J. Math. Soc. Japan
Vol. 50, No. 2, 1998

Asymptotic behaviour of solutions to non-isothermal phase separation model
with constraint in one-dimensional space
By Akio Ito and Nobuyuki KENMOCHI

(Received Apr. 27, 1994)
(Revised June 3, 1996)

1. Introduction.

Let us consider a one-dimensional model for non-isothermal phase separation, which
is given by the following system, denoted by (PSC):

[p(u) + AW)]; — uxx = f(1,x) in Q:= (0,+00) x J, (1.1)
Wy — {—KkWex + E+g(w) — A (Wu}r =0 in Q, (1.2)
¢ €l (W) in Q, (1.3)

—ux(t,—L) + nou(t,—L) = h_(t), ux(t,L)+nou(t,L) =h(¢) fort>0, (1.4)
wi(t,—L) =wy(t,L) =0 fort>0, (1.5-1)

[—rewsx(t, ) + &(8,7) + g(w(t,)) — X (w(t, )u(t, Nxlymsp =0 fore>0,  (1.5-2)
u(0,%) = ug(x), w(0,x)=wo(x) forxel. (1.6)

Here J := (—L, L) with a positive number L; k£ > 0 and no > 0 are constants; p(u) is an
increasing function of u, and A(w), 4'(w) = (d/dw)i(w), g(w) are smooth functions of w;
0l;, »~) is the subdifferential of the indicator function /|, ,+ of the interval [o,,0%] = R;
f(t,x), hi (1), up(x) and wp(x) are given data.

The above system arises in the phase separation of a binary mixture with com-
ponents A and B. In this context, 6 := p(u) represents the absolute temperature and
w := wy the order parameter which is the local concentration of the component A; note
that . =0 < wy(t,x) <1 =0"% and wy(t,x) =1 (resp. wy(t,x) =0) means that the
phase (the physical situation of the system) at (¢, x) is of pure A (resp. pure B), while
0 < wy(t,x) < 1 means that the phase at (z,x) is of mixture. Along the same approach
as [1, 13], the system (1.1)—(1.3) can be derived from a free energy functional of Landau-
Ginzburg type

Fo(6;w) := JJ{—KZ——H lwy|* + 7(8) + O(Ijo, (W) + g(w)) + /l(w)} dx forwe H'(J),

where g is a primitive of g and 7(6) is a smooth function of 8 satisfying § = 7(6) — 67'(6)

(= p(u)).
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An existence-uniqueness result for (PSC) was established in Kenmochi & Niezgodka
[11]. When p is bi-Lipschitz on R, the large time behaviour of the solution {u, w} was
discussed in Kenmochi & Niezgodka [10]; in fact, under some assumptions on the
convergences of the data f(f) > 0 and A, (f) — hyo, it was proved there that u(r)
converges to Uy, (= ho/ng = const.) as t — +oo0 and any w-limit point w,, of w(t) is a
solution of the stationary problem, denoted by P(a.,0*;us,mo):

—KWoorxx + €0 + §(Woo) — 4 (Weo Jutoo = v in J, (1.7)
£ € 0Ly, (W) 0V, (1.8)

Were(—L) = Woon(L) = (1.9

J, Weo () dx = mo, (1.10)
v:ﬁjj{éw + g(Weo) — A (Woo)tho} d, (1.11)

where mqg := [, wodx.

The purpose of the present paper is to investigate the structure of the solution set of
P(o.,0%;uy,mp) and further some common properties of the w-limit points of w.

In Shen & Zheng [14], the problem without constraint (1.3) was independently
studied. They proved existence, uniqueness and asymptotic convergence of the solution.
As far as the asymptotic behaviour of the solution as ¢t — +o0 is concerned, our situation
is much more complicated than theirs. Indeed, in our case, the order parameter w(t, x)
does not asymptotically converge and may oscillate as t — +o0, although it is very slow
in time; this might come from constraint (1.3).

In particular, when the temperature # = p(u) is supposed to be constant (hence u to
be constant), system (1.2)—(1.3) is called “Cahn-Hilliard model with constraint”, which
was treated so far in [2, 12]. This model was introduced as the quench limit of
temperature 6 | 0 and studied in the case of g(w) — A'(w)u = —cw with a positive
constant ¢ by Blowey & Elliott [2] and a more general case by Kenmochi, Niezgdodka &
Pawlow [12]. In [2], the expression of any solution to the corresponding stationary
problem was obtained. In this paper, assuming mo = 0, we shall show that this type of
expression of solutions still holds in our non-isothermal setting, even though nonlinear
term g(w) — A'(w)u is of general N-shape in w. Furthermore, the structure of the
solution set of P(o.,0",uy,0) and the w-limit set of w will be more precisely studied.
This paper gives not only some generalizations but also improvements of results [2] to
the non-isothermal case.

We refer to [8, 15, 16, 17] for related works to the Cahn-Hilliard equation without
constraints, and to [3, 4, 7] for the phase field model with constraint.
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NoraTiONs. For simplicity we use the following notations:
H 1(J ): the usual Sobolev space with norm | - | () given by
el = {Izxlz,0) + mo(2(=L)F + |2(D)1")}
H'(J)*: the dual space of H'(J);
(,-): the standard inner product in L*(J);
¢-,+>: the duality pairing between H'(J)* and H'(J);
F: the duality mapping from H'(J) onto H!(J)*;

a(v,z) := JJ ve(x)zx(x) dx for v,z e H'(J);

ki vk, = max{ki,kr}, ki Ak, =min{k;, k>}.

We denote by L?(J)o the Hilbert space

{z e L*(J);| zdx = O}
Js
with the inner product (-,-)o induced from (-,-), and by H'(J), the space
{z e H'(J); | zdx = 0}
QJJ

with the norm |- | (), given by
Ilel(J)o = }leLZ(J)-
In this case, the identification of L?(J)y with its dual yields that
H'(J)o = L*(J)o < H'(J)g

with compact and densely defined injections, where H'!(J); is the dual space of H!(J)o.
We define a mapping o : L*(J) — L?(J)o by

mo[z](x) := z(x) — ﬁ,[, z(y)dy for xeJ;

my is the projection from L?(J) onto L?(J)o and from H!(J) onto H!(J)o.
Also, we denote by <-,-> the duality pairing between H'(J); and H'(J)o, and by
Fy the duality mapping from H'(J)y onto H!(J);; by definition,

(Fov, 29 = J vezydx forall v,z e H! (o-
J

2. Global estimate of solutions.

Problem (PSC) is discussed under the following assumptions:
(Al) p is a maximal monotone graph in R x R whose domain D(p) and range
R(p) are open in R, and is locally bi-Lipschitz continuous as a function from D(p) onto
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R(p), and furthermore there are constants 4y > 0 and a with 1 < « < 2 such that

Aolri — 2|

for all D(p).
PEN S or all r;,r, € D(p)

lp(r1) — p(r2)| =

(A2) k>0, np >0, o, and o*, with o, < ¢*, are constants.
(A3) A:R— R is of C3-function, and g: R — R is of C2-function.
(A4) fe WY(R; L2(J))NLY(Ry; L2(J)) such that

loc

sup | flwaqe1,0200)) < +0,
t>0

and h,,h_e W (R,) such that

loc

Sulg{|h+|W‘x2(t,t+l) + |- w2y} < oo,
1>

and for some constant A
hy—hy € L*(R,).

