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Abstract. Let /1,5,...,/; be mutually different seven lines on the real projective
plane. We consider two conditions; (A) No three of /1, /5,...,/; intersect at a point. (B)
There is no conic tangent to any six of /,5,...,5. Cummings and White
showed that there are eleven non-equivalent classes of systems of seven lines with
condition (A) (cf. [7], Chap. 18). The purposes of this article is to give an interpretation
of the classification of Cummings and White in terms of the root system of type E;. To
accomplish this, it is better to add condition (B) for systems of seven lines. Moreover we
need the notion of tetrahedral sets which consist of ten roots modulo signs in the root
system of type E; and which plays an important role in our study.

1. Introduction.

The configurations of seven lines on the projective plane are closely related with the
classical topic on the twenty-eight bitangents of plane quartic curves. As is well-known,
the Weyl group of type E; is regarded as the group of incidence-preserving auto-
morphisms of the twenty-eight bitangents.

In this article, we shall study the case where the seven lines are defined over the real
number field. So let I;,h,...,l; be mutually different seven lines on P*(R). We
consider the following conditions on these lines:

(A) No three of /;,h,...,l; intersect at a point.
(B) There is no conic tangent to any six of /i, h,... 1.

Two systems of seven lines with condition (A) are equivalent provided there exists a
one-to-one incidence-preserving correspondence between their polygons. Cummings
and White showed that there are eleven non-equivalent classes of systems of seven
lines with condition (A) (cf. [7], Chap. 18). One of the purposes of this article is to give
an interpretation of the classification of Cummings and White in terms of the root
system of type E7. To accomplish this, it is better to add condition (B) for systems of
seven lines.

We are going to explain the main result of this article. Let (¢:#:({) be a ho-
mogeneous coordinate of P>(R). Then, by a projective linear transformation, we may
take
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Lh:&=0,

L:n=0,

L:{=0,
ly:+n+(=0,

Is: &+ xim+ 3, =0,
lo: E4+xom+ »,{ =0,

by - &+ x3n + y30 = 0.

as defining equations of /;,/,...,/;. In this manner, we may regard the totality of
systems of seven lines with condition (A) as a Zariski open subset of R®. Let Py(2,7)
be the subset of R® consisting of systems of seven lines with conditions (A), (B). Then
there is an action of W(E7), the Weyl group of type E;, on Py(2,7). This action of
W (E7) naturally induces that on the set 27 of connected components of Py(2,7).

Let A(E;) be the root system of type E;. In [1I], we introduced the notion of
tetrahedral sets which consist of ten roots modulo signs in A(E7). Let 7 be the totality
of tetrahedral sets. Then W(E;) acts on 7 in a natural manner.

We now state the main result of this article.

THEOREM. There is a W(E7)-equivariant injective map f of I to 2.

The symmetric group S; on seven letters is regarded as a subgroup of W(E)
gencrated by reflections. Noting this, we consider the S7-orbital structure of 7.

PROPOSITION.  There are fourteen S7-orbits of 7.

By the W/(E;)-equivariant map f above, we obtain fourteen Sy-orbits of
f(7). Two connected components Q;,Q2, of Py(2,7) are equivalent if there are
equivalent systems L;, L, of seven lines such that L, e Q; (i=1,2). It easily follows
from the definition that ©; and £, are equivalent if they are contained in the same
S7-orbit. It sometimes happens that 2, and £, are equivalent unless they are contained
in the same S7-orbit. As a consequence, we obtain eleven non-equivalent classes in
f(7). These eleven equivalent classes correspond to eleven equivalent classes of
systems of seven lines classified by Cummings and White. The idea of the proof of the
main result is the same as that for the case of six lines developed in [12]. In spite that
we do not discuss on the W(E7)-orbital structure of 27, it is provable (cf. [10]) that the
W (E;)-action on 27 is transitive. This implies in particular that the map f is sur-
jective. Our proof for the transitivity is based on a detailed study on a cross ratio
variety for the root system of type E; (cf. [9]) and we shall treat this subject elsewhere.

We are going to explain the contents of this article briefly. We begin section 2 with
recalling the definition of the root system of type E7. We next introduce the notion of
tetrahedral sets and determine the S7-orbital structure of the totality .7 of tetrahedral
sets. Section 4 is devoted to configurations of n lines on the real projective plane. In
particular, we introduce a group W, acting on the set Py(2,n) which consists of systems
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of marked # lines on P?(R). In section 5, we review the results of on the six lines
case. In section 6, we study the space Py(2,7) in detail. We first construct a special
system of marked seven lines which contains ten triangles. To these ten triangles, there
associates a tetrahedral set. By using this correspondence, we construct a W(E7)-
equivariant injective map f of 7 to #7. As a consequence, we can show the main
result of this article. In section 7, we discuss the comparison between our results and
those of Cummings and White. In the last section, we mention a relationship between
tetradiagrams and Shrikhande graphs.

The author would like to express his hearty thanks to Prof. T. Fukui, Prof. A.
Munemasa, Mr. T. Tanabata and Mr. T. lkeda. Without their help, the author
couldn’t complete the present work.

2. Review on the root system of type E-.

We first recall the definition of the root system of type FE7. Bourbaki is a
standard reference on the root system.

Let £ be an 8-dimensional Euclidean space with a standard basis {g;1 < j < 8}.
Let ¢-,-» be the inner product on E defined by <ej,er» =y (1 < j,k <8) and let E be
its linear subspace orthogonal to &; +&3. We define the following sixty-three vectors of
E:

Y1 = €7 — &g,
Y =&-1="70+ 1 1<j<8
Yy = TE&-1 1 Yo 1<j<8
(1 |
Vik = &—1 — Ek—1, l<j<k<8
Yk = &1 — &k—1, l<j<k<8
Vik = —€i-1 — &1 —&k—1 T 1<i<j<k<8
where
18
7025281—88
=1
Note that

VitV Vitvge YeLva VL Vpo YL Vkime Yk L Vin
The totality A(E7) of +y;, + yy, £y, forms a root system of type E;.

REmMARK 1. The description of E;-roots above plays a basic role in the present
study (cf. Remark 6). For its geometric meaning, see Shioda [13].

