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Abstract. We generalize the Gauss-Bonnet theorem for Alexandrov surfaces and show
that we can define the Gaussian curvature almost everywhere on an Alexandrov surface.

\S 0. Introduction.

A classical theorem in the theory of surfaces states that if $\Delta$ is a sufficiently small
geodesic triangle bounding a disk on a smooth Riemannian 2-manifold $M$ , and if $A,$ $B$

and $C$ are the inner angles of $\Delta$ , then

(0.1) $\int_{\Delta}GdM=A+B+C-\pi$ ,

where $G$ is the Gaussian curvature and $dM$ the Lebesgue measure induced from the
Riemannian metric of $M$ . The Gaussian curvature $G(p)$ at a point $p\in M$ is interpreted
as follows. If $\{\Delta_{i}\}_{i=1,2},\ldots$ is a decreasing sequence of sufficiently small geodesic triangles
such that $p$ is contained within each $\Delta_{i}$ and such that $\lim_{iarrow\infty}\Delta_{i}=\{p\}$ , then

(0.2) $\lim_{iarrow\infty}\frac{e(\Delta_{i})}{Area(\Delta_{i})}=G(p)$ .

The quantity $e(\Delta_{i})$ is known as the excess. The notion of the excess of a sufficiently
small geodesic triangle $\Delta$ on a Busemann $G$-surface was introduced by Busemann $([B])$ .
It is defined as follows.

$e(\Delta):=A+B+C-\pi$

Although Gaussian curvature is not defined on a Busemann $G$-surface, Busemann
introduced the notion of the angular measure between two geodesics emanating from a
point on a $G$-surface $X$ and proved the fundamental relation between the total excess
$e(X)$ and the Euler characteristic $\chi(X)$ of $X$ (see 43.3 in [B]). This result may be
considered as the $G$-surface version of the Gauss-Bonnet theorem. As stated in the
Basic theorem, we obtain the corresponding result for Alexandrov sur aces.

By an Alexandrov space $X$, we mean a complete locally compact length space of
finite Hausdorff dimension $n$ with curvature bounded below by a real number $k$ . Such
spaces have been studied recently by Burago, Gromov and Perelman $([BGP])$ . For a
point $x\in X$ , we can define a space of directions $\Sigma_{X}$ at $x$ , which generalizes the unit
tangent sphere. Technically this space is defined as the completion of the set of
certain equivalence classes of geodesics emanating from $x$ . If $\Sigma_{X}$ is not isometric to
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the canonical $(n-1)$ -sphere, then we call $x$ a metrically singular point. In [OS], [P],
Otsu and Shioya, and Perelman showed that the set of metrically singular points in an
Alexandrov space of dimension $n$ is a measure zero set with respect to the n-dimensional
Hausdorff measure. Moreover, Otsu and Shioya showed that the space $X$ has $C^{0,1/2_{-}}$

Riemannian structure almost everywhere. However, since in general, an Alexandrov
space $X$ has no $C^{2}$ -Riemannian structure, it is not necessary that the sectional curvature
is definable. The purpose of this article is to investigate 2-dimensional Alexandrov
spaces by using the concept of the Busemann total excess of geodesic triangles and show
that we can define the Gaussian curvature almost everywhere with respect to the 2-
dimensional Hausdorff measure.

From this point let $X$ be an Alexandrov surface, that is, a 2-dimensional Alexandrov
space of curvature $\geq k$ without boundary. Then, as shown by Burago, Gromov and
Perelman, for an arbitrary point $x\in X,$ $\Sigma_{X}$ is a circle of circumference not greater than
$2\pi$ , and $X$ is a topological 2-dimensional manifold $([BGP], [P])$ . Thus a small geodesic
triangle encloses an open disk domain. A geodesic triangle is said to be non-degenerate
if all of its angles are positive. It is said to be degenerate if it is not non-degenerate.
A degenerate triangle has zero excess and zero area as well. Throughout this article, $\Delta$

also represents the open disk domain and $\ovalbox{\tt\small REJECT}^{2}$ represents the 2-dimensional Hausdorff
measure. Let $x\in X$ be a metrically singular points. Then there exists a sequence $\{\Delta_{i}\}$

of non-degenerate geodesic triangles such that $x\in\Delta_{i}$ for all $i$ and $\lim_{iarrow\infty}\Delta_{i}=\{x\}$

satisfying $\lim_{iarrow\infty}e(\Delta_{i})=2\pi-L(\Sigma_{X})>0$ , where $L(\Sigma_{\chi})$ is the length of $\Sigma_{X}$ (see Corollary
2.2). If $x\in X$ is not metrically singular, then we might expect the limit in (0.2) to exist.
Thus it will be natural to call this limit the Gaussian curvature $G(x)$ at $x$ .

By means of (0.2) and the Toponogov comparison theorem, we define a natural
(curvature) measure $e$ on an Alexandrov surface. Once a natural measure $e$ has been
established on $X$ , the Radon-Nikodym theorem implies that there exist a unique
absolutely continuous set function ut and a singular set function $\emptyset$ such that for $E\subset X$ ,

$e(E)=\psi(E)+\phi(E)$

(see Proposition 4.5). Moreover, there exists an $\ovalbox{\tt\small REJECT}^{2}$ -measurable function $f$ defined
almost everywhere on $X$ such that

ut $(E)- \int_{E}fd\ovalbox{\tt\small REJECT}^{2}$

(see Theorem 4.6). The function $f$ may be understood as the Gaussian curvature of $X$ .
The Vitali covering theorem is employed for the proof of the existence of the limit

in (0.2) at almost all points in $X$ . In fact, we consider for a small positive number $d$

the family $U_{d}$ of all small geodesic triangles

$U_{d}:=$ { $\Delta\subset X|the$ interior angle at each of the three vertices is greater than $d$}.

For a point $x\in X$ and $d>0$ , we define

$\underline{G_{d}}(x):=\lim_{\Deltaarrow\{x\},x\in}\inf_{\Delta,\Delta\in U_{d}}\frac{e(\Delta)}{Area(\Delta)}$
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and

$\overline{G_{d}}(x):=\lim_{\Deltaarrow\{x\},x\in}\sup_{\Delta,\Delta\in U_{d}}\frac{e(\Delta)}{Area(\Delta)}$ .

Moreover we put

$\underline{G}(x):=\inf_{d>0}\underline{G_{d}}(x)$ and $G(x):=SdU>P0^{Gd(x)}$

A point $x\in X$ is called a curvature regular point if $\underline{G}(x)=\overline{G}(x)<\infty$ . If $x\in X$ is not a
curvature regular point, we call $x$ a curvature singular point. In Lemma 2.7, we will
show that if $x$ is a metrically singular point, then $\underline{G}(x)=\infty$ and $x$ is a curvature
singular point. On the other hand, the edges of the double of a flat 2-disk are not
metrically singular points, but they are nevertheless curvature singular points.

We now state our main theorem.

MAIN THEOREM. Almost all points on $X$ are curvature regular points, where ‘almost
all’ is with respect to the 2-dimensional Hausdorff measure $\ovalbox{\tt\small REJECT}^{2}$ . Moreover, $\iota\beta X$ is
compact, then

$\int_{X}\underline{G}(x)d\ovalbox{\tt\small REJECT}^{2}\leq 2\pi\chi(X)$ ,

where $\chi(X)$ is the Euler characteristic of $X$.

In general, the set of metrically singular points of an $n$-dimensional Alexandrov
space is of dimension $\leq n-1$ . In the case of an Alexandrov surface, we see in Lemma
1.3 that the set of metrically singular points is countable. However, the following
example shows that the set of curvature singular points forms a fractal set with
dimension greater than 1.

EXAMPLE. The primitive function of the Cantor function is convex. Using this
function, we can construct an Alexandrov surface $X$ of revolution of curvature bounded
below by $0$ such that the set of curvature singular points is a fractal set.

TO prove the Main theorem, we first observe the following basic theorem.

BASIC THEOREM $([A1], [B])$ . Let $D\subset X$ be a bounded open domain with boundary
consisting of finitely many closed geodesic polygons and $\beta_{1},\beta_{2},$ $\ldots,\beta_{J}$ be the angles of
the boundary $\partial D$ measured with respect to the interior of D. Let $\Delta_{1},$ $\Delta_{2},$

$\ldots$ , $\Delta_{N}$ be a
simplicial decomposition of $D$ into geodesic triangles. Then

$\sum_{n=1}^{N}e(\Delta_{n})+\sum_{i=1}^{I}(2\pi-L(\Sigma_{p_{i}}))=2\pi\chi(D)-\sum_{j=1}^{J}(\pi-\beta_{j})$ ,

where $p_{1},$ $p_{2},$
$\ldots,$

$p_{I}$ are the vertices of $\Delta_{1},$ $\Delta_{2},$

$\ldots,$
$\Delta_{N}$ lying in the interior of $D$ .