(AS5) (h4(2)/no) € D(p) for all t >0 and there are positive constants 4; and A4
such that

p(r)(nor — hy (t)) = —Aq|r| — A} for all r e D(p) and all ¢ > 0.
(A6) up e H'(J) with p(up) € L?(J), and wy € H*>(J) such that

wox(—L) = wox(L) =0, 0. <wy<0c" onl,
2Lo, < mg := J wo(x) dx < 2Ld",
Y

and there is & e L2(J) satisfying
& € Olig, (W) ae.inJ, —kwou+ &€ H'(J).

Next, we give a weak variational formulation for (PSC).

DEefFINITION 2.1. For 0 < T < 4o a couple {u,w} of functions u : [0,T] — H'(J)
and w:[0,T) — H'(J) is called a (weak) solution of (PSC) on [0, 7], if the following
conditions (wl)—(w4) are fulfilled:

(wl) ueL®(0,T;H'(J)),

p(u) is weakly continuous from [0, 7] into L?(J) with

o (= 5o} e L', TS H ),

we L*(0, T; H'(J)) N L*(0, T; H*(J)), w' € L*(0, T; H'(J)"), A(w) € L'(0, T; H'(J)*).
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(W2)  p(u)(0) = p(uo) and w(0) = w.
(w3) For a.e. te[0,7] and all ze H'(J),
2 (pu(t) + Aw(2)),2) + alu(t), )
+ (mou(t, L) — h_(£))z(~L) + (nou(t, L) — h(£))z(L) (2.1)
= (f(1),2).
(w4) For ae. tel0,T),
wx(t,—L) = wx(t,L) = 0,
and there is a function & e L2(0, T; L*(J)) such that
£ € dly, (W) ae. in (0,T)xJ (2.2)

and

%(W(t),n) + i (Wxx (1), 7xx) = (g(w(2)) + &(1) = X' (w(1))u(t), 1) = 0 (2.3)

for all n e H*(J) with n,(—L) =%,(L) =0 and a.e. te|0,T].
As is easily seen from the above definition, for any solution {u, w} of (PSC) on [0, T
it holds that

J w(t,x)dx = J wo(x)dx for all t€ [0, T],
J J

and
(p(u) + A(w)) € L*(0, T; H' (J)").

Also, the inequalities “2Lg, < [, wodx < 2Lo*” are necessary in order for (PSC) to have
a solution; if [, wodx = 2Lo, (resp. 2Lg*), then we see that w = g, (resp. o*).

We say that a couple {u,w} of functions u: R, — H'(J) and w: R, — H'(J) is a
solution of (PSC) on R,, if it is a solution of (PSC) on [0, T] for every finite T > 0.

We now recall an existence-uniqueness result.

THEOREM 2.1 (cf. [11; Theorem 2.4]). Assume that (A1)-(A6) hold. Then (PSC)
has one and only one solution {u,w} on R, and it satisfies that for every finite T > 0

we L*(0, T; HA(J)), w e L®(0,T;H'(J)")NL0,T;H'(J)), (2.4)

{ ue L2(0,T; H*(J)), o eL*(0,T;L*(J)),
¢ e L*(0,T; L (J)),

where & is the function as in (w4) of Definition 2.1.

From Definition 2.1 and regularity (2.4) in Theorem 2.1 we see that

p(uw) € L*(0, T; H'(J)*), Ai(w) e L%(0,T;L*(J)) forevery T >0, (2.5)
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so that for a.e. te R,

p(u) (6 + AW (1) + Fu(t) = (1) in H'(J) 26

Fy "W (2) + xFolmo(w(1))] + m0[&(2) + g(w(2)) — A (w(8))u()] = 0 2.7)
in H'(J)} (actually in L2(J)o), '

(1) € 0Ly, o (w(1)) ace. in J, (2.8)

subject to the initial condition (1.6), where f(z) € H'(J)* defined by

S(0),2) = (f(0),2) + b ()2(L) + h-(0)z(=L) for z € H'(J).
As to global estimates for solutions we have:

THEOREM 2.2. Assume that (A1)—(A6) hold and uy, := hy, /ng € D(p). Let {u,w} be
the solution of (PSC) on R,. Then:

U—upeLl>(R;HY(J)), ueL®(Ry;H'())), (2.9)
?glglullLZ(t,t+l;L2(J)) < +00, (2.10)
we L®(Ry; HX(J)), w eL®(Ry;H' (J))NL* (R HY(J)) (2.11)
and
312115|W’IL2(,,,+1;H1(,)) < +o00. (2.12)

The global estimates (2.9)—(2.12) can be inferred in the same way as employed in the
proof of [11; Theorem 2.4]. We give briefly their proofs under the same conditions and
notations as in Theorem 2.2.

LeMMA 2.1. u—uy € L*(Ry;HY(J)), we L®(Ry; HY(J)) and W e L*(Ry; HY(J)).
PrROOF. Let p* be the primitive of p~! such that p*(p(uy)) = 0. First, multiplying
(2.6) by u(t) — u,, we have

%{L P (p(u(t))) dx — (p(u(t)) + A(w()), uw)}

+ (A0) (1), (1)) + 1 lu(0) — o 31 213)

< G5 {|f (O 720y + he (1) — hoo|* + h_(8) — ho|'}  for ae. >0,

where J; is any small positive number and Cj, is a positive constant dependent only on
01 (and the given data). Next, multiplying (2.7) by w'(¢), we have

d

|w'(z)1§,l(,)5+E{§|wx(z)|iz(,)+ JJé(w(t))dx}:(A(W)'(t),u(t)) fora.e. t>0, (2.14)



Non-isothermal phase separation model 497

where § is a primitive of g such that § > 0 on [0,,0*]. Adding (2.13) and (2.14) yields

A 7o) = ol + 2000, 1) 4 5 O + [ atwi) e}

+ |W,(t)|§-11(,])8 +51|(u(t) - uw'i]l(_}) (215)
< Co, {If(OF2y + he (D) — ko> + | h_(t) — hoo|'} forae. t20.

Here, note that

P (p(r) — p(Nuw = —plux)us, for all re D(p).

