}y^{*}m_{j}^{*})$

$= \gamma^{-1}\sum_{i<n}\tau(m_{i}ye_{K}e_{S}e_{K}y^{*}m_{i}^{*})+\gamma^{-1}\tau(m_{n}ye_{K}pe_{S}e_{K}y^{*}m_{n}^{*})$ ,

where $p=E_{S}(m_{n}^{*}m_{n})$ is a projection, cf. [PP1, Proposition 1.3]. Since $[p, e_{K}]=0$ ,

$|| \mathscr{F}^{*}(y)||_{2}^{2}=\sum_{i<n}\tau(m_{i}ye_{K}y^{*}m_{i}^{*})+\tau(m_{n}ye_{K}pe_{K}y^{*}m_{n}^{*})\leq\sum_{i\leq n}\tau(m_{i}ye_{K}y^{*}m_{i}^{*})$

$= \sum_{i\leq n}\tau(E_{L}(m_{i}ye_{K}y^{*}m_{i}^{*}))=\gamma\tau(\sum_{i\leq n}m_{i}yy^{*}m_{i}^{*})$

$=\tau(E^{S’},(yy^{*}))=\tau(yy^{*})=||y||_{2}^{2}$ .

Similarly, using a Pimsner-Popa basis of $L’$ over $L_{1}’$ , we obtain that $\mathscr{F}$ is a contraction
too. So $\mathscr{F}$ and $\mathscr{F}^{*}$ are isometries and the standard polarization argument completes
the proof. Q.E.D.

We will always use notation $\langle K, S, e\rangle$ , for an algebraic basic construction $([PP2])$ of
a finite index inclusion $S\subset K$ of type $\Pi_{1}$ factors, where $e$ is the corresponding Jones
projection, i.e. $exe=ESK(x)e$ , for $x\in K$ and $\langle K, S, e\rangle$ is generated, as a von Neumann
algebra, by $K$ and $e$ . If $\langle K, S, e\rangle$ is represented on $L^{2}(K, \tau)$ and $e$ is just an extension of
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$E_{S}^{K}$ , then, as in [J], we will write simply $\langle K, e\rangle$ . Let us consider an intermediate
subfactor $Q$ between $S$ and $K$, with indices $[Q:S]=\alpha^{-1}$ and $[K:Q]=\lambda^{-1}$ . By [J] we
know that $\alpha\lambda=\gamma$ . Let $M=\langle K, e_{Q}\rangle$ and $M_{1}=\langle L, e_{M}\rangle$ be Jones’ basic constructions.
We have

$S\subset Q\subset K\subset^{e_{Q}}McL\subset^{e_{M}}M_{1}\subset L_{1}$ ,

where, as before, $L=\langle K, e_{S}\rangle$ and $L_{1}=\langle L, e_{K}\rangle$ . Obviously, $e_{Q}\in S’\cap L$ and $e_{M}\in$

$K’\cap L_{1}$ . Also $e_{Q}e_{S}=e_{S}$ and $e_{M}e_{K}=e_{K}$ .

PROPOSITION 2.5.

$\mathscr{F}(\alpha^{-1/2}e_{M})=\lambda^{-1/2}e_{Q}$ and $\mathscr{F}^{*}(\lambda^{-1/2}e_{Q})=\alpha^{-1/2}e_{M}$ .

PROOF. (See [B] for another proof of this property.) We will show only the second
equality. First, we remark that $e_{Q}e_{K}e_{Q}=\lambda e_{M}e_{Q}$ . Indeed, let us represent all these
operators on $L^{2}(L, \tau)$ and let the vector sign denote the canonical embedding of $L$ in
$L^{2}(L, \tau)$ . Then for $anyarrow ae_{S}b\in L^{2}(L, \tau),$

$a,$ $b\in K$ we have:

$e_{Q}e_{K}e_{Q}ae_{S}barrow=\overline{e_{Q}E_{K}(e_{Q}ae_{S}b)}=\overline{e_{Q}E_{K}(e_{Q}ae_{Q}e_{S}b)}$

$=\overline{e_{Q}E_{Q}(a)E_{K}(e_{S})b}=\gamma\overline{e_{Q}E_{Q}(a)b}$

$=\lambda\overline{E_{Q}(a)\alpha e_{Q}b}=\lambda\overline{E_{M}(E_{Q}(a)e_{S}b)}=\lambda e_{M}e_{Q}ae_{S}barrow$ .

In the last line we used the property $E_{M}(e_{S})=\alpha e_{Q}$ , cf. [SW, Lemma 7.1].
NOW,

$\mathscr{F}^{*}(e_{Q})=\gamma^{-3/2}E_{K’\cap L_{1}}(e_{Q}e_{K}e_{S})=\gamma^{-3/2}E_{K’\cap L_{1}}(\lambda e_{M}e_{S})$

$=\gamma^{-3/2}\lambda e_{M}E_{K’\cap L_{1}}(e_{S})=\sqrt{\frac{\lambda}{\alpha}}e_{M}$ ,

where we used [PP1, Corollary 4.5]. Q.E.D.

DEFINITION 2.6. For $x,$ $y\in S’\cap L$ we set

$x*y=\mathscr{F}(\mathscr{F}^{*}(x)\mathscr{F}^{*}(y))$ .

Similarly, for $x,y\in K’\cap L_{1}$

$x\wedge*y=\mathscr{F}^{*}(\mathscr{F}(x)\mathscr{F}(y))$ .

Following [O], we call the operation $*$ or $*\wedge$ convolution. The convolution $*\wedge$ in
$K’\cap L_{1}$ should not be confused with the convolution $*$ , which we define by building
up another basic construction, say $L_{2}=\langle L_{1}, e_{L}\rangle$ , and putting $x*y=\mathscr{F}_{1}(\mathscr{F}_{1}^{*}(x)\mathscr{F}_{1}^{*}(y))$ ,

where $\mathscr{F}_{1}$ and $\mathscr{F}_{1}^{*}$ are the shifted Fourier and inverse Fourier transforms:
$\mathscr{F}_{1}^{*}$ : $K’\cap L_{1}arrow L’\cap L_{2},$ $\mathscr{F}_{1}^{*}(x)=\gamma^{-3/2}E_{L’}(xe_{L}e_{K})$ and $\mathscr{F}_{1}$ : $L’\cap L_{2}arrow K’\cap L_{1},$ $\mathscr{F}_{1}(y)=$

$\gamma^{-3/2}E_{L_{1}}(ye_{K}e_{L})$ . Similarly, we may define $*\wedge$ in $S’\cap L$ .
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PROPOSITION 2.7.

For $x\in S’\cap L$ , $\sqrt{\frac{\alpha}{\lambda}}e_{Q}*x=E_{M}(x)$ .

For $y\in K’\cap L_{1}$ , $\sqrt{\frac{\lambda}{\alpha}}e_{M}*y\wedge=E_{M’}(y)=E_{M’\cap L_{1}}(y)$ .

PROOF. Let $\tilde{x}=\mathscr{F}^{*}(x)\in K’\cap L_{1}$ . By [PP1, Lemma 1.2] and Proposition 2.5,

$E_{L}(e_{M}\tilde{x}e_{S}e_{K})=\gamma^{-l}E_{L}(e_{M}E_{L}(\tilde{x}e_{S}e_{K})e_{K})=\gamma^{-1}E_{L}(e_{M}E_{L}(\tilde{x}e_{S}e_{K})e_{M}e_{K})$

$=\gamma^{-1}E_{L}(E_{M}(\tilde{x}e_{S}e_{K})e_{K})=E_{M}(\tilde{x}e_{S}e_{K})=\gamma^{3/2}E_{M}(\mathscr{F}(\tilde{x}))=\gamma^{3/2}E_{M}(x)$ .