It is clear that

(2) V12> V1235 Y23s V3as Vass Vses Vo7



990 J. SEKIGUCHI

can serve as a system of positive simple roots; its extended Dynkin diagram is given as

NT=T2= =73 ==V~ Va5 =~ Vs6 — Vo7
(3) |
7123
The set {y;; 7,7} 1s the totality of positive roots of 4(E7).
Let s;, s, 5% be the reflections on E with respect to y;,7;, 7. These reflections act
on A(E7) as

Si ¢ y] A VU yjk A yjk? yjkl A ymnpa {ivj:kalvmanap} = {1727"'77}7

s;: permutation of the indices i and j,

S123 571 < Vs Va7 Vsers V12 T Vizs V14 7 Vazd4r Vas 7 Vas, V145 < V145

modulo signs.
The subset of A(E;) consisting of roots orthogonal to & + &g becomes a root system
A(Eg) of type Eg:

A(Eg) = {ae A(E7);<a, e + €3y = 0}.
It is easy to see that A(Es) consists of
Ty (I<j<k<T), +yy 1<j<k<I<T), =5
We define Weyl groups

G1 = {812,523, 834, 545, 556, 567 ) = 57,

W(E7) = <G, 81237,
Go = {812, 823, 834, 845, 556 ) = S,

W(Es) = {Go, s123)-

where S, is the symmetric group on n numerals {1,2,...,n} and <a,b,...) denotes the
group generated by a,b,... Note that W(E;) acts on A(E;) transitively (/ =6,7).

In the sequel, we use the notation: If U is a set of roots, then U* denotes the set
{tv;ve U}

3. Pent-diagrams and tetradiagrams.

In this section, we introduce the notion of tetrahedral sets. For each tetrahedral
set, it is possible to construct a connected component of Py(2,7), which will be done
later. We start this section with showing the results of Sekiguchi and Yoshida
where we treat the case of systems of marked six lines and where the arguments of this
article is based on the idea developed. Then we will introduce tetradiagrams and study
their properties.

3.1. Pentagonal sets and pent-diagrams.
For the results of this subsection, see Sekiguchi and Yoshida [12].
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DERINITION 1. Let A4 be a set of ten letters a; (= a;) indexed by numbers i, j
(1<i<j<5s).

(i) An injection f of A to A(Es) is called a pentagonal map if the following
conditions hold:

1. {flay), flaij)> =0 Vay,apy € A.

2. For a;,apy € A(ay # apyr), {f(ay), f(apj)y = 0if and only if {i,j} N{i",j'} # .

(i) A subset I" of A(Es) is called a pentagonal set if there is a pentagonal map f
such that "' = f(4)*.

It follows from the definition that 4 admits a natural action of Ss, the symmetric
group on five letters. If f is a pentagonal map, so is f oo for each g€ Ss. This
implies that the set f(A4)® admits an Ss-action.

To a pentagonal map f, there associates a diagram similar to Dynkin diagrams
which we are going to explain.

DEerFNITION 2. (i) A pent-diagram consists of ten circles and fifteen segments joining
circles as in Figure I with the following properties:

1. There is a bijection between A4 and the totality of ten circles of the

pent-diagram.

2. Two circles corresponding to a;;,a;;; € A are joined by a segment if and only if

{ivj} n {i’ajl} = @

(ii) If fis a pentagonal map, the pent-diagram for f(4)* is the pent-diagram of

which the circle corresponding to g is attached with the roots + f(a;).

REMARK 2. Pent-diagrams are usually called Petersen graphs in literatures.

ExAMPLE 1. There is a pentagonal map f such that I = f(4)*, where

S(A) = {7124 71265 V245> V134> V156> V1350 V2355 V456 V236> V346 ) -

The following lemma is easy to prove.

Figure I. A pent-diagram
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LemMa 1. Let o (j=1,2,...,6) be the simple roots of A(Es) defined by

O] = V12, 02 = V123,03 = V3,04 = V34,05 = Vas, %6 = Vs¢- 1f [ is a pentagonal map such
that f(A) contains

oy, —02, —3, 04, —0s5, Ue,
then
S (A) = {o, —o0, =03, 04, —0is, %6, =77, Vigs V1s6s V3as ) -
In particular, f(A) is uniquely determined.
This implies the following.
THEOREM 1. The group W(Eg) acts on the set of pentagonal sets transitively.

Let Gy be the subgroup of W(Es) generated by s;;41 (j=1,2,3,4,5) as in section
2. In our application, the Gj-orbital structure of pentagonal sets is important.

THEOREM 2. The totality of pentagonal sets is decomposed into four Sg-orbits whose
representatives are given below:

Po {)/12, V235 V34> V45, V565 Vi — V1230 V1560 — V3455 )’7}i

P +
I {7’126, —7135, V1455 772355 V2465 V346> — 7155 V265 T V355 J’46}

+
Pr | {=71450 356> V2355 Y2345 V2465 V126> V1365 — V245 V160 — V35 )

+
P {V234» V4565 71265 V1255 V1455 V1345 71365 V356> V2355 V246}

3.2. Tetrahedral sets and tetradiagrams.
For the results of this subsection, see Sekiguchi and Tanabata [I1].

DErFINITION 3. Let B be a set of ten letters a; (i =1,2,3,4), b; (1<i<j<4)
(Assume that b; = by; for all i, j).

(i) An injection f of B to A(E;) is called a tetrahedral map if the following
conditions hold:

Lo (fla), fla)y =0 (i # )).
2. Lfby), fbiyr)> =0 ({inj} # {17}
3. {flai), f(bjx)y> =0 if and only if i ¢ {j, k}.

(i) A subset I' of A(E7) is called a tetrahedral set if there is a tetrahedral map
such that I" = f(B)™.

It follows from the definition that B admits a natural action of S4, the symmetric
group on four letters. If f is a tetrahedral map, so is f oo for each o€ S4. This
implies that the set f(B) admits an Ss-action.

