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1. Introduction.

The index theory for type II;, factors was initiated by V. Jones [11] and the
classification of subfactors has been studied by many people ([4], [8], [9], [10], [12], [13],
[15], [16], [17, 18], [24], etc.). A. Ocneanu [22] introduced the concept of a paragroup
to classify subfactors. By using the so-called standard invariants equivalent to the
paragroups, S. Popa [27], [26] classified subfactors under more general conditions. The
paragroups or the standard invariants for an inclusion of type II; factors with finite
Jones index is a group like object which generalizes finite groups. So the theory of
finite groups may be considered as part of the index theory for an inclusion of type II;
factors with finite Jones index. It is well known that if a: G — Aut(N) is an outer
action of a finite group G on a type II; factor N and K is an intermediate subfactor for
N = N X, G, then there is a subgroup H of G such that K = N <, H (see for instance
[21]). On the other hand, Y. Watatani [33] showed that there exist only finitely many
intermediate subfactors for an irreducible inclusion with finite index. So it 1s natural to
consider intermediate subfactors as ‘“‘quantized subgroups” in the index theory for an
inclusion of type II; factors. The notion of normality for subgroups plays an important
role in the theory of finite groups. In this paper we introduce the notion of normality
for intermediate subfactors of irreducible inclusions.

D. Bisch [1] and A. Ocneanu [23] gave a nice characterization of intermediate
subfactors of a given irreducible inclusion N < M in terms of Jones projections and
Ocneanu’s Fourier transform & : NN M; — M'NM,. We define normal intermediate
subfactors as follows:

DEeFINITION. Let N = M be an irreducible inclusion of type II; factors with finite
index and K an intermediate subfactor of the inclusion N =« M. Then K is a normal
intermediate subfactor of the inclusion Nc M if exe Z(N'NM;) and F(ex) €
% (M' N M,), where ex is the Jones projection for the inclusion K < M.

Every finite dimensional Hopf C*-algebra (Kac algebra) gives rise to an irreducible
inclusion of AFD II; factors, which is characterized by depth 2 (see for example [23],
[30], [31], [36]). Let M be the crossed product algebra N X H of N by an outer action
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of a finite dimensional Hopf C*-algebra H. Unfortunately, there is no one-to-one
correspondence between the intermediate subfactors of N « M and the subHopf C*-
algebras of H in general. But we get the next result:

THEOREM. Let N = M be an irreducible, depth 2 inclusion of type 11, factors with
finite index, i.e., M is described as the crossed product algebra N X H of N by an outer
action of a finite dimensional Hopf C*-algebra H. Let K be an intermediate subfactor of
N © M and ek is the Jones projection for K « M. Then K is described as the crossed
product algebra N X K of N by an outer action of a subHopf C* algebra K of H if and
only if ek is an element of the center of the relative commutant algebra N' N My where M,
is the basic extension for N c M.

Let N = M be an irreducible inclusion of type II; factors with finite index and M,
the basic extension for N < M. Let K be an intermediate subfactor of N < M and K|
the basic extension for K <« M. Then K, is an intermediate subfactor of M < M.
For the Jones projections ex and ek, for the inclusions K < M and K; < M,
respectively, since & (ex) = Aeg, for some scalar 4, we get the next theorem:

THEOREM. If the depth of a given irreducible inclusion N c M is 2, then an
intermediate subfactor K of N < M is normal in N < M if and only if the depths of
N cK and K =« M are both 2.

The author [32] showed that if M is the crossed product N X G of type 1I; factor N
by a finite group G and K is given by N X H, then H is a normal subgroup of G if and
only if (K « M) ~ (K < K % F) for some finite group F, i.e., the depth of K < M is 2.
Hence we see by the previous theorem that H is a normal subgroup of G if and only if
K is a normal intermediate subfactor of N =« M. Therefore our notion of normality for
intermediate subfactors is an extension of that in the theory of finite groups.

We show that if the depth of N = M is 2, then the set of all normal intermediate
subfactors of N = M is a sublattice of intermediate subfactor lattice for N < M and we
have the Jordan-Dedekind chain condition holding in normal intermediate subfactor
lattices.

ACKNOWLEDGMENTS. I should like to express my gratitude to Professor Hideki
Kosaki for helpful advice and suggestion about examples of normal intermediate
subfactors and non normal ones (group type inclusion, strongly outer action, etc.). And
I should like to thank Professor Yasuo Watatani for fruitful discussions, may useful
comments and constant encouragement. I also thank Professor Yoshihiro Sekine and
Professor Takehiko Yamanouchi for useful comments.

2. Preliminaries.

2.1. Intermediate subfactors.
We recall here some results for intermediate subfactors. Let N <« M be a pair of
type II; factors. We denote by (N < M) the set of all intermediate von Neumann
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subalgebras of N =« M. The set Z(N < M) forms a lattice under the two operations
v and A defined by

K1 VK2 = (K1 UKz)” and Kl /\K2 = K] nKz.

If the relative commutant algebra N’ N M is trivial, then £ (N < M) is exactly the lattice
of intermediate subfactors for N < M. In fact for any Ke (N c M), Z(K) =
KNK<cNNM=C. If Mis the crossed product N >, G for an outer action o of a
finite group G, then it is well known that the intermediate subfactor lattice #(N < M)
is isomorphic to the subgroup lattice £ (G) (see [20], [21]). In [33] Y. Watatani proved
the next theorem.

THEOREM (Watatani). Let N < M be a pair of type 11; factors. If [M : N] < o
and NNNM = C, then (N <= M) is a finite lattice.

This theorem was also shown by S. Popa implicitly [25].

From now on we assume that [M:N] <o and NNM=C. Let Nc Mc
M c M, be the Jones tower of N = M obtained by iterating the basic extension. Let
ey € M| and ej; € M, be the Jones projections for N « M and M < M, respectively.
We denote by &, Ocneanu’s Fourier transform from N'N M; onto M'N M, ie.,

F(x) = M : N|PEY (xepen), xeN'NM,,

where EY, is the conditional expectation from N’ onto M’. For K € Z(N < M), if e
is the Jones projection for K = M, then ex is an element of N'NM;. In fact
K] = <M,6K> = JMK'JM (e JMNlJM = M1 and hence ex eK’ﬂKl (e N’an.