Since $S’=\langle K‘, L’, e_{S}\rangle$ and $Q’=\langle K’, M’, e_{Q}\rangle$ , proof of the other equality is almost the
same. Q.E.D.

LEMMA 2.8. Let $S\subset Q\subset K$ be type $\Pi_{1}$ factors, $[K:S]<\infty,$ $M=\langle K, Q, e_{Q}\rangle$ and
$S’\cap Q=C$ . Then

(1) $e_{Q}$ is a minimal projection in $S’\cap M$ .
(2) $e_{Q}$ is central in $S’\cap M$, iff $S’\cap K=C$ .

PROOF. (1) Suppose $e\leq e_{Q}$ for some non-zero projection $e\in P(S’\cap M)$ . If
$f=\lambda^{-1}E_{K}(e)\in S’\cap K(\lambda=[K:Q]^{-1})$ , then

$e=ee_{Q}=\lambda^{-1}E_{K}(ee_{Q})e_{Q}=\lambda^{-1}E_{K}(e)e_{Q}=fe_{Q}$ .

Hence $[f, e_{Q}]=0$ ; therefore $f\in S’\cap Q=C$ , which implies $e=e_{Q}$ .
(2) $\Rightarrow$ If $a\in S’\cap K$ , then $ae_{Q}=e_{Q}a$ and hence $a\in S’\cap Q=C$ .

$\Leftarrow$ Let $c=C(e_{Q}, S’\cap M)$ be the central support of $e_{Q}$ in $S’\cap M$ . For any
projection $f\in(S’\cap M)_{c}$ satisfying $\tau(f)=\lambda$ , there is a unitary $u\in S’\cap M$ such that
$f=ue_{Q}u^{*}$ . Hence, by [PP1, Lemma 1.2] and Lemma 2.1

$ue_{Q}=\lambda^{-1}E_{K}(ue_{Q})e_{Q}=\lambda^{-1}\tau(ue_{Q})e_{Q}$ .

Thus $f=\lambda^{-2}|\tau(ue_{Q})|^{2}e_{Q}$ . This implies $c=e_{Q}$ . Q.E.D.

From now on, we consider two intermediate subfactors $Q,$ $R$ between $S$ and
$Q$ $\subset$ $K$

$K$: $\cup$ $\cup$ . We always consider such diagrams that $Q\not\subset R$ and $R\not\subset Q$ , but we
$S$ $\subset$ $R$

do not assume that always $K=Q\vee R$ and $S=Q\cap R$ . Throughout the rest of the
paper we keep to the notation preceding Proposition 2.5 and we add the following
one: $N=\langle K, e_{R}\rangle$ and $N_{1}=\langle L, e_{N}\rangle$ will be the Jones basic constructions. For brevity
we assume that $\eta=[K:R]^{-1}$ and $\beta=[R:S]^{-1}$ This way we obtain the following
diagram of inclusions:

$M_{1}$ $\subset$ $L_{1}$

$\cup$ $\cup$

$N$ $\subset$ $L$ $\subset$ $N_{1}$

$\cup$ $\cup$

$Q\cup$

$\subset$

$K\cup$

$\subset$ $M$

$S$ $\subset$ $R$
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$J_{K}$ (resp. $J_{L}$ ) will be modular conjugation on $L^{2}(K, \tau)$ (resp. $L^{2}(L,$ $\tau)$ ). We always
assume that the inclusion $S\subset K$ is irreducible.

THEOREM 2.9. There exists a projection $p$ in $R’\cap M$ such that:

(1) $e_{Q}*e_{R}=\tau(e_{Q}e_{R})\gamma^{-1/2}p=\sqrt{\frac{\lambda}{\alpha}}E_{M}(e_{R})=\sqrt{\frac{\eta}{\beta}}E_{R’}(e_{Q})$ ,

(2) $e_{R}*e_{Q}=J_{K}(e_{Q}*e_{R})J_{K}=\tau(e_{Q}e_{R})\gamma^{-1/2}J_{K}pJ_{K}=\sqrt{\frac{\lambda}{\alpha}}E_{Q’}(e_{R})=\sqrt{\frac{\eta}{\beta}}E_{N}(e_{Q})$ ,

(3) $p$ is a minimal and central projection in $R’\cap M$ and $p\geq e_{R}\vee e_{Q}$ ,
(4) $\hat{p}=J_{K}pJ_{K}$ is a minimal and central projection in $Q’\cap N$ and $\hat{p}\geq e_{R}\vee e_{Q}$ .

PROOF. Let $p=\wedge\{f|f\geq e_{Q}, f\in P(R’\cap M)\}$ . Suppose $p_{1}$ , $0\neq p_{1}\leq p$ , is
another projection in $R’\cap M$ . By Lemma 2.8, $e_{Q}p_{1}=0$ or $e_{Q}p_{1}=e_{Q}$ . This implies $e_{Q}$

$\leq p-p_{1}\leq p$ or $e_{Q}\leq p_{1}\leq p$ . Hence, $p$ is minimal in $R’\cap M$ . Let $E_{R’}(e_{Q})=$

$\sum_{1\leq i\leq n}\alpha_{i}p_{i},$ $\alpha_{i}>0$ be the spectral decomposition. Then, by $e_{Q}\leq p$ , it follows that
$\sum\alpha_{i}p_{i}\leq p$ and, in consequence, $\sum p_{i}\leq p$ . Therefore, by minimality of $p$ , we see that
$n=1$ and $E_{R’}(e_{Q})=\theta p$ , for some scalar $\theta$ . From this and Lemma 2.8 we see that $p$ is
also central in $R’\cap M$ .

Identically, we obtain $E_{Q’}(e_{R})=\kappa g$ for a minimal and central projection $g$ in $Q’\cap N$

and a scalar $\kappa$ . It is easy to check that

$\forall x\in S’\cap L$ , $E_{N\cap Q’}(x)=J_{K}E_{R’\cap M}(J_{K}xJ_{K})J_{K}$ .

Using this we see that for $\hat{g}=J_{K}gJ_{K}$ ,

$\kappa\hat{g}=J_{K}E_{Q’\cap N}(e_{R})J_{K}=E_{R’\cap M}(J_{K}e_{R}J_{K})=E_{M}(e_{R})=\sqrt{\frac{\alpha}{\lambda}}e_{Q}*e_{R}$ .

Also, $\hat{g}$ is a minimal and central projection in $R’\cap M$ . Since $e_{R}\leq g$ , we have
$e_{R}\leq\hat{g}$ . Hence

$0\neq e_{S}\leq e_{Q}\wedge e_{R}\leq p\wedge\hat{g}$ ,

which implies $p=\hat{g}$ . Computation of coefficients $\theta$ and $\kappa$ ends the proof. For
example, let us multiply the equality $\kappa p=E_{M}(e_{R})$ by $e_{Q}$ and take the trace:
$\kappa e_{Q}=E_{M}(e_{R}e_{Q})$ , and so $\kappa=\lambda^{-1}\tau(e_{R}e_{Q})$ . Q.E.D.

Let us write $[x]$ for the range projection of an operator $x$ . Similarly as above, we
obtain the following corollary.

COROLLARY 2.10. $[e_{M}*\wedge e_{N}]$ is a minimal and central projection in $M’\cap N_{1}$ ,
$[e_{M}*\wedge e_{N}]\geq e_{M}\vee e_{N}$ and

$e_{M^{*}}e_{N}=\wedge L(e_{N^{*e_{M})J_{L}=\tau(e_{M}e_{N})\gamma^{-1/2}[e_{M^{\wedge}}}}^{\wedge}*e_{N}]=\sqrt{\frac{\alpha}{\lambda}}E_{M’}(e_{N})=\sqrt{\frac{\beta}{\eta}}E_{N_{1}}(e_{M})$ .