The fact that $L(\Sigma_{X})\leq 2\pi$ for any $xeX$ implies that the first term on the left-hand
side of the equation in the Basic theorem is bounded above by the right-hand
side. Moreover, in Theorem 2.0, we will show that it is bounded below by $kArea(D)$ .
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By rewriting $\sum_{n=1}^{N}e(\Delta_{n})=\sum_{n=1}^{N}(e(\Delta_{n})/Area(\Delta_{n})\cross Area(\Delta_{n}))$ , and tending to finer
and finer triangulation, we obtain

$k Area(D)\leq\int_{D}\underline{G}(x)d\ovalbox{\tt\small REJECT}^{2}\leq e(D)$ ,

where $e(D):=2 \pi\chi(D)-\sum_{j=1}^{J}(\pi-\beta_{j})$ and is called the total excess of $D$ . Thus $\underline{G}(x)$

is integrable on $D$ . This fact and the Vitali covering theorem of measure theory
(Proposition 2.12) play important roles in the proof of the Main theorem.

In Section 4, we will show that the total excess $e(\cdot)$ can be extended to a completely
additive set function. For example, let $X$ be the double of a flat disk of radius 1 and $O$

the interior of one of the copies of the disk. Then $e(O)=0$ and $e(\overline{O})=4\pi$ , where $\overline{O}$

is the closure of $O$ . Thus by the Radon-Nikodym theorem, $e(\cdot)$ is divided into two
set functions. One of these is an absolutely continuous set function and the other a
singular set function. Moreover, the absolutely continuous set function can be rep-
resented as the integral of a function $f$ defined on almost all points in $X$ . In Theorem
4.6, we show that $f$ coincides with $\underline{G}$ almost everywhere.

REMARK. The assumption that $X$ has no boundary is not essential. In fact, the
Basic theorem and Theorem 2.0 hold for $D\subset X$ if $D$ has no boundary points of
X. Thus, the first assertion of the Main theorem holds because the 2-dimensional
Hausdorff measure of the boundary is zero, while for the second assertion, we need more
delicate argument about the shape of the boundary of $X$ .

We refer the basic tools of Alexandrov geometry to [BGP] and [S]. A curve with
length equal to the distance between the extremal points is called a geodesic. For two
geodesics $\gamma$ and $\sigma$ in $X$ starting from the same point, $\angle(\gamma, \sigma)$ denotes the angle between $\gamma$

and $\sigma$ at the starting point. For two points $x$ and $y$ in $X$ , let $xy$ denote a geodesic
joining $x$ to $y$ and $|xy|$ the distance between $x$ and $y$ . For three points $x,$ $y$ , and $z$ in $X$ ,
let $\angle(x,y, z)$ denote the angle $\angle(yx,yz)$ and $\tilde{x},\tilde{y}$ , and $\tilde{z}$ be three points in the k-plane
such that $|\tilde{x}\tilde{y}|=|xy|,$ $|\tilde{y}\tilde{z}|=|yz|$ , and $|\tilde{z}\tilde{x}|=|zx|$ . We denote by $\angle(x,y, z)\sim$ the angle at $\tilde{y}$

of the geodesic triangle whose vertices are $\tilde{x},\tilde{y}$ and 2. We always assume that geodesics
are parameterized by arc-length.

\S 1. The basic concepts.

Since $X$ has no boundary, for a point $xeX$ , the space of directions $\Sigma_{X}$ is a circle of
circumference not greater than $2\pi$ . Let $C(\Sigma_{X})$ be the cone over $\Sigma_{X}$ , that is, in this case,
the two-dimensional flat cone of the angle at whose vertex equaling the circumference of
$\Sigma_{\chi}$ . We first recall:

LEMMA 1.1 $([BGP])$ . For an arbitrary point $x\in X$ and a positive number $\delta$, there are
finitely many geodesics starting from $x$ such that their tangent vectors are maximal i-net
in $\Sigma_{X}$ . Moreover the pointed Hausdorff limit $\lim_{rarrow 0}(1/rX, x)$ of the scaling of the metric
of $X$ is $C(\Sigma_{X})$ .

A point $x\in X$ is called a metrically singular point if the length $L(\Sigma_{X})$ of $\Sigma_{X}$ is less
than $2\pi$ . A point which is not metrically singular is called a metrically regular point.
It should be noted that an interior point of a geodesic is a metrically regular point.
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LEMMA 1.2 $([BGP])$ . If $xeX$ is a point such that $L(\Sigma_{X})>2\pi-2\delta$ for a small
positive number $\delta$ , then for sufficiently small $r>0$ , there is a positive number $\epsilon_{1}=\epsilon_{1}(\delta, r)$

with $\lim_{\delta,rarrow 0}\epsilon_{1}(\delta, r)=0$ which satisfies the condition that the $r$-distance ball $B(x, r)$ around
$x$ is $bi$-Lipschitz homeomorphic to the $r$-distance ball in $R^{2}$ of the Lipschit2 constant in
$(1-\epsilon_{1},1+\epsilon_{1})$ .

Otsu and Shioya showed that in general, the set of metrically singular points of an
$n$-dimensional Alexandrov space is a measure zero set with respect to the n-dimensional
Hausdorff measure. Since the dimension of $X$ is two, we can show a stronger result.
We call a point $xeX$ a $\delta$-singular point if $L(\Sigma_{X})\leq 2\pi-2\delta$ , or equivalently, the
diameter of $\Sigma_{X}$ is not greater than $\pi-\delta$ . We designate by $Sing_{\delta}X$ the set of i-singular
points in $X$ and define Sing $X:= \bigcup_{\delta>0}Sing_{\delta}X=$ {metrically singular points in $X$ }.

LEMMA 1.3 $([BGP])$ . For an arbitrary positive number $\delta,$
$\delta$-singular points are

isolated. In particular, Sing $X$ is a countable set.

PROOF. Suppose not. Then there is a point $p\in X$ and is a sequence $\{p_{i}\}\subset$

$Sing_{\delta}X$ such that $\lim_{iarrow\infty}p_{i}=p$ . Taking a subsequence if necessary, we may assume
that if $i>j$ , then $|pp_{i}|$ is sufficiently less than $|pp_{j}|$ . Since $\angle(pp_{i}p_{j})\sim\leq\angle(pp_{i}p_{j})\leq\pi-\delta$ ,
there is a positive number $\tau$ depending only $k$ and $\delta$ such that $\angle(p_{i}pp_{j})\geq\angle(p_{i}pp_{j})\sim\geq\tau$

for arbitrary $i,j$ with $i\neq j$ . However this is a contradiction because $\Sigma_{p}$ is com-
pact. This completes the proof of the first half. The latter half follows easily as a
consequence of the first half. $\square$

REMARK 1.4. In [OS], Otsu and Shioya gave an example of an Alexandrov surface
$X$ obtained as the Hausdorff limit of convex polyhedra. The surface $X$ is such that
SingX is a dense subset of $X$ . We call this space $X$ Otsu and Shioya’s example.

DEFINITION 1.5. Let $\gamma$ and $\sigma$ be geodesics starting from the same point
$x\in X$ . Since $X$ is a topological manifold, for sufficiently small $r>0,$ $\gamma$ and $\sigma$ divide
$B(x, r)\backslash \{\gamma, \sigma\}$ into two domains $A$ and $B$ such that any geodesic joining a point in $A$ and
a point in $B$ must lie across $\gamma$ or $\sigma$ . We denote interior angles $b_{X}^{A}$ of $A$ and $4_{X}^{B}$ at $x$ as
follows. Since $\Sigma_{X}$ is a circle, the tangent vectors corresponding to $\gamma$ and $\sigma$ divide $\Sigma_{X}$

into two intervals $I_{A}$ and $I_{B}$ such that the vector tangent to any geodesic joining $x$ to a
point in $A$ is included in $I_{A}$ , and the vector tangent to any geodesic joining $x$ to a point
in $B$ is included in $I_{B}$ . We put $\Lambda_{X}^{A}:=L(I_{A})$ and $4B:=L(I_{B})$ .

We obtain the following proposition directly from Lemma 1.1.