D. Bisch [1] and A. Ocneanu [23] gave the next characterization of intermediate
subfactors in terms of Jones projections in N'N M.

THEOREM (Bisch-Ocneanu). Let p be a projection in N'NM,. There exists an
intermediate subfactor K € (N < M) such that p = ex if and only if

(1) D = en,
(2) Z(p) = Aq for some i€ C and some projection g€ M' N\ M.
In this case, q is the Jones projection ek, for K| < M.

For the convenience, we prove the next lemmas (see for example [1], [29]).
LeMMA 2.1. With the above notations, we have
ex = [K : N|[M : N|Ejf*(emenex,),
where Eﬁf is the trace preserving conditional expectation from M, onto M.

PrOOF. Since ey <eg,, we have eyenyex, = eyexenek, = eMEIIg‘ (en). Since
M, M M
Ey'(en)ex = Ex'(enex) = Ex/'(en), we have by [24]
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E}gl (eN) = [M : K]Efll (E;gl (eN)eK)eK

(M : K]

= [M : K|EM (ex)ex = TN

o
“K-NK

Therefore we have eyenyex, = (1/[K : N])eyex. And hence we have

1
K : N|

1
K:N|[M:N

ng(eMeNeK,) = EAAff(eM)eK = [ ]eK.

We get the result. []

LeMMA 2.2. Let K be an intermediate subfactor for Nc M. Let Kc M c
KicK, and Nc M c M, c M, be the Jones towers for K< M and N c M,
respectively. If ek, is the Jones projection for Ky — M, then there exists a *-isomorphism
0 of Ky onto ex, Maex, such that p(x) = xek, for x € K| and p(ef}) = err, where e%} and

ey are the Jones projections for M — Ky and M <= M, respectively.

ProOF. Since e, € K] =« M’ on L?(M,), it is obvious that (M < K;) ~ (Meg,
Kiek,). Therefore it is enough to show that ex, Msek, is the basic extension for Meg, =
Kjek, with the Jones projection ep. By the fact that ey = eg epek,, ey is an element
of ex, Mhek,. Let K, be the basic extension for K; = M;. Since eKIIZZeK1 = Kjeg,, we
get by the proof of Lemma 2.1,

ex, Mae ex, Mae M.
I(I?e,{l2 “(em) = 6:11152;:‘ (em) = ex, Eg’ (em)ex
= EM:(e)) = _1
£ (3,74 [M:K]eKl.

We can see that Meg, = (K1 N {exm} )ex, = Kiex, N{eyp}. Therefore ex, Myek, is the
basic extension for Megk, < Kjex, by [24]. [

2.2. Finite dimensional Hopf C*-algebras.

In this subsection we recall some facts about finite dimensional Hopf C*-algebras.

Let H be a finite dimensional Hopf C*-algebra with a comultiplication Ay and an
anti-pode Sy. Let K be a subHopf C*-algebra of H, i.e., K is a *-subalgebra of H,
Su(K) cK and Ax(K) cK®K.

LemMA 2.3. Define the subset Kt of H* by
K = {f e H*|(f, k) = 0,Vk e K},

where (,):H*xH — C is the dual pairing defined by (f,h)=f(h), feH"  heH.
Then Kt is an ideal of H*.



Normal intermediate subfactors 473

PrROOF. Let g be an element of K* and f an element of H*. Then the element gf
of H* is determined by the equation

(af,h) = (9®f, Au(h)), VheH.
By virtue of Ax(K) c K®K, we get
(af, k) =(g®f, Au(k)) =0, VkeK.
Therefore gf is an element of K*. Similarly, fgeK*. [

By the above lemma, there exists a central projection p € H* such that K+ = pH*,
We put ex =1 —p.

PROPOSITION 2.4. With the above notation, the reduced algebra exH* is the dual
Hopf C*-algebra of K.

ProOF. Suppose that ke K and (y,k) =0,Vy e ekH*. Then

(f,k)=(exf,k)+(pf,k)=(er,k)=0, VfEH*.

Therefore k =0. Conversely, suppose that yeexH* and (y,k) =0,VkeK. Then
ye Kt NexH* = {0}. Hence the form (, )| u-xk establishes a duality between K and
exkH*. So we can identify exkH* with K*. Then for y e K* and ki,k; € K, we have

(v kik2) = (A (), k1 @ k2) = (Am: (¥)(ex ® ex), k1 @ k).

Hence Ak-(y) = An-(y)(exk ® ex). Similarly, we have Sk. = Sy k- by the fact that

(v, k*) = (Su-(»), k), VyeK', Vkek.
Therefore exH* is again a Hopf C*-algebra with the dual algebra K. [J

THEOREM 2.5. Let H be a finite dimensional Hopf C*-algebra. The number of
subHopf C*-algebras of H is finite.

Proor. By the above proposition, the map K +— egx from the set of subHopf C*-
algebras of H to central projections of H* is injective. Since the number of central
projections of H* is finite, so is that of subHopf C* algebras of H. []

REMARK. Since every finite dimensional Hopf C*-algebra (Kac algebra) admits an
“outer” action on the AFD II; factor [36], the above theorem immediately follows from
[33, Theorem 2.2].

DerINiTION. Let H be a Hopf algebra.
(1) The left adjoint action of H on itself is given by

(adih)(k) =Y hik(Su(h2)), for all hk € H.
()
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(2) The right adjoint action of H on itself is given by

(ad,h)(k) = > (Su(hi))kha, for all h,k € H.
(h)
(3) A subHopf algebra K of H is called normal if both (ad/H)(K) < K and
(ad,H)(K) < K hold. (See [19, pp. 33].)
The next proposition will be useful later.

PROPOSITION 2.6. Let H be a finite dimensional Hopf algebra with a counit ey and
K a subHopf algebra of H. Then K is normal if and only if HKY = KtH, where
K" = KNkerey.