Then, from (2.15) we get the required global estimates. <o

LEMMA 2.2. There are positive constants K\ and K, such that

T
sup_ (= )u(0ry + sup. (¢ =) (Ol j (= )W, a0

s<t<T

+ JT(t —5)(p(u),u') dt < K, J (t— S)J W P|u| dx dt + K (2.16)
s s J

SJorall s,T with0 <s<T(<s+1).

Proor. First, multiply (2.6) by #/(z). Then, for ae. t >0,

d

£ 30 + e, =D + e, D) = bt ~L)

~ b (ult, L) ~ (£(2), u(z))} + (o) (@), 4 () + (A0 () () @17)

< [W_()llu(t, —L)] + K (D] |u(t, L) + | f' (O] 2y 1(0) | 20
Next, assuming that w and & are smooth in time ¢, differentiate (2.7) in ¢ and multiply

the resultant by w'(¢). Then, for a.e. >0,

2dt W (O y: + KW 220y + (€ (@), W/(9)

(2.18)
< M(g)W (1) 12y + (AW)' (1), 4 (1)) + M(2") JJ W (@)1 | u(r)| dx,

A"(r)]. By the monotonicity

where M(g') = max,, <,<o|¢'(r)] and M(1") = max,, <,<o
of 0l »») we have formally

(&(6),wW()) =0 forae. t>0, (2.19)

and besides note the interpolation inequality
|Z|iz(1)0 < CO|ZX|L2(J)|Z|H1(J)(’; for all z e Hl (J)(), (220)

where ¢y is a positive constant. Add (2.17) and (2.18) multiplied by (¢ —s) with
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0<s<t<T(<s+1) and integrate the resultant over [s,7’] with any s<T' < T.
Then, by (2.19), (2.20) and the global estimates obtained in Lemma 2.1, we have

(= {3l + 2 (T, D + (7", L))

b (TWT' =) = e (T, L) = () T)) + 3T i

T X T
[ =)oy de s [ (= gy d (221)

) R

T’ TI
< J (t—s) lew’|2|u|dxdt+K3J (g + W o

R}

A+ K+ h P+ K P+ |f|%,2(1) + |f’|§,2(1)} dt,

where Kj is a positive constant independent of 5,7’ and T. It is easy to derive an
inequality of the form (2.16) for suitable constants K; and K, from (2.21) with the help
of condition (A4). When w and ¢ are not smooth enough, inequalities (2.18) and (2.19)
do not hold in general. But, by showing them for approximate solutions of {u,w} we
can rigorously obtain (2.16); see [11; sections 5, 8] in details. o

LemMA 2.3.
T
J (t——s)J \w/P[u] dx dt
s J

T 2.22
sup (z— s)lw’(t)lf,lu);} J |u|,2ql(1) dt (2.22)

s<t<T

T
< 52 J (t —_ S)'W;Iiz(J) dt + C&z{

s

forall 0 < s < T(<s+1),

where &, is an arbitrary positive number and Cjs, is a positive constant dependent only on
03.

Proor. With a positive constant c; satisfying

2Z|po(sy < chlz|giy for all ze HY(J),
) 0 )

we observe that

LT L(: _ s)\W/P|u| dxd

T
< COC(,)J (¢ = s)|ulen ) W ey,

s

W;'LZ(_]) dt (Cf (220))

T
< coc(',{ E?ET(t - s)1/2|w1(1)|H1(J)5}J (t — s)l/2|u|H1(J)|w;|Lz(J) dt
= k)

5
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T 1/2 - .1 1/2
< o] sup (1= W Oy W [ Wy ath { [ 0= 9t}

s<t<T s s

N s e Ve o
<& | (t—8)Wiliaydt + 5, sup (t—s)|W(t)|Hl(J);, |ultn () dt

s<t<T
7\2
for any positive d,. Hence (2.22) holds for C;, := (—63—;—02—. O
2
ProoOF OF THEOREM 2.2. Choose a small positive number d; so that

1
Ko, < =,

and then for this d, choose a small positive number & so that

A

K, Gs, J |u|§,1(1) dt <

% for all se R,

which is possible by Lemma 2.1. For such d; and ¢ it follows from Lemmas 2.2 and
2.3 that

1
sup (1= 8)|u(@)fins) +5 sup (1= W (Ol

s<t<T

1 T T
+-2—J (t—s)|w;|iz(1) dt+J (t—s5)(pw),d)dt < K,

s

for all 5,7 with 0 <s < T <s+¢. Therefore, the arbitrariness of s and T together
with Theorem 2.1 implies that u € L*(R,; H'(J)), w' € L®(Ry; H'(J)P),

/
SUP Wyl 2 r1,02()) < 00
t>0

and

sup || 2, i41,12sy) < +o0  (cf. condition (A1)).

>0

Thus the global estimates (2.9)—(2.12), except w e L*(R,; H*(J)), have been obtained.
The estimate w e L*(Ry; H%(J)) follows immediately from the facts that

— kW (1) + m0(E(2)) = () := —F5 "W (£) — molg(w(2)) — &' (w())u(1)]
and /e L®(R,; L?*(J)). o

To study the large time behaviour of the order parameter w, let us consider the
following stationary problem, denoted by P(o.,d™;ux,mo):

—KUxx + 7+ g(v) — A (V)ue, =v aee. in J, (2.23-1)
ye L*(J), ye oy, (v) ae.inJ, (2.23-2)

by(=L) = vy(L) = 0, (2.23-3)
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= %J Jr+g(0) - (s} d, (2.23-4)

J vdx = my. (2.23-5)
7

We say that v is a solution of P(a,,0*;u,,mq), if ve H*(J) and (2.23-1)—(2.23-5) are
satisfied.
As an easy consequence of Theorem 2.2 we have the following theorem.

THEOREM 2.3. Under the same assumptions as in Theorem 2.2, the following

statements hold:
(@) u(t) - uo (—-— —nﬂ) weakly in H'(J) as t — +c0.
0

(b) The w-limit set w(ug,wo) := {z€ H'(J);w(t,) =z in H'(J) (as n— ) for
some t, T +o0} is non-empty, compact and connected in H'(J). Also w(uo,wo) is
bounded in H?(J).

t
itive of g.

(d) Any w-limit point v e w(ug, wy) is a solution of P(0.,0%; Uy, mp).

