Asymptotic behaviour of solutions to non-isothermal phase separation model with constraint in one-dimensional space

By Akio Ito and Nobuyuki Kenmochi

(Received Apr. 27, 1994) (Revised June 3, 1996)

1. Introduction.

Let us consider a one-dimensional model for non-isothermal phase separation, which is given by the following system, denoted by (PSC):

$$[\rho(u) + \lambda(w)]_t - u_{xx} = f(t, x) \quad \text{in } Q := (0, +\infty) \times J,$$
 (1.1)

$$w_t - \{-\kappa w_{xx} + \xi + g(w) - \lambda'(w)u\}_{xx} = 0 \text{ in } Q,$$
 (1.2)

$$\xi \in \partial I_{[\sigma_*,\sigma^*]}(w) \quad \text{in } Q, \tag{1.3}$$

$$-u_x(t, -L) + n_0 u(t, -L) = h_-(t), \quad u_x(t, L) + n_0 u(t, L) = h_+(t) \quad \text{for } t > 0,$$
 (1.4)

$$w_x(t, -L) = w_x(t, L) = 0 \text{ for } t > 0,$$
 (1.5-1)

$$[-\kappa w_{xx}(t,\cdot) + \xi(t,\cdot) + g(w(t,\cdot)) - \lambda'(w(t,\cdot))u(t,\cdot)]_x|_{x=+L} = 0 \quad \text{for } t > 0,$$
 (1.5-2)

$$u(0,x) = u_0(x), \quad w(0,x) = w_0(x) \quad \text{for } x \in J.$$
 (1.6)

Here J := (-L, L) with a positive number L; k > 0 and $n_0 > 0$ are constants; $\rho(u)$ is an increasing function of u, and $\lambda(w)$, $\lambda'(w) = (d/dw)\lambda(w)$, g(w) are smooth functions of w; $\partial I_{[\sigma_*,\sigma^*]}$ is the subdifferential of the indicator function $I_{[\sigma_*,\sigma^*]}$ of the interval $[\sigma_*,\sigma^*] \subset R$; f(t,x), $h_{\pm}(t)$, $u_0(x)$ and $w_0(x)$ are given data.

The above system arises in the phase separation of a binary mixture with components A and B. In this context, $\theta := \rho(u)$ represents the absolute temperature and $w := w_A$ the order parameter which is the local concentration of the component A; note that $\sigma_* = 0 \le w_A(t, x) \le 1 = \sigma^*$, and $w_A(t, x) = 1$ (resp. $w_A(t, x) = 0$) means that the phase (the physical situation of the system) at (t, x) is of pure A (resp. pure B), while $0 < w_A(t, x) < 1$ means that the phase at (t, x) is of mixture. Along the same approach as [1, 13], the system (1.1)-(1.3) can be derived from a free energy functional of Landau-Ginzburg type

$$F_{\Omega}(\theta;w) := \int_{J} \left\{ \frac{\kappa \theta}{2} |w_x|^2 + \tau(\theta) + \theta(I_{[0,1]}(w) + \hat{g}(w)) + \lambda(w) \right\} dx \quad \text{for } w \in H^1(J),$$

where \hat{g} is a primitive of g and $\tau(\theta)$ is a smooth function of θ satisfying $\theta = \tau(\theta) - \theta \tau'(\theta)$ $(= \rho(u))$.

An existence-uniqueness result for (PSC) was established in Kenmochi & Niezgódka [11]. When ρ is bi-Lipschitz on R, the large time behaviour of the solution $\{u, w\}$ was discussed in Kenmochi & Niezgódka [10]; in fact, under some assumptions on the convergences of the data $f(t) \to 0$ and $h_{\pm}(t) \to h_{\infty}$, it was proved there that u(t) converges to u_{∞} (= h_{∞}/n_0 = const.) as $t \to +\infty$ and any ω -limit point w_{∞} of w(t) is a solution of the stationary problem, denoted by $P(\sigma_*, \sigma^*; u_{\infty}, m_0)$:

$$-\kappa w_{\infty xx} + \xi_{\infty} + g(w_{\infty}) - \lambda'(w_{\infty})u_{\infty} = v \quad \text{in } J, \tag{1.7}$$

$$\xi_{\infty} \in \partial I_{[\sigma_{\star},\sigma^{\star}]}(w_{\infty}) \quad \text{in } J, \tag{1.8}$$

$$w_{\infty x}(-L) = w_{\infty x}(L) = 0, \tag{1.9}$$

$$\int_{J} w_{\infty}(x) dx = m_0, \tag{1.10}$$

$$v = \frac{1}{2L} \int_{J} \{ \xi_{\infty} + g(w_{\infty}) - \lambda'(w_{\infty}) u_{\infty} \} dx, \qquad (1.11)$$

where $m_0 := \int_J w_0 dx$.

The purpose of the present paper is to investigate the structure of the solution set of $P(\sigma_*, \sigma^*; u_{\infty}, m_0)$ and further some common properties of the ω -limit points of w.

In Shen & Zheng [14], the problem without constraint (1.3) was independently studied. They proved existence, uniqueness and asymptotic convergence of the solution. As far as the asymptotic behaviour of the solution as $t \to +\infty$ is concerned, our situation is much more complicated than theirs. Indeed, in our case, the order parameter w(t, x) does not asymptotically converge and may oscillate as $t \to +\infty$, although it is very slow in time; this might come from constraint (1.3).

In particular, when the temperature $\theta = \rho(u)$ is supposed to be constant (hence u to be constant), system (1.2)-(1.3) is called "Cahn-Hilliard model with constraint", which was treated so far in [2, 12]. This model was introduced as the quench limit of temperature $\theta \downarrow 0$ and studied in the case of $g(w) - \lambda'(w)u \equiv -cw$ with a positive constant c by Blowey & Elliott [2] and a more general case by Kenmochi, Niezgódka & Pawlow [12]. In [2], the expression of any solution to the corresponding stationary problem was obtained. In this paper, assuming $m_0 = 0$, we shall show that this type of expression of solutions still holds in our non-isothermal setting, even though nonlinear term $g(w) - \lambda'(w)u$ is of general N-shape in w. Furthermore, the structure of the solution set of $P(\sigma_*, \sigma^*, u_\infty, 0)$ and the ω -limit set of w will be more precisely studied. This paper gives not only some generalizations but also improvements of results [2] to the non-isothermal case.

We refer to [8, 15, 16, 17] for related works to the Cahn-Hilliard equation without constraints, and to [3, 4, 7] for the phase field model with constraint.

NOTATIONS. For simplicity we use the following notations:

 $H^1(J)$: the usual Sobolev space with norm $|\cdot|_{H^1(J)}$ given by

$$|z|_{H^{1}(J)} = \{|z_{x}|_{L_{2}(J)}^{2} + n_{0}(|z(-L)|^{2} + |z(L)|^{2})\}^{1/2};$$

 $H^1(J)^*$: the dual space of $H^1(J)$;

 (\cdot,\cdot) : the standard inner product in $L^2(J)$;

 $\langle \cdot, \cdot \rangle$: the duality pairing between $H^1(J)^*$ and $H^1(J)$;

F: the duality mapping from $H^1(J)$ onto $H^1(J)^*$;

$$a(v,z) := \int_J v_x(x)z_x(x) dx$$
 for $v,z \in H^1(J)$;

$$k_1 \lor k_2 = \max\{k_1, k_2\}, \quad k_1 \land k_2 = \min\{k_1, k_2\}.$$

We denote by $L^2(J)_0$ the Hilbert space

$$\left\{z \in L^2(J); \int_J z \, dx = 0\right\}$$

with the inner product $(\cdot,\cdot)_0$ induced from (\cdot,\cdot) , and by $H^1(J)_0$ the space

$$\left\{z \in H^1(J); \int_J z \, dx = 0\right\}$$

with the norm $|\cdot|_{H^1(J)_0}$ given by

$$|z|_{H^1(J)_0}=|z_x|_{L^2(J)}.$$

In this case, the identification of $L^2(J)_0$ with its dual yields that

$$H^1(J)_0 \subset L^2(J)_0 \subset H^1(J)_0^*$$

with compact and densely defined injections, where $H^1(J)_0^*$ is the dual space of $H^1(J)_0$. We define a mapping $\pi_0: L^2(J) \to L^2(J)_0$ by

$$\pi_0[z](x) := z(x) - \frac{1}{2L} \int_I z(y) \, dy \quad \text{for } x \in J;$$

 π_0 is the projection from $L^2(J)$ onto $L^2(J)_0$ and from $H^1(J)$ onto $H^1(J)_0$.

Also, we denote by $\langle \cdot, \cdot \rangle_0$ the duality pairing between $H^1(J)_0^*$ and $H^1(J)_0$, and by F_0 the duality mapping from $H^1(J)_0$ onto $H^1(J)_0^*$; by definition,

$$\langle F_0 v, z \rangle_0 = \int_I v_x z_x dx$$
 for all $v, z \in H^1(J)_0$.

2. Global estimate of solutions.

Problem (PSC) is discussed under the following assumptions:

(A1) ρ is a maximal monotone graph in $R \times R$ whose domain $D(\rho)$ and range $R(\rho)$ are open in R, and is locally bi-Lipschitz continuous as a function from $D(\rho)$ onto

 $R(\rho)$, and furthermore there are constants $A_0 > 0$ and α with $1 \le \alpha < 2$ such that

$$|\rho(r_1) - \rho(r_2)| \ge \frac{A_0|r_1 - r_2|}{|r_1 r_2|^{\alpha} + 1}$$
 for all $r_1, r_2 \in D(\rho)$.

- (A2) $\kappa > 0$, $n_0 > 0$, σ_* and σ^* , with $\sigma_* < \sigma^*$, are constants.
- (A3) $\lambda: R \to R$ is of C^3 -function, and $g: R \to R$ is of C^2 -function.
- (A4) $f \in W^{1,2}_{loc}(R_+; L^2(J)) \cap L^2(R_+; L^2(J))$ such that

$$\sup_{t\geq 0} |f|_{W^{1,2}(t,t+1;L^2(J))} < +\infty,$$

and $h_+, h_- \in W^{1,2}_{loc}(R_+)$ such that

$$\sup_{t\geq 0}\left\{|h_{+}|_{W^{1,2}(t,t+1)}+|h_{-}|_{W^{1,2}(t,t+1)}\right\}<+\infty,$$

and for some constant h_{∞}

$$h_{\pm}-h_{\infty}\in L^2(R_+).$$

(A5) $(h_{\pm}(t)/n_0) \in \overline{D(\rho)}$ for all $t \ge 0$ and there are positive constants A_1 and A_1' such that

$$\rho(r)(n_0r - h_{\pm}(t)) \ge -A_1|r| - A_1'$$
 for all $r \in D(\rho)$ and all $t \ge 0$.

(A6) $u_0 \in H^1(J)$ with $\rho(u_0) \in L^2(J)$, and $w_0 \in H^2(J)$ such that

$$w_{0x}(-L) = w_{0x}(L) = 0, \quad \sigma_* \le w_0 \le \sigma^* \quad \text{on } \bar{J},$$

$$2L\sigma_* < m_0 := \int_J w_0(x) \, dx < 2L\sigma^*,$$

and there is $\xi_0 \in L^2(J)$ satisfying

$$\xi_0 \in \partial I_{[\sigma_*,\sigma^*]}(w_0)$$
 a.e. in J , $-\kappa w_{0xx} + \xi_0 \in H^1(J)$.

