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Abstract. This paper aims to study a variety of general type whose canonical system

is composed with a pencil. This kind of variety admits a natural fibration onto a

nonsingular curve. A natural problem is whether the geometric genus of the general fiber

of this fibration is bounded. A simple classification is given in this paper. When the

object is a nonsingular minimal 3-fold of general type, if the canonical system is composed

of an irrational pencil, then the geometric genus of the general fibre is bounded. If the

canonical system is composed of a rational pencil, it seems that the geometric genus of the

general fibre is not bounded though no counter examples have been found.

Throughout this paper, most our notations and terminologies are standard within

algebraic geometry except for the following which we are in favour of:

:¼ —definition;

@lin—linear equivalence;

@num—numerical equivalence.

Let X be a complex nonsingular projective variety of general type with dimension

d ðdV 2Þ. Suppose dimFjKX jðXÞ ¼ 1, we usually say that the canonical system jKX j is

composed with a pencil. Taking possible blow-ups p : X 0 ! X according to Hironaka

such that g :¼ FjKX j � p is a morphism. We have the following commutative diagram:

X 0
���!

f
C






?
?
?
y

c

X 0
���!

g
W1 HP

pgÿ1

p

?
?
?
y

X

where we set W1 :¼ FjKX jðX Þ and let g :¼ c � f be the Stein factorization of g. Note

that f is a fibration onto a nonsingular curve C. Let F be a general fiber of f, then F is

a nonsingular projective variety of dimension d ÿ 1. We also say that f is a derived

fibration of the canonical map. Denote b :¼ gðCÞ, the genus of C.

The aim of this note is to build the following theorems.
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Theorem 1. Let X be a complex nonsingular projective variety of general type with

dimension d ðdV 3Þ. Suppose the canonical system jKX j be composed with a pencil,

using the above diagram and notations, and assume that bV 2, then either

pgðFÞ ¼ 1; pgðXÞV bÿ 1;

or

b ¼ pgðFÞ ¼ pgðX Þ ¼ 2:

Remark 1. In the case of dimension 2, one can refer to [10].

Theorem 2. Under the same assumption as in Theorem 1, assume in addition that

dimX ¼ 3 and KX is nef and big, set F1 :¼ p�F , then

(1) If b ¼ 1, then pgðFÞU 38;

(2) If b ¼ 0, KX � F 2
1 ¼ 0 and pgðXÞV 20, then

pgðF ÞU 38þ
756

pgðX Þ ÿ 19
;

(3) If b ¼ 0 and KX � F 2
1 > 0, then

pgðFÞV qðF ÞV
1

36
ðpgðXÞ ÿ 1ÞðpgðX Þ ÿ 37Þ:

The author would like to thank the referee for many skillful suggestions which

greatly simplify our proofs and improve (1) of Theorem 2 to the present form. Also, I

am indebt to Prof. Zhijie Chen whose opinion improves my calculation in (2) of

Theorem 2.

§1. Proof of Theorem 1.

Proof of Theorem 1. Using the first commutative diagram of this paper, we have

the fibration f : X 0 ! C. Denote by L the saturated subbundle of f�oX 0 which is

generated by H 0ðC; f�oX 0Þ, L is of rank one under the assumption of the theorem.

Thus we obtain the following exact sequence

0 ! L ! f�oX 0 ! Q ! 0:

We know that R i f�oX 0=C is a semi-positive vector bundle (Gri‰th-Fujita-Kawamata-

Ohno semipositivity). Qno
ÿ1
C is automatically semi-positive. Since H 0ðC;LÞ ¼

H 0ðC; f�oX 0Þ, H 0ðC;QÞ injects into H 1ðC;LÞ. By Riemann-Roch, h0ðC;QÞV ðbÿ 1Þ �

ðpgðF Þ ÿ 1Þ; h1ðC;LÞU bÿ 1; and hence we get pgðFÞU 2:

If pgðF Þ ¼ 1, then pgðXÞ ¼ h0ðC;LÞV bÿ 1 by the semipositivity of Lno
ÿ1
C ¼

f�oX 0=C .