REMARK. From the above theorem and corollary, it is easy to see the following
property of the “shifted” convolution $*$ in $K’\cap L_{1}$ : $e_{N}*e_{M}=e_{M}*e_{N}\wedge$ . Then it is
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natural to ask, whether this relation is satisfied for arbitrary operators in $K’\cap L_{1}$ .
Right now, it is not clear for us.

For later convenience, we carry out some computations. From [J] we know that
$\lambda/\beta=\eta/\alpha$ . We denote this quotient by $\delta$ .

PROPOSITION 2.11.

$\frac{\tau([e_{Q}*e_{R}])}{\tau([e_{M^{*}}\wedge e_{N}])}=\frac{\tau(e_{Q}e_{R})}{\tau(e_{M}e_{N})}=\delta$ .

PROOF. From Propositions 2.5 and 2.3 and Theorem 2.9 we have:

$\tau(e_{M}e_{N})=||e_{M}e_{N}||_{2}^{2}=||\mathscr{F}(e_{M}e_{N})||_{2}^{2}=\frac{\alpha\beta}{\lambda\eta}||e_{Q}*e_{R}||_{2}^{2}$

$= \frac{\alpha\beta}{\lambda\eta}\tau(e_{Q}e_{R})^{2}\gamma^{-1}\frac{\lambda\eta}{\tau(e_{Q}e_{R})}=\delta^{-1}\tau(e_{Q}e_{R})$ . Q.E.D.

T. Sano and Y. Watatani, cf. [SW], introduced notion of angles between subfactors
$Q$ $\subset$ $K$

$Q$ and $R$ . The diagram $\cup$ $\cup$ , with $K=Q\vee R$ and $Op- ang_{K}(Q, R)=\{\pi/2\}$

$S$ $\subset$ $R$

will be called a co-commuting square. (Cf. [K], [WW], [Wi].) The following char-
acterization follows directly from [SW, Proposition 4.2, Corollary 4.1 and Lemma 7.2]

and it is valid even if the inclusion $S\subset K$ (or equivalently $K\subset L$) is not irreducible.

PROPOSITION 2.12. The following conditions are equivalent:
$Q$ $\subset$ $K$

(1) Diagram $\cup$ $\cup$ offinite factors is a $co$-commuting square.
$S$ $\subset$ $R$

$R’$ $\subset$ $S’$

(2) Diagram of their commutants $\cup$ $\cup$ forms a commuting square.
$K’$ $\subset$ $Q’$

$M$ $\subset$ $L$

(3) Diagram $\cup$ $\cup$ is a commuting square.
$K$ $\subset$ $N$

$M_{1}$ $\subset$ $L_{1}$

(4) Diagram $\cup$ $\cup$ $\dot{w}$ a $co$-commuting square.
$L$ $\subset$ $N_{1}$

(5) $E_{M}(e_{R})\in C$ .

AS an application of Theorem 2.9 we give a few equivalent conditions on the
commutativity. (Remember that $K’\cap L=C$ and $[L:K]=[K:S]=\gamma^{-1}<\infty.$ )

COROLLARY 2.13. The following conditions are equivalent:
$N$ $\subset$ $L$

(1) $\cup$ $\cup$ is a $co$-commuting square.
$K$ $\subset$ $M$

(2) $N’\cap M_{1}=C$ .
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(3) $\tau(e_{N}e_{M})=\alpha\beta$ .
(4) $e_{N^{\wedge}}*e_{M}$ is a scalar.
(5) $e_{N^{\wedge}}*e_{M}=e_{M}*e_{N}\wedge$ and $N\vee M=L$ .

PROOF. $"(2)\Rightarrow(1)$ follows from [SW, Lemma 7.2].
$"(1)\Rightarrow(2)$ If (1) is satisfied then, from [SW, Lemma 7.2], $E_{M_{1}}(e_{N})\in C$ . Hence by

Theorem 2.9 the identity is minimal in $N’\cap M_{1}$ .
$"(1)\Leftrightarrow(3)$ Since, by computation in 2.11, (3) is equivalent to $e_{Q}e_{R}=e_{S}$ , this is an

immediate consequence of [SW, Corollary 4.1].
$"(2)\Leftrightarrow(4)$ is obvious because, by Corollary 2.10, $e_{M}*e_{N}\wedge$ is a scalar multiple of a

minimal projection in $M’\cap N_{1}$ .
$"(1)\Leftrightarrow(5)$ is a direct consequence of Proposition 2.5. Q.E.D.

By the remark following Corollary 2.10, we can replace the symbol $*\wedge$ by $*$ , in
(4) and (5) of the above corollary.

EXAMPLE. Let $\mu$ be an outer action of a finite group $G$ on a type $\Pi_{1}$ factor $S$ .
If $A$ and $B$ are subgroups of $G$ with trivial intersection $A\cap B=\{e\}$ , then we

$Q$ $\subset$ $K$

can consider the diagram of crossed products $\cup$ $\cup$ , where $Q=S\lambda_{\mu}A$ ,
$S$ $\subset$ $R$

$R=S>\triangleleft_{\mu}B$ and $K=S\lambda_{\mu}G$ . The diagram of corresponding basic constructions,
$N$ $\subset$ $L$

cf. [SW, Lemma 5.1], can be identified with the following one $\cup$ $\cup$ ,
$K$ $\subset$ $M$

where $M=(S\otimes L^{\infty}(G/A))\lambda_{\mu}G,$ $N=(S\otimes L^{\infty}(G/B))x_{\mu}G,$ $L=(S\otimes L^{\infty}(G))>\triangleleft_{\mu}G$ .
$L^{\infty}(G/A)$ (resp. $L^{\infty}(G/B)$ ) consists of functions constant on left cosets of $A$ (resp. $B$)

and the action $\mu$ is extended in an obvious way, cf. [SW]. If $\chi_{D}$ denotes the char-
acteristic function of a subset $D\subset G$, then

$e_{Q}\approx 1\otimes\chi_{A}$ , $e_{R}\approx 1\otimes\chi_{B}$ and $e_{S}\approx 1\otimes\chi_{\{e\}}$ .

One can easily verity that $R’\cap M$ is isomorphic to the subspace of $L^{\infty}(G)$ , which
consists of functions constant on double cosets $BgA,$ $g\in G$ . Similarly $Q’\cap N\approx$

$L^{\infty}(A\backslash G/B)$ and we have

$[e_{Q}*e_{R}]\approx\chi_{BA}$ and $[e_{R}*e_{Q}]\approx\chi_{AB}$ .

$Q$ $\subset$ $K$

Also, since $\cup$ $\cup$ is a commuting square, $[e_{N^{\wedge}}*e_{M}]=[e_{M}*\wedge e_{N}]=1$ .
$S$ $\subset$ $R$

3. Angles for subfactors with “small” second relative commutant

The following lemma may be considered as a generalization of Lemma 5.3 in
[SW]. AS always, we assume that $S’\cap K=C$ and $[K:S]<\infty$ .
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$Q$ $\subset$ $K$

LEMMA 3.1. If the diagram $\cup$ $\cup$ is not a $co$-commuting square and
$S$ $\subset$ $R$

$\dim(Q’\cap M)=2$ , then the only non-zero element of the spectrum $Sp(e_{M}e_{N}e_{M}-e_{K})$ is
$(1/(1-\lambda))((\tau(e_{N}e_{M})/\alpha)-\lambda)$ .