To a tetrahedral map f, there associates a diagram similar to Dynkin diagrams
which we are going to explain.
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Figure II: A tetradiagram

DeriNITION 4. (1) A tetradiagram consists of ten circles and twelve segments
joining circles as in Figure II with the following properties:

1. There is a bijection between B and the totality of the circles of the tetradiagram.

2. Two circles corresponding to a;,a; € B (resp. b, by € B) are not joined by any
segment.

3. Two circles corresponding to a;,by € B are joined by a segment if and only if
ie{jk}.

(ii) If fis a tetrahedral map, the tetradiagram for I' = f(B)* is the tetradiagram

of which the circle corresponding to a; (resp. bj) is attached with the roots + f(a;) (resp.

if(bjk))'

ExampLE 2. There is a tetrahedral map f such that

+ +
S(B)™ = {345, 7123+ V146> Y2565 V1355 V1675 V347> V124> V2365 Y257} -

In particular, the correspondence

a — s b — s by — iy
a — v b — g bu — 3
a3 — Yus b — 7 b — sy

ag —  Yas6

induces a tetradiagram for f(B)*.

REMARK 3. You can find twenty-four extended Dynkin diagrams of type E
embedded in a tetradiagram.

The following lemma is shown by a direct computation.

LemMA 2. If a tetrahedral set I contains

V1257235 V345 V55 V565 Y6715 V123
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Table 1
Name | Tetrahedral set Isotropy
A { " " ) ) , ), ) }i 7z
V3455 V1231 Y1465 72565 71355 V1675 V3475 V124> V2365 V257 3
Bl { " ", 1 I }i 7z
V3455 V1235 V1465 72565 V255 V1675 V3475 7345 V165 7257 3
B2 { SR, N ) ) }i 1
V3455 V1231 V1465 72565 7145 725 7575 V1245 V2365 V257
B3 { ", ) a f} % 5 ] ) }i 1
V145 V255 71465 72565 V135, V1671 73475 V1245 V236> V257
B4 { Y P , }i 1
V345: V1235 V1465 72565 765 V1675 7235 V171 V2365 V45
B5 {203 , . . , }i 1
V2571235 7475 V2565 V1352 V1675 73475 V1245 V2361 7257
Cl {7155 Y24 V365 7 —_ L 1
V1557245 7361 V75 V25, V167 7175 V345 V3465 Ve
+
2 {7255 714 71265 7256+ V3455 V55 V275 V345 Vies Y257} 1
+
C3 1736 77> V155 V245 V2461 V167: V3471 V3565 V1455 7257} Zs
C4 {76, ) s} 1
V61 7372 V1465 V2565 V1575 Y265 V347 V345 Y2675 715
D1 { Y ra, ) gy V17 Vars P1aas ) r}i 1
V565 71235 Y135 V256 V1365 V1575 7575 V1245 V245 V1
+
D2 047271230 Y25 V2565 Y140 T146 V575 Voo V2360 V23 1 1
D3 { . ) ) . . ) }i 1
Va6, V1235 V1465 V235 V145 V1475 73675 775 V255 V257
+
D4 {V37a V6> V1461 V2565 V1575 V1365 V57 V1245 715 Y24} 1

(these are the simple roots in (3)), then I' coincides with

+
{ylb V235 V345 V45, V565 V675 V1235 V15 V75 Y167}_~

In virtue of this lemma, the classification of tetrahedral sets is essentially reduced to
that of fundamental systems of roots of A(E;), which is well-known, and we get

PROPOSITION 1. If I' and I'' are tetrahedral sets, there exists we W (E;) such that
wl =1T".

The Gp-orbit structure will be also important. For this purpose, we will introduce
fourteen tetrahedral sets.

If I is a tetrahedral set which has the name M in TABLE I, we denote by Oy the S7-
orbit of I'. If I'' is a tetrahedral set such that I'' € Oy, we call I'" a tetrahedral set of
type M. Similarly, we call a tetradiagram for I’ that of type M.

We now concentrate our attention to the tetrahedral set (cf. Example 2)

+
I = {7345, Y123 V1465 V256> V1355 V167> V3475 V124> V2365 V257) -
Put

01 = $3815824567,
02 = 51824836557,
03 = §7514825536,

€ = S81523512354551455675167 -
Then ¢ is the non-trivial central element of W(E;) and it is easy to show that

ol =ol =o' =1.
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More precisely, we find that there is a tetrahedral map f of B to A(E;) such that

flar) = yaas,  fla) =pin3, f(a3) =14, faa) = 7256

Then o (resp. g,,03) corresponds to a permutation between a; and a, (resp. that
between a, and a3 and that between a3 and a4). Therefore the group generated by
oi(i =1,2,3) is isomorphic to S; by the correspondence

g| — (12), gy — (23), g3 — (34)

ProPOSITION 2.  The isotropy subgroup of I' in W(E7) is isomorphic to the group
S4 X Z 2.

As a consequence of Propositions 1, 2, we obtain a classification of Sy-orbital
structure of tetrahedral sets.

THEOREM 3. The totality T of tetrahedral sets is decomposed into fourteen S7-orbits
Om (M e{A,Bl,...,B5Cl,...,C4,Dl1,...D4}).

4. Configurations of » lines on the real projective plane.

The main subject of this article is the study on configurations of seven lines on the
real projective plane. But we start this section with discussing on a general case,
namely, the case of configurations of # lines, since the formulation is almost same. We
here note that there are many articles treated configurations of six, seven, eight lines (cf.
(3], (4], [6], [7], [12], [15], [16]).

A set of mutually different » lines on PZ(R) indexed by numbers 1,2,...,n is called
a system of marked » lines (on P*(R)) in this article.

Let {/;,h,...,I,} be a system of marked » lines. We give a condition on these n
lines:

(A) No three of /i,bh,..., [, intersect at a point.

We define p-gons for a system of marked » lines {/,5,...,l,}. Each connected
component of P*(R) — UJ’;IIJ- is called a polygon. If it is surrounded by p lines
leysliy -« I, 1t 1s called a p-gon and is written as [y Iy, - - - I, .