PROPOSITION 1.6. (1) In the above situation, if $b_{X}^{A}<b_{X}^{B}$ then for sufficiently small
$s>0$ and $t>0$ , a geodesic joining $\gamma(s)$ and $\sigma(t)$ is contained completely in the domain $A$ ,
with the exception of its endpoints.

(2) Assume that $\Lambda_{X}\leq b_{X}^{B}<\pi$ . Then for sufficiently small $s>0$ and $t>0$ there is
a curve $\alpha_{s,t}$ joining $\gamma(s)$ to $\sigma(t)$ which excluding their endpoints, lie entirely in the domain $B$

except their end points such that

$\lim_{s,tarrow 0}\arccos(\frac{s^{2}+t^{2}-L(\alpha_{s,t})^{2}}{2st})=b_{X}^{B}$ .
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COROLLARY 1.7. In the same context,

$\angle(\gamma, \sigma)=\min\{4_{p}^{A}b_{p}^{B}\}$ .

Since $X$ is a topological manifold, if three points $x,$ $y$ , and $z$ of $X$ are sufficiently
close to each other, then the geodesic triangle consisting of the three geodesics $xy,$ $yz$,
and $zx$ encloses an open disk domain which we will also call a geodesic triangle, hoping
this will cause no confusion. By $\Delta(xyz)$ , or simply $\Delta$ , we denote this open disk domain.
For such a triangle, let 4 $(xyz)$ denote the interior angle of $\Delta(xyz)$ at $y$ . We define the
total excess of $\Delta(xyz)$ by

$e(\Delta(xyz)):=b(xyz)+b(yzx)+b(zxy)-\pi$ .
Let $\mathscr{B}$ be the family of all the bounded open sets in $X$ whose boundaries consist
of finitely many geodesic polygons. If $De\mathscr{B}$ , then the closure $\overline{D}$ is compact and $D$

can be decomposed into geodesic triangles $\Delta(x_{1}y_{1}z_{1}),$
$\ldots,$

$\Delta(x_{n}y_{n}z_{n})$ . Let $\chi(D)$ be
the Euler characteristic of $D$ . We define $\{p_{1}, \ldots, p_{J}\}:=(\{x_{1}, \ldots, x_{n}\}\cup\{y_{1}, \ldots, y_{n}\}\cup$

$\{z_{1}, \ldots, z_{n}\})\cap D$ . Let $\beta_{1},$

$\ldots,$
$\beta_{K}$ be the interior angles of $D$ at vertices of the boundary

$\partial D$ . The following is the basic theorem for Alexandrov surfaces providing the fun-
damental relation between the total excess and the Euler characteristic.

THEOREM 1.8 ([A1], [B]).

(1.9) $\sum_{i=1}^{n}e(\Delta(x_{i}y_{i}z_{i}))+\sum_{j=1}^{J}(2\pi-L(\Sigma_{p_{j}}))=2\pi\chi(D)-\sum_{k=1}^{K}(\pi-\beta_{k})$ .

The proof of this theorem is similar to that of formula (43.3) in [B]. If $p_{i}$ for
$i\in\{1,2, \ldots, J\}$ is a singular point, then the sum of the interior angles at $p_{i}$ of all
triangles meeting at $p_{i}$ is less than $2\pi$ . This is the reason that the second term on the
left-hand side is added. We omit the proof.

Since the right-hand side of (1.9) is independent of the triangulation, so too is the
left-hand side. Thus the total excess of $D$ is naturally defined as

$e(D):= \sum_{i=1}^{n}e(\Delta(x_{i}y_{i}z_{i}))+\sum_{j=1}^{J}(2\pi-L(\Sigma_{p_{j}}))$ .

Note that this definition is compatible with the definition of $e(\Delta(xyz))$ .

COROLLARY TO THEOREM 1.8. If $X$ is compact, then

$e(X)=2\pi\chi(X)$ .

\S 2. The estimate of total excess.

In this section we estimate the total excess of $D\in \mathscr{B}$ .
The second term on the left-hand side of (1.9) depends on the triangulation of

$D$ . Therefore it is not certain whether or not its limit exists for a sequence of pro-
gressively finer geodesic triangulations of $D$ . The following Theorem 2.0 plays an
important role in justifying the existence of the limit of the first (and hence the second)
term of (1.9).
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THEOREM 2.0. If $D\in \mathscr{B}$ is decomposed into finitely many geodesic triangles
$\{\Delta(x_{i}y_{i}z_{i})\}_{i=1,2,\ldots,n}$ , then

$\sum_{i=1}^{n}e(\Delta(x_{i}y_{i}z_{i}))\geq k$ Area $(D)$ ,

where Area $(D)$ is the 2-dimensional Hausdorff measure of D. Furthermore, we have

$e(D)\geq kArea(D)$ .

First we prepare some lemmas.

LEMMA 2.1. Let $\gamma$ and $\sigma$ be geodesics starting from $x\in X$ . Then

$\lim_{tarrow 0}\angle(x, \gamma(t),$ $\sigma(t))=\lim_{tarrow 0}\angle(x, \sigma(t),$
$\gamma(t))=\frac{\pi-\angle(\gamma,\sigma)}{2}$

and

$\lim_{tarrow 0}e(\Delta(x, \gamma(t),$ $\sigma(t)))=0$ .

OUTLINE OF THE PROOF. We may assume that the lower bound of curvature $X$ is $0$ .
Put $\theta:=\angle(\gamma, \sigma)$ . Since $(\pi-\theta)/2S\angle(x, \gamma(t),$ $\sigma(t))$ by the definition of the angle and the
Alexandrov convexity, it suffices to show $\angle(x, \gamma(t),$ $\sigma(t))\leq(\pi-\theta)/2$ . Here $A<B\sim$

means $\lim_{tarrow 0}(A/B)\leq 1$ and moreover $A\approx B$ means that $\lim_{tarrow 0}(A/B)=1$ . Then by
the definition of the angle of two geodesics, we see that $|\gamma(t)\sigma(t)|\approx 2t\sin(\theta/2)$ and
$|\gamma(2t)\sigma(t)|\approx t\sqrt{2(1-\cos\theta)}$ . Then this and the Alexandrov convexity implies that
$(\pi+\theta)/2\leq\angle(\sigma(t), \gamma(t),$ $\gamma(2t))$ and consequently $\angle(x, \gamma(t),$ $\sigma(t))=\pi-\angle(\sigma(t), \gamma(t),$ $\gamma(2t))$

$\leq(\pi-\theta)/2$ . This completes the proof of the first half. The second half is in con-
sequence of Proposition 1.6.

COROLLARY 2.2. Let $\gamma_{i}$ $(i=1,2,3)$ be geodesics starting from $x$ such that
$\angle(\gamma_{i}, \gamma_{i+1})+\angle(\gamma_{i+1}, \gamma_{i+2})$ is strictly greater than $\angle(\gamma_{i}, \gamma_{i+2})$ , where the indices are cal-
culated $mod 3$ , then $x$ is contained in the interior of $\Delta(\gamma_{1}(t), \gamma_{2}(t),$ $\gamma_{3}(t))$ for all small $t>0$ ,
and

$\lim_{tarrow 0}e(\Delta(\gamma_{1}(t), \gamma_{2}(t),$
$\gamma_{3}(t)))=2\pi-L(\Sigma_{X})$ .

The following useful lemma is obtained from the cosine formula for triangles in $R^{2}$

(cf. \S 3 in [OSY]).

LEMMA 2.3. For any positive number $\epsilon$, there are positive numbers $\epsilon_{1}=\epsilon_{1}(\epsilon)$ and
$\epsilon_{1}’=\epsilon_{1}’(\epsilon)$ satisfying $\lim_{\epsilonarrow 0}\epsilon_{1}=0$ and $\lim_{\epsilonarrow 0}\epsilon_{1}’=0$ with the following properties. Let
$O_{\epsilon}\subset X$ be an open set $bi$-Lipschitz homeomorphic to an open set in $R^{2}$ with a bi-Lipschitz
homeomorphism $f$ such that the Lipschit2 constants of $f$ and $f^{-1}$ are in $(1-\epsilon, 1+\epsilon)$ .
Let $\gamma$ be a geodesic in $O_{\epsilon}$ of length $l$. If $t/l>\epsilon_{1}’$ and $t/l<1-\epsilon_{1}’$ , then the angle
$\angle(f(\gamma(0)),f(\gamma(t)),$ $f(\gamma(l)))>\pi-\epsilon_{1}$ and thus $\angle(f(\gamma(t)),f(\gamma(0)),f(\gamma(l)))<\epsilon_{1}$ .

