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Abstract. The notion of two-sided cell, which was originally introduced by A. Joseph and
reformulated by D. Kazhdan and G. Lusztig, has played an important role in the
representation theory. Results concerning them have been obtained by very deep and
sometimes ad hoc arguments. Here we introduce certain polynomial invariants for
irreducible representations of Weyl groups. Our invariants are easily calculated, and the
calculational results show that they almost determine the two-sided cells. Moreover, the
factorization pattern of our polynomial invariants seems to be controlled by the natural
parameter set .#(%) of each two-sided cell.

0. Introduction.

0.1. Motivation.

Let W be a Weyl group and S the totality of simple reflections. For we W, let
[(w) be the minimum of the length n of various expressions w = sys,---s, (s; € S). In
[Gyl], a ‘g-analogue’ of the following matrix valued function was studied;

S plwye, 0.1)
weW
where p: W — GLy(C) is an irreducible representation. In particular, it was shown
that these functions have similar properties as the congruence zeta functions of algebraic
varieties.

As a modification of these functions, N. Iwahori proposed to replace the length
function /(-) in with another length function defined as follows. Let S’ be the
totality of (not necessarily simple) reflections in W. Define /’(w) to be the minimum of
the length m of the various expressions w =riry---r, (r; €S’). Such length function
I'(-) is studied by R. Carter in his study of conjugacy classes of Weyl
groups. Since [/’ is a class function, becomes the scalar function

(1) = x(e)™ Y x(w)t"™ (0.2)

weW
after such modification, where y = trace p.
Concerning the function [0.2), we can make the following observation by a case
study. Let y, y' € WY, where W is the set of irreducible characters of W. Then the
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following equivalence is almost true:
c(;t)=clys0) ey ~ (x")" for some 1 € Aut(W,S). (0.3)

Here X y' means that y and y’ belong to the same family (= two-sided cell) in the

sense of G. Lusztig [L1, 4.2] (cf. (b) below). More precisely, (0.3) is true if W is of type
A;, B; (= C)) or G,. In the other cases, some deviation occurs.

Let us explain why we are interested in (0.3). The partition of W as a set into left
(resp. right, two-sided) cells was first introduced by A. Joseph [J]| and then reformulated
by D. Kazhdan and G. Lusztig [KL]. Concerning cells, we know the following,
summing up works of Joseph, Kazhdan, Lusztig, Brylinski, Kashiwara, Beilinson,
Bernstein, Barbasch, Vogan,....

(a) Let g be a complex semisimple Lie algebra, and W its Weyl group. The
primitive ideals of U(g) with trivial central character are divided into several families
parametrized by the set of two-sided cells of W. To each family %, there associates a
special representation of W (= the Goldie rank representation in the sense of
Joseph). The set of primitive ideals in a fixed family #; is in one-to-one corre-
spondence with the set of left cells in the associated two-sided cell, and its cardinality is
equal to the dimension of the corresponding special representation.

(b) Let G be a connected reductive group over a finite field F, satisfying a certain
mild assumption. We assume that its Weyl group is the same W as in (a). A crucial
step of the classification of the irreducible representations of G(F,) is the classification of
the unipotent representations [LI]. The set of unipotent representations G(F,),, is
divided into several families; G(F,),,; = [[ #¢. The set of these families is in one-to-one
correspondence with the set of two-sided cells. For each family %, there associates a
finite group % (~ G5 (k >0), S3, &, or Ss if W is irreducible). The set of unipotent
representations in a fixed family ¢ is in one-to-one correspondence with .# (%) :=
{(x,p)| x€¥9, pe Zg(x)"}/%-conjugacy.

(c) Two-sided cells determine two-sided ideals of the group ring CW, and give
a partition of WY. The latter partition gives the equivalence relation ~ appeared in

(0.3), and is explicitly determined (cf. [L1, §4]). There is a natural inclusion WV —
G(F,),, Each Fy e WY/ ~ is contained in the (unique) family % as in (b), and the
correspondence Fy — F; gives a bijection WV /~— {F;}. (For ye WY, let
Fw(x)e WY/ ~ be the class of y, Zs(y) the correspgnding family of G(F,),,, and
%9(y) the associated finite group.)

In spite of these beautiful and important roles played by the left/two-sided cells, the
proof is often very deep and sometimes quite ad hoc. Thus it is surprising that such a
simple formula like (0.3) characterizes the two-sided cells even if some deviation occurs.

0.2. Modification of c(y;1).

Motivated by the reason explained at the end of §0.1, we want to reduce the
deviation tainting (0.3). For this purpose, we modify the invariant c(y;z). We start
with introducing certain invariants 7(y; ¢, ) € Q(q)[y] and t*(y;¢) € Z[t]. The latter is
essentially the same as c¢(y;¢), and can be obtained from the former by a certain
specialization. By a case study, we observe that 7(y;¢, y) has a lot of factors of the
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form 1+ yq¢ (c € Z), and that these factors are often the same for y’s in a fixed family
FweWY/ ~ Thus it is natural to consider the largest divisor of the form

[T5, (14 yg) of 2(x;9,¥) € Q(q)[y]. For ye WY, let

K'(x)

&Gsay) = [+ yg") (0.4)
i=1

be such a largest divisor. As an invariant for Fy e WY/ ~, we consider

x(x)

~ _ =11, " _ ¢i(x)
c(x:4,y) = GCD{E' (214, )t ~ 1} H(qu ). (0.5)

There are a few y’s such that ¢(y;q,y) # ¢'(x;¢,y). Calculational results indicate that
this discrepancy is controlled by .#(%) in the cases of 4;, D4 and E; (cf. Theorem 4.1).
To control the same phenomenon in the cases of B;, F4 and G,, we need some modular
representation theory (cf. §4.2). Define Zpim(x; ¢, y) € Q(q)[y] and t,,,(x;t) € Z[i] s
that

h(z)
(g, y)=1—-q) L+ 3“9 - i (3 4, 9), (0.6)

=

—_

K(%)
H + Cl ;rim(){; t)‘ (07)

l:

—_—

(As we shall see in [Proposition 1.3, 7,,,(x;?) is a polynomial.) Our first main result is
the following theorem which says that the invariant ¢(y;¢q, y) separates the families.

THEOREM 0.1. Let W be an irreducible Weyl group not of type D; (I = 5). For
1A EWY,

{4 0) = 30, 0) & 1 o () for some 1€ Au(W,S).

0.3. Primitive factors of the invariants.

Let K be a field. For a polynomial p(7) e K[1], let p(¢) =][-, p;(t) be the
irreducible factorization in K[¢f]. Then ng(p(t)) := {deg p;}, .;~, 1s a partition of deg p,
which we shall call the factorization pattern of p(t) over K.

Let W be an irreducible Weyl group of type 4;, D;, or E;. Then up to a little
deviation, the factorization patterns 7o) (Tprim(x; ¢, ¥)) and mo(z p”m()(, t)) depend only
on the element of .#(%) associated to ye WY, if 4=%(y) is S, (m=1,2,3,95).
(Cf. §0.1.) More precisely, we have the following.

THEOREM 0.2. Let W; (i = 1,2) be two irreducible Weyl groups of type A;, Dy, or E,
LEWY, 9:=%9(y) e{S,|m=1,2,3,5}, and (x;,p;) € M(9Y;) the element associated
to x;.

(1) The two factorization patterns mgg)(Tprim(x;3 9, ¥)) for i=1,2 are the same,
whenever 9 = %, and (x1,p;) = (x2,p5).
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(2) If (Wi, y;) (i=1,2) are not among the following list of (W), the same result
holds for mo(t,,,(1; 1)

(@) W=D;(l

(b) W = W(E), 7 {30,,30.},
(c) W = W(Eg), x€{210,,210.},

(d) W =W(Ey), ye{512/,512,},

(e) W = W(Eg), x € {4096.,4096,,4096!, 4096 }.

Concerning the irreducible representations of Weyl groups, we follow the notation in
[L1, §4].

In the above list, (2d) and (2e) seem to be real exceptions, but (2a)—(2¢) do not. In
fact, in the case of (2a)—(2c), Tpim(x;¢,») € O(q)[y] is an irreducible polynomial of
degree 2 as is predicted by the general rule (cf. Theorem 4.1 (1b)). On the other hand,
the extrapolation of the factorization patterns of 7,,,(x;#)’s except for y’s in (2a)—(2c)
might predict that they would be an irreducible polynomial of degree 2. But in-
cidentally it decomposes into two linear factors, and thus we are obliged to exclude these
2’s (cf. (1b)).

In §4.1, we shall generalize the above result on the factorization pattern so that any
irreducible Weyl group not of type D; (I > 5) will be included. Further, in §4.2, we
reformulate the result in terms of the modular representation theory of the (generic)
Iwahori-Hecke algebras.

0.4. Product formula for t*(y;¢) and 7(y;q, ).

As we have seen, our invariants do not completely decompose into linear factors in
general. However, 7*(y;;¢) + t*(x»;¢) decomposes into linear factors for arbitrary
21 # x> In a family consisting of 3-elements. This seems to be a part of more general
phenomenon. We have obtained some results in this direction. See [Proposition 5.]|
and (5.8) in [Theorem 5.2. As for 7(y;q,y) € Q(q)[y], see the formula (5.9).