Next, we give a weak variational formulation for (PSC).

DEFINITION 2.1. For $0 < T < +\infty$ a couple $\{u, w\}$ of functions $u : [0, T] \to H^1(J)$ and $w : [0, T] \to H^1(J)$ is called a (weak) solution of (PSC) on [0, T], if the following conditions (w1)–(w4) are fulfilled:

(w1)
$$u \in L^{\infty}(0, T; H^{1}(J)),$$

 $\rho(u)$ is weakly continuous from [0, T] into $L^2(J)$ with

$$\rho(u)'\left(=\frac{d}{dt}\rho(u)\right)\in L^1(0,T;H^1(J)^*),$$

$$w \in L^{\infty}(0,T;H^1(J)) \cap L^2(0,T;H^2(J)), \ w' \in L^2(0,T;H^1(J)^*), \ \lambda(w)' \in L^1(0,T;H^1(J)^*).$$

(w2) $\rho(u)(0) = \rho(u_0)$ and $w(0) = w_0$.

(w3) For a.e. $t \in [0, T]$ and all $z \in H^1(J)$,

$$\frac{d}{dt}(\rho(u(t)) + \lambda(w(t)), z) + a(u(t), z)
+ (n_0 u(t, -L) - h_-(t))z(-L) + (n_0 u(t, L) - h_+(t))z(L)
= (f(t), z).$$
(2.1)

(w4) For a.e. $t \in [0, T]$,

$$w_x(t,-L)=w_x(t,L)=0,$$

and there is a function $\xi \in L^2(0,T;L^2(J))$ such that

$$\xi \in \partial I_{[\sigma_*,\sigma^*]}(w)$$
 a.e. in $(0,T) \times J$ (2.2)

and

$$\frac{d}{dt}(w(t),\eta) + \kappa(w_{xx}(t),\eta_{xx}) - (g(w(t)) + \xi(t) - \lambda'(w(t))u(t),\eta_{xx}) = 0$$
 (2.3)

for all $\eta \in H^2(J)$ with $\eta_x(-L) = \eta_x(L) = 0$ and a.e. $t \in [0, T]$.

As is easily seen from the above definition, for any solution $\{u, w\}$ of (PSC) on [0, T] it holds that

$$\int_{J} w(t, x) dx = \int_{J} w_0(x) dx \quad \text{for all } t \in [0, T],$$

and

$$(\rho(u)+\lambda(w))'\in L^\infty(0,T;H^1(J)^*).$$

Also, the inequalities " $2L\sigma_* \le \int_J w_0 dx \le 2L\sigma^*$ " are necessary in order for (PSC) to have a solution; if $\int_I w_0 dx = 2L\sigma_*$ (resp. $2L\sigma^*$), then we see that $w \equiv \sigma_*$ (resp. σ^*).

We say that a couple $\{u, w\}$ of functions $u: R_+ \to H^1(J)$ and $w: R_+ \to H^1(J)$ is a solution of (PSC) on R_+ , if it is a solution of (PSC) on [0, T] for every finite T > 0. We now recall an existence-uniqueness result.

THEOREM 2.1 (cf. [11; Theorem 2.4]). Assume that (A1)–(A6) hold. Then (PSC) has one and only one solution $\{u, w\}$ on R_+ , and it satisfies that for every finite T > 0

$$\begin{cases} u \in L^{2}(0,T;H^{2}(J)), & u' \in L^{2}(0,T;L^{2}(J)), \\ w \in L^{\infty}(0,T;H^{2}(J)), & w' \in L^{\infty}(0,T;H^{1}(J)^{*}) \cap L^{2}(0,T;H^{1}(J)), \\ \xi \in L^{\infty}(0,T;L^{2}(J)), \end{cases}$$
(2.4)

where ξ is the function as in (w4) of Definition 2.1.

From Definition 2.1 and regularity (2.4) in Theorem 2.1 we see that

$$\rho(u)' \in L^{\infty}(0, T; H^{1}(J)^{*}), \quad \lambda(w)' \in L^{2}(0, T; L^{2}(J)) \quad \text{for every } T > 0,$$
 (2.5)

so that for a.e. $t \in R_+$

$$\rho(u)'(t) + \lambda(w)'(t) + Fu(t) = \tilde{f}(t) \text{ in } H^{1}(J)^{*}$$
(2.6)

$$F_0^{-1}w'(t) + \kappa F_0[\pi_0(w(t))] + \pi_0[\xi(t) + g(w(t)) - \lambda'(w(t))u(t)] = 0$$
in $H^1(J)_0^*$ (actually in $L^2(J)_0$), (2.7)

$$\xi(t) \in \partial I_{[\sigma_*,\sigma^*]}(w(t)) \text{ a.e. in } \bar{J},$$
 (2.8)

subject to the initial condition (1.6), where $\tilde{f}(t) \in H^1(J)^*$ defined by

$$\langle \tilde{f}(t), z \rangle = (f(t), z) + h_+(t)z(L) + h_-(t)z(-L) \text{ for } z \in H^1(J).$$

As to global estimates for solutions we have:

THEOREM 2.2. Assume that (A1)–(A6) hold and $u_{\infty} := h_{\infty}/n_0 \in D(\rho)$. Let $\{u, w\}$ be the solution of (PSC) on R_+ . Then:

$$u - u_{\infty} \in L^2(R_+; H^1(J)), \quad u \in L^{\infty}(R_+; H^1(J)),$$
 (2.9)

$$\sup_{t\geq 0} |u'|_{L^2(t,t+1;L^2(J))} < +\infty, \tag{2.10}$$

$$w \in L^{\infty}(R_+; H^2(J)), \quad w' \in L^{\infty}(R_+; H^1(J)^*) \cap L^2(R_+; H^1(J)^*)$$
 (2.11)

and

$$\sup_{t>0} |w'|_{L^2(t,t+1;H^1(J))} < +\infty. \tag{2.12}$$

The global estimates (2.9)–(2.12) can be inferred in the same way as employed in the proof of [11; Theorem 2.4]. We give briefly their proofs under the same conditions and notations as in Theorem 2.2.

Lemma 2.1.
$$u-u_{\infty}\in L^2(R_+;H^1(J)),\ w\in L^{\infty}(R_+;H^1(J))$$
 and $w'\in L^2(R_+;H^1(J)^*).$

PROOF. Let ρ^* be the primitive of ρ^{-1} such that $\rho^*(\rho(u_\infty)) = 0$. First, multiplying (2.6) by $u(t) - u_\infty$, we have

$$\frac{d}{dt} \left\{ \int_{J} \rho^{*}(\rho(u(t))) dx - (\rho(u(t)) + \lambda(w(t)), u_{\infty}) \right\}
+ (\lambda(w)'(t), u(t)) + \delta_{1} |u(t) - u_{\infty}|_{H^{1}(J)}^{2}
\leq C_{\delta_{1}} \{ |f(t)|_{L^{2}(J)}^{2} + |h_{+}(t) - h_{\infty}|^{2} + |h_{-}(t) - h_{\infty}|^{2} \} \text{ for a.e. } t \geq 0,$$
(2.13)

where δ_1 is any small positive number and C_{δ_1} is a positive constant dependent only on δ_1 (and the given data). Next, multiplying (2.7) by w'(t), we have

$$|w'(t)|_{H^1(J)_0^*}^2 + \frac{d}{dt} \left\{ \frac{\kappa}{2} |w_x(t)|_{L^2(J)}^2 + \int_J \hat{g}(w(t)) \, dx \right\} = (\lambda(w)'(t), u(t)) \quad \text{for a.e. } t \ge 0, \quad (2.14)$$

 \Diamond

where \hat{g} is a primitive of g such that $\hat{g} \geq 0$ on $[\sigma_*, \sigma^*]$. Adding (2.13) and (2.14) yields

$$\frac{d}{dt} \left\{ \int_{J} \rho^{*}(\rho(u(t))) dx - (\rho(u(t)) + \lambda(w(t)), u_{\infty}) + \frac{\kappa}{2} |w_{x}(t)|_{L^{2}(J)}^{2} + \int_{J} \hat{g}(w(t)) dx \right\}
+ |w'(t)|_{H^{1}(J)_{0}^{*}}^{2} + \delta_{1} |(u(t) - u_{\infty}|_{H^{1}(J)}^{2})
\leq C_{\delta_{1}} \{ |f(t)|_{L^{2}(J)}^{2} + |h_{+}(t) - h_{\infty}|^{2} + |h_{-}(t) - h_{\infty}|^{2} \} \text{ for a.e. } t \geq 0.$$
(2.15)

Here, note that

$$\rho^*(\rho(r)) - \rho(r)u_{\infty} \ge -\rho(u_{\infty})u_{\infty}$$
 for all $r \in D(\rho)$.

Then, from (2.15) we get the required global estimates.

LEMMA 2.2. There are positive constants K_1 and K_2 such that

$$\sup_{s \le t \le T} (t - s)|u(t)|_{H^{1}(J)}^{2} + \sup_{s \le t \le T} (t - s)|w'(t)|_{H^{1}(J)_{0}^{*}}^{2} + \int_{s}^{T} (t - s)|w'_{x}|_{L^{2}(J)}^{2} dt + \int_{s}^{T} (t - s)(\rho(u)', u') dt \le K_{1} \int_{s}^{T} (t - s) \int_{J} |w'|^{2} |u| dx dt + K_{2}$$

$$for all s, T with 0 \le s \le T (\le s + 1).$$
(2.16)

PROOF. First, multiply (2.6) by u'(t). Then, for a.e. $t \ge 0$,

$$\frac{d}{dt} \left\{ \frac{1}{2} |u_{x}(t)|_{L^{2}(J)}^{2} + \frac{n_{0}}{2} (|u(t, -L)|^{2} + |u(t, L)|^{2}) - h_{-}(t)u(t, -L) - h_{+}(t)u(t, L) - (f(t), u(t)) \right\} + (\rho(u)'(t), u'(t)) + (\lambda(w)'(t), u'(t))$$

$$\leq |h'_{-}(t)||u(t, -L)| + |h'_{+}(t)||u(t, L)| + |f'(t)|_{L^{2}(J)}|u(t)|_{L^{2}(J)}.$$
(2.17)

