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Abstract. Let $l_{1},$ $l_{2},$

$\ldots,$
$l_{7}$ be mutually different seven lines on the real projective

plane. We consider two conditions; (A) No three of $l_{1},$ $l_{2},$

$\ldots,$
$l_{7}$ intersect at a point. (B)

There is no conic tangent to any six of $l_{1},$ $l_{2}$ , . . . , $l_{7}$ . Cummings [3] and White [16]
showed that there are eleven non-equivalent classes of systems of seven lines with
condition (A) (cf. [7], Chap. 18). The purposes of this article is to give an interpretation
of the classification of Cummings and White in terms of the root system of type E7. To
accomplish this, it is better to add condition (B) for systems of seven lines. Moreover we
need the notion of tetrahedral sets which consist of ten roots modulo slgns in the root
system of type $E_{7}$ and which plays an important role in our study.

1. Introduction.

The configurations of seven lines on the projective plane are closely related with the
classical topic on the twenty-eight bitangents of plane quartic curves. As is well-known,
the Weyl group of type E7 is regarded as the group of incidence-preserving auto-
morphisms of the twenty-eight bitangents.

In this article, we shall study the case where the seven lines are defined over the real
number field. So let $l_{1},$ $l_{2},$

$\ldots,$
$l_{7}$ be mutually different seven lines on $P^{2}(R)$ . We

consider the following conditions on these lines:

(A) No three of $l_{1},$ $l_{2},$

$\ldots,$
$l_{7}$ intersect at a point.

(B) There is no conic tangent to any six of $l_{1},$ $l_{2},$

$\ldots,$
$l_{7}$ .

Two systems of seven lines with condition (A) are equivalent provided there exists a
one-to-one incidence-preserving correspondence between their polygons. Cummings [3]
and White [16] showed that there are eleven non-equivalent classes of systems of seven
lines with condition (A) (cf. [7], Chap. 18). One of the purposes of this article is to give
an interpretation of the classification of Cummings and White in terms of the root
system of type E7. To accomplish this, it is better to add condition (B) for systems of
seven lines.

We are going to explain the main result of this article. Let $(\xi : \eta : \zeta)$ be a ho-
mogeneous coordinate of $P^{2}(R)$ . Then, by a projective linear transformation, we may
take
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$l_{1}$ : $\xi=0$ ,

$l_{2}$ : $\eta=0$ ,

$l_{3}$ : $\zeta=0$ ,

$l_{4}$ : $\xi+\eta+\zeta=0$ ,

$l_{5}$ : $\xi+x_{1}\eta+y_{1}\zeta=0$ ,

$l_{6}$ : $\xi+x_{2}\eta+y_{2}\zeta=0$ ,

17 : $\xi+x_{3}\eta+y_{3}\zeta=0$ .

as defining equations of $l_{1},$ $l_{2},$

$\ldots,$
$l_{7}$ . In this manner, we may regard the totality of

systems of seven lines with condition (A) as a Zariski open subset of $R^{6}$ . Let $P_{0}(2,7)$

be the subset of $R^{6}$ consisting of systems of seven lines with conditions (A), (B). Then
there is an action of $W(E_{7})$ , the Weyl group of type $E_{7}$ , on $P_{0}(2,7)$ . This action of
$W(E_{7})$ naturally induces that on the set $\mathscr{P}_{7}$ of connected components of $P_{0}(2,7)$ .

Let $\Delta(E_{7})$ be the root system of type E7. In [11], we introduced the notion of
tetrahedral sets which consist of ten roots modulo signs in $\Delta(E_{7})$ . Let $\varpi$ be the totality
of tetrahedral sets. Then $W(E_{7})$ acts on $^{\varpi}$ in a natural manner.

We now state the main result of this article.

THEOREM. There is a $W(E_{7})$ -equivariant injective map $f$ of $\varpi$ to $\mathscr{P}_{7}$ .

The symmetric group $S_{7}$ on seven letters is regarded as a subgroup of $W(E_{7})$

generated by reflections. Noting this, we consider the $S_{7}$ -orbital structure of $\varpi$ .

PROPOSITION. There are fourteen $S_{7}$ -orbits of $\varpi$ .