0.5. Convention and Notation.

We denote the rational integer ring by Z, the rational number field by Q, the real
number field by R, and the complex number field by C. For a set X, #X denotes
its cardinality, and &(X) the symmetric group on X. Put S,=CE(1,2,...,n):=
S({1,2,...,n}). The identity element of a finite group is denoted by e, not by 1. For
two complex valued functions f; and f, on a finite group I', put <{f,, fior:=
(#I)"! >gerfi(g) f>(g7"). The set of isomorphism classes of irreducible (complex
linear) repfesentations of I' is denoted by I"Y. For a character y or I', we denote by
dim y the value y(e) at the identity element, which is equal to the dimension of the
corresponding representation of I'. Concerning the irreducible representations of Weyl
groups, we follow the notation in [L1, §4].

1. Definition of invariants.

Let V" be a complex vector space of dimension / on which the Weyl group W acts
faithfully as a reflection group. For we W, let V(w) denote the space of w-fixed
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vectors in V. We define 7(q, y), 7(¢) and o(q) as follows;
_det(1 + yw|V)

() (w) = (4m V0, (1.2)
) = g (13)

where ¢, ¢ and y are indeterminates. Note that a(q)(w) is the coefficient of the linear
term of 7(g, y)(w) with respect to the variable y. For an irreducible character y of W,
put

(4, y) = <06HUa Y w, (1.4)
t(x;t) = 6 T()Dw, (1.5)
a(x:9) = <1, 0(q)dw, (1.6)
(1) = (#W/dimy)t(x; 1), (1.7)

o*(x:q) == 0(x:9)/(x:4,0), (1.8)

where dimy = y(e) is the dimension of the representation corresponding to y. Let
I'(w) (we W) be the minimum of the length m of the various expressions w = rjry - - - Iy,
where r;’s are arbitrary reflections in W. Then !'(w) =/ —dim V' (w) [C1, §2], and the
function ¢(y;¢) in Introduction is given by

(1) =t (0. (1.9)
Therefore, we shall study the functions [1.4}-{1.8] instead of c¢(y;¢).

Let {mj,...,m;} be the exponents of W (See [B, Chapter 5, §5, Exercise 3]). Here
we understand the exponents so that {m; + 1} are the degrees of the basic W-invariant
polynomials on V. In particular, if we allow W to have non-zero fixed vectors in V,
some of the exponents may be zero.

ProposiTioN 1.1. (1) We have

~

/
H " Ni(a,¥) € Zlg y), (01— alxq) € Zlq).

i=1

(2) We have an expansion

%g,q, ;—1+0*(X;q)y+203‘(x;q)yi (1.10)

(‘]2

with some ¢} (y;q) € O(q).
(3) We obtain t*(y;t) from 7(y;q,y) by the following specialization:

w
dimy un hm (y;q,—1+t(1 —q)) e Z[1]. (1.11)

(1) =

This proposition is an immediate consequence of the following lemma.
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Lemma 1.2. (1) The functions t and o are obtained from T(q,y) by the following
specialization:

lim #(q, 1 + 1(1 — ) (w) = (Y (w), <

Jim 3y @ )W)

o a(q)(w)- (1.12)

(2) Let S™(V) (resp. /\"(V)) denote the n-th (resp. m-th) homogeneous part of the
symmetric algebra (resp. the exterior algebra) of V. We denote the space of W-harmonic
polynomials of degree n by H"(V) < S™(V) (cf. [St2]). Then we get

1 m
T(x;q,y) = cH"(V ym, 1.13
(a9 =g —61’”1'“)”,,,20[)( MN'(Vg"y (1.13)
1
aly;q) = CH" (V) ® V]q", 1.14
(%:9) Hf_l(l—q”“"“),;[x (V) ® Vg (1.14)

o) = Bl

Here, we denote by [U, : Uyl = Homy (U, U,) the intertwining number of W-modules U;
(i=1,2).

PrOOF OF LEMMA. (1) 1is an easy consequence of the definition.
(2) By definition we can show that

= ) trace(w|S"(V) @ N"(V)g"y", (1.16)
n,m=>0
=) trace(w|S"(V) ® V)q". (1.17)
n>0

Note that the symmetric algebra is decomposed as S(V) = H(V) ® I(V'), where I(V) is
the subalgebra of W-invariants in S(}'). Since

Zln(V)fJ":Hz (11_qmi+1) (I"(V) = I(V)NS"(V)),

n>0 i=1

we get the formulas (1.13)—(1.15) by the orthogonality relation of irreducible
characters. ]

The polynomial 7(y; ¢, y) contains a lot of factors of the form 1+ yq¢ (¢ € Z) (see
§3 for examples). So we consider the largest divisor ¢'(y;q,y) of 7(x;q,y) € Q(q)[y]
which is of the form [[Z,(1+ y¢“) (¢; € Z). Put

/
(x: 9, y) = GCD{&' (154, ) | 1 H + yq“! (1.18)
=1
) ) 1 — x(x)
Trim (134, ¥) = T(1:4, ¥) U-9) , (1.19)

[12(1 + pgatn)
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* (13 1)
Torim (G 1) = : (1.20)
! IT% (¢ + i)
(%) "
Gpin(2:0) = 0" (1:0) = Y 4“7 (1.21)

PropositioN 1.3. (1) 7,,,(x: 1) € Z[1].
(2) The following formula holds with some a; . (1:q) € Q(q);

i, prim
T I—x(z)
Tprim (X345 ¥) _
m 1 + Uprlm y + L O-l prim X, . (122)

PrROOF. Abbreviating x = x(y) and ¢; = ¢;(y), we get

03 Jo T, =1 +1(1 = )
# W o 1—q°
= dimy (g, —1+1t(1—q) /H(tq + 1_q>
~ e/ T[0+e) @1 (123)
i=1

by (1.11)}. Therefore z,,,(x;?) is a polynomial in 7. Since t*(x;1) € Z[t], we get (1).
(2) immediately follows from the definition. O

PropPOSITION 1.4. Let sgn be the sign representation of W. Then we have

(1:¢,7) = (—9) H(x @ sgniq”', y) = y'E(x @ sgniq, v, (1.24)

o (z:0) = (=)t (x ® sgn; 1), (1.25)

o"(1:9) = (—¢) 0" (x ®sgn;q ), (1.26)

(g y) = (x@sgniq™ ), &rq,7) =y @sgnig", y), (1.27)
k() = k(x ®@sgn),  {ci(x)}; = {—c(x ®sgn)};, (1.28)

Erim(1: 4 ¥) = (=0) " Eprim(x @ sEn3 g7, y)
= Y0 20T, (@ sansq, ), (1.29)
i) = (=1)7 W (@ sgn; —1). (1.30)
Proor. Note that w and w™! are conjugate in W. Then we can show that

(g, y)(w) = (—q) " sgn(w) - 2(g~", y)(w) = ¥’ sgn(w) - €(q, y~") (), (1.31)
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w(1)(w) = (=1)" sgn(w) - 7(=1)(w), (1.32)
a(q)(w) = (—=q) " sgn(w) - a(g") (), (1.33)
The proposition immediately follows from the above three formulas. ]

2. Some specialization.

2.1. Specialization.
Let {my,...,m;} be the exponents of W. Put f (w) ::Hl.lzl(l—qu“)/
det(1 — gw|V). Then

/

o) =<6 fow =] = 4" E(x:4,0) (2.1)

i—1
is called the fake degree of y, whose explicit form is given in (for type 4;), (for
types B;(= C;) and D;), and [BL] (for exceptional types).

ProprosITION 2.1. If y is the trivial character 1, then y forms an equivalence class
with respect to ~ by itself, and we have

/ ; / /
- L+yg™ .
i(lig,y) = T gt (o) =[[+m), o (159) =] 4™, (2.2)
i1 i=1 =1
/
l;q,y) =& (g, 9) = [ (1 + yg™ (2.3)

i=1

Proor. For 7(1;¢,y), see [B, Chapter 5, §5, Exercise 3]. The other formulas are
easy consequences of it after appropriate specialization. O

LemMA 2.2. The following special values of T, ©* and ¢* are obtained:

f(x;q,—q)={(l) Zji;i (2.4)
o) = { {707 Trme 25
T*(x;l)z{fW Zi;i (2.6)
clpmn = { T e 2.7)
(1) =1 (=dimV). (2.8)

lim .l (1—¢"") %y q, y)/dimy = (1 + )’ (2.9)
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Proor. By the definition of 7 and 7z* (2.4) and (2.6) are obvious. Thus

(resp. [(1.25)) yields (2.5) (resp. (2.7)). To prove [2.8), let us put ¢ =1 in (1.15). Then
the numerator becomes

Y H'V)®V]=[x: CW@V]=dimV-[y: CW]=dim V' -dimy,
n>0

where CW denotes the left regular representation of W. Similarly the denominator
becomes dim y and we get the formula. For the last formula, we calculate as follows:

Z Zm trace(w| \" V) y™
# W

t(x:4,) det(l — gn)

we W

BT Y] (e

hence we get

/

lim [ (1 = ¢"™H%(x;q, ») dlrn)(Z( > = (dimy)(1 + »), (2.10)

=1

using f(y;1) = dimy. O]

2.2. Coefficients of 7(y;q,y).
Consider 7(y;q, y) as a polynomial in y with coefficients in Q(¢). By (2.1) and

(1.24),

(X = ! . n: !
T(X7q7y)_Hf:1<1_qml+1)(f()(,q>+ +f(%®sg ’q)y)
(—q)”' ) .
L _q_mi_l)(f(;c@sgn;q N fg Y. (211)

Here only the lowest and the highest terms are written. In the sequel, we use the
similar abbreviation. In order to rewrite (2.11), we review some results of
Lusztig. Assume that W is an irreducible Weyl group, and let

{ye WV |dimy =512}, if W= W(E;),
wy =< {xeW"|dimy=4096}, if W = W(Es), (2.12)
, otherwise.