See for a proof [19, pp. 35].

2.3. Bimodules.

In this subsection we recall some facts about the bimodule calculus associated with
an inclusion of type II; factors (see for example [23], [34]).

Let A, B, C be type II; factors and let « = 4Hp, f = 4Kp, y = pLc be A-B, A-B
and B-C Hilbert bimodules, respectively. We write ap for the A-C Hilbert bimodule
4Hp ®gpLc. We denote by (a, f) the dimension of the space of A-B intertwiners from
4Hp to 4Kp. The conjugate Hilbert space H* of 4Hp is naturally a B-4 bimodule with
B-A actions defined by

b-& - -a=(a*th*)" forae A and be B,
where & = (., ¢>y e H* for e 4Hg. We denote by & the conjugate B-4 Hilbert

bimodule associated with o.

ProrosiTION 2.7 (Frobenius reciprocity). Let A, B, C be type 11, factors, and
o= 4Hp, f=pKc and y = 4Lc be Hilbert bimodules. Then

o, > = {a, B> = B, ap).
See for a proof [23], [34].

ExaMPLE 2.8. Let M be a type II; factor with the normalized trace 7). As usual
we let L>(M) be the Hilbert space obtained by completing M in the norm
Ixl, = v/Tu(x*x), xe M. Let n: M — L?(M) be the canonical implementation. Let
J: [*(M) — L?>(M) be the modular conjugation defined by Jy(x) = (x*), xe M. For
6 e Aut(M), we define p(L*(M)g)p, the M-M Hilbert bimodule, by

(1) m(L*(M)g)y = L>(M) as a Hilbert space,

(2) x-&-y=xJO(y)'JE, x,ye M, £ e L*(M).

Then for 6,0,,0, € Aut(M) we have

m(LAM)o)m = m(L*(M)g1)m
M(Lz(M)31 )M @ M(LZ(M)92)M = M(LZ(M)gng)M.
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A bimodule « = 4Hp is called irreducible if (x,a) =1, i.e., End4.p(4Hp) ~C. If
{a,a) < o0, « = 4Hp, then we can get an A4-B irreducible bimodule by cutting 4Hpg by a
minimal projection in End,.p(4Hp).

ExaMPLE 2.9. Let N < M be an inclusion of type II; factors. We define the N-M
bimodule yL*(M)ys by actions x-& -y = xJy*JE e L’ (M), xe N, ye M. Then we
can see that End(yL?(M)y) ~ N'N M. In particular, if N'N M = C, then yL*(M)yy is
an irreducible N-M bimodule.

The next lemma is well known.

LeMMA 2.10. Let N = M be a pair of type 11, factors with finite index and M, the
basic extension for the inclusion N = M. For §e Aut(N), n(L*(M)g)ny ~ nL*(M)n if
and only if there exists a unitary ue My such that uxu* = 6(x), for all x e N, where
N(L2(M)g)n (= L*(M) as a Hilbert space) is defined as in Example 2.8.

ExaMmpLE 2.11. Let y: G — Aut(N) be an outer action of a finite group G on a
type II; factor N. Let M = N X, G be the crossed product and p the N-M bimodule
~L*(M) s defined as in Example 2.9. If {4,|g € G} is a unitary implementation for the
crossed product, then each element x € M is written in the form x =} _; X444, X5 € N.
This implies that the irreducible decomposition of pp = yL?(M)y is

D v(VI, )y =~ @ N(LA(N);,)ns

geG geG

where N(LZ(N)yg)N is the N-N bimodule as in Example 2.8.

3. Definition of normal intermediate subfactors.

In this section, we shall introduce the notion of normality for intermediate sub-
factors and study its properties.

Let Nc M be a pair of type II; factors with [M:N]<o. Let NcMc
M; < M, be the Jones tower of N < M, obtained by iterating the basic extensions. We
denote by %, Ocneanu’s Fourier transform from N’'N M; onto M'NM,, ie.,

F(x) = [M : N|732EN, (xepmen), xeN'NM;,
where EJ, is the conditional expectation from N’ onto M’

DEerFINITION 3.1. Let K be an intermediate subfactor of N « M and ex the Jones
projection for the inclusion K < M. Then we call that K is normal in N < M if ex and
Z (ex) are elements of the centers of N'NM; and M’'N M,, respectively.

Lemma 3.2. Let K be an intermediate subfactor for an irreducible inclusion N < M
of type 11y factors with finite index. Let K; and M, be the basic extensions for K ¢ M
and N c M, respectively. Then K is normal in N < M if and only if K, is normal in
Mc M.
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PrROOF. Since % (ex) = Aek, for some A€ C, it is obvious by the definition. []

PRrOPOSITION 3.3. Let o: G — Aut(P) be an outer action of a finite group G on a
type 11, factor P and H a subgroup of G. Let M be the fixed point algebra PH*) and N
the fixed point algebra P(%. For K € #(N < M), there is a subgroup A of G such that
Hc Ac Gand K = P4, Then K is a normal intermediate subfactor of N = M if and
only if AgH = HgA for Ng € G. In particular, K is normal in N < P if and only if A is a
normal subgroup of G.

Proor. Let {u,|g € G} be unitary operators on L?(P) defined by u,n(x) = n(ay(x)),
x € P, where L?(P) and # are defined as in Example 2.8. Let P; be the basic exten-
sion for N = P. Then N'NPy={}, ;Xtylxs€ C} =~ CG. Let ej; be the Jones
projection for M = P. Then e}, = (1/*H) Y ,.;yur. Let M; be the basic extension
for N M. Then by Lemma 2.2,

N NM; ~ el (N'NP))ef; = {Z > xgunge|xg € C}.
geG hkeH
Therefore

1
eMe F(N'NM)) & efelel <= ef = ﬂz ua) e Z(el (N'NPefy)

acA

@Z Z uahgk———z Z Ungka fOT Vg € G

acA hkeH acA hkeH
< AgH = HgA for Vg € G.
Since M'N M, is a commutative algebra, we get the the result. []

We obviously have the dual version of this proposition by Lemma 3.2.
In [33] Y. Watatani introduced the notion of quasi-normal intermediate subfactors
to study the modular identity for intermediate subfactor lattices.