(c) E‘Pw{g"v’c(’)'i%l) +JJ(§(W(I)) ~/1(w(t))uoo)dx} exists, where § is any prim-

ProOF. (a) is an immediate consequence of (2.9) and (2.10). Hence u(t,-) — uq
uniformly on J as ¢ — +oo. This means that the closure of {u(t,x);x e J,t > M} for
sufficiently large M > 0 is contained in D(p), so that

SBEIp(u)'lLZ(,,,H;Lz(J)) <400 and p(u) e L*([M,+x) x J).
t>

With the help of these estimates, (b) and (d) can be proved in a way similar to that of
[10; Theorem 3.1]. Moreover, (c) follows from (2.15). O

3. Stationary problem.

In this section, assumptions (Al), (A2) and (A3) are always fulfilled, and u, is a
given constant. Under some restrictions on u,, g and A we consider the stationary
problem with my = 0, namely P(o.,0*; u,,0) which is very restricted, but still interesting
from the physical point of view.

We denote by S* the solution set of P := P(a,,6%;u.,0). The structure of S* is to
be investigated in the following decomposition:

S* = S:+ 8o + S,
where
S. := {v; v is a constant solution of P},

So := {ve H*(J); v is a non-constant solution of P
such that 6, < v < ¢* on J }
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and

S) := {ve H*(J); v is a non-constant solution of P
such that v(x) = o, or ¢* for some x € J}.

In the study of P we suppose that the function
q(v) = g(v) — X (V)us, vER,

satisfies the following properties (ql), (q2) and (q3):
(ql) (oddness) g(v) = —g(—v) for all v € R.
(q2) (N-shape condition) There are points {y_, {, {» and (o, such that

Co- <{m <0 <Gy < Loy

o) = 4(G.) =0,
d
¢ (=450) >0 on (=00,u)U Gy 0),

q’ <0 on (CM? Cm)a
and
ql(CM) = ql(é’m) =0.

(q3) (convexity-concavity) ¢” >0 on (0,+o0), ¢”(0) =0, ¢" <0 on (—o0,0) and
q" is not identically zero on any neighbourhood of 0.

bt i

/gv— CM {v

Figure 1

ExaMpLE 3.1. As physically relevant examples of g(v) we consider the following
two cases: (i) q(v):= v(v? +uy) which is given by g(v) =3, A(v) = —(1/2)v* with
a negative constant u,; (i) g(v) := v(v> — 1) which is given by g(v) = v(v* — 1) and
A(v) = v with u,, = 0. Clearly, both cases satisfy the above conditions. The case when
q(v) := —v is excluded, since ¢” = 0. This case was treated in [2] for the Cahn-Hilliard
model.
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We further suppose that
o, <0< d". (3.1)

We define G : R — R with the primitive § of g with §(0) =0 by

G(v) = (1) — A(0)thop + A0t (: L 4(s) ds)

and set
bo = G(lo_)(= G(toy)), s = max{G(lo- v 5.), G(los AT™)}.

Clearly, by (ql), (gq2) and (3.1),
b() S b* < 0

For each ve R with ¢({,,) <v < q({y), the (algebraic) equation g(n) = v has exactly
three roots n = {,_,{,,{,4 with {,_ <{, <{,; and {,_ <0< {,,. Also, for v=¢g({,)
(resp. v=q({y)), the equation g(x) = v has exactly two roots n ={,_,{,, with {, <
0< ¢, (resp. 7 ="Cp,8, with {3y <0< {,,). With these points, we define

boy := max{G({,_) — v{,, G({,4) — vEyi ],
by, := max{G({,_ va,) —v({{,_ va*),G({,; Ao*) —v({, A¥)}.
for v with ¢({,) <v <q(ly).

G(v) — w

Figure 3

Besides, given v with ¢({,,) < v < ¢q({3s) and b e R, we see that

(1) if boy < b < G({,) — v{,, then G(n) — vy = b has exactly two roots n = #,_(b),
fy(b) in [{,, (4] with #,_(b) <n,,(b);

(2) if b= G(,) — v¢,, then G(n) — vy = b has exactly one root #n = ¢, in [{,_,{,.].

By definition any solution v (€ H?>(—L,L)) of P satisfies
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—Kuxx+7+q(v) =v ae. inJ, (3.2-1)
ye L*(J),y € 8l,, »-(v) ae.inJ, (3.2-2)
vx(—L) = vx(L) =0, (3.2-3)
1
v=31 | o+ aw)an (3:24)
J vdx = 0. (3.2-5)
J

LEMMA 3.1. Let v be any solution of P and
V= EEITJ {y+4q(v)}dx and b:= G(v(-L))—vv(—L)
J

Then:

1) G(v(x)) —vo(x) = b for all xeJ. vx(x) =0 if and only if G(v(x)) — vv(x) = b;
hence G(v(L)) —vv(L) =b.

(ii) If v is constant on J, then v=0 on J. In this case, v="5b=0.

(iii) If v is non-constant on J, then

q(lm) <v < q(lm), (3.3)
b., < b < G(,) -V, (3.4)

and
ny_(b) <v<n,,(b) onlJ. (3.5)

Proor. Multiplying (3.2-1) by v, and integrating it over [-L,x], we have
—g|vx(x)|2 + G(v(x)) —v(x) =b forall xeJ. (3.6)

Hence (i) holds.

Assume v is constant on J. Then, by (3.2-5), v = 0 must hold. Since o, < 0 < ¢*,
0I5, 0 (0) = {0} and ¢(0) =0, it follows that y=0 on J, v=0 and b=0. Thus (ii)
holds.

In the rest of the proof we assume that v is non-constant on J.

Now, assume v > g({y/). In this case, there is exactly one point 7, (> {o,) such
that

G(r) — vr is strictly decreasing for r € (—o0, 7],
G(r) —vr = G(ny) — vy, for all r e R,
and

G(r) — vr is strictly increasing for r € [y, +0).
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Hence, it follows from this together with (i) that either («) or (f) below hold:

(2) wv(—L) <#, and v is decreasing on J.

(B) v(—L) =n, and v is increasing on J.
In both cases () and (f) we have vy # 0 on (—L, L] which contradicts the boundary
condition v,(L) = 0. Therefore we obtain v < g({3s). Similarly v > g({,,). Thus (3.3)

holds.
Next we show (3.4) by contradiction. Assuming that

by > b = min {G(r) — vr},
reR

we consider for instance the case where
(oovoe=0., Cnc" =, by =G(0.) — Vo, (3.7)

In this case, the equation G(n) — vy = b has at most two roots # = #,,#, in the interval
[+, 0] with {, < n, <{,; <n,. This implies that v(—L) =#, or n,. On account of (i)
there are a point x; € J and a constant J > 0 such that

v < n, —0 (hence v, < 0) on [x, L]
or
v =1, + 9 (hence vy > 0) on [xi, L].

In both cases we have v,(L) # 0 which is a contradiction. Therefore b > b,, must hold
true. Assuming that b > G({,) — v{,, we have a similar contradiction; in particular, if
b=G(,)— v, and v(—L) ={,, then (i) implies v = {,, so that this case is excluded.
Thus (3.4) holds under (3.7), and it holds true in any other possible cases of {,_ v g,
{4 Ao* and b,,.