Then W,. is the set of exceptional representations [L3]. (Note that this notation is not
compatible with that of [L1]) Let d(y;q) be the generic degree of y (cf. [L1, p. 61,
1/¢. 5-1], where it is called the ‘formal dimension’). Express f(y;¢) and d(y;q) as

fa) =o' (g @ + -+ B'(0)g"?, (2.13)

d(x:9) = a()g“? + - + B(x)g"™, (2.14)
where o'(y) #0, B'(x) #0, a(x) #0, p(x) #0, a'(x) <b'(x), a(x) <b(y), and the
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omitted terms are of the degrees between them. Then it is known that
Xy 2= a(y;) = a(xy) [L1,5.27] (2.15)

for any y,,y, € WY. Hence we may write a(¥) :=a(y) for ye # e WY /~. Fur-
: . LR
ther, if y ¢ W), it is known that

ex.’

g [y ®@sgniq) = ¢ f(x:9) [BL, (2.16)
—d'(y) +a'(x ®sgn) = —a(y) + a(x @sgn) [L3,(2.2) and (2.3)], (2.17)
a'(x ®sgn) +b'(x) = a(y ®sgn) +b(x) =v [L3,(2.3)], (2.18)
where v is the number of reflections in W. Put 4 = A(F) := —a(F)+ a(F ® sgn).
By (2.11), (2.16), (1.10) and (1.24), we get
(14, y) == Sx4) —(L+a"(agy++ o (x®@sgn g’y +¢"y")  (2.19)
[Lizi (1 — g™ *1)
for y¢ W,5.
2.3. Coefficients of *(y; ).
If we put
=t +ut + 41 (n=nup) eZ), (2.20)
then as is easily seen
1

N

where s runs over the totality of the reflections in W.
LemmA 2.3. For any ye WY, the following two formulas hold,
11(7) = —a(F) + a(F @ sgn) = A(F), (2.22)

d
o a*(x;q) = —a(F)+ a(F ® sgn). (2.23)
q q:]

Proor. For y ¢ W)\, we have v—r1(y) =a’(x) +b'(x) by [BL, Proposition B].
Hence by (2.17) and (2.18), we get if yeZ e WV/LNR and y ¢ W,.. Since we
can directly verify the same equality also for ye W), holds for any
yx € WY. Now consider the limit of

(1-9) (I +0" (@) +---+0" (x@sen;q)g"y""' +q")') (2.24)
y=—1+1(1-9q)
when ¢ — 1, assuming y ¢ W,.. By (.11}, this limit is 7*(y;#). On the other hand,
the coefficient of /~' in (2.24) is

o (x ®sgn;q) — 1
l—g¢q
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Hence
d ) “(y:q) — 1
L og)| =tim ™D g
q q:] q_>1 q_

=—11(y®sgn) = —a(F) + a(F ®sgn) by (2.25)

if y¢ W) . Moreover a direct calculation shows that [2.23) holds even if
xew,. O

3. Explicit form of invariants.

In this section, we calculate our functions 7, ¥, ¢*, ¢’ and ¢ explicitly for each type
of the Weyl groups, and see whether the invariant ¢é(y;¢q, y) separates the two-sided
cells. Summing up, we get Theorem 0.1.

3.1. Type 4,.

We realize the reflection group W = W (A;) (= S;41) as the group of permutation
matrices of size /+ 1. (By an obvious modification of the argument below, we can
calculate the invariants 7 etc. for the irreducible reflection group W of type A;.) Then
for we W of cycle type p=(p; = -+ = pry_p) > 0) [M, p. 60],

I==0"

S (3.1)

(g, )w) =[]
Let o be a partition of /+ 1 and y* the corresponding irreducible representation of
W(A;) = S41. We identify the partition o with the corresponding Young diagram,
which we understand as a subset of Z? as in [M]. For the sake of convenience, we
recollect some of the notations in [M]: for o, |a| := >0 =141, n(a) := > ;0 (i — Doy
and o = (af > o > ---) the dual partition of «. For x=(i,j) ea, c¢(x):=j—i (the
content), and h(x) := (o — i) + (o — j) + 1 (the hook length).

ProposiTION 3.1. (1) For the Weyl group W (A;) of type A;, we get

o o) T L+ 2a
(x QCI,y):q()Hma (32)
XEU q
(1% 0) = [ [ + e(x)), (33)
o (19)=> g, (3.4)
&xtiq,y) = (x4, y) = [J(1 + yg°™). (3.5)

Xeo

(2) The invariant ¢(x*;q, y) separates the two-sided cells in W(A;).

Proor. (1) follows from [M, §I1.2, Ex. 5 and §I.3, Ex. 3] (witha=1,b=—y, ¢ =
¢, and 7 being p,). As for (2), see the proof of [Proposition 3.3 below. O
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3.2. Type Bi(= C)).

Let W =W, = W(B;) be the centralizer of (1,1)(2,2)---(1,]) in &(1,2,...,1,
l...,2,1), 0: W — W/{(1,1),(2,2),...,(l,1)) = &, the projection, s1:= (1,1), s;:=
(i—1,i)(i—1,i) (1 <i<l), and S:={s1,...,5}. (Here i should be understood as
one symbol, or as —i.) Then (W,S) is a Coxeter system of type B;. We realize W as
a reflection group acting on V = @;:1 Ce; by

for 71— 1 e, forj=i—-1

—ey, forj= .

s1ej = ! ‘] and sie; =< €1, forj=1 (3.6)
g, forj#l, e, forj#i—1,i

7 — b

for 1 <i</l. Define ¢ Hom(W,C*) by &(s;) =—1 and &(s;) =1 (i #1). Let I =
I'+1" (I')l" =2 0), and («,f) be an ordered pair of partitions of /" and /”. Let W’
(resp. W") be the pointwise stabilizer of {/” +1,...,/} (resp. {l,...,/”}) in W. Then
W' and W" are naturally isomorphic to W; and W;», respectively. Define 0’ :
W' — &y and 0" : W" — S;» in the same way as 0. Put ¢” :=¢|;;,» and define y*# as
the induced character

P =ind}) (%0 0)® (00" ®¢c")). (3.7)

Then y*# are irreducible characters of W, and all the irreducible characters of ¥ can be
obtained uniquely in this way.

Express the partitions o« and f as o= (0 >0 > -+ >0, =0) and f=
By =Py =+ =p,=0) for sufficiently large m, by adding some parts which are
equal to zero. Let Ai:=o;+m+1—1i, w:=p,+m—i, and {vi,...,vap1} =

{Ay ooy Amsty gy« oy 1y, (including multiplicity).
Lemma 3.2 (L1, (4.5.6)]). Let y=yx*F and {vi,...,voms1} as above. If
Vi, vy} is associated to y' = y*"B" by the same manner, then
x5 v, v} =V, Vb up to permutation. (3.8)

ProrosiTION 3.3. (1) For the Weyl group W(B;) of type B, we get

- " I+ yq* R
(1"’ q, y) = g2V H peTeg H e (3.9)
x'ea x"ep q
(P = T+ 2e(x) + 1) - T (04 2e(x") = 1), (3.10)
x'ea x"ef
B q) _ Z qzc(x’)-i-l + Z qZC(x”)—l’ (311)
x'ea x"ep
& Piqop) =TI+ yg? ) - T+ pg? 7). (3.12)
x'eo x"ep

(2) The invariant ¢(x*P;q, y) coincides with ¢'(x*’;q, y), and it separates the two-
sided cells in W(B).
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Proor. Put V':=@, , Ce;, V" :=@P), ;s Ce;, and define 7" and 7” in the same
way as 7 for W(A4;) in the former subsection, replacing V' with ¥’ and V" respec-
tively. Then

“Pq,v) = P w g, y)ow

=% 00,7 (q, ) w x (P 0 0") @ &",7"(q, »)Dyr

T(x

= F (@ ay)e, x <P d" P (@ a7 ),

2¢(x")+1 2¢(x")—1
(a2 f) 4181 T L+ pg> @ 14 pg2 1 (3.13)
1

=9 — ) EPEED

x'eo x"ep
which proves [3.9). The rest of the formulas in (1) easily follows from [3.9).
(2) Let {vi,-.svame1} =441,y dma1, My, - -, 1, } be as above. Then as is easily

seen from Example 3.4 below,

m ) - } Ayee- /lm 2m+1 v;
H(l + yq721+1)21 1 -C/<( 1 +1 >;q’ y) _ H H(l + yq2k72m71). (3‘14)
i=1 k=1

i—1 My Uy

| ‘ o :
(Here ( /11 Z+l> is the symbol of y*#. We often identify these two objects.)
.