The totality of systems of marked n lines on P*(R) with condition (A) forms the
configuration space P(2,n); the space P(2,n) is defined by

P(2,n) = GL(3,R)\M'(3,n)/(R*)",

where M'(3,n) is the set of 3 x n real matrices of which no 3-minor vanishes. Per-

mutations on the n lines /;,5,...,/, induce a biregular S,-action on P(2,n).
We are going to define “an action of a group W, (defined later) on P(2,n)” in a
concrete manner. Let L ={/j,h,...,l,} be a system of marked » lines. We assume

that the j-th line /; is defined by an equation

I : ay¢ + ayn + ay = 0,

where (£:#:() is a homogeneous coordinate of P?(R). To L, we associate a 3 X n
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matrix
ayy dip - dig
X=\|a1 an - ay
a1 dzx - Ay

By a projective linear transformation, we may take as [, 5,1,/ the lines defined by
E=0,7=0,{=0,+7n+ =0, respectively. Morecover, we may divide the equation
of /; by aj; (5<j<mn). In this manner, it is possible to choose as a representative of
any system of marked » lines a matrix of the form

1 oo01 1 1 --- 1
(5) X=101 0 1 x x» - X4
00 1 1 y yo = Vyu
Therefore P(2,n) is identified with an open subset of R*"=% by the correspondence
1 oo0o1 1 1 --- 1
0 1 0 1 X1 x2 -+ Xpoa | = (X1, X0, 000, Xnedy Vs Vos oo vy Va)-
00 L 1 y »m - Vg
We introduce the following n birational transformations oy, oy,...,0,_1 on R4
with the coordinate (x, y):
1 1
o:xi——, yi—— (i=1,...,n—4)
i yi
1 1 1 _
a1 : (x1>x23~"7xn—4,y17y27"'7yn—4) - <_~,_7"'7 7ﬂ7&7"'am>
X1 X2 Xn—4 X1 X2 Xn—4
02 : <x11x27"'7xn—47y17y27"'7yn74) - (y17y27'"7yn—47x17x27---7xn—4)
03 : (X1,xQ,...,xn,4,y1,y2,...,y,,_4) - (xi,xé,...,x,’l_4,yi,y§,...,y,’1_4)
. 1 X2 Xn—4 1 4 Vn—4
04 (x17x2a"-7xn—47y17y2:"'7yn—4) B IV R v R S R
X1 X1 X1t N Y1
Ok+4 * Xk == Xitly, Vi 7 Vi (k:1727"'7n_5)7
where
xj{—lfiyf, y =2 N
Let W, be the group generated by n elements ¢y,01,...,0,_;. In the cases n = 6,7,
the correspondence
S12 = 01, S123 = G0,  Sjjp1 — 01 (j=3,...,n—1)

induces a surjective homomorphism py(g,, of W(E,) to the group W,. In the sequel,
we frequently confuse g e W(E,) with py(g9) and subgroups of W(E,) with their
images by py (g, for simplicity.
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REMARK 4. In spite that in this article, we do not treat the Weyl group W (Eg) of
type Eg, for the case n = 8, the argument above goes well for this case, namely, there is
a surjective homomorphism of W(Eg) to Ws.

We now define a set R, consisting of irreducible polynomials f},..., fy of variables
(x,y) with the following properties:

1. Neither f; nor f;/f; are constants if i # .

2. fi=x1.
3. Foreachi=1,....N,j=0,1,...,n—1,
fioap =" - IV,
where ¢;; is a non-zero constant and my e Z (k=1,...,N).

4. The number N is minimal under the conditions 1, 2, 3.

Let Py(2,n) be the intersection of f; # 0 (j=1,2,...,N) in R*"%_ Then W, acts
on Py(2,n) biregularly.

LemmA 3. (i) If n=16,7, then N = 15,35, respectively.

(i) Assume that n=06,7. Let L={l,h,...,I,} be a system of marked n lines on
P*(R). Then L is contained in Py(2,n) if and only if the following conditions hold.

(A) No three of I,b,... I, intersect at a point.

(B) There is no conic tangent to any six of i, b, ... 1.

REMARK 5. In the case n=28, it is possible to describe the condition for
{li,r,...,Is} € P(2,8) to be contained in Py(2,8) if we treat the dual points. Namely,
let

Pr=(1:0:0), P,=(0:1:0), P3=(0:0:1), Py=(1:1:1),
P5:(1:x1:y1), PGZ(IIXZZyz), P7:(12X3:y3), PgZ(lZX4Zy4)

be eight points of P?(R). Then the 3 x 8 matrix defined by Pi,...,Pg is contained in
Py(2,8) if and only if the following conditions hold:

The points Py,...,Pg are mutually different.

There is no line passing through any three of Py,..., Ps.

There is no conic passing through any six of Py,..., Ps.

There is no cubic passing through all of Py,..., Py and having one of Py,..., Pg
as a double point.

Sl e

For the case n=7, we are going to construct the polynomials of R, con-
cretely. Let X be the matrix of the form (4), namely,

1 001 1 1 1
(6) X=10 1 0 1 x x» x3
00 1L 1 y »
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We write X = (xjxx3x4Xs5x6x7) for simplicity. Let D be the determinant of the
3% 3 minor (xxjxi) of X (1<i<j<k<T7). Clearly Dis3, D124, D134, Do3i (k> 3)
are constants but the remaining ones are irreducible polynomials. As a result, we
obtain 7!/(3!-4!) —7 =28 polynomials. Moreover, we have to construct seven
polynomials. Let L ={l},h,...,ls} be a system of marked seven lines defined by
the matrix X. We pick out a line /; from L. Then it is easy to write down an
equation p; =0 for the condition that there is a conic tangent to the six lines
Ir (k+#j). Polynomials p,...,p,; are given as follows (cf. [9]):

(X1, X2, X3, ¥y, V2, ¥3) = (1= pp) (31 — x2) (3 — X1 + ¥y — y3 + X135 — X3))

— (I = y3)(x1 = x3)(x2 = X1 + p; — o + X1, — X2)1),

Pz(xlaxzax%)’l»yw%) = x3(x2 — ¥2)(x1 — X2) (X3 — X1 + y; — Y3+ X1y3— X3)1)

= X2(x3 — y3) (X1 —x3) (%2 —x1 + ¥y — X1y — X2y,
P3(X1,X2, X3, Y15 ¥, ¥3) = y3(x2 = p) (01 — »2) (X3 — X1 4 pp — y3 X193 — x301)
= (v = y3) (1 = y3) (X2 = X1+ =y F XYy — X201),
Pa(X1,%2,X3, Y1, 12, ¥3) = X2y3(x1 — X3)(¥1 — ¥2) — X305(x1 — x2) (31 — 1),
Ps(X1, X2, X3, Y15 12, ¥3) = %233(1 = x3)(1 = 35) = x335(1 = x2)(1 = p3),
Pe(X1, X2, X3, V15 V2, y3) = x103(1 = x3)(1 = ) — x30(1 = x1)(1 = p3),

Pr(X1, X2, X3, Y15 V2, ¥3) = X10a(1 = x2)(1 = 1) —xap (T = x)(1 = py).