DerINITION. Let N < M be an inclusion of type II; factors with finite index and K
an intermediate subfactor of N < M. Then K is quasi-normal (or doubly commuting) if
for any Le (N c M),

K c KvL
U U
KAL c L

and

Kl [ K1 VL]

Kl /\L1 c L]
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are commuting squares (see for example [5]), where K; and L, are the basic extensions
for K €« M and L c M, respectively.

PrROPOSITION 3.4. Let N =« M be an irreducible inclusion of type Il factors with
finite index. If K is a normal intermediate subfactor of N < M then K is quasi-normal in
NcM

ProoOF. Suppose that the Jones projection ex for K « M is an element of the center
of NN M;. Then for any intermediate subfactor L of N — M, since the Jones pro-
jection eVl for K < (Kv L) is also a central projection in K'N (K v L),, we have

K c KvL
U U
KAL c L

is a commuting square. Similarly, if % (egx) is an element of the center of M'N M,
then
K, c KivL;
U U
K] N L1 C Ll

is a commuting square. Therefore if K is normal in N < M, then K is quasi-normal.

O

We have a characterization of normal intermediate subfactors in terms of bimodules.
Let K be an intermediate subfactor of an irreducible inclusion N = M of type II; factors
with finite index. We note that ex is in the center of N'N M; if and only if for any
T € End(yL*(M)y), TL*(K) < L*(K).

PropoSITION 3.5. Let K be an intermediate subfactor for an irreducible inclusion
N < M of type 11, factors with finite index. Let a be the N-K bimodule yL*(K)g and B
the K-M bimodule xL*(M)y. 1If p is the N-M bimodule off = yL*(M)y, then K is
normal in N < M if and only if

(1) <o& pp) = <o, a&,

(2) <BB,Bp> = <Bp, B

Proor. Since End(yL*(K)y) = N'N{N,ek> ~ ex(N'N M;)ex by Lemma 2.2, if
ex is an element of the center of N'N M, then for any irreducible N-N bimodule &
contained in a&, the multiplicity of ¢ in a& is equal to the multiplicity of ¢ in pp.
Therefore we have {ad, pp> = {a&,ady. Conversely, suppose that ex is not an element
of the center of NN M;. Then there exist minimal projections p ~ ¢ in (N’ N M;) such
that p e ex(N'N M) )ex and q ¢ ex(N' N M;)ex. Therefore we have {ad, pp) # {ad, ad).
And hence ex is an element of the center of (N'NM;) if and only if <ad&, pp) =
{ad,ady. Similarly, we can see that ek, is an element of the center of (M’ N M;) if and
only if {8, pp> = (BB, BB). Since F (ex) = Aek, for some i e C, we get the result. []
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THEOREM 3.6. Let K be an intermediate subfactor for an irreducible inclusion
N < M of type 11, factors with finite index. If the depths of N =« K and K =« M are
both 2, then K is normal in N <« M.

ProoF. Let o be the N-K bimodule yL?*(K)x and B the K-M bimodule
xL*(M)y. By the assumption, we have

gt~ PaP---Pa

[K:N] times

and
pBB~pof®---®B.

[M:K] times

And hence {ad,ad) = {ada,a) = [K : N] and {BB, B> = {BBB, B> = [M : K] by Fro-
benius reciprocity. Since N < M is irreducible, if p is the N-M bimodule
NL2(M) (= af), then 1 = (p, p> = {af,af) = {ax, ff>. And hence we have

<O((i, Pﬁ) = <w—x-7 aﬂB&> = (a&a,aﬂﬂ_)
= [K : N<o, afif> = [K : N|<aa, BB> = [K : N],

ie., (ad, pp> = {ad,a&y. Similarly, we have (88, pp> = (BB, BB>. So we get the result
by Proposition 3.5. []

ProposSITION 3.7. Let My, Ny, K be intermediate subfactors for an irreducible inclu-
sion N ¢ M of type 1) factors with finite index such that Nc Nyc K ¢ Mo M. If
K is normal in N =« M, then K is also normal in Ny = M.

ProoF. Let o= yL*(K)k, a0 = nL*(K)k, f=kL*(M)y and By = xL*(Mo),,.
Since

of = yL*(K)k @k kL*(K)n = nL*(K)x ® xL*(K)x ®k xL*(K)n,

we have {ad,ad) = {dada,xL?(K)x)> by Frobenius reciprocity. Since (ad,affay =
{od,ad)y by the assumption, we have {&Gadux, B> = {dada, xL*(K)k), i.e., the irreducible
K-K sub-bimodules of dada contained in ff is only xL*(K)k. Since &g is contained
in aa and BB, is contained in BB, we have {Foagdoo, Bofy) = {Fododoxo, xL*(K)k), i.e.,
ooy, %o BoBodo) = {dodo, %doy. By the same argument, we have {Byf,, Bodo® B> =
{BoBos BoBy>. We have thus proved the proposition. []

4. Normal intermediate subfactors for depth 2 inclusions.

It is well-known that the crossed product of a finite dimensional Hopf C* algebra
(Kac algebra) is characterized by the depth 2 condition. In this section we study normal
intermediate subfactors for depth 2 inclusions.
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4.1. The action of X' NK; on M.

Let N < M be an irreducible, depth 2 inclusion of type II; factors with finite index.
Let N M < M; «c M, be the Jones tower for N =« M. We put A =N NM; and
B=MNM, Then A and B are a dual pair of Hopf C*-algebras with pairing

(a,b) = [M : N*t(aepenb), foraec Aandbe B,

where ey and ej, are the Jones projections for N =« M and M < M, respectively.
Define a bilinear map 4 x M — M (denoted by a © x) by setting

a®x=[M : NE¥ (axey),
for xe M and ae A. This map is a left action of Hopf C* algebra 4 and
N=M"*"={xeM|a® x = ¢(a)x, Va € A},
where ¢: 4 — C is the counit determined by aey = e(a)ey (see [31]).