Let $\tilde{U}_{d}$ for small $d>0$ be the set of all geodesic triangles in $X$ such that if $\Delta\in\tilde{U}_{d}$

then all angles of the corresponding triangle sketched in the $k$-plane are greater than $d$ .
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Let $O_{\epsilon}$ and $f$ be as in Lemma 2.3. Then if $\epsilon$ is sufficiently smaller than $d$, for $\Delta(xyz)\subset$

$O_{\epsilon}$ in $\tilde{U}_{d}$ , the two triangles $\tilde{\Delta}(xyz)\subset k$-plane and $\Delta(f(x), f(y),$ $f(z))\subset R^{2}$ are almost
congruent to each other. Additionally, Lemma 2.3 implies that the proportion

Area $(f(\Delta(xyz)))/Area(\Delta(f(x), f(y),f(z)))$

is close to 1. Thus we have obtained

LEMMA 2.4. There is a positive constant $\epsilon_{2}=\epsilon_{2}(d, \epsilon)$ with $\lim_{\epsilonarrow 0}\epsilon_{2}=0$ which
satisfies the condition that for $\Delta(yz)\subset O_{\epsilon}$ in $\tilde{U}_{d}$ ,

$(*)$ $(1-\epsilon_{2})Area(\tilde{\Delta}(xyz))$ $<Area$ ( $\Delta$ (xyz)) $<(1+\epsilon_{2})Area(\tilde{\Delta}(xyz))$ .

In particular, $($Diam $(\Delta(xyz)))^{2}/Area(\Delta(xyz))$ is bounded above by a positive constant
depending only on $d$ and $\epsilon$, where Diam $(\Delta(xyz))$ is the diameter of $\Delta(xyz)$ .

The Gauss-Bonnet theorem for the $k$-plane implies that $e(\tilde{\Delta}(xyz))=kArea(\tilde{\Delta}(xyz))$ .
Moreover, since $e(\Delta(xyz))\geq e(\tilde{\Delta}(xyz))$ , we see from Lemma 2.4 that if $k$ is a negative
number $-\kappa^{2}$ , then

$e( \Delta(xyz))>\frac{-\kappa^{2}}{1-\epsilon_{2}}Area(\Delta(xyz))$ .

for $\Delta(xyz)\in\tilde{U}_{d}$ in $O_{\epsilon}$ . For a sufficiently small fixed $d>0$ , we consider a geodesic
triangle $\Delta(xyz)\subset O_{\epsilon}$ which does not belong to $\tilde{U}_{d}$ . Assume that $\angle\sim$ (yxz) $\leq d$ . We
choose points $y’exy$ and $z’\in xz$ with $0<|xy’|=|xz’|$ sufficiently small and then
subtract $\Delta(xy’z’)$ from $\Delta(xyz)$ . By cutting off all such triangles at vertices with angles
not greater than $d$ , we obtain a domain $\Pi$ bounded by a geodesic polygon. All of
the angle at vertices of $\Pi$ are greater than $d$ . Thus $\Pi$ can be triangulated by small
triangles belonging $\tilde{U}_{d}$ , where Area $(\Delta(xyz))-Area(\Pi)$ is arbitrarily small. Therefore
from Lemma 2.1 and Theorem 1.8, we have

$e( \Delta)>\frac{-\kappa^{2}}{1-\epsilon_{2}/2}Area(\Delta)$

for all $\Delta\subset O_{\epsilon}$ . Thus from Lemma 1.2, we obtain:

LEMMA 2.5. Let $X$ be an Alexandrov surface with curvature bounded from below by
a negative number $k=-\kappa^{2}$ . For an arbitrary positive number $\epsilon$ , there exists a positive
number $\delta_{1}=\delta_{1}(\epsilon)$ with $\lim_{\epsilonarrow 0}\delta_{1}(\epsilon)=0$ which satisfies the following. If $p\in X$ is not a
$\delta_{1}$ -singular point, then for an arbitrary triangle $\Delta(xyz)$ in a sufficiently small neighborhood
of $p$ ,

$e(\Delta(xyz))>(-\kappa^{2}-\epsilon)Area(\Delta(xyz))$ .

COROLLARY 2.6. With the assumptions of Lemma 2.5, if we further assume that
$D\in \mathscr{B}$ has no $\delta_{1}$ -singular points, then

$e(D)>(-\kappa^{2}-2\epsilon)Area(D)$ .

PROOF OF COROLLARY 2.6. In the case where the closure $\overline{D}$ of $D$ has no $i_{1}$ -singular
points, this follows immediately from Lemma 2.5. If $\partial D$ contains $\delta_{1}$ -singular points,
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then Lemma 1.3 implies that there are only finitely many such singular points. Then
Lemma 2.1 concludes the proof. $\square$

LEMMA 2.7. Let $\{\Delta_{i}\}_{i=1,2},\ldots$ be a sequence of geodesic triangles and $x$ a point such
that each $\Delta_{i}$ contains $x$ in its interior. If $\lim_{iarrow\infty}\Delta_{i}=\{x\}$ , then

$\lim_{iarrow\infty}e(\Delta_{i})=2\pi-L(\Sigma_{X})$ .

PROOF. It suffices to prove that there is a subsequence $\{\Delta_{i(i’)}\}\subset\{\Delta_{i}\}$ such that

$\lim_{iarrow\infty}e(\Delta_{i(i’)})=2\pi-L(\Sigma_{X})$ .

From Corollary 2.2, we construct a decreasing sequence of geodesic triangles $\{\hat{\Delta}_{j}\}$

such that $x\in\hat{\Delta}_{j}$ and $\lim_{jarrow\infty}\hat{\Delta}_{j}=\{x\}$ . Here each vertex of $\hat{\Delta}_{j}$ lies in the interior of
a geodesic from $x$ , and hence is a metrically regular point. We choose subsequences
$\{\Delta_{i(i’)}\}_{i’=1,2},\ldots\subset\{\Delta_{i}\}$ and $\{\hat{\Delta}_{j(i’)}\}_{i’=1,2},\ldots\subset\{\hat{\Delta}_{j}\}$ such that

$\Delta_{i(i’)}\supset\overline{\hat{\Delta}_{j(i’)}}$ and $\hat{\Delta}_{j(i’)}\supset\overline{\Delta_{i(i’+1)}}$ for $i’=1,2,$ $\ldots$ .

For simplicity, we rewrite $\Delta_{i’}:=\Delta_{i(i’)}$ and $\hat{\Delta}_{i’}$
$:=\hat{\Delta}_{j(i’)}$ . Then writing $D_{i’}:=\Delta_{i’}\backslash \hat{\Delta}_{i’}-$ ,

$\hat{D}_{i’}:=\hat{\Delta}_{i’}\backslash \overline{\Delta_{i’+1}}$ , and denoting by $p_{i}^{1},,p_{i}^{2},$ $p_{i}^{3}$, the vertices of $\Delta_{i’}$ , we have from the
construction of $\{\hat{\Delta}_{j}\}$ ,

(2.8) $e(\Delta_{i’})=e(D_{i’})+e(\hat{\Delta}_{i’})$

and

(2.9) $e( \hat{\Delta}_{i’})=e(\hat{D}_{i’})+e(\Delta_{i’+1})+\sum_{l=1}^{3}(2\pi-L(\Sigma_{p_{i+1}^{l}}))$

$\geq e(\hat{D}_{i’})+e(\Delta_{i’+1})$ .

Since we may assume that $X$ is of curvature bounded below by a negative $number-\kappa^{2}$ ,
Lemma 1.3, Corollary 2.6, and formulas (2.8) and (2.9) imply that for arbitrarily small
$\epsilon>0$ , if $i’$ is sufficiently large,

$e(\Delta_{i’})\geq(-\kappa^{2}-\epsilon)Area(D_{i’})+e(\hat{\Delta}_{i}/)$

and

$e(\Delta_{i’})\leq(\kappa^{2}+\epsilon)Area(\hat{D}_{i’-1})+e(\hat{\Delta}_{i’-1})$ .