We may take R; as the set consisting of Dy ((i,j, k) #(1,2,3),(1,2,4),(1,3,4),
(2,3,1) (I>3)) and p;, (j=1,...,7).

We return to the general case. Let %, be the set of connected components of
Py(2,n). The action of W, on Py(2,n) naturally induces that on #,. Then it is

interesting to attack the problem below:

ProBLEM 1. Determine the W,-orbital structure of #,.

5. Geometry of six lines on the real projective plane.

In this section, we review the results of Sekiguchi and Yoshida [12]. For the details
of the statements of this section, see [12].
We first state an answer to Problem 1 in the previous section for the case n = 6.

THEOREM 4. (1) There are 432 connected components of Py(2,6).

(i) The Weyl group W(Eg) acts on the set P transitively.

(iii) For each connected component of Py(2,6), its isotropy subgroup in W(Es) is
isomorphic to the symmetric group Ss.

(iv) The set P is in a one to one correspondence with that of pentagonal sets.
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Table II
Types || triangles  rectangles pentagon  hexagon
o 6 9 0 1
| 6 8 2 0
I 7 6 3 0
0l 10 0 6 0

AN

Figure 1T

Let L={li,...,ls} € Py(2,6) be a system of marked six lines. The totality of the
systems in Py(2,6) which can be obtained by continuous deformations of the //s form a
connected component of Py(2,6), which is a 4-dimensional cell. There are four Se-
orbits of the sets of connected components of Py(2,6), refered to as O, I, II, III. Each
orbit is characterized by the numbers of polygons so that any of the systems in it cut out
(cf. [T]:

A system of marked six lines is said to be of type T € {O, I, 1,111} if it belongs to
the orbit T.

Let L be the system of marked six lines given in FIGURE III. Then there are ten
triangles given as follows:

hbls, hbls, [ Bls, hisls, hlsla, blals, bisls, 3lals, Bisls, [ als.

You can find that there is a bijective map between the set of ten triangles given above
and the pentagonal set in Example 1. This gives a correspondence between 2¢ and the

totality of pentagonal sets in (iv).
6. Systems of marked seven lines.

In this section, we construct a W (E;)-equivariant map of the totality of tetrahedral
sets into the set #7. For this purpose, we first take a 3 x 7 matrix
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Table II1
y / Ty hLbls | 715
2 T hblls | vi36
Ts  hilsds | 7146
/ T4 ll 15 17 y157
-]
— $ Ts bhly | 74

T6 1213 l7 }’237
T7 blsls | 7ys6
Ty Blls | yus

) Ty bilsls | 7356
, \ T Llsh | 7ser
Figure IV
100 1 11 1
o XO_0101§%—3
15 7
00 1 1 32 -

In other words, (x,y) = (a1,a2,a3,b1,b>,b3), where

1 _31 5 7
?27 73787 4 N

In the sequel, we write (a,b)= (a,a2,a3,by,b2,b3) for simplicity. Let Ly=
{li,lr,...,l;} be the system of marked seven lines corresponding to X, (cf. FIGURE
IV). There are ten triangles 7; (j=1,2,...,10) for L, which are given in TaBLE III:
From TaBLE III, we define a set of roots of A(E7)

2
(a17a27 a37 bl, bz, b3) — <§

(8) T'o = {125, 71365 V146 V157> V2345 V237 V2565 V345 V3565 V467}i-
It is clear from the definition that Iy is a tetrahedral set.

REMARK 6. The correspondence between ten triangles for Ly and roots of 4(E7) in
TaBLE III is easily obtained once we write down roots of A(E;) as in section 2.

We now consider the polynomials

Dyps =y, Dy =1,
Di36 = —x2, Diss = ¥, — ¥y,
) D46 =y, — x2, D3ys = x1 — 1,

Dis7 = x1y3 —X3y1, Dzs¢ =x2 — Xy,

Dy =1, Dyg7 = X235 — X3yy — X2 + X3+ Yy — V3,
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which are 3 x 3 minors of the matrix X (cf. (6)) and whose indices are same as those of
the triangles for L. Since D34, Dy37 are constants, we neglect these two in the
subsequent arguments.

It is easy to see that

Dis(a,b) > 0,Dy36(a,b) < 0, Digs(a,b) > 0,Dis57(a,b) <0,
D256(d,b) > 0,D345(a, b) < 0,D356(d,b) < 0,D467(a, b) < 0.

Noting these, we consider an open subset F of (x, y)-space defined by the inequalities of
the eight polynomials in (9) with signatures same as the values at (x, y) = (a,b), namely,
F = {(x1,%,X3, ¥, Y2, ¥3) € R% D1ps > 0,..., Dys7 < 0}

Our goal of this section is to find a connected component Q2 of F so that the cor-
respondence I’y — 2 extends to a W(E;)-equivariant map of 7 to 2.

We begin the study with investigating the properties of F. It follows from the
definition that

F= {(Xl,xz,X&J’laJ’z,h) GR6§ (x1,x2, ¥1, »») € Fo,

X3+ <y;<—xq

1 -y Yy — X2 V1
1—X2 I —x X1

where
Fo={(x1,%0, ¥, 1) e R} 0 < xy < x1 < 1,0 < p; < ¥5,X2 < P15}

It is easy to see that there are 14 polynomials of the forms D which are not
constant and are independent of x3, y;. Let R¢ be the set of these 14 polynomials. We
put

E= {(xl,XQ,yl,yg) ER4;p(X1,X2,y1,y2) 7 0 (VPERé>}

Then the connected components of E contained in Fy are the following six open subsets:

={

X1, X2, V15 ¥2) € Foy yy < x1, 3, < 1},
X1, X2, V1s V1) € Fo; yy < X1, 35 > 1},

X1,X2, V1, V2) € Fo; v > X1, p5 < 1},

={

We now consider a 3 x 6 matrix

€Fo;yy > 1,(1 = x1)yy < (1= y)x2+ yp — X},

( )
( )
( )
(X1, %2, y1, 2) € Fos pp < 1, p, > 1},
(X1, X2, 1, 12)
( )

X1, X2, V1, ¥2) € Fos; 1 < ya, (1 = x1)y, > (1 = yy)x2 + y — x1}

1 001 1 1
X "= 01 0 1 X1 X2
001 1 y »
and the corresponding system of marked six lines which we denote by L' = {/;,...,l}.
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I/ L
S

\

PN
N VA
\ AN

Figure V

LemMA 4. (i) The type of the system L' is 111, 11, 11, 1, I, O if (x1,x2, ¥y, o) is
contained in E\, E,, E3, Ey, Es, Eg, respectively.