Finally we show (3.5). By (3.3) and (3.4), the equation G(n) — vy = b has at most
four roots # =17#,,(b), n,,(b) in [o,,0*] such that

Ay-(0) <& <1, (B) <Gy <7y, (B) < Gy <77, (D).

We have by (i) the following three possibilities:

v<7, (b) onl, (3.8)
v>1#,,.(b) onl, (3.9)

and
n,_(b) <v<n,. (b) onl. (3.10)

In a way similar to those in the proofs of (3.3) and (3.4), we can show that (3.8) and
(3.9) are impossible. Accordingly (3.10) must hold true. O

LemmA 3.2. Let q({,) < v < q(lpy) and by, < b < G({,) —V,. Define Iy(v,b) and
Il(V,b) by
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L(v,b) (")l/zrw(b) 1 d (3.11)
v,b) = | = v .
’ 2) )i ) {G(o) - wo - b}

and

b (")1/2 et 2 d 3.12
L(v,b) = | = J v. )
0 =13 ) {G(v) — vo — b}/ 312

Then:
(1) For any fixed v, Iy(v,b) is continuous and strictly decreasing in b, and
n

im  Io(v.b) = ()2 . 3.13
b1G(C,)— L, o(v:b) = (x) ' ()] &)

llg}olv Iy(v,b) = +c0. (3.14)

(2) For any fixed v, I,(v,b) is continuous in b, and for all b

1(0,6) =0, (3.15)

{Il(v,b)>0 if v<O,
Li(v,b) <0 if v>0.

Proor. (1) is due to [6; section 5]. We prove here (2). For the continuity (and
some further regularity) of I} we refer to [5; section 4]. We show (3.15) below. By the
oddness of ¢, it is clear that I;(0,b) =0 for all 5.

Assume v > 0. We employ a new variable y, 0 <y <1, of integration in (3.12),
which is given by

2 _ G(v) —vw — G({,) + ¢,

b-G@) 0L, 0 O =7=h (310

for each y, (3.16) has two roots v = vy(v,b,y) and v = v,(v,b,y) in [,_(b),n,,(b)] such
that

v1(v,6,) € [1,_(), 4], v2(v,0,) € [(,, {4 (B)]-
With this new variable y, I;(v,b) can be written in the form

U1 _ [ %)
vi))—v  q(v2) —v

1
v,b) = {2k — v, — b)}V/? 4
H0,) = {26(6() 6, — )} [q( &,

{1y}
where v;(y) := v;(v,b,y), i=1,2. To see I;(v,b) <0, it is enough to verify that

Q(y) . u (y) UZ(y)

= — <0 for0<y<1
q0) — v q(v) —v 4
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and Q#0. Since g(v;) —v>0, vy; <0 and ¢g(v2) —v <0, it follows that
Q(y) <0 for y with vy(y) <0

and hence Q #0. For any y with v,(y) > 0 we see from the relation v(y) < —v2(y)
and condition (q3) that

b)) 5 200 e oi()aw0) 2 n0)ai(),
so that

1
(alor) —¥)(a(e) )

Thus I;(v,b) <0, if v> 0. Similarly ;(v,b) >0, if v<0. Accordingly (2) holds.
<

o(y) = {v19(v2) — v2g(v1) — v(v1 — v2)} < 0.

4. Expression of non-constant solutions.

We keep assumptions (Al1)-(A3), (3.1), (ql)-(q3) and my = 0 in this section, too.
To give a general expression for non-constant solutions of P := P(oy, 6*;uy,0), for
given v and b with

q(lm) <v<q(ly), boy <b<G((,) -1,

we consider the auxiliary problem

—kVix+q(V)=v inR, (4.1-1)
1/2
VO) =0 Vi(0) = {%(G(cv) g, - b)} . (4.1

By the well-known theory on ODEs, problem (4.1) has a unique solution ¥ e C*(R).
It is easy to see that there exists a compact interval [r,7)] with 7:=17(v,b) <0<
71 := 171(v, b) such that

Vi(t) = Vi(t1) = Vi(211 — 7) = 0, (4.2)

{ V(e)=m-(b), V(u)=n.,b), VQu-1)=n_(b),
Ve>0 on(t,7), Vi<O0 on (11,271 —1),

and V is periodic with period 2(tr; — 7) on R and V is symmetric with respect to x =7
and x =1, ie.

V(it—x)=V(t+x)and V(r; —x) = V(r1 +x) forall xeR.
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ot (of—1)
' X

Figure 4

MOI'COVCI', W€ prove:

LemMA 4.1. (cf. [5, 6]) Let V be the solution of (4.1) under the same assumptions on
v and b as above. Also, let T = t(v,b) and ©, = 71(v,b) be as above. Then,

71 — 1 = Ip(v, b) (4.3)

and

r Vdx = I,(v,b). (4.4)

T

In the sequel we denote by V*? the solution ¥ of problem (4.1), and by 7" the
function V(x + 2t1;); we put 7(v,b) = —71(v,b) and 7;(v,b) = —1(v,b). The function
Vv and V' are called the principal parts of the solution to our problem P.

LEMMA 4.2. Let v be any non-constant solution of P, and v, y be the corresponding
number and function in system (3.2). Also, put b= G(v(—L)) —vv(—L). Let (xr,XR)
be any connected component of the set {x € J;v.(x) # 0}. Then, on (x.,xR), v coincides
with a translation of V** or 7" in the space-variable x; more precisely, there is a number
xo in (xr,xg) such that

{XLIT(V,b)-i"Xo, xg = 11(v, b) + xo, 47)
v(x) = V"(x — x0) for all x € [xr,xR], '
or
xp =T(v,b) + x0, xr=71(v,b)+ xo,
—vb (4.8)
o(x) =V (x—x0) forall xe[xr,xg]
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Moreover,

xR
xgr —xp = Iy(v, b), J vdx = I;(v,b). (4.9)

XL

Proor. Note that v(xz) =#,_(b) or n,,(b), and vy(xr) = vx(xg) =0. Assuming
v(xg) =n,_(b), we have vy > 0 on (xr,xg), which shows that g, < v < ¢* on (xr,xg),
hence y =0 on (xr,xg). Therefore v satisfies

{ — KUxx + q(D) =v in (xL’xR)’
v(xr) =n,_(b), vx(xr)=0.