By the $W(E_{7})$ -equivariant map $f$ above, we obtain fourteen $S_{7}$ -orbits of
$f(\varpi)$ . Two connected components $\Omega_{1},$ $\Omega_{2}$ of $P_{0}(2,7)$ are equivalent if there are
equivalent systems $L_{1},$ $L_{2}$ of seven lines such that $L_{i}\in\Omega_{i}(i=1,2)$ . It easily follows
from the definition that $\Omega_{1}$ and $\Omega_{2}$ are equivalent if they are contained in the same
$S_{7}$ -orbit. It sometimes happens that $\Omega_{1}$ and $\Omega_{2}$ are equivalent unless they are contained
in the same $S_{7}$ -orbit. As a consequence, we obtain eleven non-equivalent classes in
$f(\varpi)$ . These eleven equivalent classes correspond to eleven equivalent classes of
systems of seven lines classified by Cummings and White. The idea of the proof of the
main result is the same as that for the case of six lines developed in [12]. In spite that
we do not discuss on the $W(E_{7})$ -orbital structure of $\mathscr{P}_{7}$ , it is provable (cf. [10]) that the
$W(E_{7})$ -action on $\mathscr{P}_{7}$ is transitive. This implies in particular that the map $f$ is sur-
jective. Our proof for the transitivity is based on a detailed study on a cross ratio
variety for the root system of type $E_{7}$ (cf. [9]) and we shall treat this subject elsewhere.

We are going to explain the contents of this article briefly. We begin section 2 with
recalling the definition of the root system of type E7. We next introduce the notion of
tetrahedral sets and determine the $S_{7}$ -orbital structure of the totality $\varpi$ of tetrahedral
sets. Section 4 is devoted to configurations of $n$ lines on the real projective plane. In
particular, we introduce a group $W_{n}$ acting on the set $P_{0}(2, n)$ which consists of systems
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of marked $n$ lines on $P^{2}(R)$ . In section 5 we review the results of [12] on the six lines
case. In section 6 we study the space $P_{0}(2,7)$ in detail. We first construct a special
system of marked seven lines which contains ten triangles. To these ten triangles, there
associates a tetrahedral set. By using this correspondence, we construct a $W(E_{7})-$

equivariant injective map $f$ of $\varpi$ to $\mathscr{P}_{7}$ . As a consequence, we can show the main
result of this article. In section 7, we discuss the comparison between our results and
those of Cummings and White. In the last section, we mention a relationship between
tetradiagrams and Shrikhande graphs.

The author would like to express his hearty thanks to Prof. T. Fukui, Prof. A.
Munemasa, Mr. T. Tanabata and Mr. T. Ikeda. Without their help, the author
couldn’t complete the present work.

2. Review on the root system of type E7.
We first recall the definition of the root system of type E7. Bourbaki [1] is a

standard reference on the root system.
Let $\tilde{E}$ be an 8-dimensional Euclidean space with a standard basis $\{\epsilon_{j};1\leq j\leq 8\}$ .

Let $\langle$ ., $\cdot\rangle$ be the inner product on $\tilde{E}$ defined by $\langle\epsilon_{j}, \epsilon_{k}\rangle=\delta_{jk}(1\leq j, k\leq 8)$ and let $E$ be
its linear subspace orthogonal to $\epsilon_{7}+\epsilon_{8}$ . We define the following sixty-three vectors of
$E$ :

$\gamma_{1}=\epsilon_{7}-\epsilon_{8}$ ,

$\gamma_{j}=\epsilon_{j-1}-\gamma_{0}+\gamma_{1}$ , $1<j<8$

$\gamma_{1j}=-\epsilon_{j-1}+\gamma_{0}$ , $1<j<8$
(1)

$\gamma_{jk}=\epsilon_{j-1}-\epsilon_{k-1}$ , $1<j<k<8$

$\gamma_{1jk}=-\epsilon_{j-1}-\epsilon_{k-1}$ , $1<j<k<8$

$\gamma_{ijk}=-\epsilon_{i-1}-\epsilon_{j-1}-\epsilon_{k-1}+\gamma_{0}$ , $1<i<j<k<8$

where

$\gamma_{0}=\frac{1}{2}\sum_{j=1}^{8}\epsilon_{j}-\epsilon_{8}$ .

Note that

$\gamma_{i}\perp\gamma jk$ , $\gamma_{i}\perp\gamma_{ijk}$ , $\gamma_{ij}\perp\gamma_{kl}$ , $\gamma_{ij}\perp\gamma_{ijk}$ , $\gamma_{ij}\perp\gamma_{klm}$ , $\gamma_{ijk}\perp\gamma_{ilm}$ .

The totality $\Delta(E_{7})$ of $\pm\gamma_{j},$ $\pm\gamma_{jk},$ $\pm\gamma_{ijk}$ forms a root system of type E7.
REMARK 1. The description of $E_{7^{-}}roots$ above plays a basic role in the present

study (cf. Remark 6). For its geometric meaning, see Shioda [13].