(i) The triangles for L' are given by the table below if (x1,X2, vy, y,) is contained in
E,, Es, Es, Ey., Es, Eq.
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Ei | Libls, Libls, Lisls, hilals, Lilals, hlsla, blals, bisks, Llls, llsls
E> | Libly, Libls, Lisls, lads, i, llads, Bisls

Es | Libly, Lills, Lilals, hlsly, bl blsls, Lisls
Ey | Libls, hilsls, Lilals, hlals, blyls, llsls

Es | Lk, Libly, Lilsls, blsls, lals, Lilsls

Es | bl hibls, hisls, blsls, Blsks, l4sls

The proof of this lemma is easy but is a little lengthy. Therefore we omit it.
As an easy consequence of [Lemma 4, we find the following.

PROPOSITION 3. Let L € Py(2,7) be a system of marked seven lines obtained from L'
by adding a seventh line ;. If (x1,x2, ¥, V,) is a point of one of E,, ..., Eg, the set of
triangles for L does not coincide with {T1,T»,...,Ti}.

Proor. It follows from [Lemma 4 that if (x;,xs, y,, y,) is contained in one of
E,, ..., Eq, there is no triangle /4l for L. This implies the proposition. O

Noting this proposition, we focus our attention on an open subset F’ of F defined
by

F' = {(x17x27x37y17y27y3) €R6;(X17'x27y17y2) €E17

11—y, V=X Vi
- X = < < —X3 ;.
1 — x> 3+l—xz Y3 X1 :

If (x1,x2,X3, 1, ¥», y3) 1s contained in F’', then

1 — - X - X
)’2x3+y2 2 < s <&x3, Yo — X2
1 —2x 1 —2x X1 1 —x

> 0,

which imply

1_ I
P B 4§ PRSI Ik )
1—x X I —x

Therefore F' is decomposed into two parts F,F’ of F’ defined by

1—y,
Fl—{@hmm%mdmyﬂeF@w>Oq_x;fj<0}

1 —
Fi—{(Xl,xz,x:;,y],yz,y:;)EF,;X3<0, y2_y1>0}
1—)62 X1

REMARK 7. We explain a geometric meaning of the condition (1 — y,)/(1 — x2) —
(y1/x1) =0. Let S be the surface obtained by six points P; (j=1,2,...,6) blowing up
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of P?, where
Pi=(1:0:0), P,=(0:1:0), P3=(0:0:1), Py=(1:1:1),
Ps=(1:x1:p), Pe=(l:x2:,)

Then S is a cubic surface in P?. The condition above corresponds to the condition that
S has an Eckardt point.

At the present stage, we need the following lemma.

LEMMA 5. (i) The two sets F| and F' are connected and mutually disjoint. Moreover
dim F.NF’ < 5.

(ii) The triangles for the system of marked seven lines corresponding to (x,y) € F}
are

hbl, Ll hisls, Lish, bl blds, bisls, blals, lsls, lalsly.

(ii1) The triangles for the system of marked seven lines corresponding to any
(x,y)e F' are T\, T,...,Ty.

Proor. (i) It is easy to reduce the claim on the connectivity of F,F’ to the fact
that £, i1s connected. We omit the details.

As to the dimension of F] NF’, the claim follows from computations of inequalities
defining both F|, F’.

(i) It is easy to see that

21 1
Z,2,10,=,
<372’ 073/

Since F| is connected, it suffices to determine the triangles for a system of marked seven
lines corresponding to (2/3,1/2,10,1/3,4/5,24/5) and the result follows from a direct
computation.

(iii) Noting that (a,b) € F', we can easily show the claim. ]

By direct computation, we find that the codimension one boundaries of F’ are the
hypersurfaces

D25 = 0,D136 = 0, D14 = 0, D157 = 0, Dasg = 0, D3as = 0, D356 = 0, Dag7 = 0.
LEMMA 6. For each polynomial p of R, p(x,y)/p(a,b) >0 for all (x,y)e F'.
Proor. It follows from the definition of F’ that

Dis =y, >0, Dizs=—-x2<0, Diz=—x3>0,
Diys = —x14+ 3, <0, Duys=-x24+y,>0, Dis7=x1p3—x3); <0,
Dyus=1-=y,>0, Diss =y, —y, <0, Dus=1-x >0,

Disg = —x1 +x2 <0, Dyg7 =X2y3 — X3y, —Xa+x3+ 3, — 3 <O0.
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It is easy to check that the signature of each polynomial of the form D;; contained in
R7 is invariant on the set F’ and same as that of Dy (a,b). More concretely, we have
the following inequalities on F’:

Dips >0, Dy >0, Dip7<0, Di35<0, Di3<0, Di33>0, Diss<0,
Dy >0, D7 >0, Diss>0, Dis57<0, Dig7>0, Dxus>0, Dyus>0,
D47 >0, Dyse <0, Dis7>0, Dyy>0, Diys <0, Dzs<0, D3y <0,

D3ss <0, D357 <0, D37 <0, Dyse <0, Dys7<0, Dss7<0, Dss7>0.

Next we show that the signature of each p; is invariant on F’. For this purpose,
we first note:

1 —x1)(x1yy — X21) + ¥ (x1 — x2)(x1 — »y),
1 —

(
x1)(x1y3 = x331) + y3(x = x3)(x1 — ),
(
)

1 —x2)(x2¥3 — X3,) + y3(x2 — x3)(x2 — »5),

(
(
(
= (x3 = x1)(y3 = »1)Dass + (1 = x2)(1 = 1) (y2 = 1) (x5 — x1)
— (L =x1)(1 = y2) (2 = x1)(y3 = »1),

—x3D467p7 + X1 D456P5
1 - )

Pr=

_ V3Da61p7 — y1DasePs

1—X2 ’

Pa=X3y102(x2 = x1) = y3x1x2(y2 = y1) + X3p3(xX1 3 — x204).
From these identities, we easily conclude that
P11 <0,p,<0,p3>0,p,>0,ps>0,ps <0,p; >0
on F’. Ll

Summarizing the arguments above, we obtain the theorem below:

THEOREM 5. An open subset Q of R® defined by the inequalities

1 - - X
0<x2<x1<1,0<y1<)/2,)/7<367,1_y7 3+y2 2<J/;<&X3,X3<0

1—X2 N X1

has the following properties.
(0) Q is a connected component of Py(2,7).
(1) Q is a connected component of the open subset F defined by
D135 > 0,D136 < 0,D146 > 0,D157 <0, Dr56 > 0, D345 < 0,D356 < 0, Dss7 <O0.