PROOF. Note that our assumption $\dim(Q’\cap M)=2$ implies $Q\vee R=N\cap M$

$=K$ . Let us denote $E_{0}=E_{M}E_{N}E_{M}$ and $E-E_{0}-E_{K}$ . It is sufficient to show
(see [SW, Corollary 3.1]) that $E^{2}=(1/(1-\lambda))((\tau(e_{N}e_{M})/\alpha)-\lambda)E$ . Since $E$ has the
bimodule property, by [PP1, Lemma 1.1] we need only to make sure that
$E^{2}(e_{S})=(1/(1-\lambda))((\tau(e_{N}e_{M})/\alpha)-\lambda)E(e_{S})$ . By [SW, Lemma 7.1] and Theorem 2.9,
for the projection $\hat{p}=[e_{R}*e_{Q}]\in Q’\cap N$ we have

$E_{0}(e_{S})=E_{M}E_{N}( \alpha e_{Q})=\frac{\tau(e_{Q}e_{R})}{\delta}E_{M}(\hat{p})$ .

Since $\dim(Q’\cap M)=2$ ,

$E_{M}( \hat{p})=\frac{\tau(\hat{p}e_{Q})}{\tau(e_{Q})}e_{Q}+\frac{\tau(\hat{p}(1-e_{Q}))}{\tau(1-e_{Q})}(1-e_{Q})=e_{Q}+\frac{\tau(\hat{p})-\lambda}{1-\lambda}(1-e_{Q})$ .

Therefore, setting

$\theta=\tau(e_{Q}e_{R})/\eta$ and

we get

$\kappa=\frac{\lambda}{\eta}\frac{\eta-\tau(e_{Q}e_{R})}{1-\lambda}$ ,

$E_{0}(e_{S})=\alpha E_{0}(e_{Q})=\alpha\theta e_{Q}+\alpha\kappa(1-e_{Q})$ .

Hence,

$E_{0}^{2}(e_{S})=E_{0}(\alpha\theta e_{Q}+\alpha\kappa(1-e_{Q}))=(\theta-\kappa)E_{0}(e_{S})+\alpha\kappa$ ,

which gives

$E^{2}(e_{S})=(E_{0}-E_{K})(E_{0}-E_{K})(e_{S})=(E_{0}^{2}-E_{K})(e_{S})=(\theta-\kappa)E_{0}(e_{S})+\alpha\kappa-\gamma$

$=(\theta-\kappa)E(e_{S})+(\theta-\kappa)\gamma+\alpha\kappa-\gamma=(\theta-\kappa)E(e_{S})$

and

$\theta-\kappa=\frac{1}{1-\lambda}(\frac{\tau(e_{Q}e_{R})}{\eta}-\lambda)=\frac{1}{1-\lambda}(\frac{\tau(e_{N}e_{M})}{\alpha}-\lambda)$ . Q.E.D.

By [SW, Corollary 4.1], the theorem stated in introduction is a reformulation of the
following one.

$Q$ $\subset$ $K$

THEOREM 3.2. Let $\mathscr{B}=\cup$ $\cup$ be a diagram of type $\Pi_{1}$ factors $([K:S]<\infty$ ,
$S$ $\subset$ $R$

$S’\cap K=C)$ and let $[K : R]<[K : Q]$ . If $\dim Q’\cap M=2(M=\langle K, Q, e_{Q}\rangle)$ , then 9 is a
$co$-commuting square.

PROOF. Suppose that 9 is not a co-commuting square. From the preceding lemma,
the spectrum $Sp(e_{M}e_{N}e_{M}-e_{K})-\{0\}=\{\sigma\}$ , where $\sigma=(1/(1-\lambda))((\tau(e_{N}e_{M})/\alpha)-\lambda)$ .
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Since

$Sp(e_{N}e_{M}e_{N}-e_{K})-\{0\}=Sp(e_{N}e_{M}-e_{K})(e_{N}e_{M}-e_{K})^{*}-\{0\}$

$=Sp(e_{N}e_{M}-e_{K})^{*}(e_{N}e_{M}-e_{K})-\{0\}=\{\sigma\}$ ,

it follows that
$e_{M}e_{N}e_{M}=e_{K}+\sigma g$ , $e_{N}e_{M}e_{N}=e_{K}+\sigma f$ ,

for some projections $g,f\in K’\cap L_{1}$ . Then, since $\tau(e_{M}e_{N})\neq\tau(e_{K})=\gamma(=[K:S]^{-1})$ , we
have $\tau(g)=(\tau(e_{M}e_{N})-\gamma)(1/\sigma)=\alpha-\gamma$, but

$f\leq e_{N}-e_{K}$ and $\tau(f)=\tau(g)$ ,

and so $\alpha-\gamma\leq\beta-\gamma$ , which gives a contradiction with $\lambda<\eta$ . Q.E.D.

COROLLARY 3.3. If
$\mathscr{B}=Q\cup$

$\subset$

$K\cup,$

$\dim Q’\cap M=\dim R’\cap N=2$ and $[K:Q]\neq$

$S$ $\subset$ $R$

$[K:R]$ , then 9 $\dot{i}$ a $co$-commuting square.

4. Angles for subfactors with “small” indices

We use here results of S. Popa, cf. [P3], to consider another sufficient conditions
which lead to the same effect. Let us outline some of those results. We assume the
following notations: $P_{n}(x)$ will be Jones’ polynomials,

$P_{-1}\equiv P_{0}\equiv 1$ $P_{n+1}(x)=P_{n}(x)-xP_{n-1}(x)$ .

If $x=(4\cos^{2}(\pi/n))^{-1}(n>3)$ then

$\Lambda_{0}(x)=\{\frac{P_{k-1}(x)}{P_{k-2}(x)}|2\leq k\leq n-2\}=\{x\frac{P_{k-1}(x)}{P_{k}(x)}|0\leq k\leq n-4\}$

and $\Lambda_{1}(x)=\emptyset$ . If $x\leq 1/4$ then

$\Lambda_{0}(x)=\{\chi\frac{P_{k-1}(x)}{P_{k}(x)}|0\leq k\}\cup\{\frac{P_{k+1}(x)}{P_{k}(x)}|0\leq k\}$

and $\Lambda_{1}(x)=[\frac{1-\sqrt{1-4x}}{2},\frac{1+\sqrt{1-4x}}{2}]$ .

Set $\Lambda(x)=\Lambda_{0}(x)\cup\Lambda_{1}(x)$ and $\tilde{\Lambda}(x)=\Lambda(x)\cap(x+\Lambda(x))$ . If $B\subset A$ is a finite index
inclusion of type $\Pi_{1}$ factors, then

$P(A, B)=$ { $e\in P(A)|E_{B}(e)$ is a scalar}
and we also denote: $\Lambda(A, B)=\{\tau(e)|e\in P(A, B)\}-\{0,1\}$ .

THEOREM 4.1. ( $[P3$ , Theorems 5.1 and 5.2]) For a finite index inclusion of type
$\Pi_{1}$ factors $B\subset A,$ $\Lambda(A, B)\subset\Lambda([A : B]^{-l})$ . Moreover, if $[A : B]\leq 4$ , then $\Lambda(A, B)=$

$\Lambda([A : B]^{-1})$ .



34 J. WIERZBICKI

Next proposition is a slight modification of [P3, Proposition 4.5]. We will set

$\mathscr{L}^{s}(B\subset A)=$ {$F|F$ is factor, $B\subset F\subset A$ and $[A$ : $F]^{-1}=s$}.