From the uniqueness result for Cauchy problems of ODEs and (4.2) it follows that (4.7)
holds for xo = x; — 7(v,b). Also, (4.9) is a direct consequence of Lemma 4.1. In the
case of v(xy) =n#,,(b) we have (4.8) with (4.9). <

According to Lemma 4.2 we have a general expression for a non-constant solution
v of P as follows. Let v be the corresponding number and b = G(v(—L)) — vo(—L).
Then there is a partition

~L=xX' <X} <X <X <xp<x3 < <X <xp<xX'=L (4.10)
of the interval J such that
xp=xy +L(v,b), i=1,2,...,1, (4.11)

and one of the following (4.12) and (4.13) holds:

( v=7,_ (b) on [—L, X}‘],
v=V"(r—x;+) on (x7,xg),
b= (0) on [k, x3],
v=7"(t—d +) on (3, %})

§o0=m-0) on [xk, x3, (4.12)
V*(r—xb +) if Iis odd,
’= b on (leale)v
V"7 —xh +-) if 1is even,
b) if Iis odd,
v= el g on [xk, L];
\ n,_(b) if Iis even,
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(v=1,.(b) on [-L,x}],
=wb, _
v=V"(F-xp+") on (xz,X),
v=17,_(b) on [xk, X7,
v=Vh(r—x+) on (%, x3),
] v=".(b) on [x%,x3], (4.13)
7P —xk +) if Iis odd, 1
= on (x},x%),
V*e(z —x, 4+-) if lis even,
,—(b) if Iis odd,
v= - (5) o on [xkh, L].
L n,4(b) if I is even,
Besides, with the notations
Jy = [=L,x}]U [x%, x3] U [x%, x3]U - -- (4.14-1)
and
Jy =[xk, X3 U [k, X3 U [xg, XS] U ..., (4.14-2)
we have
Ih(v,b) + |J1| + |Jo] = 2L (4.15)
and
I (v,b) +n,_(b)|J1| + 1,,.(b)|J2| =0 in the case of (4.12), (4.16-1)
IL(v,b) + 7, (b)|J1| +n,_(b)|J2| =0 in the case of (4.13), (4.16-2)

where |J;|, i = 1,2, stands for the linear measure of J;; (4.16) comes from the constraint
(3.2-5).

For simplicity expression (4.12) (resp. (4.13)) with {(4.10), (4.11), (4.14), (4.15),
(4.16-1) (resp. (4.16-2))} is called of T(I) (resp. T(II)).

Figure 5
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We end this section with the expression of the solution to the problem without
constraint:

—Koxx+q(v) =v inJ,

Ux(—L) =vx(L) =0, (4.17)
1

= EL q(v) dx, L vdx = 0;

the solution v is considered in C*(J). We denote by S, the set of all non-constant

solutions of (4.17). Then we have:

v

LemMA 4.3. (1) v =0 is the only constant solution of (4.17).
(2) If v is a non-constant solution of (4.17), that is ve Sy, then

v=0and by < G(v(-L)) < 0.

(3) S is a finite set, i.e. So 1= {(Vi,Va,..., 17,,}, where Vi, i=1,2,....p, are non-
constant solutions of (4.17) such that Vi(—L) < Va(—L) < --- < V,(=L).
(4) Let v be any non-constant solution of (4.17). Then

v=VYr4+L+)or Vo’b(f+L+-) on J, (4.18)
where b = G(v(—L)).

Proor. (1) is clear. Let v be any non-constant solution, and v be the corre-
sponding number. Put b:= G(v(—L)) — vo(—L). Then, as seen in problem (4.1), the
set {x e J :vy(x) =0} is isolated. Also, by repeating the same argument as Lemmas
4.1 and 4.2, we see that on each connected component (xz,xg) of {x € J;v,(x) # 0} the
solution v coincides with a translation of ¥** or 7"’ in space-variable, i.e.

b= V"t —x.+)or V(G- xs+), (4.19)

and xg —xr = Iy(v,b) <2L. Hence the number of such connected components of
{x € J;ve(x) # 0} is finite. Therefore, for some positive integer N = N(v,b), we have

Nlo(v,b) = 2L, NI(v,b) = J pdx = 0. (4.20)
J

Combining (4.20) with Lemma 3.2 (2), we conclude that
v=0and by < b= G(v(—L)) < 0.

Moreover, the numbers of »'s and N's satisfying NIy(0,b) = 2L are finite, hence (4.17)
has at most a finite number of non-constant solutions, i.e. Sy is a finite set. Thus
(1)-(4) have been proved. o

COROLLARY TO LEMMA 4.3. In the decomposition S* := S, + Sy + S1 of the solution
set S* for P, it holds that

Se = {0}
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and
So = {Vi € So; G(Vi(—-L)) > b,,1 < k < p}. (4.21)

Proor. By Lemma 3.1(ii), S, = {0}. Let ve S, and v, y be the corresponding
number and function in (3.2). Then, y =0 on J, since g, < v < ¢* on J. This implies

that v is a non-constant solution of (4.17). Hence v= Vi for some k=1,2,..., p,
with G(Vi(—=L)) > b,, ie. So < {Vi € So; G(Vi(—L)) > b,,1 <k <p}. The converse
inclusion is easily seen. Hence (4.21) holds. o

REMARK 4.1. The results (1)—(3) of Lemma 4.3 are essentially due to Zheng [17]; a
special case of g(v) = v® — v was treated there.
5. Expression of non-constant solutions (continued).

In this section we consider a more precise expression for non-constant solutions of
P := P(0.,0%;ux,0); conditions (Al)—(A3), (3.1), (ql)-(q3) are still fulfilled throughout
this section.

LemMA 5.1. Further suppose that
o* = Co+, O« < Co_. (51)
Let v be any non-constant solution of P. Then ve Sy, and by the way S| = .

PrOOF. Let v and y be the corresponding number and function in system (3.2). By
(5.1),

G((,-) — ¥, if v >0,
boy = by, = { G(CO—)(: G(CO+)) if v= 0:
G(,y) — VE\y if v<O.

From Lemmas 3.1 and 3.2 it follows that
bow < bi= G(o(~L)) — w(~L) < G(C,) — s
and besides
o« <1,_(boy) < n,_(b) <v<n,.(b) <n, (b)) <c* onlJ.
This shows that y =0 on J, so that ve Sp. o

The complement of (5.1) consists of the following three cases (5.2)-(5.4):

0<o* <oy, 0" =—0s (5.2)
0<o0* <oy, 0" <—0, (5.3)
lo- <0.<0, 0,>-0". (5.4)

From conditions (ql)-(q3), we see that (d/dv){,y >0 for ve (q({n),q(ls)) and
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G(¢,_vo.) —v(,_vo.) (resp. G({,4 Ad*)—v({,4 Ac*)) is strictly increasing (resp.
decreasing) in v € (¢({,,),q({s)). Therefore, in the case of (5.3) (resp. (5.4)) there exists
exactly one v* (resp. v.) with 0 < v* < ¢q({ys) (resp. q({,n) < v« < 0) such that

G(cg*) —Vv'e* = G- vao.) —V((Vvoa.) (5.5)
(resp. G(04) — vuox = G({,, 1 AT*) — V({4 A TT)).