This proves $\lim_{i^{l_{arrow\infty}}}e(\Delta_{i’})=2\pi-L(\Sigma_{X})$ . $\square$

Collecting the above lemmas, we have proved

PROPOSITION 2.10. Let $p$ be a point of an Alexandrov surface with curvature bounded
below by a negative number $k=-\kappa^{2}$ . For any $\epsilon>0$ there exists a neighborhood $V_{\epsilon}$ of $p$

which satisfies the following.
(1) If $p$ is a metrically regular point, then for any triangle $\Delta\subset V_{\epsilon}$ ,

$e(\Delta)>(-\kappa^{2}-\epsilon)Area(\Delta)$ .
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(2) If $p$ is a metrically singular point, and if $p$ is in the interior of $\Delta\subset V_{\epsilon}$ , then

$e(\Delta)>0$ .

In particular
$e(\Delta)>-\kappa^{2}Area(\Delta)$ .

If $p$ is not contained in the interior of $\Delta$ , then

$e(\Delta)>(-\kappa^{2}-\epsilon)Area(\Delta)$ .

PROOF OF THEOREM 2.0 FOR THE CASE $k\leq 0$ .

The proof in the case that $k=0$ is clear because every triangle then has non-
negative excess. So assume that $k=-\kappa^{2}<0$ . We need only prove for each $i$ that

$e(\Delta(a_{i}b_{i}c_{i}))\geq-\kappa^{2}Area(\Delta(a_{i}b_{i}c_{i}))$ .

For an arbitrarily fixed $\epsilon>0$ , we decompose the geodesic triangle $\Delta(abc):=\Delta(a_{i}b_{i}c_{i})$

into finitely many triangles $\Delta(x_{1}y_{1}z_{1}),$
$\ldots,$

$\Delta(x_{m}y_{m}z_{m})$ such that each is contained in
some neighborhood $V_{\epsilon}$ obtained in Proposition 2.10. Then Proposition 2.10 implies
that the excess of each triangle is greater than $(-\kappa^{2}-\epsilon)$ times its area. Thus if we
put $\{p_{1},p_{2}, \ldots, p_{J}\}:=(\bigcup_{i=1}^{m}\{x_{i},y_{i}, z_{i}\})\cap D$ ,

$e( \Delta(abc))=\sum_{v=1}^{m}e(\Delta(x_{v}y_{v}z_{v}))+\sum_{\mu=1}^{J}(2\pi-L(\Sigma_{p_{\mu}}))$

$\geq\sum_{v=1}^{m}e(\Delta(x_{v}y_{v}z_{v}))$

$>(- \kappa^{2}-\epsilon)\sum_{v=1}^{m}Area(\Delta(x_{v}y_{v}z_{v}))$

$=(-\kappa^{2}-\epsilon)Area(\Delta(abc))$ .

Since $\epsilon>0$ is arbitrary, the proof for $k\leq 0$ is concluded. $\square$

The proof of Theorem 2.0 in the case $k>0$ requires more delicate discussion. The
Vitali covering theorem is employed for the proof of this case as well as the proof of the
Main theorem.

We now recall the Vitali covering theorem, a well-known theorem in measure
theory. Let $Y$ be a metric space. By definition, a family $\gamma$ of subsets in $Y$ is called
a Vitali class of a given set $E\subset Y$ if for arbitrary point $x\in E$ and arbitrary positive
number $i$ , there is a subset $U\in\gamma$ such that $x\in U$ and Diam $(U)\leq\delta$ . Let $\ovalbox{\tt\small REJECT}^{s}$ be the s-
dimensional Hausdorff measure for $s>0$ .

THE VITALI COVERING THEOREM. Let $E$ be a subset of $R^{n}$ and $\gamma$ be a Vitali class of
E. Then for any $s>0$ , we can choose a sequence $\{U_{i}\}_{i=1,2},\ldots\subset\gamma$ with $\overline{U_{i}}\cap\overline{U_{j}}=\emptyset$ for
$i\neq j$ which satisfies that one of the following.

(1) $\ovalbox{\tt\small REJECT}^{s}(E\backslash \bigcup_{i}\overline{U_{i}})=0$ .
(2) $\sum_{i=1}^{\infty}(Diam(U_{i}))^{s}=\infty$ .
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We apply the above theorem to Alexandrov surfaces. We see from Lemma 1.2 and
Lemma 1.3 that the above theorem holds for an Alexandrov surface. For $d>0$ , let $U_{d}$

be the family of all triangles $\Delta$ for which the angle at each of the three vertices of $\Delta$ is
greater than $d$ . We observe from Lemma 2.7 that if $x\in X$ is a metrically regular point,
then any $\Delta\in U_{d}$ in a sufficiently small neighborhood of $x$ belongs to $\tilde{U}_{d/2}$ . Thus we see
from Lemma 2.4 that there is a constant $c>0$ depending only on $d$ and $k$ which
satisfies the following. If $\gamma\subset U_{d}$ is a Vitali class of a set $E\subset X$ , then

$\gamma_{c}:=\{\Delta\in\gamma|(Diam(\Delta))^{2}/Area(\Delta)<c\}$

is a Vitali class of $E\backslash SingX$ . Then if $E$ is bounded, there is no subsequence $\{\Delta_{i}\}\subset\gamma_{c}$

with $\overline{\Delta_{i}}\cap\overline{\Delta_{j}}=\emptyset$ for $i\neq j$ such that $\sum_{i=1}^{\infty}(Diam(\Delta_{i}))^{2}=\infty$ . Thus we have obtained

PROPOSITION 2.11. Let $E$ be a subset of an Alexandrov surface. Let $d$ be an
arbitrary small positive number and $\gamma$ a Vitali class of $E$ consisting of geodesic triangles
in $U_{d}$ . Then we can choose a sequence $\{\Delta_{i}\}_{i=1,2},$ $\subset\gamma$ with $\overline{\Delta_{i}}\cap\overline{\Delta_{j}}=\emptyset$ for $i\neq j$ such that

Area $(E\backslash U_{i}\overline{\Delta_{i}})=0$ .

REMARK. The conclusion of Proposition 2.11 holds for a family $\wedge r$ of geodesic
triangles in $U_{d}$ such that $\overline{\parallel^{\wedge}}:=\{\overline{\Delta}|\Delta\in\gamma\}$ is a Vitali class of $E$ .

PROOF OF THEOREM 2.0 FOR THE CASE $k=\kappa^{2}>0$ . We need only prove for an
arbitrary geodesic triangle $\Delta_{0}$ and for any fixed positive number $\epsilon<<\kappa^{2}$ ,

$e(\Delta_{0})>(\kappa^{2}-\epsilon)Area(\Delta_{0})$ .

Fix a small positive number $d$ . By Lemma 2.4, the area formula of triangles in $\kappa^{2_{-}}$

plane, and the inequality $e(\Delta)\geq e(\tilde{\Delta})$ , we see that the family

$\gamma:=\{\Delta\in U_{d}|\overline{\Delta}\subset\Delta_{0}, (\kappa^{2}-\epsilon/2)Area(\Delta)<e(\Delta)\}$

is a Vitali class of $\Delta_{0}\cap$ {$metrically$ regular points}. Thus from Proposition 2.11 we can
choose a finite number of geodesic triangles $\Delta_{1},$

$\ldots,$
$\Delta_{m}\in\parallel^{-}$ with $\overline{\Delta_{i}}\cap\overline{\Delta_{j}}=\emptyset$ for $i\neq j$

such that

Area $( \Delta_{0}\backslash \bigcup_{i=1}^{m}\overline{\Delta\cdot})<\frac{\epsilon}{2\kappa^{2}-\epsilon}Area(\Delta_{0})$ .

Noting that $e( \Delta_{0}\backslash \bigcup_{i=1}^{m}\overline{\Delta_{i}})\geq 0$ since $X$ is of curvature bounded below by a positive
number, we then obtain

$e( \Delta_{0})\geq e(\Delta_{0}\backslash \bigcup_{i=1}^{m}\overline{\Delta_{i}})+\sum_{i=1}^{m}e(\Delta_{i})$

$\geq\sum_{i=1}^{m}e(\Delta_{i})$

$>( \kappa^{2}-\epsilon/2)\sum_{i=1}^{m}Area(\Delta_{i})$
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$>( \kappa^{2}-\epsilon/2)(1-\frac{\epsilon}{2\kappa^{2}-\epsilon})Area(\Delta_{0})$

$=(\kappa^{2}-\epsilon)Area(\Delta_{0})$ . $\square$

The following corollary is stronger than Lemma 1.3.