PROPOSITION 4.2. Let $D\subset B\subset A$ be a triple of type $\Pi_{1}$ factors with $[A : D]<\infty$

and $D’\cap B=C$ . If $f\in P(D’\cap A)$ and $\tau(f)\in\Lambda_{0}(t)(t=[A : B]^{-l})$ , then there exists
$F\in \mathscr{L}^{s}(D\subset B),$ $s=t^{k+1}/P_{k}(t)^{2}$ , where $k\geq 0$ is determined by $\tau(f)=tP_{k-1}(t)/P_{k}(t)$ or
by $\tau(f)=P_{k+1}(t)/P_{k}(t)$ .

PROOF. We may assume that $\tau(f)=tP_{k-1}(t)/P_{k}(t)$ , for some $k\geq 0$ . Since evi-
dently $f\in P(A, B)$ , exactly as in [P3, Lemma 4.3] we consider Jones’ tower

$B\subset A\subset^{e_{1}}A_{1}\subset^{e_{2}}A_{2}\cdots\subset^{e_{k}}A_{k}$

and projections $p_{k}=(1-e_{1})\wedge\cdots\wedge(1-e_{k})\in B’\cap A_{k}$ and $p_{0,k}=f\wedge p_{k}$ . Then, cf. [P3,

Proposition 4.5], there exists such subfactor $F\subset B$ that $(A_{k})_{p_{k}}=\langle B_{p_{k}}, F_{p_{k}},p_{0,k}\rangle$ and
$[B:F]^{-1}=s=t^{k+1}/P_{k}(t)^{2}$ . We will verify that the additional assumption $f\in D’$ yields
$D\subset F$ . Take any operator $x\in D$ . Since $[x,f]=0$ and $[x,p_{k}]=0$ , it follows that
$[x,f\wedge p_{k}]=0$ , and hence $[xp_{k},p_{0,k}]=0$ . This implies $xp_{k}\in F_{p_{k}}$ , so that $x\in F$ .

Q.E.D.

Let us now come back to diagrams of type $\Pi_{1}$ factors. We keep to all the
notations from the preceding sections as well as to the assumptions $[K:S]<\infty$ and
$S’\cap K=C$ . In particular, we recall that $[K:R]=\eta^{-1},$ $[R:S]=\beta^{-1},$ $[Q:S]=\alpha^{-1}$ and
$[K : Q]=\lambda^{-1}$

LEMMA 4.3.

$\tau([e_{Q}*e_{R}])\in[[\tilde{\Lambda}(\lambda)\cap\tilde{\Lambda}(\eta)]\cup\{1\}]\cap\delta[[\tilde{\Lambda}(\alpha)\cap\tilde{\Lambda}(\beta)]\cup\{1\}]$ .

PROOF. Suppose that $p=[e_{Q}*e_{R}]\neq 1$ . Since $E_{K}(p)=E_{K}E_{R’\cap M}(p)=\tau(p),$ $p\in$

$P(M, K)$ , and so, by Theorem 4.1, $\tau(p)\in\Lambda(M, K)\subset\Lambda(\lambda)$ . By Theorem 2.9, $p-e_{Q}$

is a projection in $S’\cap M$ and the same argument gives $\tau(p)-\lambda\in\Lambda(\lambda)$ . Hence
$\tau(p)\in\tilde{\Lambda}(\lambda)$ . Identically, we obtain $\tau(\hat{p})=\tau(J_{K}pJ_{K})\in\tilde{\Lambda}(\eta)$ , but $\tau(p)=\tau(\hat{p})$ ; therefore,

$\tau(p)\in\tilde{\Lambda}(\lambda)\cap\tilde{\Lambda}(\eta)$ .

Again, the projection $q=[e_{M}*\wedge e_{N}]\in P(N_{1}, L)$ and analogically we obtain:

$\tau(q)\in\tilde{\Lambda}(\alpha)\cap\tilde{\Lambda}(\beta)$

or $\tau(q)=1$ . Now, by Proposition 2.11, $\tau(p)=\delta\tau(q)$ , which completes the proof.
Q.E.D.

EXAMPLE. It is easy to see that for $\lambda^{-1}<2+\sqrt{5}$, the set $\tilde{\Lambda}(\lambda)$ is finite. Let $\lambda$ be a
transcendental number and $\eta$ an algebraic number, $1<\lambda^{-l},$ $\eta^{-1}<2+\sqrt{5}$ . Then, by

$Q$ $\subset$ $K$

the above lemma, the diagram $\cup$ $\cup$ is a co-commuting square.
$S$ $\subset$ $R$
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$Q$ $\subset$ $K$

S. Popa, cf. [P3, Theorem 6.1], proved that if a diagram $\mathscr{B}=\cup$ $\cup$ of type
$S$ $\subset$ $R$

$\Pi_{1}$ factors is a commuting square, then the indices of the inclusions of this diagram
satisfy $\beta\in\Lambda(\lambda)$ and $\alpha\in\Lambda(\eta)$ . Note that the condition $\tau(p)\in\Lambda(\lambda)\cup\{1\}$ , which follows
from Lemma 4.3 and, which is satisfied by any diagram 9 (with $S’\cap K=C$) is a
generalization (in the case $S’\cap K=C$ ) of Popa’s [P3, Theorem 6.1]. Indeed, if the

$Q$ $\subset$ $K$

diagram $\cup$ $\cup$ is a commuting square, then $\tau(p)=\delta$ . Hence
$S$ $\subset$ $R$

$\delta=\frac{\lambda}{\beta}\in\Lambda(\lambda)\Leftrightarrow\beta\in\lambda\Lambda(\lambda)^{-1}=\Lambda(\lambda)$ ,

where the last equality comes directly from the definition of $\Lambda(\lambda)$ .

REMARK. Incidentally, with a little extra effort, we can make Popa’s condition
$Q$ $\subset$ $K$

a bit stronger. If the diagram $\cup$ $\cup$ is a commuting square (which does not
$S$ $\subset$ $R$

necessarily satisfy $S’\cap K=C$ ) and $\beta\leq\alpha$ , then either $\beta=\lambda$ or $\beta\in\Lambda_{1}(\lambda)$ or
$\beta=\alpha=\lambda/(1-\lambda)$ . In the proof we use Proposition 4.2 (or

$ano_{1}b-$.vious modification of
it) to obtain a factor in $\mathscr{L}^{s}(N\subset M_{1})$ with “too big” index $s$

EXAMPLE. It is interesting to see, how some of the above results reflect in group
theory. Let $\mu$ be an outer action of a finite group $G$ on a type $\Pi_{1}$ factor $S$ . Let, for
example, $H$ and $F$ be non-trivial subgroups of $G$ such that $H\cap F=\{1\}$ . We can

consider the diagram
$S\lambda_{\mu}H\cup$

$\subset$

$S>\triangleleft_{\mu}G\cup$

and apply [NT], [SW], Proposition 4.2 and
$S$ $\subset$ $S\lambda_{\mu}F$

Theorem 2.9 to obtain the following property. If $[G:H]=3$ and $G\neq HF$ , then
$|F|=2$ and there is an intermediate subgroup $D$ such that $F\subset D\subset G$ , with $[G:D]=3$

or $[G:D]=4$ .

$Q$ $\subset$ $K$

THEOREM 4.4. Let $\mathscr{B}=\cup$ $\cup$ be a diagram of type $\Pi_{1}$ factors with
$S$ $\subset$ $R$

$S’\cap K=C$ and $[K:S]<\infty$ . If $[K:Q]=4\cos^{2}(\pi/n)$ , for a prime number $n$ , then the
diagram $\mathscr{B}$ is a $co$-commuting square.