Next, assuming that w and ξ are smooth in time t, differentiate (2.7) in t and multiply the resultant by w'(t). Then, for a.e. $t \ge 0$,

$$\frac{1}{2} \frac{d}{dt} |w'(t)|_{H^{1}(J)_{0}^{*}}^{2} + \kappa |w'_{x}(t)|_{L^{2}(J)}^{2} + (\xi'(t), w'(t))
\leq M(g')|w'(t)|_{L^{2}(J)}^{2} + (\lambda(w)'(t), u'(t)) + M(\lambda'') \int_{J} |w'(t)|^{2} |u(t)| dx,$$
(2.18)

where $M(g') = \max_{\sigma_* \le r \le \sigma^*} |g'(r)|$ and $M(\lambda'') = \max_{\sigma_* \le r \le \sigma^*} |\lambda''(r)|$. By the monotonicity of $\partial I_{[\sigma_*,\sigma^*]}$ we have formally

$$(\xi'(t), w'(t)) \ge 0$$
 for a.e. $t \ge 0$, (2.19)

and besides note the interpolation inequality

$$|z|_{L^2(J)_0}^2 \le c_0 |z_x|_{L^2(J)} |z|_{H^1(J)_0^*} \quad \text{for all } z \in H^1(J)_0,$$
 (2.20)

where c_0 is a positive constant. Add (2.17) and (2.18) multiplied by (t-s) with

 $0 \le s \le t \le T (\le s+1)$ and integrate the resultant over [s, T'] with any $s \le T' \le T$. Then, by (2.19), (2.20) and the global estimates obtained in Lemma 2.1, we have

$$(T'-s)\left\{\frac{1}{2}|u_{x}(T')|_{L^{2}(J)}^{2} + \frac{n_{0}}{2}(|u(T',-L)|^{2} + |u(T',L)|^{2})\right\}$$

$$-h_{-}(T')u(T',-L) - h_{+}(T')u(T',L) - (f(T'),u(T')) + \frac{1}{2}|w'(T')|_{H^{1}(J)_{0}^{*}}^{2}\right\}$$

$$+\int_{s}^{T'}(t-s)(\rho(u)',u')\,dt + \frac{\kappa}{4}\int_{s}^{T'}(t-s)|w'_{x}|_{L^{2}(J)}^{2}\,dt$$

$$\leq \int_{s}^{T'}(t-s)\int_{J}|w'|^{2}|u|\,dx\,dt + K_{3}\int_{s}^{T'}\{|u|_{H^{1}(J)}^{2} + |w'|_{H^{1}(J)_{0}^{*}}^{2}$$

$$+|h_{-}|^{2} + |h'_{-}|^{2} + |h_{+}|^{2} + |h'_{+}|^{2} + |f|_{L^{2}(J)}^{2} + |f'|_{L^{2}(J)}^{2}\}\,dt,$$

$$(2.21)$$

where K_3 is a positive constant independent of s, T' and T. It is easy to derive an inequality of the form (2.16) for suitable constants K_1 and K_2 from (2.21) with the help of condition (A4). When w and ξ are not smooth enough, inequalities (2.18) and (2.19) do not hold in general. But, by showing them for approximate solutions of $\{u, w\}$ we can rigorously obtain (2.16); see [11; sections 5, 8] in details.

LEMMA 2.3.

$$\int_{s}^{T} (t-s) \int_{J} |w'|^{2} |u| dx dt$$

$$\leq \delta_{2} \int_{s}^{T} (t-s) |w'_{x}|_{L^{2}(J)}^{2} dt + C_{\delta_{2}} \left\{ \sup_{s \leq t \leq T} (t-s) |w'(t)|_{H^{1}(J)_{0}^{*}}^{2} \right\} \int_{s}^{T} |u|_{H_{1}(J)}^{2} dt \qquad (2.22)$$
for all $0 \leq s \leq T (\leq s+1)$,

where δ_2 is an arbitrary positive number and C_{δ_2} is a positive constant dependent only on δ_2 .

Proof. With a positive constant c'_0 satisfying

$$|z|_{L^{\infty}(J)} \le c'_0|z|_{H^1(J)}$$
 for all $z \in H^1(J)$,

we observe that

$$\begin{split} & \int_{s}^{T} \int_{J} (t-s)|w'|^{2} |u| \, dx \, dt \\ & \leq c_{0} c_{0}' \int_{s}^{T} (t-s)|u|_{H^{1}(J)}|w'|_{H^{1}(J)_{0}^{*}} |w'_{x}|_{L^{2}(J)} \, dt \quad (\text{cf. } (2.20)) \\ & \leq c_{0} c_{0}' \left\{ \sup_{s \leq t \leq T} (t-s)^{1/2} |w'(t)|_{H^{1}(J)_{0}^{*}} \right\} \int_{s}^{T} (t-s)^{1/2} |u|_{H^{1}(J)} |w'_{x}|_{L^{2}(J)} \, dt \end{split}$$

 \Diamond

$$\leq c_0 c_0' \left\{ \sup_{s \leq t \leq T} (t - s)^{1/2} |w'(t)|_{H^1(J)_0^*} \right\} \left\{ \int_s^T |u|_{H^1(J)}^2 dt \right\}^{1/2} \left\{ \int_s^T (t - s) |w_x'|_{L^2(J)}^2 dt \right\}^{1/2} \\
\leq \delta_2 \int_s^T (t - s) |w_x'|_{L^2(J)}^2 dt + \frac{(c_0 c_0')^2}{4\delta_2} \left\{ \sup_{s \leq t \leq T} (t - s) |w'(t)|_{H^1(J)_0^*}^2 \right\} \int_s^T |u|_{H^1(J)}^2 dt$$

for any positive δ_2 . Hence (2.22) holds for $C_{\delta_2} := \frac{(c_0 c_0')^2}{4\delta_2}$.

Proof of Theorem 2.2. Choose a small positive number δ_2 so that

$$K_1\delta_2\leq \frac{1}{2},$$

and then for this δ_2 choose a small positive number ε_0 so that

$$K_1 C_{\delta_2} \int_{s}^{s+\varepsilon_0} |u|_{H^1(J)}^2 dt \le \frac{1}{2}$$
 for all $s \in R_+$,

which is possible by Lemma 2.1. For such δ_2 and ϵ_0 it follows from Lemmas 2.2 and 2.3 that

$$\sup_{s \le t \le T} (t - s) |u(t)|_{H^{1}(J)}^{2} + \frac{1}{2} \sup_{s \le t \le T} (t - s) |w'(t)|_{H^{1}(J)_{0}^{*}}^{2}$$

$$+ \frac{1}{2} \int_{s}^{T} (t - s) |w'_{x}|_{L^{2}(J)}^{2} dt + \int_{s}^{T} (t - s) (\rho(u)', u') dt \le K_{2}$$

for all s, T with $0 \le s \le T \le s + \varepsilon_0$. Therefore, the arbitrariness of s and T together with Theorem 2.1 implies that $u \in L^{\infty}(R_+; H^1(J)), w' \in L^{\infty}(R_+; H^1(J)_0^*)$,

$$\sup_{t>0} |w_x'|_{L^2(t,t+1;L^2(J))} < +\infty$$

and

$$\sup_{t>0} |u'|_{L^2(t,t+1;L^2(J))} < +\infty \quad \text{(cf. condition (A1))}.$$

Thus the global estimates (2.9)–(2.12), except $w \in L^{\infty}(R_+; H^2(J))$, have been obtained. The estimate $w \in L^{\infty}(R_+; H^2(J))$ follows immediately from the facts that

$$-\kappa w_{xx}(t) + \pi_0(\xi(t)) = l(t) := -F_0^{-1}w'(t) - \pi_0[g(w(t)) - \lambda'(w(t))u(t)]$$
 and $l \in L^{\infty}(R_+; L^2(J))$. \diamondsuit

To study the large time behaviour of the order parameter w, let us consider the following stationary problem, denoted by $P(\sigma_*, \sigma^*; u_\infty, m_0)$:

$$-\kappa v_{xx} + \gamma + g(v) - \lambda'(v)u_{\infty} = v \quad \text{a.e. in } J, \tag{2.23-1}$$

$$\gamma \in L^2(J), \ \gamma \in \partial I_{[\sigma_*,\sigma^*]}(v)$$
 a.e. in J , (2.23-2)

$$v_x(-L) = v_x(L) = 0,$$
 (2.23-3)

$$v = \frac{1}{2L} \int_{I} \{ \gamma + g(v) - \lambda'(v) u_{\infty} \} dx, \qquad (2.23-4)$$

$$\int_{J} v \, dx = m_0. \tag{2.23-5}$$

We say that v is a solution of $P(\sigma_*, \sigma^*; u_\infty, m_0)$, if $v \in H^2(J)$ and (2.23-1)-(2.23-5) are satisfied.

As an easy consequence of Theorem 2.2 we have the following theorem.

THEOREM 2.3. Under the same assumptions as in Theorem 2.2, the following statements hold:

(a) $u(t) \to u_{\infty} \left(= \frac{h_{\infty}}{n_0} \right)$ weakly in $H^1(J)$ as $t \to +\infty$.

- (b) The ω -limit set $\omega(u_0, w_0) := \{z \in H^1(J); w(t_n) \to z \text{ in } H^1(J) \text{ (as } n \to \infty) \text{ for some } t_n \uparrow +\infty \}$ is non-empty, compact and connected in $H^1(J)$. Also $\omega(u_0, w_0)$ is bounded in $H^2(J)$.
- (c) $\lim_{t\to +\infty} \left\{ \frac{\kappa}{2} |w_x(t)|_{L^2(J)}^2 + \int_J (\hat{g}(w(t)) \lambda(w(t))u_\infty) \, dx \right\}$ exists, where \hat{g} is any primitive of g.
 - (d) Any ω -limit point $v \in \omega(u_0, w_0)$ is a solution of $P(\sigma_*, \sigma^*; u_\infty, m_0)$.

PROOF. (a) is an immediate consequence of (2.9) and (2.10). Hence $u(t,\cdot) \to u_{\infty}$ uniformly on \bar{J} as $t \to +\infty$. This means that the closure of $\{u(t,x); x \in \bar{J}, t \geq M\}$ for sufficiently large M > 0 is contained in $D(\rho)$, so that

$$\sup_{t>M} |\rho(u)'|_{L^2(t,t+1;L^2(J))} < +\infty \quad \text{and} \quad \rho(u) \in L^{\infty}([M,+\infty) \times \bar{J}).$$

With the help of these estimates, (b) and (d) can be proved in a way similar to that of [10; Theorem 3.1]. Moreover, (c) follows from (2.15).

3. Stationary problem.

In this section, assumptions (A1), (A2) and (A3) are always fulfilled, and u_{∞} is a given constant. Under some restrictions on u_{∞} , g and λ we consider the stationary problem with $m_0 = 0$, namely $P(\sigma_*, \sigma^*; u_{\infty}, 0)$ which is very restricted, but still interesting from the physical point of view.

We denote by S^* the solution set of $P := P(\sigma_*, \sigma^*; u_\infty, 0)$. The structure of S^* is to be investigated in the following decomposition:

$$S^* = S_c + S_0 + S_1$$

where

 $S_c := \{v; v \text{ is a constant solution of } P\},$

 $S_0 := \{ v \in H^2(J); \quad v \text{ is a non-constant solution of P}$ such that $\sigma_* < v < \sigma^* \text{ on } \bar{J} \}$ and

$$S_1 := \{ v \in H^2(J); \quad v \text{ is a non-constant solution of P}$$

such that $v(x) = \sigma_* \text{ or } \sigma^* \text{ for some } x \in \overline{J} \}.$

In the study of P we suppose that the function

$$q(v) := q(v) - \lambda'(v)u_{\infty}, \quad v \in R,$$

satisfies the following properties (q1), (q2) and (q3):

- (q1) (oddness) q(v) = -q(-v) for all $v \in R$.
- (q2) (N-shape condition) There are points ζ_{0-} , ζ_{M} , ζ_{m} and ζ_{0+} such that

$$\zeta_{0-} < \zeta_M < 0 < \zeta_m < \zeta_{0+},$$

$$q(\zeta_{0-}) = q(\zeta_{0+}) = 0,$$

$$q'\left(=\frac{d}{dv}q\right) > 0 \quad \text{on } (-\infty, \zeta_M) \cup (\zeta_m, +\infty),$$

$$q' < 0 \quad \text{on } (\zeta_M, \zeta_m),$$

and

$$q'(\zeta_M) = q'(\zeta_m) = 0.$$

(q3) (convexity-concavity) $q'' \ge 0$ on $(0, +\infty)$, q''(0) = 0, $q'' \le 0$ on $(-\infty, 0)$ and q'' is not identically zero on any neighbourhood of 0.