COROLLARY TO THEOREM 2.0.
(1) Let $x\in X$ be an arbitrary point. For any $\epsilon>0$ , there is a positive number $r$

such that if $\{p_{1}, p_{2}, \cdots\}:=B(x, r)\cap SingX$, then

$2 \pi-L(\Sigma_{X})\leq\sum_{i=1}^{\infty}(2\pi-L(\Sigma_{p_{i}}))<(2\pi-L(\Sigma_{X}))+\epsilon$ .

(2) Let $E\subset X$ be a compact set and $\{p_{1}, p_{2}, \cdots\}:=SingX\cap E.$ Then

$\sum_{i=1}^{\infty}(2\pi-L(\Sigma_{p_{i}}))<\infty$ .

PROOF. We show only (1). The first inequality is clear. Let $\Delta$ be a geodesic
triangle containing $x$ and $\{p_{1}’,p_{2}’, \cdots\}:=\Delta\cap$ Sing $X$ . For arbitrary $m\in N$, take a
triangulation of $\Delta$ such that each $p_{i}’(1\leq i\leq m)$ is a vertex of some triangle. Then
from Theorem 1.8 and Theorem 2.0 we obtain

(2.13) $e( \Delta)\geq kArea(\Delta)+\sum_{i=1}^{m}(2\pi-L(\Sigma_{p_{i}’}))$ .

This implies that $\sum_{i=1}^{\infty}(2\pi-L(\Sigma_{p_{i}’}))\leq e(\Delta)-kArea(\Delta)$ and in particular if $B(x, r)\subset\Delta$

then $\sum_{i=1}^{\infty}(2\pi-L(\Sigma_{p_{i}}))\leq e(\Delta)-kArea(\Delta)$ . By Lemma 2.7, $e(\Delta)$ tends to $2\pi-L(\Sigma_{X})$

as $\Deltaarrow x$ . This completes the proof. $\square$

\S 3. Proof of the Main theorem.

First, we recall that for $x\in X$ and $d>0$ ,

$\underline{G_{d}}(x):=\lim_{\Deltaarrow\{\},x\in}\inf_{\Delta,\Delta\in U_{d}}\frac{e(\Delta)}{Area(\Delta)}$

and

$\overline{G_{d}}(x):=\lim_{\Deltaarrow\{x\},x\in}\sup_{\Delta,\Delta\in U_{d}}\frac{e(\Delta)}{Area(\Delta)}$ .

Then, we define

$\underline{G}(x):=\inf_{d>0}\underline{G_{d}}(x)$ and $\overline{G}(x):=\sup_{d>0}\overline{G_{d}}(x)$ .

If $\underline{G}(x)=\overline{G}(x)<\infty$ , then we call this quantity the Gaussian curvature $G(x)$ at $x$ and
call $x$ a curvature regular point.

Since $\underline{G_{d}}(x)$ is monotone non-decreasing and $\overline{G_{d}}(x)$ is monotone non-increasing with
respect to $d$, the Main theorem is equivalent to the following theorem.
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THEOREM 3.1. For arbitrarily fixed $D\in \mathscr{B}$ and for sufficiently small $d>0$ , we have
$\underline{G_{d}}(x)=\overline{G_{d}}(x)<\infty$ almost everywhere in $D$ .

We Prst make the following claim.

CLAIM. The function $\underline{G_{d}}$ is measurable and satisfies the condition:

(3.2) $k Area(D)\leq\int_{D}\underline{G_{d}}(x)d\ovalbox{\tt\small REJECT}^{2}\leq e(D)$ .

PROOF. For any $a\in R$ ,

$\{xeD|\underline{G_{d}}(x)<a\}=\bigcup_{m\in Nn}\bigcap_{\in N\Delta\in}\bigcup_{U(a,m,n)}\Delta$
,

where

$U(a,m, n):=\{\Delta\in U_{d}|\Delta\subset D,$ $Diam(\Delta)<\frac{1}{n},\frac{e(\Delta)}{Area(\Delta)}<a-\frac{1}{m}\}$ .

The set $\bigcup_{\Delta\in U(a,m,n)}\Delta$ is open and consequently measurable. Thus $\underline{G}(x)$ is a measurable
function.

The first inequality is clear from Theorem 2.0. Let $\{Ti\}_{i=1,2},\ldots$ be a sequence of
geodesic triangulations in $U_{d}$ of $D$ such that $T_{i+1}$ is a subdivision of $T_{i}$ and such that the
diameter of each triangle of $T_{i}$ is less than $1/i$ for all $i$ . Let $\{\Delta_{j}^{i}\}_{j=1,2,\ldots J(i)}$ for $i\in N$ be
triangles of $T_{i}$ and define a function $f_{i}$ : $D \backslash \bigcup_{j=1}^{J(i)}\partial\Delta_{j}^{i}arrow R$ by

$f_{i}(x):= \frac{e(\Delta_{j(x)}^{i})}{Area(\Delta_{j(x)}^{i})}$ ,

where $\Delta_{j(x)}^{i}$ is the triangle of $T_{i}$ containing $x$ . Note that

$\int_{D\backslash \bigcup_{J}\partial\Delta_{j}^{i}}f_{i}d\ovalbox{\tt\small REJECT}^{2}=\sum_{j=1}^{J(i)}e(\Delta_{j}^{i})\leq e(D)$ .

With $\hat{D}:=D\backslash \bigcap_{i=1}^{\infty}(\bigcup_{j=1}^{J(i)}\partial\Delta_{j}^{i})$ , clearly Area$(D)=Area(\hat{D})$ . Thus we obtain from
Fatou’s Lemma

$\int_{D}\underline{G_{d}}(x)d\ovalbox{\tt\small REJECT}^{2}=\int_{\hat{D}}\underline{G_{d}}(x)d\ovalbox{\tt\small REJECT}^{2}$

$\leq\int_{\hat{D}}\varliminf_{iarrow\infty}f_{i}(x)d\ovalbox{\tt\small REJECT}^{2}$

$\leq\varliminf_{iarrow\infty}\int_{\hat{D}}f_{i}(x)d\ovalbox{\tt\small REJECT}^{2}$

$\leq e(D)$ . $\square$

PROOF OF THEOREM 3.1. For a small geodesic triangle $\Delta$ we put

$\tilde{e}(\Delta):=\int_{\Delta}\underline{G_{d}}(x)d\ovalbox{\tt\small REJECT}^{2}$ .
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Then, as is well known in measure theory, using the Vitali covering theorem, we see that
there is a measure zero set $N\subset D$ such that for all $x\in D\backslash N$ ,

(3.3) $\lim_{\Deltaarrow x,x\in\Delta,\Delta\in U_{d}}\frac{\tilde{e}(\Delta)}{Area(\Delta)}=\underline{G_{d}}(x)$ .

Here we note that (3.2) and (3.3) imply that

(3.4) $\lim_{\Deltaarrow x,x\in\Delta}\inf_{\Delta\in U_{d}}(\frac{e(\Delta)-\tilde{e}(\Delta)}{Area(\Delta)})=0$

for any $xeD\backslash N$ . Thus if for $x\in D\backslash N$ ,

(3.5) $\lim_{\Deltaarrow x,x\in}\sup_{\Delta,\Delta\in U_{d}}(\frac{e(\Delta)-\tilde{e}(\Delta)}{Area(\Delta)})=0$ ,

then

$\underline{G_{d}}(x)=\overline{G_{d}}(x)$ .

Therefore it suffices for the proof of Theorem 3.1 to show that (3.5) holds for almost all
$x\in D\backslash N$ . Suppose not. Then there is a positive number $a>0$ such that, defining

$E_{a}:= \{x\in D|\Deltaarrow X,\lim_{\in U_{d}}X\in\Delta su(\frac{e(\Delta)-\tilde{e}(\Delta)}{Area(\Delta)})>a\}\backslash N$ ,

Area$(E_{a})>0$ . From this point, we omit the subscript $a$ for convenience. Since $0<$

$Area(E)<\infty$ and the Hausdorff measure is regular, there is an open set $O\subset D$ such
that $E\subset O$ and Area$(O)<2Area(E)$ . Let $\epsilon$ be a positive number such that $\epsilon<a/3$ .
By (3.4), the family of those geodesic triangles $\Delta\in U_{d}$ satisfying

$\frac{e(\Delta)-\tilde{e}(\Delta)}{Area(\Delta)}<\epsilon$

forms a Vitali class of $E$ . From Proposition 2.11 we can choose a sequence $\{\Delta_{i}\}_{i=1,2},\ldots$

of such triangles with $\overline{\Delta_{l}}\cap\overline{\Delta_{i’}}=\emptyset$ for $i\neq i’$ that satisfy

Area $(E \backslash E\cap\bigcup_{i=1}^{\infty}\overline{\Delta_{i}})=0$ .