PROOF. Let $n\geq 5$ be a prime number and $[K:Q]=\lambda^{-1}=4\cos^{2}(\pi/n)$ . By
Lemma 4.3, it is sufficient to prove that the set $\tilde{\Lambda}(\lambda)$ is empty. From its definition, it is
not empty, iff there exist integers $k,s$ , such that

$(*)$ $n-2\geq s>k\geq 2$ and $\frac{P_{k-1}(\lambda)}{P_{k-2}(\lambda)}=\frac{P_{s-1}(\lambda)}{P_{s-2}(\lambda)}+\lambda$ .

From [$J$, Lemma 4.2.4], the equation is equivalent to the following one:

$\frac{1}{\sin(2\pi/n)}=\frac{1}{\tan(k\pi/n)}-\frac{1}{\tan(s\pi/n)}$ .
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From this we see that if $k,$ $s$ satisfy $(*)$ then $k’=n-s,$ $s’=n-k$ also satisfy $(*)$ .
Therefore, we are allowed to assume that $k+s\leq n$ . Directly from the definition of
Jones’ polynomials

$P_{k-1}(\lambda)P_{s-2}(\lambda)-P_{s-1}(\lambda)P_{k-2}(\lambda)=\lambda(P_{k-2}(\lambda)P_{s-3}(\lambda)-P_{s-2}(\lambda)P_{k-3}(\lambda))$ .

Then $(*)$ is equivalent to the following equation

$(**)$ $P_{k-2}(\lambda)P_{s-2}(\lambda)-P_{k-2}(\lambda)P_{s-3}(\lambda)+P_{s-2}(\lambda)P_{k-3}(\lambda)=0$ .

By [$J$ , Lemma 4.2.4], the degree of the above polynomial does not exceed
$[(k-1)/2]+[(s-1)/2]$ . We show that the degree of the minimum polynomial of $\lambda$ is
$(n-1)/2$ . We use the terminology and results presented in [ST]. If we denote
$\zeta=\exp(2\pi i/n)$ , then $\lambda=(1/4)-(1/4)((1-\zeta)/(1+\zeta))^{2}$ is an element of the cyclotomic
field $Q(\zeta)$ and $\zeta$ is a zero of the polynomial $f(t)=t^{2}+(2-\lambda^{-1})t+1$ . By Lemma 3.4
in [ST], $f(t)$ is the minimum polynomial of $\zeta$ over the field extension $Q(\lambda)$ and the
degrees of field extensions satisfy:

$n-1=[Q(\zeta) : Q]=[Q(\zeta) : Q(\lambda)][Q(\lambda) : Q]=2[Q(\lambda) : Q]$ .

NOW, the inequality $[(k-1)/2]+[(s-1)/2]\geq(n-1)/2$ clearly contradicts our
assumption $k+S\leq n$ . Q.E.D.

$Q$ $\subset$ $K$

COROLLARY 4.5. Let $\mathscr{B}=\cup$ $\cup$ be a diagram of type $\Pi_{1}$ factors with
$S$ $\subset$ $R$

$S’\cap K=C$ and $[K:S]<\infty$ . If $[Q:S]=4\cos^{2}(\pi/n)$ , for a prime number $n$ , then the
diagram 9 is a commuting square.

PROOF. This is an immediate consequence from [SW, Corollary 4.1] and Theorem
4.4. Q.E.D.

EXAMPLE. T. Teruya, cf. [Te], considered characteristic intermediate subfactors. If
$S\subset Q\subset K,$ $S’\cap K=C$ is a triple of type $\Pi_{1}$ factors then, analogically to group theory,
he called $Q$ a characteristic intermediate subfactors, if for any automorphism $\sigma\in Aut(K)$

such that $\sigma(S)=S$ we have also $\sigma(Q)=Q$ . Also, he showed that, if $K$ is an extension
of $S$ by a finite group $G$, then this notion coincides with characteristic subgroups. By
Theorem 4.4 we can easily obtain examples of characteristic intermediate sub-
factors. Let $n$ and $m,$ $n\neq m,$ $n,$ $m>4$ be any prime numbers and let $K$ be a hyperfinite
type $\Pi_{1}$ factor. Let $Q\subset K$ and $S\subset Q$ be $\Pi_{1}$ subfactors with $[K:Q]=4\cos^{2}(\pi/n)$ and
$[Q:S]=4\cos^{2}(\pi/m)$ . Then, no matter how we pick up $S$, the subfactor $Q$ is char-
acteristic.

Indeed, from Proposition 4.2 and [J], we get $S’\cap K=C$ . If for some $\sigma\in$

$Q$ $\subset$ $K$

$Aut(K, S),$ $Q\neq\sigma(Q)=R$ then, by Theorem 4.4, the diagram $\cup$ $U$ is a commuting
$S$ $\subset$ $R$

and co-commuting square, which, by [SW, Theorem 7.1], contradicts the assumption
$n\neq m$ .
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EXAMPLE. Let $\mu$ be an outer action of the symmetric group $S_{3}$ on a type $\Pi_{1}$ factor
$S$ . Consider the following diagram:

$S>\triangleleft_{\mu}\langle(1,2)\rangle\cup$

$\subset$

$s_{\lambda_{\mu}}s_{3}\cup$

$S$ $\subset$ $S\lambda_{\mu}\langle(2,3)\rangle$

Clearly, it is not co-commuting square, and so for $n=6$ the statement of Theorem 4.4
is not satisfied.

The prime numbers $n$ are not the only ones for which the set $\tilde{\Lambda}(\lambda),$ $\lambda^{-1}=4\cos^{2}(\pi/n)$

is empty. We can easily check that for $n=4$ or $n=9$ it is empty too. With a little
digital help, we conjecture that it is empty for all odd numbers $(\geq 5)$ . For even
$n(n>5)$ the set $\tilde{\Lambda}(\lambda)$ is not empty, because it contains $\{1-\lambda, 2\lambda\}$ . We were only able
to prove the following

PROPOSITION 4.6. Let $[K : Q]=\lambda^{-1}=4\cos^{2}(\pi/n)$ and let the diagram $\mathscr{B}=$

$Q\cup$

$\subset$

$K\cup$

be not a $co$-commuting square, where $S’\cap K=C$ and $[K:S]<\infty$ .
$S$ $\subset$ $R$

Then $n$ is not a prime number and the following statements hold true:
(1) There exists a factor

$P \in\bigcup_{0\leq k\leq n-4}\mathscr{L}^{s_{k}}(R\subset K)$
, where $s_{k}= \frac{\lambda^{k+1}}{P_{k}(\lambda)^{2}}$ .

(2) If $2\lambda^{-1}\neq[K : R]=\eta^{-1}<(\lambda^{-1}-1)^{2}$ , then $n$ must be even, the inclusion
$R\subset K$

’ is isomorphic to $Q\subset K$
’ and

$\cos(Op- ang_{K}(Q, R))=\{(\frac{\lambda}{1-\lambda})^{2}\}$ .

(3) If $n=6$ , then the principal graph of the inclusion $Q\subset K$
’ is $A_{5}$ .

PROOF. (1) If the diagram
$Q\cup$

$\subset$

$K\cup$

is not a co-commuting square, then the
$S$ $\subset$ $R$

projection $p=[e_{Q}*e_{R}]\in P(M, K)$ so, by Proposition 4.2, we obtain a factor
$P\in \mathscr{L}^{s_{k}}(R\subset K)$ , for some integer $k\in[0, n-4]$ .