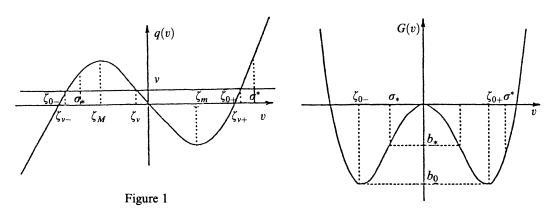


Figure 2

Example 3.1. As physically relevant examples of q(v) we consider the following two cases: (i) $q(v) := v(v^2 + u_\infty)$ which is given by $g(v) = v^3$, $\lambda(v) = -(1/2)v^2$ with a negative constant u_∞ ; (ii) $q(v) := v(v^2 - 1)$ which is given by $g(v) = v(v^2 - 1)$ and $\lambda(v) = v$ with $u_\infty = 0$. Clearly, both cases satisfy the above conditions. The case when q(v) := -v is excluded, since $q'' \equiv 0$. This case was treated in [2] for the Cahn-Hilliard model.

We further suppose that

$$\sigma_* < 0 < \sigma^*. \tag{3.1}$$

We define $G: R \to R$ with the primitive \hat{g} of g with $\hat{g}(0) = 0$ by

$$G(v):=\hat{g}(v)-\lambda(v)u_{\infty}+\lambda(0)u_{\infty}igg(=\int_{0}^{v}q(s)\,dsigg)$$

and set

$$b_0 := G(\zeta_{0-}) (= G(\zeta_{0+})), \quad b_* := \max\{G(\zeta_{0-} \vee \sigma_*), G(\zeta_{0+} \wedge \sigma^*)\}.$$

Clearly, by (q1), (q2) and (3.1),

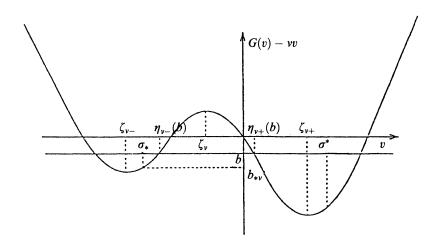
$$b_0 \le b_* < 0.$$

For each $v \in R$ with $q(\zeta_m) < v < q(\zeta_M)$, the (algebraic) equation $q(\eta) = v$ has exactly three roots $\eta = \zeta_{\nu-}, \zeta_{\nu}, \zeta_{\nu+}$ with $\zeta_{\nu-} < \zeta_{\nu} < \zeta_{\nu+}$ and $\zeta_{\nu-} < 0 < \zeta_{\nu+}$. Also, for $v = q(\zeta_m)$ (resp. $v = q(\zeta_M)$), the equation $q(\eta) = v$ has exactly two roots $\eta = \zeta_{\nu-}, \zeta_m$ with $\zeta_{\nu-} < 0 < \zeta_m$ (resp. $\eta = \zeta_M, \zeta_{\nu+}$ with $\zeta_M < 0 < \zeta_{\nu+}$). With these points, we define

$$b_{0\nu} := \max\{G(\zeta_{\nu-}) - \nu\zeta_{\nu-}, G(\zeta_{\nu+}) - \nu\zeta_{\nu+}\},\,$$

$$b_{*\nu} := \max\{G(\zeta_{\nu-} \vee \sigma_*) - \nu(\zeta_{\nu-} \vee \sigma^*), G(\zeta_{\nu+} \wedge \sigma^*) - \nu(\zeta_{\nu+} \wedge \sigma^*)\}.$$

for ν with $q(\zeta_m) \le \nu \le q(\zeta_M)$.



Besides, given ν with $q(\zeta_m) < \nu < q(\zeta_M)$ and $b \in R$, we see that

(1) if $b_{0\nu} \leq b < G(\zeta_{\nu}) - \nu \zeta_{\nu}$, then $G(\eta) - \nu \eta = b$ has exactly two roots $\eta = \eta_{\nu-}(b)$, $\eta_{\nu+}(b)$ in $[\zeta_{\nu-}, \zeta_{\nu+}]$ with $\eta_{\nu-}(b) < \eta_{\nu+}(b)$;

Figure 3

(2) if $b = G(\zeta_{\nu}) - \nu \zeta_{\nu}$, then $G(\eta) - \nu \eta = b$ has exactly one root $\eta = \zeta_{\nu}$ in $[\zeta_{\nu-}, \zeta_{\nu+}]$. By definition any solution $v \in H^2(-L, L)$ of P satisfies

$$-\kappa v_{xx} + \gamma + q(v) = v \quad \text{a.e. in } J, \tag{3.2-1}$$

$$\gamma \in L^2(J), \gamma \in \partial I_{[\sigma_{\bullet}, \sigma^{\bullet}]}(v)$$
 a.e. in J , (3.2-2)

$$v_x(-L) = v_x(L) = 0,$$
 (3.2-3)

$$v = \frac{1}{2L} \int_{J} \{ \gamma + q(v) \} dx, \tag{3.2-4}$$

$$\int_{I} v \, dx = 0. \tag{3.2-5}$$

LEMMA 3.1. Let v be any solution of P and

$$v:=rac{1}{2L}\int_{J}\left\{ \gamma+q(v)
ight\} dx \quad and \quad b:=G(v(-L))-vv(-L)$$

Then:

- (i) $G(v(x)) vv(x) \ge b$ for all $x \in \overline{J}$. $v_x(x) = 0$ if and only if G(v(x)) vv(x) = b; hence G(v(L)) vv(L) = b.
 - (ii) If v is constant on \bar{J} , then $v \equiv 0$ on \bar{J} . In this case, v = b = 0.
 - (iii) If v is non-constant on \bar{J} , then

$$q(\zeta_m) < \nu < q(\zeta_M), \tag{3.3}$$

$$b_{*\nu} \le b < G(\zeta_{\nu}) - \nu \zeta_{\nu},\tag{3.4}$$

and

$$\eta_{\nu-}(b) \le v \le \eta_{\nu+}(b) \quad on \ \bar{J}. \tag{3.5}$$

PROOF. Multiplying (3.2-1) by v_x and integrating it over [-L, x], we have

$$-\frac{\kappa}{2}|v_x(x)|^2 + G(v(x)) - vv(x) = b \quad \text{for all } x \in \overline{J}.$$
 (3.6)

Hence (i) holds.

Assume v is constant on \overline{J} . Then, by (3.2-5), $v \equiv 0$ must hold. Since $\sigma_* < 0 < \sigma^*$, $\partial I_{[\sigma_*,\sigma^*]}(0) = \{0\}$ and q(0) = 0, it follows that $\gamma \equiv 0$ on \overline{J} , v = 0 and b = 0. Thus (ii) holds.

In the rest of the proof we assume that v is non-constant on \bar{J} .

Now, assume $v \ge q(\zeta_M)$. In this case, there is exactly one point η_0 (> ζ_{0+}) such that

$$G(r) - vr$$
 is strictly decreasing for $r \in (-\infty, \eta_0]$,

$$G(r) - \nu r \ge G(\eta_0) - \nu \eta_0$$
 for all $r \in R$,

and

G(r) - vr is strictly increasing for $r \in [\eta_0, +\infty)$.

Hence, it follows from this together with (i) that either (α) or (β) below hold:

- (a) $v(-L) \le \eta_0$ and v is decreasing on \bar{J} .
- (β) $v(-L) \ge \eta_0$ and v is increasing on \bar{J} .

In both cases (α) and (β) we have $v_x \neq 0$ on (-L, L] which contradicts the boundary condition $v_x(L) = 0$. Therefore we obtain $v < q(\zeta_M)$. Similarly $v > q(\zeta_m)$. Thus (3.3) holds.

Next we show (3.4) by contradiction. Assuming that

$$b_{*\nu} > b \ge \min_{r \in R} \{G(r) - \nu r\},$$

we consider for instance the case where

$$\zeta_{\nu-} \vee \sigma_* = \sigma_*, \quad \zeta_{\nu+} \wedge \sigma^* = \zeta_{\nu+}, \quad b_{*\nu} = G(\sigma_*) - \nu \sigma_*. \tag{3.7}$$

In this case, the equation $G(\eta) - \nu \eta = b$ has at most two roots $\eta = \eta_1, \eta_2$ in the interval $[\sigma_*, \sigma^*]$ with $\zeta_{\nu} < \eta_1 \le \zeta_{\nu+} \le \eta_2$. This implies that $v(-L) = \eta_1$ or η_2 . On account of (i) there are a point $x_1 \in \overline{J}$ and a constant $\delta > 0$ such that

$$v \le \eta_1 - \delta$$
 (hence $v_x < 0$) on $[x_1, L]$

or

$$v \ge \eta_2 + \delta$$
 (hence $v_x > 0$) on $[x_1, L]$.

In both cases we have $v_x(L) \neq 0$ which is a contradiction. Therefore $b \geq b_{*\nu}$ must hold true. Assuming that $b \geq G(\zeta_{\nu}) - \nu \zeta_{\nu}$, we have a similar contradiction; in particular, if $b = G(\zeta_{\nu}) - \nu \zeta_{\nu}$ and $v(-L) = \zeta_{\nu}$, then (i) implies $v \equiv \zeta_{\nu}$, so that this case is excluded. Thus (3.4) holds under (3.7), and it holds true in any other possible cases of $\zeta_{\nu-} \vee \sigma_*$, $\zeta_{\nu+} \wedge \sigma^*$ and $b_{*\nu}$.

Finally we show (3.5). By (3.3) and (3.4), the equation $G(\eta) - \nu \eta = b$ has at most four roots $\eta = \tilde{\eta}_{\nu\pm}(b)$, $\eta_{\nu\pm}(b)$ in $[\sigma_*, \sigma^*]$ such that

$$\tilde{\eta}_{\nu-}(b) \leq \zeta_{\nu-} \leq \eta_{\nu-}(b) < \zeta_{\nu} < \eta_{\nu+}(b) \leq \zeta_{\nu+} \leq \tilde{\eta}_{\nu+}(b).$$

We have by (i) the following three possibilities:

$$v \le \tilde{\eta}_{\nu}(b) \quad \text{on } \bar{J},$$
 (3.8)

$$v \ge \tilde{\eta}_{v+}(b) \quad \text{on } \bar{J},$$
 (3.9)

and

$$\eta_{\nu-}(b) \le v \le \eta_{\nu+}(b) \quad \text{on } \bar{J}. \tag{3.10}$$

In a way similar to those in the proofs of (3.3) and (3.4), we can show that (3.8) and (3.9) are impossible. Accordingly (3.10) must hold true.