The codimension one boundary of Q is the union of non-empty open subsets of hyper-
surfaces

D125 =0,D136 = 0,D146 = 0, D157 = 0, Dy56 = 0, D345 = 0, D356 = 0, Dyg7 = 0.
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(i) For each (x,y) € Q, the triangles for the system of marked seven lines cor-
responding to (x,y) are T\, Ts,...,Ty.

(iit) There is no connected component of Py(2,7) other than Q satisfying the
conditions same as (1), (ii).

Proor. Since Q = F’, the theorem follows from the arguments before in this

section.
We now put
I = 55813526547, 2 = S6513527545, I3 = $7516523845, C = $1523512354551455675167-
Then it is easy to show the following.

Lemma 7. () 2 =1 (j=1,2,3), (lha)’ = (lah3)* =1, (lnh3)* = 1.
(i) The group H' generated by hy,hy, hy is isomorphic to S.
(iil) H = H' x<{c) is the stabilizer of the tetrahedral set I'y in W(E7).

Proor. Easy.
We now study the action of H on the set Q.
Lemma 8. hQ =Q for all he H.

Proor. Since Q is connected, so is hQ2 (Vhe H). In virtue of that hy, ko, hs,c
generate H, it suffices to show that /- (a;,az,a3,b1,b2,b3)€Q (j=1,2,3),
c-(ay,az,a3,b1,by,b3) € 2. By direct computation, we find that

by (ah) = 5241 19 262 5 7
NG = AT 12 T 3 03441° 160 4)

25 131 21 1 917
by (ab) = (2 2= = 2 2L
- (a,b) (33'374’ 11°3'2294° )

by - (a,b) = 11 150112 553
3BT T35 T 5246757 338)°

c-(a,b) =(a,b).
Then it is easy to see that /;-(a,b)eQ (j=1,2,3), c¢-(a,b) €. So the lemma
follows. ]

REMARK 8. The central element ¢ acts on the (x, y)-space as an identity.

THEOREM 6. Let Iy be the tetrahedral set defined in (8). If I' =gl for some
ge W(Eq7), we define f(I') as the connected component of Py(2,7) -containing
g-(a,b). Then f defines a W(E7)-equivariant injection of T to %.

ProOF. Let H be the isotropy subgroup of I’y in W(E;). Then implies
that H is contained in H. Therefore, as a W (E;)-equivariant map, f is well-defined.
What we have to show is that f is injective. Our proof of this fact is based on the
classification of the S7-orbital structure of 7. In virtue of Theorem 3, we find that
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there are fourteen S;-orbits of 7. If I’ is a tetrahedral set of type M, we also call the
system of marked seven lines corresponding to f(I") of type M. It follows from TABLE
IV given in the next section that if there are ten triangles for a system I” of marked
seven lines, the type of I" is A. This easily implies that f is injective and the theorem
follows.

REMARK 9. In spite that we do not discuss on the I (E7)-orbital structure of 27, it
is provable (cf. [10]) that the W(E;)-action on 27 is transitive. Our proof for this
statement is based on a detailed study on a cross ratio variety for the root system of
type E; (cf. [9]) and we shall treat this subject elsewhere.

7. Fourteen systems of marked seven lines.

Cummings [3], White (cf. Grinbaum [7], Chap. 18) showed that there are
eleven equivalent classes of systems of seven lines with condition (A). In this section,
we discuss the relationship between our results and their studies.

We first compute representative matrices for all types of systems of marked seven
lines:

1 001 1 1 1

0 1 o 1 37 1961 2479
(10) X4 = 100 260 1840
37 148 481
11 = =2
00 10 13 184
1 001 1 1 1
100 260 1840
Xp = 0 101 == 561 24m
10 13 184
11 = — =
00 37 148 481
1001 1 1 1
100 265 335
Xp= | 101 37 3 %
373 3041
00 1 1 10 S5 S
1 001 1 1 1
37 148 999
1 ] - 2 =
(11) X3 0 0 63 13 644
37 1184 4329
00 11 7 65 1288
1 001 1 1 1
0 1 o g 3041 312577 67
Xps 2600 62530 130
92 736 184
00 6 160 481
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1
0

Xc1 =
0
1
0

X =
0

(12)

1
0

Xz =
0
1
0

Xcy =
0
Xp1 = (
Xpp = (

(13)

Xp3 = (

—

J. SEKIGUCHI

1 1 1 1

3438347 312577 312577
12436070 62530 272320

3438347 312577 312577
1243607 32227 180412
1 1 1
27 45 87543
13 53 312577
5 2386381
5 3 8439579
1 1 1
80 31738 252
27 33611 13

170 44387 1071

201 100833 890

1 1 1
293193 727553 141167
1269692 2085640 453744
488655 3637765 705835
754952 1251384 403328
1 1 1
29471 999747 4379844
331970 243860 6766225
88413 999747 1459948

1161895 2438600 1353245

1 1 1
170 44387 1071
371 145220 1961

80 373 312577
53 265 180412
1 1 1

504160 49320 27400
312577 15869 18277
2672048 548 274
1562885 185 175

1 1 1
40100 80
71 37 27

211491 373 373
43436 148 108
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Table TV
Types triangles  rectangles  pentagons  hexagon  heptagon
A 10 6 6 0 0
Bl 7 12 3 0 0
B2 9 8 5 0 0
B3 8 10 4 0 0
B4 8 10 4 0 0
BS 11 5 5 1 0
Cl 7 14 0 0 1
C2.D2 7 13 1 1 0
C3 9 9 3 1 0
C4,D1,D4 8 11 2 I 0
D3 7 12 3 0 0
1 0 0 1 1 1 1
01 0 1 575527 B 88413 907497
Xpy = 1825835 1161895 2157805
1431 6801 33611
0 01 1 - ve ~ 3115 ~ 5755

The index M of the matrix X, means the type of the system of marked seven lines
corresponding to X, for M e {A,BI,...,D4}.