(2) Since $(0, (\lambda^{-1}-1)^{2})\cap\{s_{k}^{-1}|0\leq k\leq n-4\}=\{\lambda^{-1}\}$ , the only possibility for the
factor $P$ in (1) is $[K:P]=\lambda^{-1}$ Since $[P:R]=\lambda/\eta<\lambda(\lambda^{-1}-1)^{2}<9/4$ , by [J],
$[P:R]=1$ or $[P:R]=2$ , with the second possibility eliminated by the assumption
$\lambda/\eta\neq 2$ . From the construction of the subfactor $P$ (see [P3, Proposition 4.5]), in the
case of $k=0$ or $k=n-4$ , we see that it is a downward basic construction for the pair
$K\subset M$ . Thus $M=\langle K, R,\tilde{e}_{R}\rangle$ , where $\tilde{e}_{R}$ is a minimal and central projection in
$R’\cap M$ . If $p\tilde{e}_{R}\neq 0$ then, by Theorem 2.9, $p=\tilde{e}_{R}$ and so $\tilde{e}_{R}=e_{Q}$ which is impossible
because the diagram would collapse. Therefore $p\tilde{e}_{R}=0$ , and hence $R’\cap M=$

$C_{p}\oplus C\tilde{e}_{R}$ . Otherwise, there would be another projection, say $f\in R’\cap M,$ $f+p$
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$+\tilde{e}_{R}=1,$ $\tau(f)\geq\lambda$ , which gives contradiction with $\lambda>1/4$ . By [PP1, Lemma 1.8],

there is a unitary $u\in K$ such that $\tilde{e}_{R}=ue_{Q}u^{*}$ and $R=uQu^{*}$ , which gives desired
isomorphism.

Since $e_{Q}+\tilde{e}_{R}$ is a projection and $E_{K}(e_{Q}+\tilde{e}_{R})=2\lambda<1$ , by Theorem 4.1, there
exists an integer $k,$ $2\leq k\leq n-3$ such that $P_{k-l}(\lambda)/P_{k-2}(\lambda)=2\lambda$ , hence $P_{k-1}(\lambda)-$

$\lambda P_{k-2}(\lambda)=\lambda P_{k-2}$ , and so $P_{k}(\lambda)=-P_{k}(\lambda)+P_{k-1}(\lambda)$ and consequently $P_{k}(\lambda)/P_{k-1}(\lambda)=$

$1/2$ . Therefore $n$ can not be odd. Value of the angle is computed in Lemma
3.1.

(3) By [P5] the principal graph of $Q\subset K$
’ can only be $D_{4}$ or $A_{5}$ . If it is $D_{4}$ ,

then $Q’\cap M=Ce_{Q}\oplus Cf\oplus Cg$ , for some projections $f$ and $g$ such that $\tau(f)=$

$\tau(g)=\lambda(=1/3)$ . If $f_{1}$ is a projection in $S’\cap M$ , then, since $E_{K}(f_{1})$ is a scalar,
$\tau(f_{1})\geq\lambda$ . Therefore, if $S’\cap M\neq Q’\cap M$ then $S’\cap M=Ce_{Q}\oplus M_{2}(C)$ . Since $f$ and $g$

are Jones projections $(E_{K}(f)=\lambda, E_{K}(g)=\lambda)$ , they are central (see [PP1] or Lemma
2.8). Thus we have $S’\cap M=Q’\cap M$ and, in consequence,

$R’\cap M=(R’\cap M)\cap(Q’\cap M)=R’\cap Q’\cap M=K’\cap M=C$ .

Then, by Corollary 2.13, 9 must be a co-commuting square. Q.E.D.

Almost identically as in (3) above we can prove a little more.

COROLLARY 4.7. If
$\mathscr{B}=Q\cup$

$\subset$

$K\cup$

is a diagram of type $\Pi_{1}$ factors, $Q\vee R$

$S$ $\subset$ $R$

$=K$ $([K : S]<\infty, S’\cap K=C)$ and $K$ is a crossed product of $Q$ by an action $\mu$ of a finite
group $G,$ $K=Q\lambda_{\mu}G$ , then 9 is a $co$-commuting square.

EXAMPLE. Let $S\subset Q\subset K$ be a triple of type $\Pi_{1}$ factors with $S’\cap K=C$ . Let $Q$

be a crossed product of $S$ by a finite abelian group and let $K$ be a crossed product of $Q$

by any finite group. From the above corollary and by [Wi, Theorem 6], we see that if
there is another intermediate subfactor $R$ between $S$ and $K$ such that $R\cap Q=S$ and
$R\vee Q=K$, then the inclusion $S\subset K$ has depth two.

If $\lambda^{-1}=4\cos^{2}(\pi/n)$ then we set $\Omega(\lambda)=\{P_{k}(\lambda)^{2}/\lambda^{k+1}|0\leq k<n-3\}$ . If $\lambda^{-1}\geq 4$

then put $n=\infty$ in the above notation.

$Q$ $\subset$ $K$

COROLLARY 4.8. Let $\mathscr{B}=\cup$ $\cup$ be a diagram of type $\Pi_{1}$ factors
$S$ $\subset$ $R$

$(S’\cap K=C, [K:S]<\infty, Q\vee R=K)$ such that $[K:Q]<2+\sqrt{5}$ . If for any inter-
mediate subfactor $F\neq Q$ between $S$ and $K$ (including $S$), $[K:F]\not\in\Omega(\lambda)$ , then 9 is a
$co$-commuting square.

PROOF. Suppose that 9 is not a co-commuting square. Then $p=[e_{Q}*e_{R}]\neq 1$

and the projections $p,$ $p-e_{Q}$ are elements of $P(M, K)$ . Hence $\tau(e_{Q})$ is an element of
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the algebraic difference $\Lambda(\lambda)-\Lambda(\lambda)(\lambda^{-1}=[K:Q])$ . Since $\lambda^{-1}<2+\sqrt{5}$ and (in case
$\lambda^{-1}\geq 4)\Lambda_{1}(\lambda)-\Lambda_{1}(\lambda)=[-\sqrt{1-4\lambda}, \sqrt{1-4\lambda}]$ , we can write a little more:

$\lambda\in(\Lambda_{0}(\lambda)-\Lambda_{0}(\lambda))\cup(\Lambda_{0}(\lambda)-\Lambda_{1}(\lambda))\cup(\Lambda_{1}(\lambda)-\Lambda_{0}(\lambda))$ .

In any case $\tau(1-p)\in 1-\Lambda_{0}(\lambda)=\Lambda_{0}(\lambda)$ or $\tau(p-e_{Q})\in\Lambda_{0}(\lambda)$ (otherwise $\lambda\in\Lambda_{1}(\lambda)$