LEMMA 3.2. Let $q(\zeta_m) < v < q(\zeta_M)$ and $b_{0v} < b < G(\zeta_v) - v\zeta_v$. Define $I_0(v,b)$ and $I_1(v,b)$ by

$$I_0(v,b) = \left(\frac{\kappa}{2}\right)^{1/2} \int_{\eta_{\nu_-}(b)}^{\eta_{\nu_+}(b)} \frac{1}{\{G(v) - vv - b\}^{1/2}} dv$$
 (3.11)

and

$$I_1(v,b) = \left(\frac{\kappa}{2}\right)^{1/2} \int_{\eta_{v-}(b)}^{\eta_{v+}(b)} \frac{v}{\{G(v) - vv - b\}^{1/2}} dv.$$
 (3.12)

Then:

(1) For any fixed v, $I_0(v,b)$ is continuous and strictly decreasing in b, and

$$\lim_{b \uparrow G(\zeta_{\nu}) - \nu \zeta_{\nu}} I_{0}(\nu, b) = (\kappa)^{1/2} \frac{\pi}{|q'(\zeta_{\nu})|^{1/2}}, \tag{3.13}$$

$$\lim_{b \mid b_{0u}} I_0(\nu, b) = +\infty. \tag{3.14}$$

(2) For any fixed v, $I_1(v, b)$ is continuous in b, and for all b

$$\begin{cases} I_1(v,b) > 0 & \text{if } v < 0, \\ I_1(0,b) = 0, \\ I_1(v,b) < 0 & \text{if } v > 0. \end{cases}$$
(3.15)

PROOF. (1) is due to [6; section 5]. We prove here (2). For the continuity (and some further regularity) of I_1 we refer to [5; section 4]. We show (3.15) below. By the oddness of q, it is clear that $I_1(0,b) = 0$ for all b.

Assume v > 0. We employ a new variable y, $0 \le y \le 1$, of integration in (3.12), which is given by

$$y^{2} = \frac{G(v) - vv - G(\zeta_{v}) + v\zeta_{v}}{b - G(\zeta_{v}) + v\zeta_{v}}, \quad 0 \le y \le 1;$$
(3.16)

for each y, (3.16) has two roots $v = v_1(v, b, y)$ and $v = v_2(v, b, y)$ in $[\eta_{v-}(b), \eta_{v+}(b)]$ such that

$$v_1(v, b, y) \in [\eta_{v-}(b), \zeta_v], \quad v_2(v, b, y) \in [\zeta_v, \zeta_{v+}(b)].$$

With this new variable y, $I_1(v,b)$ can be written in the form

$$I_1(v,b) = \left\{2\kappa(G(\zeta_v) - v\zeta_v - b)
ight\}^{1/2} \int_0^1 rac{y}{\left\{1 - v^2
ight\}^{1/2}} \left[rac{v_1}{q(v_1) - v} - rac{v_2}{q(v_2) - v}
ight] dy,$$

where $v_i(y) := v_i(v, b, y)$, i = 1, 2. To see $I_1(v, b) < 0$, it is enough to verify that

$$Q(y) := \frac{v_1(y)}{q(v_1) - v} - \frac{v_2(y)}{q(v_2) - v} \le 0 \quad \text{for } 0 < y < 1$$

and $Q \not\equiv 0$. Since $q(v_1) - v > 0$, $v_1 < 0$ and $q(v_2) - v < 0$, it follows that

$$Q(y) < 0$$
 for y with $v_2(y) \le 0$

and hence $Q \not\equiv 0$. For any y with $v_2(y) > 0$ we see from the relation $v_1(y) < -v_2(y)$ and condition (q3) that

$$\frac{q(v_1(y))}{v_1(y)} \ge \frac{q(v_2(y))}{v_2(y)}, \text{ i.e. } v_1(y)q(v_2(y)) \ge v_2(y)q(v_1(y)),$$

so that

$$Q(y) = \frac{1}{(q(v_1) - \nu)(q(v_2) - \nu)} \{v_1 q(v_2) - v_2 q(v_1) - \nu(v_1 - v_2)\} \le 0.$$

Thus $I_1(v,b) < 0$, if v > 0. Similarly $I_1(v,b) > 0$, if v < 0. Accordingly (2) holds.

\Diamond

4. Expression of non-constant solutions.

We keep assumptions (A1)-(A3), (3.1), (q1)-(q3) and $m_0 = 0$ in this section, too. To give a general expression for non-constant solutions of $P := P(\sigma_*, \sigma^*; u_\infty, 0)$, for given ν and b with

$$q(\zeta_m) < \nu < q(\zeta_M), \quad b_{0\nu} \le b < G(\zeta_{\nu}) - \nu \zeta_{\nu},$$

we consider the auxiliary problem

$$-\kappa V_{xx} + q(V) = v \quad \text{in } R, \tag{4.1-1}$$

$$V(0) = \zeta_{\nu}, \quad V_{x}(0) = \left\{ \frac{2}{\kappa} (G(\zeta_{\nu}) - \nu \zeta_{\nu} - b) \right\}^{1/2}. \tag{4.1-2}$$

By the well-known theory on ODEs, problem (4.1) has a unique solution $V \in C^4(R)$. It is easy to see that there exists a compact interval $[\tau, \tau_1]$ with $\tau := \tau(\nu, b) < 0 < \tau_1 := \tau_1(\nu, b)$ such that

$$\begin{cases} V(\tau) = \eta_{\nu-}(b), & V(\tau_1) = \eta_{\nu+}(b), & V(2\tau_1 - \tau) = \eta_{\nu-}(b), \\ V_x(\tau) = V_x(\tau_1) = V_x(2\tau_1 - \tau) = 0, \\ V_x > 0 & \text{on } (\tau, \tau_1), & V_x < 0 & \text{on } (\tau_1, 2\tau_1 - \tau), \end{cases}$$

$$(4.2)$$

and V is periodic with period $2(\tau_1 - \tau)$ on R and V is symmetric with respect to $x = \tau$ and $x = \tau_1$, i.e.

$$V(\tau - x) = V(\tau + x)$$
 and $V(\tau_1 - x) = V(\tau_1 + x)$ for all $x \in R$.

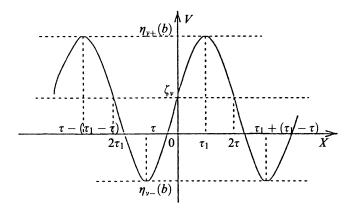


Figure 4

Moreover, we prove:

LEMMA 4.1. (cf. [5, 6]) Let V be the solution of (4.1) under the same assumptions on v and b as above. Also, let $\tau = \tau(v, b)$ and $\tau_1 = \tau_1(v, b)$ be as above. Then,

$$\tau_1 - \tau = I_0(\nu, b) \tag{4.3}$$

and

$$\int_{\tau}^{\tau_1} V \, dx = I_1(\nu, b). \tag{4.4}$$

In the sequel we denote by $V^{\nu,b}$ the solution V of problem (4.1), and by $\overline{V}^{\nu,b}$ the function $V(x+2\tau_1)$; we put $\overline{\tau}(\nu,b)=-\tau_1(\nu,b)$ and $\overline{\tau}_1(\nu,b)=-\tau(\nu,b)$. The function $V^{\nu,b}$ and $\overline{V}^{\nu,b}$ are called the principal parts of the solution to our problem P.

LEMMA 4.2. Let v be any non-constant solution of P, and v, γ be the corresponding number and function in system (3.2). Also, put b = G(v(-L)) - vv(-L). Let (x_L, x_R) be any connected component of the set $\{x \in \overline{J}; v_x(x) \neq 0\}$. Then, on (x_L, x_R) , v coincides with a translation of $V^{v,b}$ or $\overline{V}^{v,b}$ in the space-variable x; more precisely, there is a number x_0 in (x_L, x_R) such that

$$\begin{cases} x_{L} = \tau(v, b) + x_{0}, & x_{R} = \tau_{1}(v, b) + x_{0}, \\ v(x) = V^{v, b}(x - x_{0}) & \text{for all } x \in [x_{L}, x_{R}], \end{cases}$$
(4.7)

or

$$\begin{cases} x_{L} = \bar{\tau}(v, b) + x_{0}, & x_{R} = \bar{\tau}_{1}(v, b) + x_{0}, \\ v(x) = \bar{V}^{v, b}(x - x_{0}) & \text{for all } x \in [x_{L}, x_{R}]. \end{cases}$$
(4.8)

Moreover,

$$x_R - x_L = I_0(v, b), \quad \int_{x_L}^{x_R} v \, dx = I_1(v, b).$$
 (4.9)

PROOF. Note that $v(x_L) = \eta_{\nu_-}(b)$ or $\eta_{\nu_+}(b)$, and $v_x(x_L) = v_x(x_R) = 0$. Assuming $v(x_L) = \eta_{\nu_-}(b)$, we have $v_x > 0$ on (x_L, x_R) , which shows that $\sigma_* < v < \sigma^*$ on (x_L, x_R) , hence $\gamma = 0$ on (x_L, x_R) . Therefore v satisfies

$$\begin{cases} -\kappa v_{xx} + q(v) = v & \text{in } (x_L, x_R), \\ v(x_L) = \eta_{v-}(b), & v_x(x_L) = 0. \end{cases}$$

From the uniqueness result for Cauchy problems of ODEs and (4.2) it follows that (4.7) holds for $x_0 = x_L - \tau(v, b)$. Also, (4.9) is a direct consequence of Lemma 4.1. In the case of $v(x_L) = \eta_{v+}(b)$ we have (4.8) with (4.9).