Hence for y,y' € W(B;)”, we have
(a3 =8Ga.9) = x 1

by Proposition 3.2. Thus we get ¢(x;q,y) =¢'(x;¢,v) and clearly it separates the
cells. (Note that in the B, -case, Aut(W,S) acts on W/ ~ trivially.) O

ExampLE 34. If a=(5,4,4,2) and = (3,2), we can take, for example, m =3
and express f=(3,2,0). For the diagram o (resp. f), we put the content
2¢(x)+1 (xea) (resp. 2¢(x) —1(x€ef)) in each box. Then we get the following
tableaux.

o 1 3 5 7 9 p | -1 1 3
-1 1 3 5 -3 | -1
-3 -1 1 3
-5 -3

Now we add m+ 1 —i=4—i (resp. m — i = 3 — i) nodes to the left of the i-th row for «

(resp. ).
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Then Z; (resp. y;) is the number of nodes in the i-th row of the left (resp. right) tableau
above. Note that we have added 2i — 1 nodes labeled by —2i+ 1 (cf. (3.14)).

3.3. Type D,

We keep the notations in the preceding subsection. Let W = W;:=kere
(c W(B))). Then W, is the reflection group of type D;. Let (a,) be an unordered
pair of partitions. If o # f, put y*F :=y*P|, . If a=p=1a, y**|, is a sum of
two irreducible characters y; # xj;,. Note that 72P = 7P because y*F ® &= yP>
holds. Then {7*” y% %} are irreducible characters of W;, and all the irreducible
characters of W; can be obtained uniquely in this way.

For o and g above, let A; := oyy1—i +i1—1, p; :=p, 1, +1—1"for 1 <i<m, and
|A] :==>_,A; etc. Here we assume that o, = f,,.; =0. Then 4 = (il B im> is the

.

symbol associated to the irreducible character y of W(D;) ([L1]). We identify an
irreducible character with the associated symbol.

Lemma 3.5 ([L1, (4.6.10)]). The equivalence relation ~ for W(D;)” can be de-

scribed as follows. Each irreducible character y} (resp. xj;) forms an equivalence class by

Moo
itself. If y = “ﬁ—( : )withm>>0, let {vi,...,vam} = {41, s Ams gy s Ly}
Hyeo oy

Mooid
(including multiplicity). I {v{,...,v3,} is associated to y' = y* LB = ( / ’/”>
similarly, then SRy

X e v, vt =A{vi,..., V5, up to permutation.

PROPOSITION 3.6. (1) For the representation 7*P (a # ) we get

(x4, q + yqg + g T
2H\eocl_lﬁ(1 _qZh( ) x ea X" ep
+d" T[]+ yg O [T+ yqz"“‘”“)}, (3.15)
x'ean x"ep

1
* (s, _ - ! AN
(% ,z)_z{ [T +2e(x)+1) T (14 2¢(x") = 1)

x'ea x"ep
+ H(l—l—Zc(x’)—l) H(Z—i—Zc(x")—i—l)}, (3.16)
x'ea x"ep

1 //
* (=B, 1B 2¢(x")+1 2¢(x
o (X aq> 2(q‘o,| + qw {q (Z q + Z q )

x'ea x"ep

+q\a| <Z ch(x’)—l + Z q2c(x”)+l> } (3.17)
x'ea x"ep
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(2) For the representations y} and yj;, we get

(x4, 3) =t a4, )

1 2¢(x)+1 1 2¢(x)—1
_ g4l H( + )4 )( +;’q )’ (3.18)
Xea (1 - qZh(X)>
(i) =T (g 1) = [ L+ 2e(x) + D1+ 2¢(x) = 1), (3.19)
o (x5i9) = 0" (xjpq) = > _ (> g2, (3.20)

Xeo

Proor. (1) Since y*# ® &= y/*, we have

% p B

21(7*F; g, 9) = #(x*F; 4, ¥) + (1" % 4, »),

). The rest of the formulas in (1) easily follows from |3.15).
(2) Since the inner automorphism by s; in W(B,) induces an outer automorphism ¢
of W(D;) which interchanges y; and yj;, we have

which proves {3.15)

T4, y) = 281136 ) = 22(xg3 4 9)-
From this we get (3.18), hence the rest of the formulas. O

Next we calculate ¢(y;q, y) for type Dj.
First, we consider the representations y; and yj;. Since each yj (resp. xj;) forms
an equivalence class with respect to ~ by itself by [Lemma 3.3, we have é(x;q,y) =

¢'(x;q,y) for y =yt or xf;, and

éxi5qy) = é(xisq: v) = [T+ pg® (1 + yg? ™), (3.21)

Xeo

Secondly, we consider ¢ for 7*# (a # B). Put [i] := 1+ yq', [j,k] == [[j<i<kli] if
i is odd
{ilj<i<k,diisodd} # &, and [j, k] := 1 if otherwise. Then the inside of { } of
multiplied by [[",[-2i+1]*"" (m > 0) is equal to
¢ O T[1-2m + 1,225 — 2m — 1] - [-2m + 1,2, — 2m — 1]
i=1

X {q”ﬁ[Zii —2m+1] +q2|ﬁ[2/¢i—2m+ 1]}, (3.22)

i=1 i=1

where A= o +i—1, w:=p,_;+i—1 for 1<i<m as before. Let 4=

Al Ao AucC . :
< : ) = ( ) with ANB = . From the assumption o # 5, 4 and B are
e L BUC

non-empty. Then is equal to
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[—2m +1,2x — 2m — 1]
xeAUBUCU(C+1)

w g () {qlﬂl [T12a - 2m+ 1]+ ¢* [ 126 - 2m + 1]}, (3.23)

aeA beB
where C+1:={c+1|ce C}.

LEMMA 3.7. Put y = j*P (a # p).
(1) If there exists d € Z such that

A=A{ay,...,a,}, B={d—ay,...,d—a}, andrisodd, (3.24)
then & (y;q,y) is given by

[T-2i+ 0% & (g, y)=[d—2m+1] - 11 [—2m+1,2x—2m—1]. (3.25)
i=1 xeAUBUCU(C+I)

(2) If the condition (3.24) does not hold, then ¢'(y;q,y) is given by

m

[I=2i+ 177" & 9,0) = 11 [=2m +1,2x — 2m — 1]. (3.26)
i=1 xeAUBUCU(C+1)

ProoF. We can see that {} in [3.23) vanishes for y = —¢~**"~! (d € Z), if and
only if the condition (3.24) holds. Let us prove it. The condition which d should
satisfy is

qz H g +qz alH gy =0,

which implies {2a; — d}; = {&;(2b; — d)}; with some ¢ = +1. Since ANB = (7, all the
¢’s should be —1, hence we may assume that 2a; —d = d — 2b;, i.e., by =d — a;. Thus
we can easily see that (3.24) is a necessary and sufficient condition.

Next, let us show that y = —¢~9*?"~1 is a simple root. By a change of variable
y = xq~ 9?1 it suffices to show that x = —1 is a simple root of

(p()'—H g + xq" —I—H "4 xq“)

i=

assuming (3.24). Note that

<Z - = ) [T ™). (3.27)

jlq i

Since AN B = (&, the first factor of (3.27) tends to er:l (+1) asg — 0. Since r is odd,
this limit is non-zero, and hence the first factor is non-zero. Since AN B = J, the
second factor is also non-zero. ]

Next proposition immediately follows from the above lemma.
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PrOPOSITION 3.8. Take y = 7*Fe W(D))" (a#p), and let Ji:= oy i+i—1,
Ui =Py +i—1 for 1<i<m. Here we assume 01 =p,, 1 =0. Put C=
Uik Mtehs A = Uik — C, and B={}, ~ C.

(1) If #A4>1 (hence #B= #A4 > 1 also), then ¢(y;q,y) is given by

m

[Tl=2i+ 107" &9, 5) = 11 [=2m +1,2x — 2m — 1], (3.28)
i=1 XeAUBUCU(C+1)
where C+1={c+1|ce C}.
(2) If A={a} and B={b}, then ¢(x;q,y) is given by

[T-2i+107" - (g, y)=la+b—2m+1] - 1T [—2m+1,2x—2m—1]. (3.29)
i=1 xXeAUBUCU(C+1)

As the following example shows, the invariant ¢(y;¢q, y) does not separate the two-
sided cells in W (D;)".
ExampPLE 3.9. Let 4 = (O : 3) and A4’ = <O : 3) and identify them with
1 4 6 2 3 6)
the corresponding irreducible characters of W(Dy). Then

{ei( M)}, ={ci(4N}, ={-3,-1,-1,1,1,3,5}.

Thus A+ A" but &(A;q,y) =é(A';q, y).
LR

For a later use, we reformulate as follows.

A Do
LeMMA 3.10. Take y € W (D))" corresponding to A = ( : ) and let the sets
A, B and C be as in Proposition 3.8. Then we have Hare Hon

[T =2i+ 1) " x 2 (430) = 11 [—2m+1,2x — 2m —1]*
i=1 xeAUBUCU(C+I)

X {H(l+2a—2m—l—1)+H(I+2b—2m—|—l)},

acA beB

(3.30)
where [j, k]* = [Ti<i<k (t+1).
i is odd

34. Type G,.

If =1 (resp. y=sgn), then ¢'(L;q,y) = (1+yq)(1 + yg°) (resp. ¢'(sgn;q, y) =
(1+ yg )1+ yg?)) by [2.3) and [T.27). The trivial (resp. sign) representation forms
a family by itself. The remaining four representations form one family. In this case,
¢'(x:q4,y) = (1 4+ yg ) (1 + yq) by (2.4) and (2.5). Hence always Z,im(y;¢,y) =1 and
c(x;q,y) =¢(x;q,y). See Table 2.