PROPOSITION 4.1. Let K be an intermediate subfactor of N < M and K, the basic
extension for K <« M. We put H=K' NK,. If ais an element of H, then

[M : K|EXi (axex) = [M : NJEM (axey), VxeM.
This implies K = M¥ = {x e M|a® x = ¢(a)x, Vae H}.
ProoF. Since ex = ([M : N]/[M : K])E}g‘ (en) by [29], we have

(M : N|

[M : K|EX (axex) = [M : K|EXN (ax MK

Eljgl (eN))
=[M: N]Eff,1 (E,J‘él (axen))
= [M : N|E! (axey)

for Vae H and Vxe M. []

4.2. Hopf algebra structures on X' NK;.

Let N = M be an irreducible, depth 2 inclusion of type II; factors with finite index
and K an intermediate subfactor of N =« M. Then the depth of K = M is not 2 in
general. In this subsection we shall prove that if the depth of K < M is 2, then
H = K'NK; is a subHopf C* algebra of 4 = N'N M,.

By Lemma 2.2, there exists an isomorphism ¢ of K, onto e, Mjek, such that
@(x) = xek, for x € K; and (p(eAKj) = ey, where K ¢ M < K < K; is the Jones tower for
the inclusion K < M and efl' is the Jones projection for M c K.

LEmMMA 4.2. With the above notation, we have
M : K)*t(heXiexk) = [M : NP*t(hepreno(k))

for Vhe H=K'NK; and Yk e M'NK;.
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ProOF. By the fact that ex eyeg, = E,jg‘ (en)ex, = ([M : K]/[M : N))egek,, we have
plex) = exex, = ([M : N]/[M : K])ex,enek,. Therefore

[M : K*t(heXiexk) = [M : KI*[K : N]t(p(heXiexk))

= [M: KK : N] % JIQ w(p(h)emex,enex, 9(K))

= [M : NPx(heweno(K)). =

LemMMa 4.3. Let N = M be an irreducible, depth 2 inclusion of type Il factors with
finite index and K an intermediate subfactor for N M. Let Nc M < M; < M, and
Kc Mc Ky K, be the Jones towers for N = M and K = M, respectively. If the
depth of K = M is 2, then for any b € M' N\ M>, there exist elements {x;},{y:} of N'N M,

such that
b=> xiemy:
i

and

> E (xiemER (yi) € (K' N Ki)ew(K' N K1),
i

where E}g‘ is the trace preserving conditional expectation from M, onto K.
PrOOF. Since the depth of N <« M is 2,
(N’an)eM(NIﬂM]) =N’ﬂM2.

And hence any element b € M’ N M, is written in the form

b= xemy, x,yi€N'NM.
i

Since the depth of K =« M is 2,
(K'NK)el (K'NKy) = K'NKs,

where efl‘ is the Jones projection for M < K;. By Lemma 2.2, we have

(Kl N K] )eM(K' n Kl) = €k, (KI N Mz)eKl .

Therefore we have
ek, bex, = ek, (Z x,-eMy,-) ex,
7
— M, M] y) ’
=" EM (x)emES () € (K' N K)ew (K' N Ky).

We have thus proved the lemma. [J
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PROPOSITION 4.4. Suppose that N = M is irreducible and the depth of N = M is 2.
Let K be an intermediate subfactor for N ¢ M and K, the basic extension for K < M.
If the depth of K =« M is 2, then H = K'NK, is a subHopf algebra of A = N'N M.

Proor. Let S4 be an antipode of 4, i.e., S4: A — A is an anti-algebra morphism
determined by

(S4(a),b) = (a*,b*) for Vae Aand Vbe B= M'NM,.

Since BeyB = N'N M, by the assumption, for any a € 4 there exist x;, y; € B such that
a=Y,xieyy;i. Then S4(a) =), yienx; (see for example [31]). By the assumption and
Lemma 4.2, H and B,, = ex,Bek, are a dual pair of Hopf algebras with pairing

(h,k) = [M : N)*t(hesenk) for Yh e H and Vk € B, .

By the fact that g(ex) = ([M : N]/[M : K])ek,enex,, for he H there exist s, € B,
such that hex, = p(h) = ) _, S»ent,, Where ¢ is defined in Lemma 2.2. Then for Vb € B,
we have

(S4(h),b) = (h*,b*) = [M : N)*z(beneh)

= [M : N> t(benemsnentn)
= [M : N> <(bEjp (emsn)ents)
= [M : NI " t(essn)t(bentn)

= [M : N> t(ensn)(btn).

n

Since Sy (h)ex, = Su, (hek,) =, tensn by the fact that ex, € H', we have, for Vb € B,

CKI

(Su(h),b) = [M : N]ZT(SHeKI (hex, )errenb)
=[M: N]2 Z T(thensnerend)
n
= [M : N1 t(snen)t(tub).
n
Therefore we have S4(h) = Su(h) € H, ie., S4(H) < H.
Let 44 be the comultiplication of 4, ie., 44: 4 — A® A is determined by

(a,blbz) = (AA(a),bl ® b2) for Vbl,bz € B.

For h e H, we denote 4,4(h) by Z(h) hay ® h). Since ey = ex ey and ex, h = heg,, we
have

(h,b) = [M : N)*t(hex, errenb)
(4.1) = [M : N]zr(heMereKl)
= (h, beg,) for Vh € H and Vb € B.
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Since eg, is an element of the center of B by the proof of Theorem 3.6, we have
(h,b1b2) = (h, biex,brex,) = (44(h), brex, ® baex,)

= (hq), biex,) (he), baex;)
(k)

= Z [M : N]zr(eth(l)eMerl)[M : N]ZT(ethQ)eMerz)
(h)

= Z (Eljgl (h(l)),bl)(Eljgl (h(z)),bz), for Vbl,bz € B.
(h)

Since ), Sa(hqy)emh(z) € B by [31], we have 4,(H) = H® H by Lemma 4.3. We
have thus proved the proposition. []

THEOREM 4.5. Let N = M be an irreducible, depth 2 inclusion of type 11, factors
with finite index and K an intermediate subfactor for Nc M. Let Nc M c M, c M,
and K ¢ M c K| c K, be the Jones towers for N ¢ M and K — M, respectively. Then
the depth of K < M is 2 if and only if ek, is an element of the center of M' N\ M,, where
ek, is the Jones projection for K; c M.