LEMMA 5.2. Let v be any non-constant solution of P and v be the corresponding
number in system (3.2). Then:

(1) If (5.2) is satisfied, then v = 0.

(2) If (5.3) is satisfied, then 0 <v < v*.

(3) If (5.4) is satisfied, then v, <v <0.

Proor. First we show (1). Under (5.2), assume that v< 0. Then b,, =
Gy AO*) = v({yy AT*) > G, va.) —v((,_ vo.) = G(o.) — vo.. Hence, by Lemmas
3.1 and 3.2,

o, <v<{, . Ac*<c* onl.
and
I(v,b) > 0 with b = G(v(—L)) — vo(—L).

On account of Lemma 4.2, we derive from the above facts that
J vdx = NL(v,b) + (2L — NIy(v,b))d" > 0,
J

where N is the number of the connected components of {xe J;vy(x) # 0}. This
contradicts the condition [, vdx =0. Assuming v > 0, we have a similar contradiction.
Consequently v =0 must hold.

Now, we show (2). Under (5.3), assume v < 0. Then we have the same con-
tradiction as in the proof of (1). Next, assume v > v*. Then, from the definition (5.5)
of v* it follows that

G(o*) —ve* < G({,_ va.) —v({_ vo.) = by
By Lemmas 3.1 and 3.2, this implies that

0 <{,_vo.,<v<d" onlJ

and
I)(v,b) < 0 with b = G(v(—L)) — vw(-L).

Taking account of these facts and using Lemma 4.2, we have
J vdx = NI;(v,b) + (2L — Nly(v,b))a. < 0,
J

where N is the number of the connected components of {x e J;v.(x) # 0}. This
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contradicts f_LLvdxz 0. Accordingly 0 <v <v* holds. The assertion (3) can be
similarly proved. o

Now, in terms of expressions T(I) = {(4.10)-(4.15),(4.16-1)} and T(II) = {(4.10)-
(4.15), (4.16-2)} we mention one of main results of this paper.

THEOREM 5.1. Assume that (A1)—(A3), (3.1) and (ql)-(q3) are fulfilled. Let v be
any non-constant solution of P, v and y be the corresponding number and function in
system (3.2), b := G(v(—L)) — vo(—L) and | be the number of all connected components of
{x e J;vx(x) #0}. Then v has an expression of the form T(1) or T(Il) satisfying one of
the following (a), (b), (c) and (d).

(@) If (5.1) holds, then v=20, by < b <0 and |Ji| = |J| =0.

(b) If (5.2) holds, then v=0, b.(= G(0.)) <b <0 and |Ji| = |J2|. Moreover,

if b>b., then|Ji|=|J2|=0; (5.6)
if |[Ji]=|J2| >0, thenb =b, and ny_(b)=o0., ny. (b)=0". (5.7)

(c) If (5.3) holds, then 0 <v < Vv* and b., <b < 0. This case can be divided into
the following three possibilities (cl1)—(c3):

(cl) v=0; in this case, b, <b <0 and |J;| =|J2| =0.

(c2) 0 < v <V in this case, b= by, n,_(b) > 0,1, (b) =0* and

|[Jil =0,]J2] > 0 for T(I), (5.8-1)

|[J1| > 0,]|J2] =0 for T(II), (5.8-2)

(c3) v=v* in this case, b= by, |J1| + |J2| > 0,n,._(b) =(_ Vo, and n,..(b) =
o*. Moreover,
(1) if {,_ > o4, then (5.8) holds;
(i) i (- < 0., then

o 1|+ a* |2 >0 for T(I), (5.9-1)
o* || + .|| > 0 for T(IL), (5.9-2)

(d) If (5.4) holds, then v, <v <0 and b,, <b < 0. This case can be divided into
the following three possibilities (d1)—(d3):

(dl) v=0; in this case, b, <b <0 and |Ji| =|J2| =0.

(d2) v. <v<O0; in this case, b= b.,, n,_(b) =0y, n,,.(b) <c* and

il > 0,1J2| =0 for T(I), (5.10-1)
1| = 0,]J2| >0 for T(II), (5.10-2)

(d3) v=v. in this case, b=b,,, |Ji|+|J2|>0,n, _(b)=0, and n, (b)=
{y.+ ANG*. Moreover,
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Q) if &4 <o, then (5.10) holds;
(i) if {4+ 20", then

o« 1|+ o*| 2| <0 for T(I),
a*'|J1| + o«|J2| <0 for T(II).

ProoF. (a) is an immediate consequence of Lemmas 4.3 and 5.1.

Next, assume (5.2) holds. Then it follows from Lemmas 3.1 (iii), 3.2 (2) and 5.2 (1)
that v=0, b, < b:= G(v(—L)) < 0 and ;(0,b) =0. Hence, we infer from (4.16) with
o (b) = —no,(b) that |Ji|=|J|. If b>b,, then 5y_(b) > o, and 7y, (b) <o* and
hence o, < v < ¢* on J. This shows by the Corollary to Lemma 4.3 that ve Sy = So
and |Ji| = |J2| =0. Therefore (5.6) holds, and (5.7) holds, too. Thus (b) is obtained.

Consider the case when (5.3) is satisfied, and put b := G(v(—L)) — vo(—L); note
from Lemma 3.1 (iii) that b,, <b < G({,) — v{,. By the definition of v* and Lemma
5.2 (2) we observe that

by =G(d") —ve* > G(,_va,)—v({,_va.) (5.11)
and
O<v<yvy"
If b > b,,, then it follows from Lemma 3.1 (iii) and (5.11) that
6. <{,_vo.<n,_0b)<v<n,(b)<s onl,

so that v € Sp; hence the Corollary to Lemma 4.3 implies that v =0 and |/,| = |/2] =0,
and by the way b = G(v(—L)) < 0. From this argument we see that b = b,,, if v > 0.

Now, suppose under (5.3) that v=0. Clearly b, <b < 0. Also, it follows from
Lemma 3.1 (iii) and (5.3) that

0. <lo_va. <ny_(b)<v<ny (b)=0" onlJ.

This implies in (4.16) that |J;| = 0 or |J2| =0. Moreover, since I;(0,b) = 0 (cf. Lemma
3.2 (2)), we have consequently that |J;| = |J2| =0. Thus (cl) holds.