3.5. Types Fy and E; (I =16,7,8).
We give ¢i(x) (1 <i<x(y)) and 7,,,(x;7) in Tables 3-6. Note that the set

{ci(y) (1 <i<kK(x))} completely determines the invariant ¢(y;q, ), so the tables
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describe both ¢(y;¢,y) and t*(y;t). The explicit form of 7,.,(x;q,y) is too com-
plicated to include here.

Besides, we shall give the explicit form of é(y;q,y) = Hf:(’f)(l + ¢y, (x:q, )
and t*(y;t) for y e W,. in this subsection.

(1) If W=W(E;) and dimy =512, then x==x(y)=2 and {c} e =
{ci(X>}1£iSK = {_17 1} Put {Cl}lc<l<l { 4 2 O 2 4} ( ) Then T*(X; l) =
Hilzl (t + Ci):

f(x ®sgn;q) s@2Pshioyt + dsdsdror® + 4° 15 1 ¢
[Tie) (T — g™ 2 PsProP1adis i—1

where ¢; = ¢;(q) is the i-th cyclotomic polynomial (e.g., ¢3 = ¢> + ¢+ 1), and ¢ = —1
(resp. +1) if y =512/ (resp. 512,).

(2) If W= W(Es) and y e {4096.,4096,}, then x =x(x) =3, and {ci},.;,, =
{c( Vhecice ={-11,7}. Put {c}.ic;={-4,-2,2,48} (I=8). Then t*(x;¢)=
H _(t+¢), and

/
g, y) = H +4°y) +¢q
i=1

!
sgn;
15 fX®g q) H (1+4¢°)

(x:9,7) =¢
Hl 1 - ml-H 1:1
L (2 +¢"+¢°+¢*+1)g®y* + (¢ +¢" — ¢+ ¢ +2¢°+ 1) gg > +¢°
8 14 ;2
D102 06910014P18930
K
x [T +4¢“y),

i=1
where ¢ = —1 (resp. +1) if y = 4096, (resp. 4096,).

(3) If W= W(Eg) and y € {4096.,4096"}, then x(y), ci(y) (1 <i<x(x)), t*(x;?)
and 7(y;¢q, y) can be explicitly determined by (2) and the duality (see [Proposition 1.4)).

3.6. The main theorem.
We sum up the results in the former subsections into the following theorem.

THEOREM 3.11. Let W be an irreducible Weyl group not of type D; (I = 5). For
1 € WY, we have

0 9) = E1's0,9) & 1~ (1) for some 1€ Aut(W, S).

4. Primitive factors and the relation with the modular representation theory.

We extend the notion of exceptional representations in the case of type G;; namely,
we define W)Y < WY by

ex.m

WY {xe WY |dimy =2}, if W=W(G),
ex.m WY

ex.’

otherwise.

We call them exceptional representations in a modified sense. For the motivation of
this modification, see §4.2 below.
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4.1. Factorization patterns of 7.
If Wis of type 4;, D; or E;, the factorization patterns of 7,.,(x; ¢, y) and ... (x: )

prim

seem to be controlled by .#(%(y)) (cf. §0.1 (b) and §0.3). [Theorem 0.2 in the in-
troduction can be refined, and generalized as follows.

THEOREM 4.1. (1) Consider the Weyl group of type A;, D; or E;, excluding y’s in
W\/

ex.m*

(@) If 9 =G, then Tpm(1;9,y) = 1.

(b) If 9 =G, then Tpim(x;q,y) € Q(q)] is an irreducible polynomial of degree 2.

(c) If G =C; (so that W= WI(E;) (I=6,7,8)), then the factorization pattern of
Torim(X; 4, ¥) € O(q)[y] is as follows:

M (S3) (LD (g, 1) (L) (g5, 1) (Le)
mo(q) (Tprim (2:4, 7)) {217} {4} {4} {4} {217}

(See [L1, 4.3] for the notation (g»,1) etc. See §0.3 for the definition of factorization
pattern.)

(d) If 9=Cs (so that W = W(Eg)), the factorization pattern of Tpim();q,y) €
0(q)y] is as follows:

M(Cs) (L) (g5,1) (95:1) (Lv) (L,A) (g5,1) (g3,8) (1,v)
no) (Trin(2:¢,¥)) {6} {174} {174} {6} {6} {6} {6} {1°4}
(95:¢") (1,23 (¢5¢) (1,A) (92,1) (941) (96,1) (92.7) (92,8
{6y {174y {6} {174} {6} {1°2?} {6} {1'2} {174}

(2) Consider the case of B (= Ci), Fs or G, excluding y’s in W)\, . Then every
Torim(X; ¢, ¥) decomposes into linear factors in Z[t] except for {121,41,61,65,161} in the
Fy-case. For these excepted y’s, the factorization pattern of Tpum(y:q,y) is {2}.

(3) For ye W, .. Towim(x:4,y) € O(q)y] is irreducible.

THEOREM 4.2. The factorization pattern of t*(y;t) € Z|t] is always finer than that of
(x4, ) € Qa)[y)-

(1) Consider the Weyl group of type A;, D; or E;, excluding y’s in W,. .

(@) If 9 =C, then t,,,(x:1) = 1.

(b) If =G, and W # W(Dy) (I =5), then <. (y;t)€ Z[t] is an irreducible

prim

polynomial of degree 2 except the following 4 cases:
W = W(Es) and ye{30,,30}, W =W(E) and xe{210,,210;}.
In these cases, the factorization pattern of <., (x;1) is {1%}.
() If 9=C;5 (so that W =WI(E)) (l=6,7,8)), the factorization pattern of
(x;t) € Z[t] is as follows:
M (S3) (LD (e ) (L) (g31)  (Le)
(T2 1)) {217} {4} {22y {22y {21%

*
prim
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(d) If 9 =GCs (so that W = W(Es)), the factorization pattern of t,,,
as follows:

M) (L) () (@hD) () (LA (g5 1) (g8 (LY)
mo(t, (i) (27} {124} {1227} {1222} (123} {24} {1%2) {122
(@he") (L) (ghe) (LD (1) () @el) (021) (92,9
2% (1227 {24 (12 {24 (123 {6} {1%3) {12}

(2) Consider the case of B, (= C)), Fy or G, excluding y’s in W, . Then the

ex.m*
factorization pattern of t,,,(x;t) is the same as that of Tpim(%; 4, ¥)-
(3) For y € Wy, Tpim(x;t) decomposes into linear factors in Z[t].

ex.m’

(r;t) e Z[t] is

RemMARk. For type Dy, it is known that 4 =&} (m >0). We do not know
anything about the case for type D; with ¥ = &}' (m > 2) yet.

4.2. Relation with the modular representation theory of (generic) Iwahori-Hecke
algebra.

Here we try to find a unified picture for from the viewpoint of the
modular representation theory.

Let (W,S) be a Coxeter system, {¢s},.¢ a family of indeterminates such that
gs = qy if and only if s and s’ are conjugate in W and such that different ¢,’s are
algebraically independent. Put R = Z[qsl/z,qs_l/z;se S| and K := Q(qsl/z;se S). De-
fine an associative algebra structure in Hy(W) = @s cwRT, so that

TWTW/ - TWW/ lf l(W) + I(W/) = l<wwl)7 and

(Tsy+1)(Ty—q5) =0 forseS.

Put H(W) := Hy(W) @z K. For aring A4, let A¥ denote the set of simple 4-modules
(up to isomorphism). Then naturally we can identify H(W)’" = (CW)" = W". For
x € WY, denote the corresponding simple H(W)-module by y. For a fixed prime
number p, we define the equivalence relation ~ in WY as follows: Let us consider ‘the

reduction modulo pR’ of elements of H(W)". For y,7' € WV, define y ~ x' if y and
p

7 belong to the same block (in the usual sense of the modular representation
theory). Define y ~ " if there exists xo, ..., %, € W and prime numbers py,..., p,
such that

A=Ho~H1~~ I =1
D1 P2 DPn

This equivalence relation can be explicitly described as follows.

(1) If Wis of type 4;, Dy or E; (I=16,7), then y ~ x' < x ~ x' by [Gy2]. Tt is
plausible that the same holds also for Eg (see [Gy2]). LR

(2) If Wis of type Bi (= (i), then y~ y' & x=y" by and [H].

(3) If W is of type G,, then the equivalence classes are {1}, {sgn},{e},{e},
{V,V'} in the notation of [L1, 4.8].

(4) If Wis of type Fi, then {12,,4;,6;,6,,16;} forms an equivalence class with
respect to ~, and each of the remaining y’s forms an equivalence class by itself.
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(Proor. For a prime number p, let R, be the localization of R by pR, and
H,(W):= Ho(W)®grR, First consider the case p=2. By [Gy3, 2.17] and [C2,
p. 451], x¢{121,161,41} = {#12.4,b16.5, 445} can be obtained from a principal in-
decomposable module by a scalar extension. In particular, each such y forms a block
by itself. Then by the argument of [Ge, p. 2965, T //. 14-7] and by the information
given in [L1, (4.10.4)], we can see that 12; 4+ 16; and 12| + 4, come from some direct
summand, say U; and U,, of the left regular module H,(W). By [Gy3, (2.16.1)] and by
[C2, p. 451], U;’s are indecomposable. Hence if p =2, {12,16,,4;} forms a single
block, and its Brauer tree is 4,-16,—12;. If p =3, the same argument yields that
{121,61,62} = {124, 6.6, P56} forms a single block, its Brauer tree is 6,—12;—6,, and
each of the remaining y’s forms a block by itself.)