PrOOF. Suppose that the depth of K < M is 2. Then by the proof of Theorem
3.6, ek, is an element of the center of M'N M,.

Conversely, suppose that e, is an element of the center of M’ N M,. Then for any
he H=K' NK;, we have

(S4(h),b) = (h*,b*) = [M : N)*t(beyerh)
= [M : N)*t(ex,bex, enerh)
= (S4(h),ex,bex,) forVbe B= M NM,
and hence S4(H) < H. Similarly, for any h e H, we have
(44(h),x ®y) = (h,xy) = (h, ek, xexk, yex,)
= (44(h), ek, xex, ® ex,yex,) forVx,ye M'N M,,

and hence A4 (H) « H® H. Therefore H is a subHopf algebra of N'NM,;. By
Proposition 4.1, we have K = MH. So the depth of K< M is 2. [

We obviously have the dual version by Lemma 3.2.

REMARK. Later we noted by the referee that this theorem follows from the next
characterization of depth 2 inclusions by bimodules: Let N =« M be an irreducible
inclusion of type II; factors with finite index and p the N-M bimodule yL?(M)y.
Then the depth of N « M is 2 if and only if for any irreducible bimodule yXx < pp,
dimy X = <X, pp).
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THEOREM 4.6. Let N < M be an irreducible, depth 2 inclusion of type 11, factors with
finite index and K an intermediate subfactor for N < M. Then K is a normal inter-
mediate subfactor of N ¢ M if and only if the depths of N c K and K < M are both 2.

Proor. This immediately follows from Theorem 4.5 and Lemma 3.2. []

THEOREM 4.7. Let N < M be an irreducible, depth 2 inclusion of type 11y factors
with finite index and K an intermediate subfactor for N <« M. Then K is a normal
intermediate subfactor of N =« M if and only if K'N K, is a normal subHopf algebra of
N'N My, where K, and M, are the basic extensions for N = M and K = M, respectively.

PrOOF. Suppose that K is a normal intermediate subfactor of N =« M. Then
H = K'NK; is a subHopf algebra of 4 = N'N M; by Proposition 4.4. Let ¢y is a
counit of H. Then xex = ey (x)ex for x € H. Therefore H" = H Nkereyg = H(1 — ek).
Since (1 — ek) is an element of the center of 4 by the assumption, we have H*4 = AH™.
Hence H is a normal subHopf algebra of 4 by Proposition 2.6. Conversely, we suppose
that H is a normal subHopf algebra of 4. Then by Proposition 4.4 and Theorem 4.5,
ek, is element of the center of M’ N M,. Since H* = H(1 — ex), we have (1 —e;)4 =
A(1 — ek) by Proposition 2.6. This implies ex is an element of the center of N'N M
and hence K is a normal intermediate subfactor of N« M. [J

4.3. Lattices of normal intermediate subfactors.

Let N € M be an irreducible, depth 2 inclusion of type II, factors with finite
index. In this subsection we shall prove that the set of all normal intermediate
subfactors of the inclusion N < M, denoted by A (N < M), is a sublattice of
& (N < M). Moreover, /(N < M) is a modular lattice.

LeMMA 4.8. Let L and K be intermediate subfactors of N ¢ M and L, and K, the
basic extensions for L ¢ M and K — M, respectively. Then the basic extension (L AK),
Jor (LAK) < M is Ly v K; and the basic extension (LvK), for (LvK)c M is L AK].

ProOF. By the fact that (LNK) = (L'UK")", we have
(LAK), =J(LAK)J =L, vK.
Similarly, by the fact that (LUK) = L'NK’, we have
(LvK), =J(LUK)J =L, n K. O

We note that if we denote by e4 the Jones projection for 4 < M, then for
L Ke (N c M), we have e  ,x =er Aex. But er,x # er veg in general (see [29]).

THEOREM 4.9. Let N c M be an irreducible, depth 2 inclusion of type 11; factors
with finite index. Then the set of all normal intermediate subfactors A'(N < M) is a
sublattice of (N < M).

Proor. Let L and K be normal intermediate subfactors of N < M. Since e; and
ex are elements of the center of N'N M; by the assumption, we have e, .x = eL Aek €
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Z(N'0NM,) by the above argument. Observe that

(LVvK)YN(LvK), =(L'NL)N(K'NKy).
Since L' N L; and K’ N K, are invariant under the left and right adjoint action of N/ N M,
(see Definition in 2.2), so is (Lv K)'N(LvK),. Therefore we can see that (LvK)'N
(LvK), is a normal subHopf algebra N'NM; by the definition. Since LvK is a
normal intermediate subfactor of N =« M by Theorem 4.7, we have e, , x € Z(N' N M}).
Applying the same argument for the dual inclusion M < M;, we conclude that LA K
and Lv K are normal intermediate subfactors of N =« M. []

COROLLARY 4.10. Let N = M be an irreducible, depth 2 inclusion of type 11, factors.
Then /(N < M) is a modular lattice.

Proor. This immediately follows from Proposition 3.4, Theorem 4.9 and [33,
Theorem 3.9]. [

We recall here Jordan-Dedekind chain condition. In a lattice L, a finite chain
X=Xx)2x; 2 -2 x4 =y 1s maximal if x; 2 x;;; and x; 2 a 2 x;;; implies x; = a or
xip1=a for i=1,2,...d - 1.

JORDAN-DEDEKIND CHAIN CoNDITION: All finite maximal chains between two ele-
ments have the same length.

THEOREM 4.11. Let N « M be an irreducible, depth 2 inclusion of type Il factors
with finite index. Then the normal intermediate subfactor lattice /(N = M) satisfies the
Jordan-Dedekind chain condition.