If pgðFÞ ¼ 2; then we must have h0ðQÞ ¼ h1ðLÞ ¼ bÿ 1; so that Qno
ÿ1
C is

of degree U0. Since f�oX 0 no
ÿ1
C is semi-positive, this means that L is of degree

V2bÿ 2, with non-trivial H 1. Hence LGoC ; and 1 ¼ h1ðC;LÞV h0ðQÞ ¼ bÿ 1.

This shows that b ¼ 2, pgðXÞ ¼ h0ðC;LÞ ¼ 2, completing the proof of Theorem 1.
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§2. Proof of Theorem 2.

At first, let us recall Miyaoka’s inequality as follows.

Fact. ([7]) Let X be a nonsingular projective threefold with nef and big canonical

divisor KX . Then 3c2 ÿ c21 is pseudo-e¤ective, where ci’s are Chern numbers of X.

Proposition 2.1. Let X be a nonsingular projective 3-fold with nef and big canonical

divisor KX . Assume that jKX j be composed with a pencil and that KX � F 2
1 ¼ 0, then

OF ðp
�ðKX ÞjF ÞGOF ðs

�ðKF0
ÞÞ;

where s : F ! F0 is the contraction onto the minimal model.

Proof. This can be obtained by a similar argument as that of Theorem 7 in [6].

Proof of Theorem 2. We use the same exact sequence as in the proof of Theorem

1. It is easy to see that KX 0@num ðdegLÞF þ Z, where Z is the fixed part.

Case (1). b ¼ 1. In this case, we can suppose X 0 ¼ X . Q is semi-positive. Note

that degQ ¼ 0; otherwise, by Riemann-Roch, we should have

h0ðC; f�oX ÞV degLþ degQ > degL ¼ h0ðC;LÞ;

a contradiction. R1 f�oX is semi-positive, while R2 f�oX GOC by duality. Thus

wðX ;oX Þ ¼ wðC; f�oX Þ ÿ wðC;R1 f�oX Þ þ wðC;R2 f�oX Þ

U wðC; f�oX Þ ¼ degL ¼ pgðXÞ:

It follows from Miyaoka’s inequality that K 3
X U 72 degL. On the other hand,

K 3
X V ðdegLÞK 2

X � F

¼ ðdegLÞK 2
F V 2ðdegLÞðpgðFÞ ÿ 2Þ:

This implies that ðdegLÞðpgðF Þ ÿ 2ÞU 36 degL; i.e. pgðFÞU 38.

Case (2). b ¼ 0 and KX � F 2
1 ¼ 0. In this case, any vector bundle on C is a direct

sum of line bundles. f�oX 0 is a direct sum of L and pgðFÞ ÿ 1 line bundles of degree

ÿ1 or ÿ2, while R1 f�oX 0 is a direct sum of qðF Þ line bundles of degree Vÿ2. Hence

wðX 0
;oX 0Þ ¼ wðC; f�oX 0Þ ÿ wðC;R2 f�oX 0Þ þ wðC;oCÞ

U degLþ 1þ qðF Þ ÿ 1:

Then, by Proposition 2.1, we get

ðdegLÞðpgðFÞ ÿ 2ÞU
1

2
ðdegLÞK 2

F0
U 36ðdegLþ qðF ÞÞ:

Apply the inequality pgðF ÞV 2qðF Þ ÿ 4 ([2]), we get

ðdegLÿ 18ÞpgðF ÞU 38 degLÿ 72:

We obtain the desired inequality by substituting degL by pgðXÞ ÿ 1.
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Case (3). b ¼ 0 and KX � F 2
1 > 0. It is easy to check that KX � F 2

1 is an even

number. We get the following inequality

K 3
X V ðdegLÞ2KX � F 2

1 V 2ðdegLÞ2:

Therefore we have

2ðdegLÞ2 U 72ðdegLþ qðFÞÞ;

which directly induces what we want. The proof is completed.

§3. Examples.

3.1 Examples with pgðF Þ ¼ 1 and pgðXÞV b.

Let S be a minimal surface with K 2
S ¼ 1 and pgðSÞ ¼ qðSÞ ¼ 0. We chose S in

such a way that S admits a torsion element h of order 2, i.e., h A Pic0S and 2h@lin 0.