Using or assuming (1)-(4) above, we can restate [Theorem 4.1 as follows.

THEOREM 4.3. Consider an irreducible Weyl group W.

D) I e(0) = #{X e WY )X ~xy =1, then Tpim(y;:q,7) = 1.

2) If o(x) =3 (ie, W=W(D;) or W(E), and G = C,, but y¢ W,.), then
Torim(X3 ¢, V) € O(q)[y] is an irreducible polynomial of degree 2.

(3) If o(y) =5 and G =G5 (ie., W = W(E)) and 9 = S3), then the factorization
pattern of Tpim(x;q, y) is given by (1c) of Theorem 4.1.

@) If o(x) =17 (ie., W= W(Eg) and 4 = Gs), then the factorization pattern of
Torim(X3 ¢, ) is given by (1d) of Theorem 4.1.

(5) Ifo(x)=5and G =C4 (ie., W = W(Fs) and y € {121,4,61,6,,16,}), then the
factorization pattern of Tpim(x;q,y) is {2}.

6) If o(x) =2 (ie, xye W, ,), then Tpim(y;q,y) € Q(q)[y] is irreducible.

REMARK 1. can be also reformulated in a similar way.

REMARK 2. The block structure of Hy(W) ®px R, can be determined if we know

(1) the center of Ho(W) ®grR,, and

(2) the central characters of all the irreducible representations of Hy(W) @K,
where K, is the fractional field of R,.

If Wis of type A; or B; (= (),

(1')  the center of Hyo(W) ®rK,
and (2), are determined in [AK]. (See from p. 239, /. 23 to the end.) In this con-
nection, it would be worth noting that ¢*(y; ¢) (with a slight modification in the Bj-case)
appears in [AK, Theorem 3.20].

5. Product formula.

Let W be of type A;, D; or Ej, x € WV Z the family containing y, and % the group
associated to # (cf. §0.1 (b)). If y ¢ W,.  and 4 # 1, then t*(y;¢) does not decompose
into linear factors in Z[f] (with a small number of exceptions). However, if ¥ = &)
(r > 0), then certain linear combinations of t*(y;¢) (y € %) completely decompose into
linear factors. In §5.1, we give such a product formula. Moreover, if ¥ = S,, we can
refine this observation. See §5.2, and also §0.4.
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5.1. Dj-case.

Let y = 7*P, Ji, w, A, A, B and C be as in §3.3. In the sequel, we identify y with
A.

Take any bijection ¢: 4 — B. Let @ be the totality of permutations o€
S(A4 U B U C) such that o({a,¢(a)}) ={a,p(a)} (ae A), and a(c) =c (ce C). Fix
ap€ A and put @ :={o€ @|a(ay) =ap}. Put

Note that 4 E;{a(/l) for any o€ @.

ProrosITION 5.1.

ﬁt—2z—|— Y = 21 1T [—2m+1,2x —2m —1]*
i=1

e Dy xXeAUBUCU(C+I)

I+ a+ pl@) = 2m+1), (5.1)

where [j,k]" =]j<i<k(t+1i).
irodd
Proor. From (3.30), we get

m

2 —2i+ 1> 2 (a(A);0) = 11 [—2m+1,2x —2m — 1]*

i=1 gedy xeAUBUCU(C+I)

XZ H (t+2a—2m+1). (5.2)

ogedaea(A)

The second factor in the right hand side is equal to

[T{G+2a=2m+ 1)+ (t+2p(a) = 2m + 1)} = 2" [[ (1 + a + p(a) = 2m+1). (5.3)
aeA aeA D

5.2. Families consisting of 3 elements.

Let W be of type D; or E;, and # a family consisting of three elements y, y»,
273- We assume that y,, y,, y3 correspond to (1,1), (g2,1), (l,¢) in this order, and
regard the suffix 7 of y; as an element of Z/3Z. (For example y;.; = x;.) Put

K(x)
=e(F)=e(y) =—aly) +a(y®sgn) — » ci(y) foryeF. (5.4)
i=1

By [Theorem 4.1 (1b), [1.10), (1.19) and (2.19), we get

%prim (Xi; q, y)

- =140 (iq)y+q7)y2 5.5
Tprim(Xi;qv 0) o M(X q>y 1 Y ( )
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THEOREM 5.2. To each family F € WV / ~ consisting of 3 elements, there associate
integers d;i = di(#) and d! =d!(F) (i€ Z/3Z) such that

d1+d{:d2+d2,:d3+d3/ (5.6)
and
ram(2i0) = (g% + q%) 7 (g% + q%) (g% + q%), (5.7)
1 * * /
5 (Tprim()(i; t) + Tpr[m(%i+1; l)) = ([ + di+2)(l + d[+2)7 (58)
DL(=g"" .
S q) v
d:
ql —di+d; _/ 71.‘_/ iy cly:
- Tq 1<j<x(x)
‘]d"l d'+di 1 +d d'+d'  +d’ ;
+T(1 + yq it i+1+‘i+2)(1 + yq it t i+2) H (] + ch()fi)>‘ (59)
q 7" 1<j<r(y)

Proor. First, let us consider the D;-case. Let notation be as in §3.3, and assume

AU C
that #4 = #B=2. For A := < ), put

BuUC
P(A; ) = gHI-2m+1 4 glBl-2m1 (5.10)
Now assume that 4 = {a;, a2}, B={b1, b2} and a; < by < a, < by. Put A" :={ay,b;},
AU C
B :={ay, by}, A" :={a1,by}, B":={ax,b1}, A1:= A4, Ay := (B’ ] C) and A3 :=

A" U C ) ) :
<B” ] C)’ Then A, A,, A3 form a family, the associated elements in .#(S,) are

(1,1), (g92,1) and (1l,¢) in this order [L1, 4.6].

Since (3.25) (resp. [(3.17)) gives an explicit form of é(y; ¢, y) (resp. o*(4;;9)), we can

calculate o, (4;;9), and we get

G;r'im(Ai;Q) = P(Ai3Q)_IP(Ai+1;‘I)P(Ai+2;q). (5.11)

Then we get [5.6] and [5.7) in the D;-case. In the Ej-case, d; and d/ can be obtained by
a direct calculation. See Table 7 for their explicit values.

Now (5.9) follows from (2.1) and (5.5){5.7). Specializing (5.9) as in [1.23), we get
(5.8). O
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Tables
For each irreducible character y of W = W(Ds), W(G,y), W(Fs) and W(E))

(I =6,7,8), we shall write down ¢;(y) (1 <i<k(y)) and t*

(x;t) in Tables 1-6. 1In

prim

Table 7, we shall list the integers d; and d! (1 <i < 3) appeared in [Theorem 5.2 Let
us give some explanation on these tables.
On Tables 1-6. We shall give all the families belonging to W" /~ and describe
: : LR
ci(y) 1 <i<k(y)) and 7,,.(x;t) in these tables. Note that

p

k()

t(150) = [ [+ () - i 0)-

—_—

~

So the tables describe 7*(y;¢) completely.
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For simplicity, the families which consists of only one element (i.e., 1-element
families) are collected together. For these families, the associated group is ¥ = S| =
{e} and .#(S;) ={(1,1)}. We put the parameters of each irreducible representation y
in the first and the second columns. The first one is used in and the second is used
in [L1, §4].

For the families which have more than 2 irreducible representations, we also list the
associated parameters (1,1), (g2,1), etc. € #(%) in the third column. We call the
family which have n elements n-element family.

For l-element families, since 7,,,(x;7) =1 always, we only list {¢;(x)[1 <i</
=x(y)} for each representation y.

For n-element families (n > 2), in the first row, we list {¢;(y) |1 <i < x(y)} with the
associated group ¥ = ©,,33,.... The following rows contain two kinds of parameters
of y, by Carter [C2] and Lusztig [L1, §4], in the first and the second columns re-
spectively; in the third column the associated parameter belonging to .Z (%) is given. In
the last column, 7, (x;?) is displayed.

On Table 7. Here we list d; and d/ (1 <i < 3) of Theorem 5.2 In the first and
the second columns, we list the special representations (i.e., y € WV corresponding to
(1,1) e #(S,)) of the families # € WV / ~ consisting of three elements. The third

column contains d,, dj, d», d;, ds, dj in this order.

Table 1. Type Djy.

l1-element families (S = {e}).

(4,-) (3) 1 3 3 5
(1= |63 -s -3 -3 -
(3,1 & -1 1 3 3
SRR I T I B RS B
BL=) | ) |-t 1 1 3
(2,2), G, |-t 1 1 3
(2,2) @)11 -1 1 1 3
ero) | (39 -3 -1 -1
(12712)1 (%%)1 -3 -1 -l 1
(1%,12) (i%)u -3 -1 -l 1
3-element family (S,) : -1 1

ey | ()] oy | 2-3
%) | (1) | (92.1) | 243
2,12 | (V3) | (L,e) | 2=5
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Table 2. Type G.

1-element families (S, = {e}).

[1,0] | trivial 1 5
[1,6] | sign | =5 -1
4-element family (S3): -1 1
1,3]" | e | (1,r) |1
(13" ] & | (g3,1) | 1
2,1] Vo (1,1) |1
2,2] | V' | (92,]) | 1

Table 3. Type Fj.

l1-element families (S, = {e}).