ProOF. Since we have the Jordan-Dedekind chain condition holding in modular
lattices, this immediately follows from the previous corollary. (see for example [7].) [

ExamPLE 4.12. We denote by S, the symmetric group on n letters, x1,x2,...,Xn
and o= (1,2,3,...,n) the element of S, with order n and <o) the cyclic group
generated by 0. Let y:S, — Aut(P) be an outer action of S, (n>3) on a type II;
factor P and let N =Pl c M =P x,S, 1. Then we can see that S, =S, (o) =
{o)Sp-1 and S,_1 N<a) = {e}. Therefore the depth of N = M is 2 (see [28, 35]). We
put K =P X, A, |, where 4, | is the alternating group consists of the even per-
mutations on xj,X,...,Xx,—1. If n (=5) is odd, then the length of /(N < M) is 3 and
if n (=4) is even, then that is 2 (we shall show this fact later in Example 5.4).

5. Some examples.

In this section we shall give some examples of normal intermediate subfactors and
non normal ones.

5.1. Group type inclusions.
Let y : G — Aut(P) be an outer action of a discrete group G on a type II; factor.
Let A and B be finite subgroups of G such that ANB = {e}. Let N be the fixed
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point algebra P(4?) and M the crossed product P <, B. Then N = M is an irreducible
inclusion by [2] and P is normal in N =« M by Theorem 3.6. In this subsection we
consider inclusions of this type.

ProrosiTiON 5.1.  With the above notation, let H be a subgroup of B and K the
crossed product P>} H. Then K is normal in N <« M if and only if H is a normal
subgroup of B and AHNBA = AHNHA.

Proor. Let o= yL?*(P)p and B =pL*(M)y. Let B, =pL*(K)x and B, =
xL*(M)y. Then we have

ao =P, , p(L*(P), )p
/31,31 = @hey P(LZ(P)yh)P
BB = @y5 p(L*(P),,)r,
as in Example 2.11. Since 4N B = {e}, we have
(ab=a'b,a,a’ € A,b,b' € B) < (a=a' and b = }').
Therefore if p = yL?>(M)py(= of), then
<opy (aBy), iy = <u B8, ap Py = aaf By, fBdoc)
= #*(AHN BA)

and <of,(af,),af;(af,)> = (Gap, B, 55 dx> = #(AHNHA). Hence ex € Z(N' N M)
if and only if (4HNBA) = (AH N HA) by Proposition 3.5. Suppose K is normal in
N c M. Then K is also normal in P <« M by Proposition 3.7. Therefore H is a
normal subgroup of B by the dual version of Proposition 3.3. Conversely, if H is a
normal subgroup of B, i.e., the depth of K <« M is 2, then we have

{BaBay P> = {BaBr, BoaB130B 1 Br> = B2 BB Br, Briay >
= [B: HIK BB, B100f,> = [B : H] = { By, 2B

This proves the proposition. []

Let G be a finite group with two subgroups A, B satisfying G = AB and AN B =
{e}. By the uniqueness of the decomposition of an element in G = AB = BA4, we can
represent ab for ac A, be B as ab = 0,(b)f,-(a™')"' € BA. Then the matched pair
(A, B,a,B) appears (see for example [28]).

PROPOSITION 5.2. Let (A,B,a,f) be the matched pair defined as above and let
M=Px,B>5N=P") ={xePly,(x) = x,Vace 4},
where y is an outer action of G on 11y factor P. Then the depth of N =« M is 2.
See for a proof [28, 35].
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THEOREM 5.3. Let G be a finite group with two subgroups A, B satisfying G = AB
and AN B = {e} and (A, B, o, B) the associated matched pair. Let y: G — Aut(P) be an
outer action of G on a type Il; factor P and let

M =Px,B>N =P = {xeP|y,(x) =x,Vac A}.

If H is a subgroup of B and K = P X, H € (N < M), then K is a normal intermediate
subfactor for N = M if and only if

(1) H is a normal subgroup of B,

(2) ao(H)=H, VaeA, ie, AH=HA
In particular, if G is a semi direct product B X A, then K is normal in N < M if and only
if H is a normal subgroup of G.

PrOOF. Since BA = AB = G, we have (AHNBA) = AH. By Proposition 5.1, we
have K is a normal intermediate subfactor in N <« M if and only if H is a normal
subgroup of B and (AHNHA) = AH, i.e., AH = HA since *HA = *AH. []

ExXaMPLE 54. Let N=Pls c M =P x,S,_1 (n>3) be the irreducible inclusion
defined as in Example 4.12. The depth of N « M is 2 by Proposition 5.2. We put
K=Px,A,1. If nis odd, then ¢ is an even permutation and we can see that
Ap = Ay1{6) = {d>A,_;. Therefore K is normal in N =« M by Theorem 5.3. If nis
even, then ¢ is an odd permutation. Since the product of an even and odd permutation
in either order is odd, and the product of two odd permutation is even, 4,_1<{cg) is not a
subgroup of S, and hence A4,_1<{o) # {(6)A,—1. Therefore K is not normal in N =« M
by Theorem 5.3.

Since S,_; is a maximal subgroup of S,, we have if (a*)S,_; = S,_1{(a*), then
{(o*¥y = (o) or k=0 (mod n), i.e., there is no normal intermediate subfactor K of
N < M such that N ¢ K < P by Proposition 5.2.

ReMARK. By Example 5.4, we have completed the proof of Example 4.12.

5.2. Strongly outer actions and intermediate subfactors.

In this subsection we shall study relations between strongly outer actions introduced
by Choda and Kosaki [3] and normal intermediate subfactors.

Let N« M be a pair of type II; factors, and we set

Aut(M, N) = {0 € Aut(M)|0(N) = N}.

Let N(=M_1) c M(= My) =« M| =« M, < --- be the Jones tower of the pair N = M,
and ex( € M) the Jones projection for the pair Mj_, < My_;. Then each auto-
morphism 6 € Aut(M,N) is extended to all M, subject to the condition f(e;) = e;.