Next, suppose under (5.3) that 0 < v < v*. In this case, we have b = b,,, as was
already seen. Since b = b., > G({,_ v o.) — v({,_ v a.), it follows from Lemmas 3.1 (iii)
and 3.2 (2) that

0, <{_va.<n,_b)<v<n,, (b)=0¢" onJ

and I;(v,b) < 0. From (4.16) with these we derive (c2).
In the case of v =v* note from the definition of v* that

b=by =G({s_va.,) —V({_va.) =G(d")— Vv
This implies by Lemma 3.1 (iii) that

(oo Vo, =n,._(b) <v<n,..(b)=0c" onl.
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It is easy to see (5.8) (resp. (5.9)) from the relation {,._ > o, (resp. {,s_ <a.). Thus
(c3) i1s proved.
Assuming (5.4) is fulfilled, we can similarly prove (d). O

We should note that for each solution v of P all of the possible cases of its
expression are completely covered by Theorem 5.1. Also, we note that if |J;| = |J2| =0
in the expression T(I) or T(II), then v is a solution of (4.17), i.e. v e So.

REMARK 5.1. In case when g(v) = —cov for a positive constant ¢y, a similar
problem was studied and expressions for solutions were obtained by Blowey & Elliott
[2]. The above theorem gives some generalizations and improvements of their results.

6. Large time behaviour of the order parameter.

For the solution {u,w} of (PSC) on R,, we got in Theorem 2.3 that u(f) — uy
weakly in H'(J) as t — +c0. In this section we investigate the large time behaviour of
w(t).

THEOREM 6.1. Assume that (A1)-(A6) are satisfied as well as uy := (hy /no) € D(p).
Further assume that (3.1), (q1)-(q3) and (5.1) are satisfied. Let {u,w} be the solution of
(PSC) on R.. Then, the w-limit set w(uy,wp) is a singleton consisting of a solution v of
(4.17), ie w(up,wo) = {v} with v=0 or veSy. In this case w(t) — v in H'(J) as
t — 4o00.

Proor. By Lemma 5.1, under (5.1) we see that S* = {0} + Sy and it is a finite set.
Since w(u, wo) = S* and w(ug, wp) is connected in H'(J) by Theorem 2.3, the theorem
is concluded. O

Next, let us consider the complement of (5.1), namely,
0<o* <o, or {H_<o,<0, (6.1)

which is divided into (5.2), (5.3) and (5.4). In this case, let us further consider a
decomposition of the set S; in S$* = {0} + Sy + S;, as follows:

b
S1=3_ {810 + ST}, (62)
=1
where for each integer I =1,2,...,1k,S1(]) (resp. SI(})):={veS;; v is of T(I)
(resp. T(II)) and the number of all connected components of {x € J; v (x) # 0} is /}.
In fact, we observe from the expressions for solutions to P := P(o,,0";u,0) obtained
in section 5 that S!(/) and S](/) are compact in H!(J) for each /, and (6.2) holds
for some positive integer ly with [pinf{ly(v,b);v. < v <Vv* by, <b <0} <2L, since
0 < inf{Iy(v,b);v. <v <v*,boy <b <0} < +oo. Of course, S| and SH(/) may be
empty or a singleton, or contain a continuum.
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THEOREM 6.2. Assume that (A1)-(A6) are satisfied and u,, := (h«/no) € D(p), and
(3.1), (q1)-(q3), (6.1) are satisfied as well. Let {u,w} be the solution of (PSC) on R,.
Then one of the following two cases (6.3)-(6.4) holds:

w(ug, wy) is a singleton of an element in {0} + Sp, (6.3)
w(ug, wo) < Si(I) or S{(I) for some [ with 1 <1 <. (6.4)

Proor. Assume (6.3) does not hold. Then, since w(up,wp) is compact and
connected in S* = {0} + Sp + S; (cf. Theorem 2.3), it follows that w(u, wp) = Si and
more precisely (u, wo) = Si(I) or SI(I) for some /. Thus (6.4) holds. o

In the case of (6.3), w(t) converges in H'(J) to a solution of (4.17) as ¢t — oo, while
in the case of (6.4) w(¢) does not converge in H'(J) as t — oo, in general. As will be
seen in an example given below, in the case of (6.4) the large time behaviour of w(t) is
very slow with respect to time ¢ and w(z,-) may oscillate within a subinterval of J.

In the terminology of phase transition (6.4) says that the number of phase transition
layers is invariant for large ¢, though their locations change very slowly in time as
t — co0. In this sense, a pattern of pure phases and mixture is formed as ¢ — co.

ExamPLE 6.1. Consider the case where J:=(-2,2), ¢* = —0a. = (1/2), g(w) =
w3 —w, p(u) =u, A(w)=w and ng=1. Let z be the solution of

~KZyx+22—2z=0 in R,
z(0) =0,

-3

where x is chosen so as to satisfy that

K\ /2 dz
e =1
Ot

4 _2—+32J

Clearly, z, > 0 on (—1/2,1/2) and z,(—1/2) = z,(1/2) = 0.
Now, define a function vy on [-2, 2] by

(1 3
— for -2<x< — 5

2 2
z(x+1) for -——3-<x<—1
2 2
vo(x) = < -;— for —%st—;-,
z(x) for - <x < é,
2 2

3
—_ forESx_<_2.
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Vo
12

Figure 6

With p(7) := (1/4)sin(t + 7)"/* we define

w(t, x) := vo(x + y(1)) (6.5)

and

X

u(t.3) 1= (0 || |unls + 0 + 5 o (6.6)

0
for xe[—-2,2] and > 0. Then we calculate that
(u+w), —u = f(t,x) ae.in Q:=(0,40) x (-2,2),

W, — {*“K'Wxx + é + W3 - W u}xx =0 ae. in Q7

and
Eedl_ipy(w) ae in O,
where
703 = =0 | oo+ 5(0) + 5] 5 = (0 Plooer + 5(0) ~ wa(x(0)
+ 2/ (00 + (1)
and
(0 orxe (F-0.-3-50)u (3503 -50)
) =S 3-5  forxe |3-305-50)]
\ %+% for x e [—2, 3 y(t)] U B —y(z),2]



518 A. Ito and N. KENMocHI

Moreover, the following initial boundary conditions are fulfilled:

tu(t, +2) +u(t, +2) = hy (1) == —y’(t)JlL2 {vo(s+y(t)) +%] ds fort>0,
0

wel(t, +2) = [—kwe +E4+ W —w —u(t, £2) =0 for 1 >0,

and

X

up(x) = _y’(O)J {vo(s—}-y(O)) +%J ds, wo(x)=uvo(x+ y(0)) on (-2,2).

0

The data satisfy all the conditions (Al1)-(A6) with u, = h, =0 as well as (3.1),
(q1)—-(q3) and (5.2). As was checked above, the pair of functions {u, w} given by (6.5)
and (6.6), is the solution of our problem (PSC). Also, we see that

(i, wo) = oo+l < 7},

which shows that w(up,wp) contains a continuum of solutions to the corresponding
stationary problem.
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