$-\Lambda_{1}(\lambda))$ .
If, for $f\in\{1-p,p-e_{Q}\},$ $\tau(f)\in\Lambda_{0}(\lambda)-\{\lambda, 1-\lambda\}$ , then, by Proposition 4.2, we

obtain an intermediate subfactor $F\neq Q$ , $S\subset F\subset K$ with index $[K:F]\in\Omega(\lambda)$ ,
which contradicts our assumption. Therefore, there is $f\in\{1-p,p-e_{Q}\}$ such that
$\tau(f)\in\{\lambda, 1-\lambda\}$ . Since $\tau(1-p)\neq 1-\lambda$ and $\tau(p-e_{Q})\neq 1-\lambda$ , we see that for a
projection $f\in\{1-p,p-e_{Q}\},$ $\tau(f)=\lambda$ . Hence, there is an intermediate subfactor
$F,$ $S\subset F\subset K$ , with $[K:F]=\lambda^{-1}$ and $M=\langle K, F, f\rangle$ . Since, by our assumption
$F=Q$ , we obtain $M=\langle K, Q, f\rangle$ . Note that $f\perp e_{Q}$ . Let $\Lambda^{\nearrow}(Q)$ be the normalizer of
$Q$ in $K$ . Obviously $\Lambda^{\nearrow}(Q)’’$ is a $\Pi_{1}$ factor and $Q\subset\chi(Q)’’\subset K$ . By [Sut] and [PP1,
Proposition 1.7] (see also remarks preceding [PP3, Corollary 1.1.6]) and by Jones’
restrictions on the index we see that $[K:A’(Q)’’]=[\Lambda’(Q)’’ : Q]=2$ or that
$K=J(Q)’’$ . The second case can be eliminated by, Corollary 4.7, because $K$ is then an
extension of $Q$ by a finite group (cf. [Sut], [PP3]). By [P6], the principal graph of the
inclusion $Q\subset K$ is $D_{n}^{(1)}(n>4)$ or $D_{\infty}$ . In any case $Q’\cap M=Ce_{Q}\oplus Cf\oplus Cg$ , where
$\tau(g)=1/2$ . Since $S’\cap M\neq Q’\cap M$ (otherwise we proceed like in the proof of
Proposition $4.6(3))$ , it follows that there is a projection $g_{1}\leq g$ and $g\neq g_{1}\in S’\cap M$ . By
[PP1, Proposition 2.1], $\tau(g_{1})=E_{K}(g_{1})\geq(1/4)g_{1}$ , which gives $\tau(g\iota)=1/4=\lambda$ . Now,
there exists an intermediate subfactor $F,$ $S\subset F\subset K$ such that $M=\langle K, F, g_{1}\rangle$ . But
$[K:F]=4\in\Omega(\lambda)=\Omega(1/4)$ and $F\neq Q$ , because $g_{1}\not\in Q’\cap M$ . Q.E.D.

5. Associated algebras of a diagram
$Q$ $\subset$ $K$

We assume in this section that the diagram $\cup$ $\cup$ is a commuting square, or
$S$ $\subset$ $R$

$N$ $\subset$ $L$

equivalently, that the diagram $\cup$ $\cup$ is a co-commuting square. Also, as before,
$K$ $\subset$ $M$

the inclusion $S\subset K$ is irreducible with $[K:S]<\infty$ .

PROPOSITION 5.1. There exists a Jones projection $f$ for the inclusion $M\subset L(i.e$.
$f\in L$ and $E_{M}(f)=[L:M]^{-1}=\alpha)$ such that

$e_{R}=e_{R}f=[e_{Q}*e_{R}]f$ .

PROOF. Let $p=[e_{Q}*e_{R}]$ . Take any Jones’ projection $e_{0}\in L$ and the corre-
sponding downward basic construction $D$ , so that $L=\langle M, D, e_{0}\rangle$ . Take a unitary
$u\in M$ such that $upu^{*}\in D$ . If we set $e_{1}=u^{*}e_{0}u$ and $D_{1}=u^{*}Du$ , then, by [PP1,
Corollary 1.8], $L=\langle M, D_{1}, e_{1}\rangle$ and $p\in D_{1}$ . Since $\tau(e_{1}p)=\alpha\tau(p)=\eta=\tau(e_{R})$ , there
exists a unitary $v\in M_{p}$ such that $e_{R}=v^{*}e_{1}pv$ . It is easy to check that
$f=(v^{*}+1-p)e_{1}(v+1-p)$ will do the job. Q.E.D.
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It is natural to ask what the von Neumann algebras $A=M\cap\{e_{R}\}’$ and
$B=R\vee\{e_{Q}\}$ look like. Obviously, $R\subset B\subset A\subset M$ and if, in addition, the diagram

$Q\cup$

$\subset$

$K\cup$

is also a co-commuting square then $A=B$ is a factor and
$K\cup$

$\subset$

$M\cup$

is
$S$ $\subset$ $R$ $R$ $\subset$ $A$

a commuting and co-commuting square too. (Cf. [K], [P5], [Wi].)
Let $f$ be like in the above proposition and let $M_{0}$ be the corresponding downward

basic construction, $M_{0}=M\cap\{f\}’$ and $L=\langle M, M_{0}, f\rangle$ . For a projection $e$ and a von
Neumann algebra $F$ we will denote

$V(e, F)=${$ueu^{*}|u$ is a unitary in $F$}.

LEMMA 5.2. Let $p=[e_{Q}*e_{R}]$ . Then

$A_{p}=B_{p}=(M_{0})_{p}=Ae_{Q}A=Be_{Q}B=Re_{Q}R$

and $p=V(e_{Q}, R)=V(e_{Q}, B)=V(e_{Q}, A)$ .

PROOF. First, we show that $Ae_{Q}A=Re_{Q}R$ . Let $x\in A$ . By [PP1, Lemma 1.2],

$xe_{Q}=ye_{Q}$ , for $y\in K$ . Multiplying the equality $ye_{Q}e_{R}=e_{R}ye_{Q}$ by $e_{S}$ we obtain
$ye_{S}=e_{R}ye_{S}=E_{R}(y)e_{S}$ , which implies $y\in R$ . Therefore $Ae_{Q}A=Re_{Q}R=Be_{Q}B$ .

Obviously $V(e_{Q}, R)\in R’\cap M$ , and hence (by Theorem 2.9) $V(e_{Q}, R)\geq p$ . The
equality follows from $ue_{Q}u^{*}\leq p$ , which holds for all unitaries $u\in R$ . By the first part of
the proof, it follows that also $p=V(e_{Q}, B)=V(e_{Q}, A)$ . Now, it is easy to see that
$A_{p}=B_{p}=Re_{Q}R$ .

Proposition 5.1 implies $(M_{0})_{p}\subset A_{p}$ . Indeed, if $x\in(M_{0})_{p}$ then $xe_{R}-e_{R}x=$

xpf-pfx $=xf-fx=0$ . Since $\{e_{R}\}’\cap M_{p}=(\{e_{R}\}’\cap M)_{p}=A_{p}$ , we see that $L_{p}$

$=\langle M_{p}, A_{p}, e_{R}\rangle$ ; therefore $[M_{p}:A_{p}]=\alpha^{-1}$ . On the other hand, $[M_{p}:(M_{0})_{p}]=$

$[M:M_{0}]=[L:M]=\alpha^{-1}$ . We see then that $(M_{0})_{p}=A_{p}$ . Q.E.D.

REMARK. Let $T=Re_{Q}R$ be the set characterized above. We remark that $T$ is an
algebraic basic construction for the pair $S_{p}\subset R_{p}$ and a downward basic construction for
the pair $M_{p}\subset L_{p}$ . We can write

$T=\langle R_{p}, S_{p}, e_{Q}\rangle$ and $L_{p}=\langle M_{p}, T, e_{R}\rangle$ .

Finally, we obtain the following decomposition of the von Neumann algebras $A$

and $B$ .

COROLLARY 5.3. Let as before $p=[e_{Q}*e_{R}]$ . Then

$A=T\oplus M_{1-p}$ and $B=T\oplus R_{1-p}$ .

PROOF. The elements $x=r+ \sum_{i}a_{i}e_{Q}b_{i}$ , with $r,$ $a_{i},$ $b_{i}\in R$ form a $dense*$-subalgebra
of $B$ . By Theorem 2.9 we see that $(1-p)x(1-p)=(1-p)r$ . Since $p$ is central in $B$,

$B=B_{p}\oplus B_{1-p}=T\oplus R_{1-p}$ .

If we apply this equality to the algebra $Q\vee\{e_{R}\}$ , then, using the modular conjugation
$J_{K}$ , we obtain the remaining one. Q.E.D.
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