DEFINITION. An automorphism 8 € Aut(M,N) is said to be strongly outer if the
following condition is satisfied for all kK > —1:

a € My satisfies ax = f(x)a forallxe N =a=0.
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An action « of a group G into Aut(M,N) is said to be strongly outer if «, is strongly
outer for all g € G except for the identity e.

For 6 € Aut(M,N), let y(L*(M)s)x be the N-N bimodule as in Example 2.8. M.
Choda and H. Kosaki [3] gave the next characterization of strongly outer auto-
morphisms.

TueOREM (Chode-Kosaki). For 6 € Aut(M,N), if y(L*(M)g)n does not appear in
the irreducible decomposition of (pﬁ)k, k=1,2,..., then 0 is strongly outer, where p is the
N-M bimodule yL*(M)y.

The next lemma is well-known.

LemMMA 5.5. Let B < A be an irreducible pair of type 11, factors with finite index.
Let y: G — Aut(4,B) be an outer action of a finite group G and o= pL*(A)4. If
o‘ccx}A(Lz(A)yg)A Jor all ge G except for the identity e, then BN(AX,G)=C. In
particular, if y is strongly outer, then B < A X, G is irreducible.

PROPOSITION 5.6. Let B < A be an irreducible pair of type 11 factors with finite
index. Let y: G — Aut(4,B) be an outer action of a finite group G and o = gL*(A) 4.
Then Bc AX,G is irreducible and A is normal in Bc AX,G if and only if
oo M A(LZ(A)yg)A for all g € G except for the identity e.

PrOOF. Suppose that aodo Y A(LZ(A)yg) 4 for all g e G except for the identity e.
Since do < dada, B < A X, G is irreducible by Lemma 5.5. Let f = 4L*(4 X, G)4x,¢
and p = pL?(4 X, G)4x,6(= ap). Since B ~ @i 4(L*(A)y,)4, we have

(ad, ppy = <odl, appiy = Gode, BB
= (aadn, JL*(A) 1) = {ad, ad).
Since (BB, aa) =1 by Lemma 5.5, we have
BB, bp> = {BB, Baop> = {BBB, GaB>
= *G{BB, a0y = *G = BB, BB)-

Therefore A is normal in B< 4 X, G by Lemma 3.5.

Conversely, suppose that duda > 4(L*(4), )4 for some g(+# e) € G. Then we have
{od, pp) = {aada, Bf) = {aada, 4L*(A) 4> = {ad,axy. And hence A is not normal in
BcAaAx,G. O

THEOREM 5.7. Let B< A be an irreducible pair of type Il factors with finite
index. If y: G — Aut(4, B) is a strongly outer action of a finite group G, then A is a
normal intermediate subfactor for the inclusion Bc A %, G.

Proor. This immediately follows from the previous proposition. [J

ExaMpPLE 5.8. Let B < 4 be an irreducible pair of type II; factors whose principal
graph is Dynkin diagram Aj,_;. Let 6 be a non-trivial automorphism such that the
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corresponding 4-A bimodule 4(L*(A4)g)4 appears in the endpoint of the principal
graph. As discussed in Izumi [8], Kosaki [14], Goto [6], we can choose 6 with §(B) = B
and 0° =id. Let a = pL?(4)4. Then 4(L*(A4)s)4 K dada for n=4,56,---. There-
fore the intermediate subfactor 4 is normal in B < 4 Xy Z/2Z by Proposition 5.6. If
n =3, i.e., the principal graph is 4s, then 4(L?(A)g)4 < d&ada. Hence A is not normal
in Bc AxyZ/2Z. Similarly let B = 4 be an inclusion of type II; factors with the
principal graph Ej,

¥ —0—0—0—0—0,

We can also choose 6 € Aut(4, B) with 6> = id as above. By Proposition 5.6, A4 is not
normal in Bc A Xy Z/2Z.

ExaMPLE 5.9. In the situation of Theorem 5.7, the other intermediate subfactor
B >, G is not normal in general. In fact let « be an outer action on the AFD II; factor
R of the symmetric group S3 = Z/3Z x Z/2Z with the obvious generators a = (1,2,3),
b=(1,2) for Z/3Z,Z/2Z respectively. Let us consider the inclusion B=Rc 4 =
R>,Z/3Z. Consider the period 2 automorphism y on A defined by

y Z Xghg | = Z ap(Xg) Apgp1-

geZ/3Z geZ/3Z

The automorphism y leaves B invariant globally, i.e., y € Aut(4, B). Since y|p = ap, it
is an outer automorphism of B= R. Notice that y is also an outer automorphism for
A. In fact let us assume that x =3 _;.3,x,45€ 4 satisfies yx = xy(y) for each
y€A. By just choosing y e B, we see yx, = x,04(y), y€ B=R for each ge Z/3Z.
Since o is an outer action and gb # e, we get x, = 0 for each g € Z/3Z, and hence x =0
as desired.

Let B be the dual action (on A4) of a|z/37z. Since B= AP, we have a irreducible
decomposition  4-4  bimodule  4L*(A41)4 = 4L*(A)4 @ 4(L*(A)p,) 4 © 4(L*(A)g2) 4-
Hence, the two non-trivial automorphisms have period 3. Since y € Aut(4, B) has
period 2, A(LZ(A)y) 4 can not be in 4L2(4;)4 and hence it is strongly outer. It is plain
to see

(BcAcAX,Z/2Z)~(Rc RX,Z/3Z c R, 83).
Through this natural isomorphism, B X, Z/2Z corresponds to R X, Z/2Z. However,
this is not a normal intermediate subfactor in R X, .S3 since Z/2Z = S, is not a normal

subgroup in Si.
The same construction works for

Sy=AnNZ/2Z > S, 1 = Ap_ X Z/2Z.
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In this case, the above strong outerness is obvious since the alternating group 4, (n > 5)
is simple and does not admit a non-trivial character and hence ALZ(Ak) 4 does not
contains a non-trivial one dimensional component (see [8]).

[6]
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