According to Lemma 4.2 we have a general expression for a non-constant solution v of P as follows. Let v be the corresponding number and b = G(v(-L)) - vv(-L). Then there is a partition

$$-L = x^{0} \le x_{L}^{1} < x_{R}^{1} \le x_{L}^{2} < x_{R}^{2} \le x_{L}^{3} < \dots \le x_{L}^{l} < x_{R}^{l} \le x^{l+1} = L$$
 (4.10)

of the interval \bar{J} such that

$$x_R^i = x_L^i + I_0(v, b), \quad i = 1, 2, \dots, l,$$
 (4.11)

and one of the following (4.12) and (4.13) holds:

$$\begin{cases} v = \eta_{\nu-}(b) & \text{on } [-L, x_L^1], \\ v = V^{\nu,b}(\tau - x_L^1 + \cdot) & \text{on } (x_L^1, x_R^1), \\ v = \eta_{\nu+}(b) & \text{on } [x_R^1, x_L^2], \\ v = \overline{V}^{\nu,b}(\overline{\tau} - x_L^2 + \cdot) & \text{on } (x_L^2, x_R^2), \\ v = \eta_{\nu-}(b) & \text{on } [x_R^2, x_L^3], \\ & \dots \\ v = \begin{cases} V^{\nu,b}(\tau - x_L^1 + \cdot) & \text{if } l \text{ is odd,} \\ \overline{V}^{\nu,b}(\overline{\tau} - x_L^1 + \cdot) & \text{if } l \text{ is even,} \end{cases} & \text{on } (x_L^1, x_R^1), \\ v = \begin{cases} \eta_{\nu+}(b) & \text{if } l \text{ is odd,} \\ \eta_{\nu-}(b) & \text{if } l \text{ is even,} \end{cases} & \text{on } [x_R^1, L]; \end{cases}$$

$$\begin{cases} v = \eta_{\nu+}(b) & \text{on } [-L, x_L^1], \\ v = \overline{V}^{\nu,b}(\overline{\tau} - x_L^1 + \cdot) & \text{on } (x_L^1, x_R^1), \\ v = \eta_{\nu-}(b) & \text{on } [x_R^1, x_L^2], \\ v = V^{\nu,b}(\tau - x_L^2 + \cdot) & \text{on } (x_L^2, x_R^2), \\ v = \eta_{\nu+}(b) & \text{on } [x_R^2, x_L^3], \\ & \cdots \\ v = \begin{cases} \overline{V}^{\nu,b}(\overline{\tau} - x_L^l + \cdot) & \text{if } l \text{ is odd}, \\ V^{\nu,b}(\tau - x_L^l + \cdot) & \text{if } l \text{ is even}, \end{cases} & \text{on } (x_L^l, x_R^l), \\ v = \begin{cases} \eta_{\nu-}(b) & \text{if } l \text{ is odd}, \\ \eta_{\nu+}(b) & \text{if } l \text{ is even}, \end{cases} & \text{on } [x_R^l, L]. \end{cases}$$

Besides, with the notations

$$J_1 := [-L, x_L^1] \cup [x_R^2, x_L^3] \cup [x_R^4, x_L^5] \cup \cdots$$
 (4.14-1)

and

$$J_2 := [x_R^1, x_L^2] \cup [x_R^3, x_L^4] \cup [x_R^5, x_L^6] \cup \dots,$$
(4.14-2)

we have

$$lI_0(v,b) + |J_1| + |J_2| = 2L (4.15)$$

and

$$II_1(\nu, b) + \eta_{\nu-}(b)|J_1| + \eta_{\nu+}(b)|J_2| = 0$$
 in the case of (4.12), (4.16-1)

$$II_1(\nu,b) + \eta_{\nu+}(b)|J_1| + \eta_{\nu-}(b)|J_2| = 0$$
 in the case of (4.13), (4.16-2)

where $|J_i|$, i = 1, 2, stands for the linear measure of J_i ; (4.16) comes from the constraint (3.2-5).

For simplicity expression (4.12) (resp. (4.13)) with $\{(4.10), (4.11), (4.14), (4.15), (4.16-1) \text{ (resp. } (4.16-2))\}$ is called of T(I) (resp. T(II)).

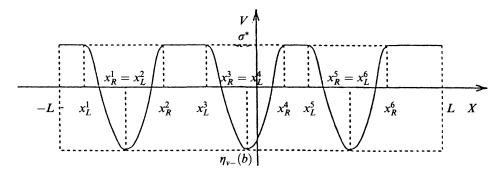


Figure 5

We end this section with the expression of the solution to the problem without constraint:

$$\begin{cases}
-\kappa v_{xx} + q(v) = v & \text{in } J, \\
v_x(-L) = v_x(L) = 0, \\
v = \frac{1}{2L} \int_J q(v) \, dx, \quad \int_J v \, dx = 0;
\end{cases}$$
(4.17)

the solution v is considered in $C^4(\bar{J})$. We denote by \tilde{S}_0 the set of all non-constant solutions of (4.17). Then we have:

LEMMA 4.3. (1) $v \equiv 0$ is the only constant solution of (4.17).

(2) If v is a non-constant solution of (4.17), that is $v \in \tilde{S}_0$, then

$$v = 0$$
 and $b_0 < G(v(-L)) < 0$.

- (3) \tilde{S}_0 is a finite set, i.e. $\tilde{S}_0 := \{\tilde{V}_1, \tilde{V}_2, \dots, \tilde{V}_p\}$, where \tilde{V}_i , $i = 1, 2, \dots, p$, are non-constant solutions of (4.17) such that $\tilde{V}_1(-L) < \tilde{V}_2(-L) < \dots < \tilde{V}_p(-L)$.
 - (4) Let v be any non-constant solution of (4.17). Then

$$v = V^{0,b}(\tau + L + \cdot) \text{ or } \overline{V}^{0,b}(\overline{\tau} + L + \cdot) \text{ on } \overline{J}, \tag{4.18}$$

where b = G(v(-L)).

PROOF. (1) is clear. Let v be any non-constant solution, and v be the corresponding number. Put b:=G(v(-L))-vv(-L). Then, as seen in problem (4.1), the set $\{x\in \overline{J}: v_x(x)=0\}$ is isolated. Also, by repeating the same argument as Lemmas 4.1 and 4.2, we see that on each connected component (x_L, x_R) of $\{x\in \overline{J}; v_x(x)\neq 0\}$ the solution v coincides with a translation of $V^{v,b}$ or $\overline{V}^{v,b}$ in space-variable, i.e.

$$v = V^{\nu,b}(\tau - x_L + \cdot) \text{ or } \overline{V}^{\nu,b}(\bar{\tau} - x_L + \cdot),$$
 (4.19)

and $x_R - x_L = I_0(v, b) \le 2L$. Hence the number of such connected components of $\{x \in \overline{J}; v_x(x) \ne 0\}$ is finite. Therefore, for some positive integer N = N(v, b), we have

$$NI_0(v,b) = 2L, \quad NI_1(v,b) = \int_I v \, dx = 0.$$
 (4.20)

Combining (4.20) with Lemma 3.2 (2), we conclude that

$$v = 0$$
 and $b_0 < b = G(v(-L)) < 0$.

Moreover, the numbers of b's and N's satisfying $NI_0(0,b) = 2L$ are finite, hence (4.17) has at most a finite number of non-constant solutions, i.e. \tilde{S}_0 is a finite set. Thus (1)-(4) have been proved.

COROLLARY TO LEMMA 4.3. In the decomposition $S^* := S_c + S_0 + S_1$ of the solution set S^* for P, it holds that

$$S_c = \{0\}$$

 \Diamond

and

$$S_0 = \{ \tilde{V}_k \in \tilde{S}_0; G(\tilde{V}_k(-L)) > b_*, 1 \le k \le p \}. \tag{4.21}$$

PROOF. By Lemma 3.1(ii), $S_c = \{0\}$. Let $v \in S_0$ and v, γ be the corresponding number and function in (3.2). Then, $\gamma = 0$ on J, since $\sigma_* < v < \sigma^*$ on \bar{J} . This implies that v is a non-constant solution of (4.17). Hence $v = \tilde{V}_k$ for some $k = 1, 2, \ldots, p$, with $G(\tilde{V}_k(-L)) > b_*$, i.e. $S_0 \subset \{\tilde{V}_k \in \tilde{S}_0; G(\tilde{V}_k(-L)) > b_*, 1 \le k \le p\}$. The converse inclusion is easily seen. Hence (4.21) holds.

REMARK 4.1. The results (1)–(3) of Lemma 4.3 are essentially due to Zheng [17]; a special case of $q(v) = v^3 - v$ was treated there.

5. Expression of non-constant solutions (continued).

In this section we consider a more precise expression for non-constant solutions of $P := P(\sigma_*, \sigma^*; u_{\infty}, 0)$; conditions (A1)-(A3), (3.1), (q1)-(q3) are still fulfilled throughout this section.

LEMMA 5.1. Further suppose that

$$\sigma^* \ge \zeta_{0+}, \quad \sigma_* \le \zeta_{0-}. \tag{5.1}$$

Let v be any non-constant solution of P. Then $v \in S_0$, and by the way $S_1 = \emptyset$.

PROOF. Let ν and γ be the corresponding number and function in system (3.2). By (5.1),

$$b_{0\nu} = b_{*\nu} = \left\{ egin{array}{ll} G(\zeta_{
u-}) -
u\zeta_{
u-} & ext{if }
u > 0, \\ G(\zeta_{0-}) (= G(\zeta_{0+})) & ext{if }
u = 0, \\ G(\zeta_{
u+}) -
u\zeta_{
u+} & ext{if }
u < 0. \end{array}
ight.$$

From Lemmas 3.1 and 3.2 it follows that

$$b_{0\nu} < b := G(v(-L)) - \nu v(-L) < G(\zeta_{\nu}) - \nu \zeta_{\nu}$$

and besides

$$\sigma_* \le \eta_{\nu-}(b_{0\nu}) < \eta_{\nu-}(b) \le v \le \eta_{\nu+}(b) < \eta_{\nu+}(b_{0\nu}) \le \sigma^* \quad \text{on } \bar{J}.$$

This shows that $\gamma \equiv 0$ on \bar{J} , so that $v \in S_0$.

The complement of (5.1) consists of the following three cases (5.2)–(5.4):

$$0 < \sigma^* < \zeta_{0+}, \quad \sigma^* = -\sigma_*, \tag{5.2}$$

$$0 < \sigma^* < \zeta_{0+}, \quad \sigma^* < -\sigma_*,$$
 (5.3)

$$\zeta_{0-} < \sigma_* < 0, \quad \sigma_* > -\sigma^*. \tag{5.4}$$

From conditions (q1)-(q3), we see that $(d/dv)\zeta_{v+} > 0$ for $v \in (q(\zeta_m), q(\zeta_M))$ and

 $G(\zeta_{\nu-} \vee \sigma_*) - \nu(\zeta_{\nu-} \vee \sigma_*)$ (resp. $G(\zeta_{\nu+} \wedge \sigma^*) - \nu(\zeta_{\nu+} \wedge \sigma^*)$) is strictly increasing (resp. decreasing) in $\nu \in (q(\zeta_m), q(\zeta_M))$. Therefore, in the case of (5.3) (resp. (5.4)) there exists exactly one ν^* (resp. ν_*) with $0 < \nu^* < q(\zeta_M)$ (resp. $q(\zeta_M) < \nu_* < 0$) such that

$$G(\sigma^*) - \nu^* \sigma^* = G(\zeta_{\nu^*-} \vee \sigma_*) - \nu^* (\zeta_{\nu^*-} \vee \sigma_*)$$
 (5.5)

(resp.
$$G(\sigma_*) - \nu_* \sigma_* = G(\zeta_{\nu_* +} \wedge \sigma^*) - \nu_* (\zeta_{\nu_* +} \wedge \sigma^*)$$
).

LEMMA 5.2. Let v be any non-constant solution of P and v be the corresponding number in system (3.2). Then:

- (1) If (5.2) is satisfied, then v = 0.
- (2) If (5.3) is satisfied, then $0 \le v \le v^*$.
- (3) If (5.4) is satisfied, then $v_* \le v \le 0$.

PROOF. First we show (1). Under (5.2), assume that $\nu < 0$. Then $b_{*\nu} = G(\zeta_{\nu+} \wedge \sigma^*) - \nu(\zeta_{\nu+} \wedge \sigma^*) > G(\zeta_{\nu-} \vee \sigma_*) - \nu(\zeta_{\nu-} \vee \sigma_*) = G(\sigma_*) - \nu\sigma_*$. Hence, by Lemmas 3.1 and 3.2,

$$\sigma_* < v \le \zeta_{\nu+} \wedge \sigma^* \le \sigma^* \quad \text{on } \bar{J}.$$

and

$$I_1(v, b) > 0$$
 with $b = G(v(-L)) - vv(-L)$.