[1,0] | 1, 15 7 11
[1,24] | 14| =11 -7 -5 -1
9,20 |9 | -1 1 3 5
9, 10] 9% | -5 -3 -1 1
8,3" | & | -1 1 1 5
8,9 | & | -5 -1 -1 1
8,3 | 8| -1 1 1 5
8,9]" | 84| =5 -1 -1 1
3-element family (S,): -1 1 5 7
[4,1] | 4| (1,1) |1

[2,4]” 21 (gz, 1) 1

2,4 | 25| (L,e) |1

3-element family (S,): -7 =5 -1 1
[4,13] | 45 | (1,1) |1

[2, 16] " 24 (gz, 1) 1

2,16]" | 2, | (l,e) |1

11-element family (S4):  —1 1
12,4 | 12, | (1,1) | 2=5

9,6" | 92 | (g3,1) | (143)(r=3)
9,6 | 95 | (1,AY) | (t+3)(r=73)
1L,12]" | 12 | (g},&) | (t=35)(t+5)
1,12] | 15 | (1,23 | (t=5)(+5)

41 (gé,é‘”) [2 — 13
]// 43 (g4,1 (Z—l)(1+1)
" 4 | (928" | (=Dt +1)
K 61 | (g3,1) | 2 +7

6" | 6 | (Le) | 2=17

6, 5] 16; (gz,l) -7
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Table 4. Type Es.

1-element families (S, = {e}).

[1,0] 1, 1 4 5 7 8 11
1,36] L|-1 -8 -7 -5 -4 -1
6,1] 6, -1 1 4 5 7 8
[6,25] 6, -8 -7 -5 -4 -1 1
20, 2] 20 -1 1 2 4 5 7
20, 20] 20]’) -7 =5 -4 -2 -1 1
64,4] |64, | -2 -1 1 2 4 5
[64,13] | 64, | -5 -4 -2 -1 1 2
[60,5] | 60, | —1 -1 1 1 2 4
[60,11] | 60, | —4 -2 -1 -1 1 1
81,6] |81, | -3 -1 0 1 3 4
[81,10] | 81, | —4 -3 -1 0 1 3
24,6] |24, | -2 -1 1 1 2 5
24,12] | 24, | -5 -2 -1 -1 1 2
3-element family (S,): -1 1 4 5
[30,3] | 30, | (L,1) | (¢+4)(t—1)

[15,4] | 15, | (g2, 1) | 2 +3t+8

[15,5] | 15, | (1,&) | *+3t—16

3-element family (S,): -5 -4 -1 1

30,15) | 302 | (1,1) | (1+1)(r—4)
[15,16] | 15) | (g2.1) | =31 +8
[15,17) [ 15, | (L,e) | 2 —31—16

5-element family (3): -1 1

80,7) | 80, | (1,1) | (r=2)(t+2)(2—7)
[60,8] | 60y | (g2,1) | t*— 51> —32

(90,8] | 905 | (1,r) | (2 +1—8)(1? —t—28)
[10,9] | 105 | (g3,1) | (2 =3t +8)(> +3t+8)
[20,10] | 205 | (1,€) | (z—4)(r+4)(s> - 13)
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Table 5. Type E7.

l1-element families (S = {e}).

[1,0] 1, 1 5 7 9 11 13 17
[1,63] 1, | -17 -13 -11 -9 -7 -5 -1
[7,1] 7 -1 1 5 7 9 11 13
[7,46] 7o | -13 -11 -9 -7 -5 -1 1
[27,2] 27, -1 1 3 5 7 9 11
27,37] 27| -11 -9 -7 -5 =3 -1 1
21, 3] 21, -1 1 3 5 7 7 11
21, 36] 21 | -11 -7 -7 =5 =3 -1 1
[189,5] | 189, | -1 -1 1 3 3 5 7
[189,22] | 189, | -7 -5 -3 -3 -1 1 1
[210,6] | 210, | -3 -1 1 1 5 5 7
[210,21] | 210, | =7 -5 =5 -1 -1 1 3
[105,6] | 105, | —1 1 1 1 3 5 5
[105,21] | 105, | -5 -5 -3 -1 -1 -1 1
[168,6] | 168, | —1 —1 1 1 3 5 7
[168,21] | 168, | -7 -5 -3 -1 -1 1 1
[189,7) | 189, | -3 -1 1 1 3 5 7
[189,20] | 189, | -7 -5 -3 -1 -1 1 3
378,91 | 378, -3 -1 -1 1 1 3 5
[378,14] | 378, | -5 -3 -1 -1 1 1 3
[210,10] | 210, | -1 -1 -1 1 1 1 3
210,13] | 210, | -3 -1 -1 -1 1 1 1
[105,12] | 105, | -5 -1 -1 1 1 3 5
[105,15] | 105/ | -5 -3 -1 -1 1 1 5
2-element family (S,): -1 1

[512,11] | 512 | (1,1) | (¢t —=2)(t—4)(t+4)(t+2)¢
[512,12] | 512, | (L&) | (t—=2)(t—4)(t+4)(t+ 2)¢

3-element family (S,): -1 1 5 7 9
[56,3] | 56! | (1,1) | 2 +61—1

35,4] | 35, | (g2,1) | 2 +61+17

21,6] | 21, | (1,¢) | >+ 6t—31

3-element family (S,): -9 -7 -5 -1 1
56,30] | 56, | (1,1) | 2 —61—1

35,31] | 35, | (g2,1) | 2 — 61+ 17

21,33) | 21/ | (1,e) | 2—61—31
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Table 5. (continued)

3-element family (S,):
[120,4] | 120, | (1,1)
15,7 | 15) | (g2.1)
[105,5] | 105, | (1,¢)

3-element family (S,):
[120,25] 120/ (1,1)
[15,28] 15, (92,1)
[105,26] | 105, | (1,¢)
?—61+19

3-element family (S,):

[405,8] | 405, | (1,1)
216,9] | 216) | (g2,1)
[189,10] | 189, | (1,¢)

3-element family (&;):

[405,15] | 405 | (1,1)
216,16] | 216, | (92,1)
[189,17] | 189/ | (1,¢)

3-element family (&,):

[420,10] | 420, | (1,1)
[84,12] 84, | (92,1)
[336,11] | 336, | (1,¢)

3-element family (S,):
[420,13] | 420 | (1,1)
84,15 | 84, | (g2.1)
[336,14] | 336, | (1,¢)

S-element family (&3):
315,7) | 315" | (1,1)
[280,8] | 2805 | (g2,1)
280,9] | 280/ | (1,r)
[70,9] | 70, | (93, 1)
35,13] | 35/ | (1,¢)

5-element family (S;):
[315,16] | 315, | (1,1)
280, 17] | 280, | (g2,1)
[280,18] | 280, | (1,r)
[7()’ 18] 704 <g37 1)
35,22] 35, | (L,¢)

-1 1 3 5 7
> +6t—13
2 + 61+ 29
> +6t—19

-7 =5 -3 -1 1
2 —6t—13
2 —6t+29

-3 -1 1 3 5
2 4+2t—17
2 4+2t4+7
> +2t—-23

2—13
2+ 11
2—19

-1 1 5
(t+3) (2 +2t—11)(t - 1)
t* 4+ 48 — 4 — 161 - 81
(12 = 13)(* + 41 -9)

(12 = 2t 4+ 9)(£* + 61+ 17)
(t+7)(t = 5)(¢* 4+ 2t - 27)

-5 -1 1

(t=3)(2 =2t —11)(t+1)
4 — 4 — 42 + 161 — 81
(12 — 4t —9)(£* — 13)

(12 =6t +17)(£> +2t+9)
(t45)(t = 7)(£* — 2t —27)

29
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Table 6. Type Eg.

1-element families (S, = {e}).

[1,0] 1y 1 7 11 13 17 19 23 29
[1,120] 1 -29 =23 -19 -17 -13 -11 -7 -1
8,1] 8. -1 1 7 11 13 17 19 23
8,91] 8! -23 -19 -17 -13 -11 -7 -1 1
35, 2] 35, —1 1 5 7 11 13 17 19
35, 74] 3. | -19 -17 —-13 -—-11 -7 -5 -1 1
(560, 5] 560. -1 -1 1 5 7 7 11 13
[560,47] 560, | -13 —-11 -7 -7 =5 -1 1 1
(567, 6] 567, | 1 3 7 9 11 13
[567,46] 567, | =13 -1 -9 -7 -3 -1 1 3
[3240,9] | 3240. | -3 -1 1 1 3 5 7 9
[3240,31] | 3240, | -9 -7 -5 -3 -1 -1 1 3
[525,12] 525, -5 -1 1 1 5 5 7 11
[525,36] 525, | -1 -7 -5 =5 -1 -1 1 5
[4536,13] | 4536, | -3 -1 -1 1 1 3 3 7
[4536,23] | 4536, | -7 -3 -3 -1 -1 1 1 3
[2835,14] | 2835, | -3 -1 -1 1 1 3 3 5
[2835,22] | 2835, | -5 -3 -3 -1 -1 1 1 3
[6075,14] | 6075, | -5 -3 -1 1 1 3 5 7
[6075,22] | 6075, | -7 -5 -3 -1 -1 1 3 5
[4200,15] | 4200, | -5 -1 -1 1 1 1 5 5
[4200,21] | 4200, | -5 -5 -1 -1 -1 1 1 5
[2100,20] | 2100, | -7 -5 -1 -1 1 1 5 7
2-element family (S;): -1 1 7