Further, we may assume that $\Delta_{i}\subset O$ . Then we obtain

(3.6) $\sum_{i=1}^{\infty}(e(\Delta_{i})-\tilde{e}(\Delta_{i}))<\epsilon\sum_{i=1}^{\infty}Area(\Delta_{i})\leq\epsilon Area(O)<2\epsilon Area(E)$ .

From the definition of $E$ , the family of those geodesic triangles $\Delta\in$
$d$ satisfying

(3.7) $\frac{e(\Delta)-\tilde{e}(\Delta)}{Area(\Delta)}>a$

also forms a Vitali class of $E$ . Thus from Proposition 2.11, for arbitrarily fixed $i>0$

and for each $ieN$ there is a finite number of these triangles $\{\Delta_{i}^{j}\}_{j=1}^{J(i)}$ with $\Delta_{i}^{j}\subset\Delta_{i}$ and
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$\overline{\Delta_{i}^{j}}\cap\overline{\Delta_{i}^{j’}}=\emptyset$ for $j\neq j’$ such that

Area $(E \cap\Delta_{i}\backslash \bigcup_{j=1}^{J(i)}\overline{\Delta_{i}^{j}})<\delta/2^{i}$ .

Then from the formula (3.7),

(3.8) Area $(E \cap\Delta_{i})<\sum_{j=1}^{J(i)}(Area(\Delta_{i}^{j}))+\delta/2^{i}$

$< \frac{1}{a}\sum_{j=1}^{J(i)}(e(\Delta_{i}^{j})-\tilde{e}(\Delta_{i}^{j}))+\delta/2^{i}$

$\leq\frac{1}{a}(e(\Delta_{i})-\tilde{e}(\Delta_{i}))+i/2^{i}$ .

Here, the last inequality follows from the inequalities

$e( \Delta_{i}\backslash \overline{\bigcup_{j=1}^{J(i)}\Delta_{i}^{j}})\geq\int_{\Delta_{i}\backslash \overline{\bigcup_{j=1}^{J(i)}\Delta_{i}^{j}}}\underline{d}(x)d\ovalbox{\tt\small REJECT}^{2}$

and

$e( \Delta_{i})\geq\sum_{j=1}^{J}e(\Delta_{i}^{j})+e(\Delta_{i}\backslash \overline{\bigcup_{j=1}^{J(i)}\Delta_{i}^{j}})$ .

Taking the summation of (3.8) for $i=1,2,$ $\ldots$ and using (3.6), we obtain at last that

Area $(E)= \sum_{i=1}^{\infty}Area(E\cap\Delta_{i})$

$\leq\overline{a}^{\sum_{i=1}^{\infty}(e(\Delta_{i})-\tilde{e}(\Delta_{i}))+\delta}$

$< \frac{1}{a}2\epsilon Area(E)+i$

$< \frac{2}{3}Area(E)+i$ .

Thus if we choose $\delta$ as $\delta<1/3Area(E)$ , then a contradiction is derived. This completes
the proof of Theorem 3.1. $\square$

REMARKS.
(1) For $d>0$ and for every point $x\in X$ , we write

$\underline{G_{d}’}(x):=\lim_{\Deltaarrow\{x\}x\in}\inf_{\overline{\Delta},\Delta\in U_{d}}\frac{e(\Delta)}{Area(\Delta)}$

and

$\overline{G_{d}’}(x):=\lim_{\Deltaarrow\{x\},x\in}\sup_{\overline{\Delta},\Delta\in U_{d}}\frac{e(\Delta)}{Area(\Delta)}$ .
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Here $\underline{G_{d}’}(x)\leq\underline{G_{d}}(x)\leq\overline{G_{d}}(x)\leq\overline{G_{d}’}(x)$ . Consider the case in which $p$ is the vertex
of a flat cone. Then $\underline{G_{d}’}(p)=0$ , but $\underline{G_{d}}(p)>0$ . Then noting the remark following
Proposition 2.11, we have the same result as in the Main theorem for $\underline{G_{d}’}(x)$ and $\overline{G_{d}’}(x)$ ,
that is, for almost all $x\in X,$ $\inf_{d>0}\underline{G_{d}’}(x)=\sup_{d>0}\overline{G_{d}’}(x)<\infty$ .

(2) We put for every $x\in X$ ,

$\underline{G_{0}}(x):=\lim_{\Deltaarrow\{x\}}\inf_{x\in\Delta}\frac{e(\Delta)}{Area(\Delta)}$

and

$\overline{G_{0}}(x):=\lim_{\Deltaarrow\{x\}}\sup_{x\in\Delta}\frac{e(\Delta)}{Area(\Delta)}$ .

It is not certain if the main results hold for $\underline{G_{0}}(x)$ and $\overline{G_{0}}(x)$ .
(3) Let $X$ be Otsu and Shioya’s example introduced in Remark 1.4. Then for any

$x\in X$ and any $\epsilon>0$ , there is a biangle of diameter less than $\epsilon$ for which $x$ is a
vertex. Thus if we set for $x\in X$ ,

$\overline{G_{0}’}(x):=\lim_{\Deltaarrow\{x\}}\sup_{x\in\overline{\Delta}}\frac{e(\Delta)}{Area(\Delta)}$ ,

then for any $x\in X,\overline{G_{0}’}(x)=\infty$ .

\S 4. Curvature measure.

In this section we discuss the total excess of good subsets of an Alexandrov surface.
We agree that $X$ is of curvature bounded below by a negative number $-\kappa^{2}$ . Let $E$ be
any compact proper subset of $X$ . Let $\{D_{i}\}_{i=1,2},\ldots$ be a sequence of open sets such that
for any $i,$ $D_{i}\in \mathscr{B},$ $E\subset D_{i}$ and $\overline{D_{i+1}}\subset D_{i}$ , and such that $\bigcap_{i}D_{i}=E$ .

LEMMA 4.1. The sequence $\{e(D_{i})\}_{i=1,2},\ldots$ converges. Moreover letting $\{D_{j}’\}_{j=1,2},\ldots$ be
another sequence of domains in 9 such that $\bigcap_{j}D_{j}’=E$ (without the assumption that
$\overline{D_{j+1}’}\subset D_{j}’)$ , the limit $\lim_{jarrow\infty}(e(D_{j}’))$ exists and equals $\lim_{iarrow\infty}(e(D_{i}))$ .

PROOF. The former statement is easily checked by using the fact, obtained in
Theorem 2.0, that the sequence $\{e(D_{i})+\kappa^{2}Area(D_{i})\}$ is monotone non-increasing and
bounded below by $0$ . The latter is also clear. (cf. Lemma 2.7) $\square$

Therefore $e(E):= \lim_{iarrow\infty}e(D_{i})$ is well-defined. We call this the total excess of $E$ .
Then we see that $e(E)\geq-\kappa^{2}Area(E)$ . For example, by Lemma 2.7, we see that the
total excess $e(x)$ of a point $x\in X$ equals $2\pi-L(\Sigma_{X})$ .

NOW we recall the first variation formula shown in [BGP]. Let $\gamma:[0, l]arrow X$ be
a minimal geodesic. Then, for any geodesic $\sigma$ with $\sigma(0)=\gamma(0)$ , if $t_{0}\in(0, l)$ , then
$\lim_{sarrow 0\angle}^{\sim}(\gamma(t_{0}), \gamma(0),$ $\sigma(s))=\angle(\gamma, \sigma)$ . Moreover we can show similarly as Lemma 2.1
that $\lim_{sarrow 0}\angle(\gamma(t_{0}), \sigma(s),$ $\gamma(0))=\pi-\angle(\gamma, \sigma)$ . This follows the following proposition.
Its proof is omitted.
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PROPOSITION 4.2. Let $De\mathscr{B}$ and $p_{1},$ $p_{2},$
$\ldots,$

$p_{J}$ be the vertices of $\partial D$ . Then

$e( \overline{D})=e(D)+\sum_{j=1}^{J}(2\pi-L(\Sigma_{p_{j}}))$ .

REMARK 4.3. Conversely, let $D\in \mathscr{B}$ and $\{D_{i}\}_{i=1,2},\ldots$ be a sequence of subsets in
9 such that for any $i,\overline{D_{i}}\subset D$ and $\overline{D_{i}}\subset D_{i+1}$ , and such that $\bigcup_{i}D_{i}=D$ . Then
$\lim_{iarrow\infty}e(D_{i})=e(D)$ .