Observing the configurations of the fourteen systems of marked seven lines (cf.
FIGURE V), we conclude that the numbers of polygons for each system are given in
TABLE IV.

We now discuss the relationship between these fourteen systems of marked
seven lines and simple 2-arrangements of seven lines (for the definition of simple 2-
arrangements of seven lines, see Griinbaum [7]). Let L be a system of marked seven
lines with conditions (A), (B). Forgetting the indices of lines of L, we obtain a simple
2-arrangement of seven lines on the real projective plane. Two 2-arrangements are
equivalent provided there exists a one-to-one incidence-preserving correspondence be-
tween their polygons. Comparing our results with those in [7], Chap. 18, we observe
the following.

LemMmA 9. Let I' be a tetrahedral set and let L be a system of marked seven lines
contained in f(I'). Then, for j=1,2,...,7, I' contains a root y; of A(E7) if and only if
the system L; of marked six lines obtained from L by taking off the j-th line is of type O,
in other words, there is no hexagon for L;.
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As casy consequences of this lemma and other observations, we find the following.

1. If there is no hexagon for the system of marked six lines obtained from L by
taking off any line of L, then type of L is one of A, Bl, B3.

2. Systems of marked seven lines of types Bl and D3 are not distinguished each
other by the numbers of polygons. If L is of type D3, there is a hexagon for
one of systems of marked six lines obtained from L by taking off a line and if L
is of type B1, this doesn’t happen.

3. Systems of marked seven lines of types B3 and B4 are not distinguished each
other by the numbers of polygons. If L is of type B4, there is a hexagon for
one of systems of marked six lines obtained from L by taking off a line and if L
is of type B3, this doesn’t happen.

4. Systems of marked seven lines of types C2 and D2 are equivalent.

Systems of marked seven lines of types C4, D1, D4 are equivalent.

6. Eleven systems of marked seven lines of types A, Bl, B2, B3, B4, B5, C1, C2,
C3, C4, D3 are neither equivalent.

hdl

We stress here that of the statements above, the last one actually agrees with the
classification of simple 2-arrangements of seven lines by Cummings and White.

ReEmMARK 10. Needless to say, we have to study properties of conics tangent to five
lines of seven lines of 2-arrangements to distinguish systems of types C2 and D2 each
other and also those of types C4, DI, DA4.

8. Tetradiagrams and Shrikhande graphs.

In this section, being irrelevant to the arguments of the previous sections, we
mention a relationship between tetradiagrams and Shrikhande graphs. For the defi-
nition and properties of Shrikhande graphs, see [2], [14]. Most of the statements of this
section are obtained by the discussions with A. Munemasa.

A Shrikhande graph consists of sixteen vertices which correspond to roots of A(E7)
(see FIGURE VI). To treat it convenient for our purpose, we put the vertices on the
lattice points

Y ={(V3(m—n),m+n);mneZ}

and identify two vertices modulo

Zo={(V3(m—n),m+n);mnecdZ)}.

Moreover we consider the lines

(14) x:@,y:i\@x—i—m,(VmeZ).

These connect the vertices.

LEMMA 10. There is a subset S of A(E;) with the following conditions:

1. The order of S is 16.

2. There is a bijection h of S to X' /Xy such that for o, € S, {a, > # 0 if and only if
h(o) and h(f) are contained in one of the lines defined by equations (14) and are
adjacent to each other.
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DErFINITION 5. A set S (resp. a map /) of Lemma 10 is called a Shrikhande set
(resp. a Shrikhande map).

We are going to construct a Shrikhande set S from a tetrahedral set I” with the
following condition: If Gg (resp. Gr) is the isotropy subgroup of S* (resp. I') in
W(E7), then Gr is a subgroup of Gs. We note that the order of Gg is 192. We first
recall the set B and a tetrahedral map f of Definition 3. We put

Then f(B))" = VEUWS, where
i=A{B;j=123,4}, Wi ={d:j=123,4}

and <{B;,f;> =0, <3,y =0 (j #k). We may assume that U, = f(By), V1, W) are
subsets of A4(E7)". 1t is easy to see that the union U U VU WS is a root system of
type D4 and that there is a unique root, say o1, of ;U W) which is orthogonal to the
set f(By). Then we find that Z = {ae A(E;)";<{a, 6> # 0} consists of thirty-two
elements. For each j=2,3,4, we consider the set Z; = {a € Z;<{a,d;> # 0}. Then
Z;=U*r UV, where
U ={or;k=1234}, V= {ﬁj.k;k =1,2,3,4},

and {oj x, 056> =0, B 1, B; x> =0, (k #k'). Let Gy, be the group of automorphisms
of Ui in W(E7). It follows that the set {Uji, Vji ij =2,3,4} is decomposed into two
Gy, -orbits consisting of three sets. We may take {U,i ;j =2,3,4} and {V]i ij=2,3,4}
as the two Gy, -orbits. Then one of Ule U, Uy U (U‘;‘:2 V;) is a Shrikhande set and
the other is not. So we may assume that U = U?:] U; 1s a Shrikhande set. Then
V= U;Ll V; is also a Shrikhande set and s5(U) =V, where s5 is a reflection with
respect to oj.

PROPOSITION 4.  Let Gy (resp. Gy) be the group of automorphisms of U% (resp. V'F)
in W(E7). Then Gy = Gy and Gy, < Gy.

Proor. It is easy to show the proposition by using the following example.
ExampLE 3. We consider the case where for a tetrahedral map f,
S (B1) = {7135, V146> 7236+ Y25}
J(B2) = {714 V147, V25 V257: V365 V367 }-
Then J; = y; and
Ui = {7135, V146) ¥236> Y245t Vi = {136 V145 P235: V246
Uz ={p1: 727730 M1s6}s - V2 = {92,717 2340 V256 1
Us = {73747, 7123, 7356+ V3 = {94, V37 V124: Vase }»

Us = {75767, 7125: V3as)s - Va = Vs> V575 V126> V346 -
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Figure VI: Shrikhande graph

A correspondence of the Shrikhande set U = Uj:l U; and the totality of the vertices of
2 /%y is given in FIGURE VI
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