[4096,11] | 4096, | (1,1) | (¢t —=2)(t—4)(t+8)(¢+4)(t+2)

[4096,12] | 4096, | (l,e) | (t—2)(t—4)(t+8)(t+4)(t+2)
2-element family (S;): -7 -1 1

[4096,26] | 4096. | (1,1) | (t—=2)(t—4)(t —8)(t+4)(t+2)

[4096,27] | 4096 | (1,e) | (t—=2)(t—4)(t —8)(t+4)(t+2)
3-element family (&,): -1 1 7 11 13 17

[112,3] | 112, | (1,1) | 2+ 12t + 17

[84,4] | 84, |(ga,1)| 2+ 12t +47

[28,8] | 28, | (l,e) | »4+12t—73

3-element family (S,): -17 -13 —-11 -7 -1 1
[112,63] | 112/ | (1,1) | 2 =12+ 17

(84, 64] 84" | (g92,1) | 2 — 12t 447

28, 68] 28 | (l,e) | 2 —12t-73



3-element family (S,):
[210,4] | 210, | (1,1)
[507 8] 50 (QZa 1)
[160,7] | 160, | (1,¢)
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Table 6. (continued)

-1 1 5 7 11
(t413)(t = 1)
> + 12t + 83
2+ 12t — 43

3-element family (S,): -13 -11 -7 -5 -1

210,52] | 2107 | (1,1)
50,56] | 50, | (g2.1)
160,55 | 1607 | (1,¢)

3-element family (&;):
[700,6] | 700, | (1,1)
[400,7] | 400, | (g2,1)
[300,8] | 300, | (1,¢)

(t+1)(t— 13)
2 — 121+ 83
2 — 121 — 43

—1 1 1 5 7
2+ 12+ 23
2 4+ 12t + 41
2412t —1

3-element family (S,): -11 -7 -5 -1 -1

[700,42] | 700 | (1,1)
[400,43] | 400! | (ga,1)
[300,44] | 300" | (1,¢)

3-element family (&;):
2268,10] | 2268, | (1,1)

2 — 121+ 23
2 — 12t + 41
2 —12t—1

B . | 1 3 7
2 +4r—17

972,12] | 972, | (g2,1) | >+ 4t +23

[1296,13] | 1296. | (1,e)

3-element family (S,):
[2268,30] | 2268 | (1,1)

2+ 4t—47

-9 —7 -3 —1 1
2 —4r—17

972,32 | 972, | (go,1) | 2 —4r+23

[1296,33] | 1296' | (1,¢)

3-element family (&;):

12— 4t — 47

-1 -1 1 1 5

[2240,10] | 2240, | (1,1) | 2 +6¢—1

1400, 11] | 1400-. | (g2, 1

)| 2+ 61417

840,13] | 840. | (1,e) | 2+ 6131
[

3-element family (S,):

-7 =5 -1 -1 1

[2240,28] | 2240’ | (1,1) | 2 —61—1

[1400,29] | 1400.. | (g2, 1

)| 2 —6t+17

840,31] | 840! | (1,e) | 2 —6t—31

3-element family (&,):
4200, 12] | 4200, | (1,1)

—1 —1 1 1 5
2 —13

[840,14] | 840, | (g2,1) | 2+ 11

3360,13] | 3360. | (1,e)

2 —19

13

11
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Table 6. (continued)

3-element family (S,): -7 -5 -1 -1 1
[4200,24] | 42007 | (1,1) | 2 —13
(840, 26] 840 | (g92,1) | 2+ 11
[3360,25] | 3360/ | (1,¢) | > —19

3-element family (S,;): -5 —1 1 1 5 7
[2800,13] | 2800, | (1,1) | 2 +4r—23
[700,16] | 700, | (g2,1) | £>+ 4t + 31
[2100,16] | 2100, | (1,¢) | > +4t—41

3-element family (S,): -7 -5 -1 -1 1 5
[2800,25] | 2800/ | (1,1) | > —4r—23
[700,28] | 700’ | (g2,1) | > — 41+ 31
[2100,28] | 21007 | (1,¢) | 1> —4t—41

3-element family (S,): -5 -1 -1 1 5 7
5600,15] | 5600, | (1,1) | 2 —13

[3200,16] | 3200, | (g2,1) | 2+ 5

[2400,17] | 2400, | (1,¢) | > —37

3-element family (&;): -7 -5 -1 1 1 5
5600,21] | 56007 | (1,1) | > —13

[3200,22] | 3200" | (g2,1) | 245

[2400,23] | 2400/ | (1,&) | > =37

5-element family (S;3): -1 1 7 11
[1400,7] | 1400, | (1,1) | (¢+35)(> +61—19)(t+ 1)
[1344,8] | 1344, | (g2,1) | t* + 1213 +28¢% — 481 — 353
[1008,9] | 1008, | (1,r) | (24 10¢+4 1)(£> + 2t — 23)
[448,9] | 448. | (g3,1) | (2 + 12t +47)(* + 11)

56, 19] 56. | (L,e) | (t="T)(t+13)(> +6t—67)

S-element family (S;): —-11 -7 -1 1
[1400,37] | 1400 | (1,1) | (t—35)(£> — 6t —19)(t — 1)
[1344,38] | 13447 | (g2, 1) | £* — 1263 + 2812 + 481 — 353
[1008,39] | 1008’ | (1,r) | (> —10¢+1)(¢* — 2t — 23)
[448,39] | 448! | (g3,1) | (2 +11)(¢> — 12t +47)
[56,49] 56! | (1) | (t—13)(t+7)(> — 6t — 67)

5-element family (S;3): -1 1 5 7
[1400,8] | 1400, | (1,1) | (2 +6t—19)(t+7)(t—1)
[1050,10] | 1050y | (g2, 1) | %+ 127 + 342 — 121 — 611
[1575,10] | 1575, | (1,r) | (£2 +8t— 17)(¢> + 4t — 29)
[175,12] | 175 | (g3,1) | (£2 +23)(£* + 12t + 59)
[350,14] | 350, | (1,¢) | (t+ 11)(z—5)(£*> + 61— 43)




S-element family (S;):

(1400, 32] | 1400.
(1050, 34] | 1050.
[1575,34] | 1575,
[175,36] 175,
(350, 38] 350,
17-element family
4480, 16] | 4480,
(3150, 18] | 3150,
4200, 18] | 4200,
4536, 18] | 4536,
(5670, 18] | 5670,
(420, 20] 420,
[1134,20] | 1134,
[1400,20] | 1400,
[2688,20] | 2688,
[1680,22] | 1680,
(168, 24] 168,
[70, 32] 70,

[7168,17] | 7168,,
[1344,19] | 1344,
[2016,19] | 2016,
(5600, 19] | 5600,
(448, 25] 448,
E6Z

30, 3] 30,

30, 15] 30,

E72

(56, 3] 56!

(56, 30] 56,

[120, 4] 120,
[120, 25] 120/
[405, 8] 405,
[405, 15] 405,
[420, 10] 420,
[420, 13] 420/

(1,1) | (2 —6t—19)(t+1)(t—17)
(92,1) | t* — 1283 + 3477 + 12t — 611
(1,7) | (2 —4t—29)(> — 8t —17)
(g3,1) | (22 +23)(* — 12t + 59)
(1,e) | (t—11)(¢+ 5)(> — 61 —43)
@5)2 -1 1
(1,1) | (2 =7)(? - 19)(t2—13)
(g3,1) | (t—35)(t+35)(t* — 262 +193)
(92, 1) | (1 5)(t+5)(t2+11)(12—13)
(1,v) | (t=3)(¢t+3)(£> = 29)(¢*> - 21)
(1,47 (z+ 3)(t—3) (> — 17)(¢ — 33)
(gs5,1) | (2 +23)(* - 2z2+577)
(93,8) | (2 —41)(1— 3) (1+3)
(Lv)) | (t=5)(t+5)( 13)(:2—37)
(95,¢") | (22 + 11)(% = 31)(* — 19)
(1,23 | (t=7)(t+7)(> = 13)(* = 37)
(93, ¢") (z2+11)(z+10z2 1451)
(1,2 | (=Dt +7)(2 = 73) (1> - 97)
(g2, 1) | (£2 —19)(¢* — 202 — 71)
(94,1) (2 19)(£2 +11)(t — 1)(¢ + 1)
(g6,1) | 10— 9¢* — 812 — 5671
(92,7) | (t=3)(t+5) (2 =31)(t = 1)(¢+1)
(92,¢) | (t+7)(t=T7)(* = 19)(* — 61)
Table 7.

(4, —-1) (5 -2 (2,1
1 1

Representations of Weyl groups

Table 6. (continued)

-7 =5 -1 1

( ’ _4) ( 27 _5) (_ ’_2)
(7, =1) (8 =2) (4, 2)
(1, =7 (2 =8 (=2,-4)
(5 1) (8 =2 (4, 2
(-1, =5 ( 2, =-8) (—2,-4)
(4, =-2) (5 -3 (2 0
(2 -4 (3 -5 (0,-2
(2, =2) (4, -4 ( 1,-1)
(2 =2) (4, -4 ( 1,-1)
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