On account of Lemma 4.2, we derive from the above facts that

$$\int_{I} v \, dx = NI_1(v,b) + (2L - NI_0(v,b))\sigma^* > 0,$$

where N is the number of the connected components of $\{x \in \overline{J}; v_x(x) \neq 0\}$. This contradicts the condition $\int_J v \, dx = 0$. Assuming v > 0, we have a similar contradiction. Consequently v = 0 must hold.

Now, we show (2). Under (5.3), assume $\nu < 0$. Then we have the same contradiction as in the proof of (1). Next, assume $\nu > \nu^*$. Then, from the definition (5.5) of ν^* it follows that

$$G(\sigma^*) - \nu \sigma^* < G(\zeta_{\nu-} \vee \sigma_*) - \nu(\zeta_{\nu-} \vee \sigma_*) = b_{*\nu}.$$

By Lemmas 3.1 and 3.2, this implies that

$$\sigma_* \leq \zeta_{\nu-} \vee \sigma_* \leq v < \sigma^*$$
 on \bar{J}

and

$$I_1(v, b) < 0$$
 with $b = G(v(-L)) - vv(-L)$.

Taking account of these facts and using Lemma 4.2, we have

$$\int_{I} v \, dx = NI_{1}(v, b) + (2L - NI_{0}(v, b))\sigma_{*} < 0,$$

where N is the number of the connected components of $\{x \in \bar{J}; v_x(x) \neq 0\}$. This

contradicts $\int_{-L}^{L} v \, dx = 0$. Accordingly $0 \le v \le v^*$ holds. The assertion (3) can be similarly proved.

Now, in terms of expressions $T(I) = \{(4.10)-(4.15), (4.16-1)\}$ and $T(II) = \{(4.10)-(4.15), (4.16-2)\}$ we mention one of main results of this paper.

THEOREM 5.1. Assume that (A1)–(A3), (3.1) and (q1)–(q3) are fulfilled. Let v be any non-constant solution of P, v and γ be the corresponding number and function in system (3.2), b := G(v(-L)) - vv(-L) and l be the number of all connected components of $\{x \in \overline{J}; v_x(x) \neq 0\}$. Then v has an expression of the form T(I) or T(II) satisfying one of the following (a), (b), (c) and (d).

- (a) If (5.1) holds, then v = 0, $b_0 < b < 0$ and $|J_1| = |J_2| = 0$.
- (b) If (5.2) holds, then v = 0, $b_* (= G(\sigma_*)) \le b < 0$ and $|J_1| = |J_2|$. Moreover,

if
$$b > b_*$$
, then $|J_1| = |J_2| = 0$; (5.6)

if
$$|J_1| = |J_2| > 0$$
, then $b = b_*$ and $\eta_{0-}(b) = \sigma_*$, $\eta_{0+}(b) = \sigma^*$. (5.7)

- (c) If (5.3) holds, then $0 \le v \le v^*$ and $b_{*v} \le b < 0$. This case can be divided into the following three possibilities (c1)–(c3):
 - (c1) v = 0; in this case, $b_* \le b < 0$ and $|J_1| = |J_2| = 0$.
 - (c2) $0 < v < v^*$; in this case, $b = b_{*v}$, $\eta_{v-}(b) > \sigma_*, \eta_{v+}(b) = \sigma^*$ and

$$|J_1| = 0, |J_2| > 0 \quad for \ T(I),$$
 (5.8-1)

$$|J_1| > 0, |J_2| = 0$$
 for $T(II),$ (5.8-2)

- (c3) $v = v^*$; in this case, $b = b_{*v^*}, |J_1| + |J_2| > 0, \eta_{v^*-}(b) = \zeta_{v^*-} \vee \sigma_*$ and $\eta_{v^*+}(b) = \sigma^*$. Moreover,
 - (i) if $\zeta_{\nu^*-} > \sigma_*$, then (5.8) holds;
 - (ii) if $\zeta_{v^*-} \leq \sigma_*$, then

$$\sigma_*|J_1| + \sigma^*|J_2| > 0 \quad \text{for } T(I),$$
 (5.9-1)

$$\sigma^*|J_1| + \sigma_*|J_2| > 0$$
 for $T(II)$, (5.9-2)

- (d) If (5.4) holds, then $v_* \le v \le 0$ and $b_{*v} \le b < 0$. This case can be divided into the following three possibilities (d1)-(d3):
 - (d1) v = 0; in this case, $b_* \le b < 0$ and $|J_1| = |J_2| = 0$.
 - (d2) $v_* < v < 0$; in this case, $b = b_{*v}$, $\eta_{v-}(b) = \sigma_*$, $\eta_{v+}(b) < \sigma^*$ and

$$|J_1| > 0, |J_2| = 0$$
 for $T(I)$, (5.10-1)

$$|J_1| = 0, |J_2| > 0$$
 for $T(II),$ (5.10-2)

(d3) $v = v_*$; in this case, $b = b_{*v_*}, |J_1| + |J_2| > 0, \eta_{v_*-}(b) = \sigma_*$ and $\eta_{v_*+}(b) = \zeta_{v_*+} \wedge \sigma^*$. Moreover,

- (i) if $\zeta_{\nu_*+} < \sigma^*$, then (5.10) holds;
- (ii) if $\zeta_{\nu_*+} \geq \sigma^*$, then

$$\sigma_*|J_1| + \sigma^*|J_2| < 0$$
 for $T(I)$,

$$\sigma^*|J_1| + \sigma_*|J_2| < 0$$
 for $T(II)$.

PROOF. (a) is an immediate consequence of Lemmas 4.3 and 5.1.

Next, assume (5.2) holds. Then it follows from Lemmas 3.1 (iii), 3.2 (2) and 5.2 (1) that v=0, $b_* \leq b := G(v(-L)) < 0$ and $I_1(0,b)=0$. Hence, we infer from (4.16) with $\eta_{0-}(b) = -\eta_{0+}(b)$ that $|J_1| = |J_2|$. If $b > b_*$, then $\eta_{0-}(b) > \sigma_*$ and $\eta_{0+}(b) < \sigma^*$ and hence $\sigma_* < v < \sigma^*$ on \bar{J} . This shows by the Corollary to Lemma 4.3 that $v \in S_0 \subset \tilde{S}_0$ and $|J_1| = |J_2| = 0$. Therefore (5.6) holds, and (5.7) holds, too. Thus (b) is obtained.

Consider the case when (5.3) is satisfied, and put b := G(v(-L)) - vv(-L); note from Lemma 3.1 (iii) that $b_{*v} \le b < G(\zeta_v) - v\zeta_v$. By the definition of v^* and Lemma 5.2 (2) we observe that

$$b_{*\nu} = G(\sigma^*) - \nu \sigma^* \ge G(\zeta_{\nu-} \vee \sigma_*) - \nu(\zeta_{\nu-} \vee \sigma_*) \tag{5.11}$$

and

$$0 \le v \le v^*$$
.

If $b > b_{*v}$, then it follows from Lemma 3.1 (iii) and (5.11) that

$$\sigma_* \le \zeta_{\nu-} \lor \sigma_* < \eta_{\nu-}(b) \le v \le \eta_{\nu+}(b) < \sigma^* \quad \text{on } \bar{J},$$

so that $v \in S_0$; hence the Corollary to Lemma 4.3 implies that v = 0 and $|J_1| = |J_2| = 0$, and by the way b = G(v(-L)) < 0. From this argument we see that $b = b_{*v}$, if v > 0.

Now, suppose under (5.3) that $\nu = 0$. Clearly $b_* \le b < 0$. Also, it follows from Lemma 3.1 (iii) and (5.3) that

$$\sigma_* \le \zeta_{0-} \lor \sigma_* < \eta_{0-}(b) \le v \le \eta_{0+}(b) = \sigma^* \quad \text{on } \bar{J}.$$

This implies in (4.16) that $|J_1| = 0$ or $|J_2| = 0$. Moreover, since $I_1(0, b) = 0$ (cf. Lemma 3.2 (2)), we have consequently that $|J_1| = |J_2| = 0$. Thus (c1) holds.

Next, suppose under (5.3) that $0 < v < v^*$. In this case, we have $b = b_{*v}$, as was already seen. Since $b = b_{*v} > G(\zeta_{v-} \vee \sigma_*) - v(\zeta_{v-} \vee \sigma_*)$, it follows from Lemmas 3.1 (iii) and 3.2 (2) that

$$\sigma_* \le \zeta_{\nu-} \lor \sigma_* < \eta_{\nu-}(b) \le v \le \eta_{\nu+}(b) = \sigma^* \quad \text{on } \bar{J}$$

and $I_1(v,b) < 0$. From (4.16) with these we derive (c2).

In the case of $v = v^*$, note from the definition of v^* that

$$b = b_{*\nu^*} = G(\zeta_{\nu^*-} \vee \sigma_*) - \nu^*(\zeta_{\nu^*-} \vee \sigma_*) = G(\sigma^*) - \nu^*\sigma^*.$$

This implies by Lemma 3.1 (iii) that

$$\zeta_{\nu^*-} \vee \sigma_* = \eta_{\nu^*-}(b) \le v \le \eta_{\nu^*+}(b) = \sigma^* \quad \text{on } \bar{J}.$$

It is easy to see (5.8) (resp. (5.9)) from the relation $\zeta_{\nu^*-} > \sigma_*$ (resp. $\zeta_{\nu^*-} \le \sigma_*$). Thus (c3) is proved.

We should note that for each solution v of P all of the possible cases of its expression are completely covered by Theorem 5.1. Also, we note that if $|J_1| = |J_2| = 0$ in the expression T(I) or T(II), then v is a solution of (4.17), i.e. $v \in \tilde{S}_0$.

REMARK 5.1. In case when $q(v) \equiv -c_0 v$ for a positive constant c_0 , a similar problem was studied and expressions for solutions were obtained by Blowey & Elliott [2]. The above theorem gives some generalizations and improvements of their results.

6. Large time behaviour of the order parameter.

For the solution $\{u, w\}$ of (PSC) on R_+ , we got in Theorem 2.3 that $u(t) \to u_\infty$ weakly in $H^1(J)$ as $t \to +\infty$. In this section we investigate the large time behaviour of w(t).

THEOREM 6.1. Assume that (A1)-(A6) are satisfied as well as $u_{\infty} := (h_{\infty}/n_0) \in D(\rho)$. Further assume that (3.1), (q1)-(q3) and (5.1) are satisfied. Let $\{u,w\}$ be the solution of (PSC) on R_+ . Then, the ω -limit set $\omega(u_0,w_0)$ is a singleton consisting of a solution v of (4.17), i.e. $\omega(u_0,w_0)=\{v\}$ with $v\equiv 0$ or $v\in S_0$. In this case $w(t)\to v$ in $H^1(J)$ as $t\to +\infty$.

PROOF. By Lemma 5.1, under (5.1) we see that $S^* = \{0\} + S_0$ and it is a finite set. Since $\omega(u_0, w_0) \subset S^*$ and $\omega(u_0, w_0)$ is connected in $H^1(J)$ by Theorem 2.3, the theorem is concluded.