For the existence of this surface, we may refer to [1] or [9]. Let C be a nonsingular

curve of genus bV 1. Set Y :¼ C � S. Let p1 : Y ! C and p2 : Y ! S be the

two projection maps. Let D be an e¤ective divisor on C with degD ¼ a > 0. Let d ¼

p�
1 ðDÞ þ p�

2 ðhÞ, B@lin 2d@lin p
�
1 ð2DÞ, we can take B composed of 2a distinct points.

The pair ðd;BÞ determines a smooth double cover X over Y. We have the following

commutative diagram, where p is the double covering.

X ���!
p

Y ¼ C � S ���!
p2

S






?
?
?
?
y

p1

X ���!
C

C

We can see that FjKX j factors through C . These examples satisfy pgðX Þ ¼ aþ bÿ 1,

K 3
X ¼ 6ðaþ 2bÿ 2Þ, h2ðOX Þ ¼ 0, qðXÞ ¼ b, K 2

F ¼ 2, pgðF Þ ¼ 1 and qðFÞ ¼ 0.

3.2 Examples with pgðF Þ ¼ 1 and pgðXÞ ¼ bÿ 1.

In the construction of 3.1, take C be a hyperelliptic curve of genus bV 3. Let

t ¼ pÿ q be a divisor on C such that 2t@lin 0. Take d ¼ p�
1 ðtÞ þ p�

2 ðhÞ, then 2d@lin 0.

Therefore d determines an unramified double cover p : X ! Y . X is an example with

pgðX Þ ¼ bÿ 1, h2ðOX Þ ¼ 0, qðXÞ ¼ b and K 3
X ¼ 6ð2bÿ 2Þ.

3.3 Examples with b ¼ 0 and pgðFÞ ¼ 2.

In the construction of 3.1, take S be a minimal surface S with K 2
S ¼ 2 and

pgðSÞ ¼ qðSÞ ¼ 1 and take C ¼ P
1. Take an e¤ective divisor D on C with degD ¼ aV

3, h A Pic0S with 2h@lin 0. Denote by d :¼ p�
1 ðDÞ þ p�

2 ðhÞ and R@lin 2d@lin p
�
1 ð2DÞ.

Thus the pair ðd;RÞ determines a double covering p : X ! Y . We can check that X is

an example with pgðXÞ ¼ aÿ 1, K 3
X ¼ 6ðaÿ 2Þ, b ¼ 0, K 2

F ¼ 4, qðF Þ ¼ 1 and pgðFÞ ¼ 2.

3.3 Examples with b ¼ 1 and pgðFÞ ¼ 2.

Let S be a minimal surface with pgðSÞ ¼ qðSÞ ¼ 1 and K 2
S ¼ 2. We know that the

albanese map of S is just a genus two fibration onto an elliptic curve. It can be

constructed from a double cover onto a ruled surface P which is over the elliptic curve
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with invariant e ¼ ÿ1. Furthermore, all the singularities on the branch locus corre-

sponding to this double cover are negligible. Let p0 : S ! ~PP be this double cover with

covering data ðd0;R0Þ. Note that qðPÞ ¼ 1.

Take an elliptic curve E and denote T :¼ E � ~PP. Let p1 and p2 be two projection

maps. Take a 2-torsion element h A Pic0E. Since ~PP is a fibration over an elliptic

curve, we can take a 2-torsion element t A Pic0 ~PP such that p�
0 ðtÞRlin 0 through the

double cover p0.

Let d1 ¼ p�
1 ðhÞ þ p�

2 ðd0Þ and R1 ¼ 2d1, then the pair ðd1;R1Þ determines a double

cover P1 : Y ! T . Let f ¼ p1 �P1. Take a divisor A on E with degA ¼ a > 0. Let

d2 ¼ f�ðAÞ þP �
1 p

�
2 ðtÞ and R2 ¼ 2d2, then the pair ðd2;R2Þ determines a smooth double

cover P2 : X ! Y . We can see that X is a minimal threefold of general type and the

canonical system jKX j is composed with a pencil. FjKX j factors through P2 and f.

This example satisfies b ¼ 1, pgðFÞ ¼ 2, qðF Þ ¼ 1, K 2
F ¼ 16, pgðXÞ ¼ a, qðXÞ ¼ 2 and

K 3
X ¼ 12a.
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