Proposition 4.2 and the above remark imply that if $D\in \mathscr{B}$ then

$e( \partial D)=\sum_{j=1}^{J}(2\pi-L(\Sigma_{p_{i}}))$ .

Thus we see that for any geodesic $\gamma$ ,

$e(\gamma)=(2\pi-L(\Sigma_{\chi}))+(2\pi-L(\Sigma_{y}))$ ,

where $x$ and $y$ are the end points of $\gamma$ .
NOW we discuss the $\sigma$-algebra of $X$ . Let $X$ be compact. Let $f$ be the family of all

subsets $E$ that can be obtained by taking a finite disjoint union of members of $\mathscr{B}$ and
adding to and removing from this union a finite number of points and geodesics. Here,
for convenience, we agree that geodesics are parameterized by open intervals and hence
do not contain endpoints. Note that 8 is a finitely additive class. Let $E\in g$ . Then $E$

is expressed by

$( \bigcup_{i=1}^{I}\overline{D_{i}}\backslash \{\gamma_{1}, \ldots, \gamma_{m}, x_{1}, \ldots, x_{n}\})\cup\{\sigma_{1}, \ldots, \sigma_{\mu}\}\cup\{y_{1}, \ldots,y_{v}\}$ ,

where $D_{1},$ $D_{2},$ $\ldots D_{I}$ are disjoint subsets in $\mathscr{B},$

$\gamma_{j}$ and $\sigma_{j}$ are geodesics, and $x_{j}$ and $y_{j}$ are
points for each $j$ . Then it is natural to define the total excess $e(E)$ of $E$ as

$e(E):= \sum_{i=1}^{I}e(D_{i})-\sum_{j=1}^{n}(2\pi-L(\Sigma_{x_{j}}))+\sum_{k=1}^{v}(2\pi-L(\Sigma_{\mathcal{Y}k}))$ .

Note that $e(E)\geq-\kappa^{2}Area(E)$ . Therefore we see that if we put $m(E):=e(E)+$
$\kappa^{2}Area(E)$ , then $m(\cdot)$ is a finitely additive measure on a finitely additive class $d$ . In
analogy to Proposition 4.2 and Remark 4.3, we obtain the following Lemma.

LEMMA 4.4. Let $E\in g$ . For any $\epsilon>0$ , there is an open set $O\in g$ and is a compact
set $Ped$ with $E\subset O$ and $P\subset E$ such that

$m(E)>m(O)-\epsilon$ and $m(E)<m(P)+\epsilon$ .

It should be noted that in general, we cannot choose $O$ so as to satisfy $\overline{E}\subset O$ . For
example, let $E\in g$ be such that there is an open subset $D\in 9$ with $D\subset E\subset\overline{D}$ . Let
$p\in\partial E$ be a metrically singular point. If $p\not\in E$ , we should choose the open set $O$ of
Lemma 4.4 such that $p\not\in O$ . Conversely if $peE$ , we should choose the compact set $P$

such that $p\in P$ . The proof of Lemma 4.4 is omitted.
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Let $\{E_{i}\}_{i=1,2},\ldots$ be an infinite sequence of subsets contained in 8 with $E_{i}\cap E_{j}=\emptyset$ for
$i\neq j$ such that $\bigcup_{i}E_{i}\in 8$ . Then, using Lemma 4.4 for each $E_{i}$ and $\bigcup_{i}E_{i}$ , we obtain
$m( \bigcup_{i}E_{i})=\sum_{i=1}^{\infty}m(E_{i})$ . Thus $m(\cdot)$ is a completely additive measure on 8.

NOW we define the total excess $e(F)$ of an arbitrary subset $F\subset X$ as follows.
Define

$m^{*}(F):= \inf\sum_{i=1}^{\infty}m(E_{i})$ ,

where the infimum is taken over all $E_{1},$ $E_{2},$ $\ldots\in(g$ and $F \subset\bigcup_{i=1}^{\infty}E_{i}$ . Also define

$e(F):=m^{*}(F)-\kappa^{2}Area(F)$ .

The total excess $e(F)$ is well-defined. In fact, since $m(\cdot)$ is a completely additive
measure on 8, $m^{*}(F)=m(F)$ for $F\in 8$ .

EXAMPLE.
(1) Let $X$ be the double of a flat disk of radius 1 and $O$ the interior of one of the

copies of the disk. Then we see that $e(O)=0$ and $e(\overline{O})=4\pi$ .
(2) Let $X$ be a flat cone with vertex $p$ . Then for any $r>0$ ,

$e(\overline{B(p,r)})=2\pi-L(\Sigma_{p})$ and $e(B(p, r)\backslash \{p\})=0$ .
We write

$\tilde{g}:=$ { $m^{*}$ -measurable $set$} $\cap$ { $\ovalbox{\tt\small REJECT}^{2}$-measurable set}.
Note that $g\subset\tilde{g}$. Then the total excess is a completely additive set function on 8.
Thus by the Radon-Nikodym theorem, we obtain the following proposition.

PROPOSITION 4.5. There are a unique $\ovalbox{\tt\small REJECT}^{2}$ -absolutely continuous set function ut and a
unique $\ovalbox{\tt\small REJECT}^{2}$ -singular set function $\emptyset$ on 8 such that

$e(E)=\psi(E)+\phi(E)$ , $Ee\tilde{d}$ .

Moreover, there is a $\ovalbox{\tt\small REJECT}^{2}$ -measurable function $f$ defined on almost all points of $X$ with
respect to $\ovalbox{\tt\small REJECT}^{2}$ -measure such that

$\psi(E)=\int_{E}f(x)d\ovalbox{\tt\small REJECT}^{2}$ .

Since $\psi(\cdot)$ is an absolutely continuous set function and $\phi(\cdot)$ is a singular set func-
tion, the formula $e(\cdot)\geq-\kappa^{2}Area(\cdot)$ implies that $\emptyset$ is positive. In addition, by using
Proposition 2.11, we observe that for any $d>0$ and for almost all $x\in X$ ,

$\lim_{\Deltaarrow\{x\},x\in}\sup_{\Delta,\Delta\in U_{d}}\frac{\phi(\Delta)}{Area(\Delta)}=0$ .

Thus we obtain the following theorem.

THEOREM 4.6. The function $f(x)$ coincides with the Gaussian curvature $G(x)$ almost
everywhere.

Before ending this article, we would like to propose a problem. For simplicity, let
$X$ be compact. We see from Proposition 4.5 and Theorem 4.6 that for almost all
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$x\in X$ ,

$\lim_{rarrow 0}\frac{e(B(x,r))}{\pi r^{2}}=G(x)$ .

Make the definitions

$E_{\alpha}:= \{xeX|\lim_{rarrow 0}\frac{e(B(x,r))}{r^{\alpha}}$ exists and is $finite.\}$ , $\alpha\in[0,2]$

and

$E_{\alpha}’:= \{x\in E_{\alpha}|\lim_{rarrow 0}\frac{e(B(x,r))}{r^{\alpha}}=0\}$ .

Then, with $G_{\alpha}(x):= \lim_{rarrow 0}\frac{e(B(x,r))}{r^{\alpha}}$ for $x\in E_{\alpha},$ $G_{\alpha}(x)\geq 0$ holds for $\alpha<2$ .

PROBLEM. IS it true that $\ovalbox{\tt\small REJECT}^{\alpha}(X\backslash E_{\alpha})=0$ for $\alpha\in[0,2]$ , and that

$I:= \{\alpha\in[0,2]|\int_{E_{\alpha}\backslash E_{\alpha}},$ $G_{\alpha}(x)d\ovalbox{\tt\small REJECT}^{\alpha}>0\}$

is a countable set? Moreover does it hold that

$2 \pi\chi(X)=\sum_{\alpha\in I}\frac{1}{\lambda(\alpha)}\int_{E_{\alpha}\backslash E_{\alpha}’}G_{\alpha}(x)d\ovalbox{\tt\small REJECT}^{\alpha}$ ,

where Z(ct) is a constant depending on $\alpha$? For example $\lambda(2)=\pi$ and $\lambda(1)=2$ .

EXAMPLE. Let $X$ be the double of a flat disk of radius 1. If $x$ is a point on the
edge $C$ of $X$ , then a direct calculation shows that $G_{1}(x)=4$ . Thus

$\frac{1}{2}\int_{C}G_{1}(x)d\ovalbox{\tt\small REJECT}^{1}=4\pi=2\pi\chi(X)$ .
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