Next, let us consider the complement of (5.1), namely,

$$0 < \sigma^* < \zeta_{0+} \quad \text{or} \quad \zeta_{0-} < \sigma_* < 0,$$
 (6.1)

which is divided into (5.2), (5.3) and (5.4). In this case, let us further consider a decomposition of the set S_1 in $S^* = \{0\} + S_0 + S_1$, as follows:

$$S_1 := \sum_{l=1}^{l_0} \{ S_1^{\mathrm{I}}(l) + S_1^{\mathrm{II}}(l) \}, \tag{6.2}$$

where for each integer $l=1,2,\ldots,l_0,S_1^{\rm I}(l)$ (resp. $S_1^{\rm II}(l)$) := $\{v\in S_1;\ v\ \text{is of T(I)}\ (\text{resp. T(II)})\ \text{and the number of all connected components of}\ \{x\in \overline{J};\ v_x(x)\neq 0\}\ \text{is }l\}.$ In fact, we observe from the expressions for solutions to $P:=P(\sigma_*,\sigma^*;u_\infty,0)$ obtained in section 5 that $S_1^{\rm I}(l)$ and $S_1^{\rm II}(l)$ are compact in $H^1(J)$ for each l, and (6.2) holds for some positive integer l_0 with $l_0\inf\{l_0(v,b);v_*\leq v\leq v^*,b_{0v}\leq b<0\}\leq 2L$, since $0<\inf\{l_0(v,b);v_*\leq v\leq v^*,b_{0v}\leq b<0\}<+\infty$. Of course, $S_1^{\rm I}$ and $S_1^{\rm II}(l)$ may be empty or a singleton, or contain a continuum.

THEOREM 6.2. Assume that (A1)–(A6) are satisfied and $u_{\infty} := (h_{\infty}/n_0) \in D(\rho)$, and (3.1), (q1)–(q3), (6.1) are satisfied as well. Let $\{u,w\}$ be the solution of (PSC) on R_+ . Then one of the following two cases (6.3)–(6.4) holds:

$$\omega(u_0, w_0)$$
 is a singleton of an element in $\{0\} + S_0$, (6.3)

$$\omega(u_0, w_0) \subset S_1^{\mathrm{I}}(l) \text{ or } S_1^{\mathrm{II}}(l) \text{ for some } l \text{ with } 1 \le l \le l_0.$$
 (6.4)

PROOF. Assume (6.3) does not hold. Then, since $\omega(u_0, w_0)$ is compact and connected in $S^* = \{0\} + S_0 + S_1$ (cf. Theorem 2.3), it follows that $\omega(u_0, w_0) \subset S_1$ and more precisely $\omega(u_0, w_0) \subset S_1^{II}(l)$ for some l. Thus (6.4) holds. \diamondsuit

In the case of (6.3), w(t) converges in $H^1(J)$ to a solution of (4.17) as $t \to \infty$, while in the case of (6.4) w(t) does not converge in $H^1(J)$ as $t \to \infty$, in general. As will be seen in an example given below, in the case of (6.4) the large time behaviour of w(t) is very slow with respect to time t and $w(t,\cdot)$ may oscillate within a subinterval of \bar{J} .

In the terminology of phase transition (6.4) says that the number of phase transition layers is invariant for large t, though their locations change very slowly in time as $t \to \infty$. In this sense, a pattern of pure phases and mixture is formed as $t \to \infty$.

Example 6.1. Consider the case where $J := (-2,2), \ \sigma^* = -\sigma_* = (1/2), \ g(w) = w^3 - w, \ \rho(u) = u, \ \lambda(w) = w \ \text{and} \ n_0 = 1.$ Let z be the solution of

$$\begin{cases} -\kappa z_{xx} + z^3 - z = 0 & \text{in } R, \\ z(0) = 0, \\ z_x(0) = \frac{1}{2} \left\{ \frac{1}{\kappa} \left(1 - \frac{1}{2^3} \right) \right\}^{1/2}, \end{cases}$$

where κ is chosen so as to satisfy that

$$\left(\frac{\kappa}{2}\right) \int_{-1/2}^{1/2} \frac{dz}{\left\{\frac{z^4}{4} - \frac{z^2}{2} + \frac{7}{64}\right\}^{1/2}} = 1.$$

Clearly, $z_x > 0$ on (-1/2, 1/2) and $z_x(-1/2) = z_x(1/2) = 0$. Now, define a function v_0 on [-2, 2] by

$$v_0(x) = \begin{cases} -\frac{1}{2} & \text{for } -2 \le x \le -\frac{3}{2}, \\ z(x+1) & \text{for } -\frac{3}{2} < x < -\frac{1}{2}, \\ \frac{1}{2} & \text{for } -\frac{1}{2} \le x \le \frac{1}{2}, \\ z(x) & \text{for } \frac{1}{2} < x < \frac{3}{2}, \\ -\frac{1}{2} & \text{for } \frac{3}{2} \le x \le 2. \end{cases}$$

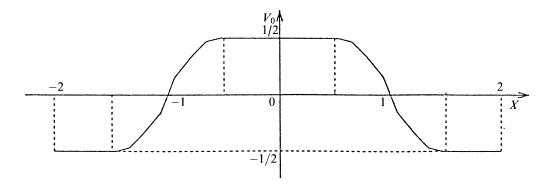


Figure 6

With $y(t) := (1/4) \sin(t + \pi)^{1/3}$ we define

$$w(t,x) := v_0(x + y(t)) \tag{6.5}$$

and

$$u(t,x) := -y'(t) \int_0^x \left[v_0(s+y(t)) + \frac{1}{2} \right] ds$$
 (6.6)

for $x \in [-2, 2]$ and $t \ge 0$. Then we calculate that

$$(u+w)_t - u_{xx} = f(t,x)$$
 a.e. in $Q := (0,+\infty) \times (-2,2),$ $w_t - \{-\kappa w_{xx} + \xi + w^3 - w - u\}_{xx} = 0$ a.e. in Q ,

and

$$\xi \in \partial I_{[-1/2,1/2]}(w)$$
 a.e. in Q ,

where

$$f(t,x) := -y''(t) \int_0^x \left[v_0(s+y(t)) + \frac{1}{2} \right] ds - |y'(t)|^2 \left[v_0(x+y(t)) - v_0(y(t)) \right] + 2y'(t)v_0'(x+y(t))$$

and

$$\xi(t,x) = \begin{cases} 0 & \text{for } x \in \left(-\frac{3}{2} - y(t), -\frac{1}{2} - y(t)\right) \cup \left(\frac{1}{2} - y(t), \frac{3}{2} - y(t)\right), \\ \frac{1}{2} - \frac{1}{2^3} & \text{for } x \in \left[-\frac{1}{2} - y(t), \frac{1}{2} - y(t)\right], \\ -\frac{1}{2} + \frac{1}{2^3} & \text{for } x \in \left[-2, -\frac{3}{2} - y(t)\right] \cup \left[\frac{3}{2} - y(t), 2\right]. \end{cases}$$

Moreover, the following initial boundary conditions are fulfilled:

$$\pm u_x(t, \pm 2) + u(t, \pm 2) = h_{\pm}(t) := -y'(t) \int_0^{\pm 2} \left[v_0(s + y(t)) + \frac{1}{2} \right] ds \quad \text{for } t \ge 0,$$

$$w_x(t, \pm 2) = \left[-\kappa w_{xx} + \xi + w^3 - w - u \right]_x(t, \pm 2) = 0 \quad \text{for } t \ge 0,$$

and

$$u_0(x) = -y'(0) \int_0^x \left[v_0(s+y(0)) + \frac{1}{2} \right] ds, \quad w_0(x) = v_0(x+y(0)) \quad \text{on } (-2,2).$$

The data satisfy all the conditions (A1)-(A6) with $u_{\infty} = h_{\infty} = 0$ as well as (3.1), (q1)-(q3) and (5.2). As was checked above, the pair of functions $\{u, w\}$ given by (6.5) and (6.6), is the solution of our problem (PSC). Also, we see that

$$\omega(u_0, w_0) = \left\{ v_0(\cdot + y); |y| \le \frac{1}{4} \right\},\,$$

which shows that $\omega(u_0, w_0)$ contains a continuum of solutions to the corresponding stationary problem.

References

- [1] H. W. Alt and I. Pawlow, Existence of solutions for non-isothermal phase separation, Adv. Math. Sci. Appl. 1 (1992), 319-409.
- [2] J. F. Blowey and C. M. Elliott, The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy, Part I: Mathematical analysis, European J. Appl. Math. 2 (1991), 233-280.
- [3] J. F. Blowey and C. M. Elliott, Curvature dependent phase boundary motion and parabolic double obstacle problems, pp. 19-60, in Degenerate Diffusion, IMA 47, Springer-Verlag, New York, 1993.
- [4] J. F. Blowey and C. M. Elliott, A phase field model with a double obstacle potential, pp. 1-22, in Motion by Mean Curvature, Walter de Gruyter, Berlin-New York, 1994.
- [5] J. Carr, M. E. Gurtin and M. Slemrod, Structured phase transitions on a finite interval, Arch. Rat. Mech. Anal. 12 (1984), 317-351.
- [6] N. Chafee and E. F. Infante, A bifurcation problem for a nonlinear partial differential equation of parabolic type, Applicable Anal. 4 (1974), 17-37.
- [7] X. Chen and C. M. Elliott, Asymptotics for a parabolic double obstacle problem, Royal Soc. London, Proc. Math. Phys. Sci. Ser. A444 (1994), 429-445.
- [8] C. M. Elliott and S. Zheng, On the Cahn-Hilliard equation, Arch. Rat. Mech. Anal. 96 (1986), 339–357.
- [9] N. Kenmochi and M. Niezgódka, Nonlinear system for non-isothermal diffusive phase separation,
 J. Math. Anal. Appl. 188 (1994), 651-679.
- [10] N. Kenmochi and M. Niezgódka, Large time behaviour of a nonlinear system for phase separation, pp. 12–22, in "Progress in partial differential equations: the Metz surveys 2", Pitman Research Notes Math. Ser. vol. 290, 1993.
- [11] N. Kenmochi and M. Niezgódka, Viscosity approach to modelling non-isothermal diffusive phase separations, Japan J. Indust. Appl. Math. 13 (1996), 135–169.
- [12] N. Kenmochi, M. Niezgódka and I. Pawlow, Subdifferential operator approach to the Cahn-Hilliard equation with constraint, J. Differential Equations 117 (1995), 320–356.
- [13] O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions, Physica D, 43 (1990), 44-62.
- [14] W. Shen and S. Zheng, On the coupled Cahn-Hilliard equations, Commun. in P.D.E., 18 (1993), 711–727.

- [15] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, Berlin, 1988.
- [16] W. von Wahl, On the Cahn-Hilliard equation $u' + \Delta^2 u \Delta f(u) = 0$, Delft Progress Report 10 (1985), 291-310.
- [17] S. Zheng, Asymptotic behaviour of the solution to the Cahn-Hilliard equation, Applicable Anal. 23 (1986), 165–184.

Akio Ito

Department of Mathematics Graduate School of Science and Technology Chiba University Chiba, 263 Japan

Nobuyuki Kenmochi

Department of Mathematics Faculty of Education Chiba University Chiba, 263 Japan