It is clear that

(2) $\gamma_{12}$ , $\gamma_{123}$ , $\gamma_{23}$ , $\gamma_{34}$ , $\gamma_{45}$ , $\gamma_{56}$ , $\gamma_{67}$
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can serve as a system of positive simple roots; its extended Dynkin diagram is given as

$\gamma_{1}--\gamma_{12}--\gamma_{23}--\gamma_{34}--\gamma_{45}--\gamma_{56}--\gamma_{67}$

(3) $|$

$\gamma_{123}$

The set $\{\gamma_{i}, \gamma_{jk}, \gamma_{ijk}\}$ is the totality of positive roots of $\Delta(E_{7})$ .
Let $s_{i},$ $s_{ij},$ $s_{ijk}$ be the reflections on $E$ with respect to $\gamma_{i},$

$\gamma_{ij},$ $\gamma_{ijk}$ . These reflections act
on $\Delta(E_{7})$ as

$s_{i}$ : $\gamma_{j}\leftrightarrow\gamma_{ij}$ , $\gamma_{jk}\leftrightarrow\gamma_{jk}$ , $\gamma_{jkl}\leftrightarrow\gamma_{mnp}$ , $\{i,j, k, l, m, n,p\}=\{1,2, \ldots, 7\}$ ,

$s_{ij}$ : permutation of the indices $i$ and $j$ ,

$s_{123}$ : $\gamma_{1}\leftrightarrow\gamma_{1}$ , $\gamma_{4}\leftrightarrow\gamma_{567}$ , $\gamma_{12}\leftrightarrow\gamma_{12}$ , $\gamma_{14}\leftrightarrow\gamma_{234}$ , $\gamma_{45}\leftrightarrow\gamma_{45}$ , $\gamma_{145}\leftrightarrow\gamma_{145}$

modulo signs.
The subset of $\Delta(E_{7})$ consisting of roots orthogonal to $\epsilon_{6}+\epsilon_{8}$ becomes a root system

$\Delta(E_{6})$ of type $E_{6}$ :

$\Delta(E_{6})=\{\alpha\in\Delta(E_{7});\langle\alpha, \epsilon_{6}+\epsilon_{8}\rangle=0\}$ .

It is easy to see that $\Delta(E_{6})$ consists of

$\pm\gamma_{jk}(1\leq j<k<7)$ , $\pm\gamma_{jkl}(1\leq j<k<l<7)$ , $\pm\gamma_{7}$ .

We define Weyl groups

$G_{1}=\langle s_{12}, s_{23}, s_{34}, s_{45}, s_{56}, s_{67}\rangle\cong S_{7}$ ,

$ W(E7)=\langle G_{1}, s_{123}\rangle$ ,

$G_{0}=\langle s_{12}, s_{23}, s_{34}, s_{45}, s_{56}\rangle\cong S_{6}$ ,

$ W(E_{6})=\langle G_{0}, s_{123}\rangle$ .

where $S_{n}$ is the symmetric group on $n$ numerals $\{1, 2, \ldots, n\}$ and $\langle a, b, \ldots\rangle$ denotes the
group generated by $a,$

$b$ , . . . Note that $W(E_{l})$ acts on $\Delta(E_{l})$ transitively $(l=6,7)$ .
In the sequel, we use the notation: If $U$ is a set of roots, then $U^{\pm}$ denotes the set

$\{\pm v;v\in U\}$ .

3. Pent-diagrams and tetradiagrams.

In this section, we introduce the notion of tetrahedral sets. For each tetrahedral
set, it is possible to construct a connected component of $P_{0}(2,7)$ , which will be done
later. We start this section with showing the results of Sekiguchi and Yoshida [12]
where we treat the case of systems of marked six lines and where the arguments of this
article is based on the idea developed. Then we will introduce tetradiagrams and study
their properties.

3.1. Pentagonal sets and pent-diagrams.
For the results of this subsection, see Sekiguchi and Yoshida [12].
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DEFINITION 1. Let $A$ be a set of ten letters $a_{ij}(=a_{ji})$ indexed by numbers $i,$ $j$

$(1\leq i<j\leq 5)$ .
(i) An injection $f$ of $A$ to $\Delta(E_{6})$ is called a pentagonal map if the following

conditions hold:
1. $\langle f(a_{ij}), f(a_{i^{\prime}j^{\prime}})\rangle\geq 0$ $\forall a_{ij},$ $a_{i^{\prime}j^{\prime}}\in A$ .
2. For $a_{ij},$

$a_{i^{\prime}j^{\prime}}\in A(a_{ij}\neq a_{i^{\prime}j^{\prime}}),$ $\langle f(a_{ij}),f(a_{i^{\prime}j^{\prime}})\rangle=0$ if and only if $\{i,j\}\cap\{i^{\prime},j^{\prime}\}\neq\emptyset$ .
(ii) A subset $\Gamma$ of $\Delta(E_{6})$ is called a pentagonal set if there is a pentagonal map $f$

such that $\Gamma=f(A)^{\pm}$ .

It follows from the definition that $A$ admits a natural action of $S_{5}$ , the symmetric
group on five letters. If $f$ is a pentagonal map, so is $ f\circ\sigma$ for each $\sigma\in S_{5}$ . This
implies that the set $f(A)^{\pm}$ admits an $S_{5}$ -action.

To a pentagonal map $f$, there associates a diagram similar to Dynkin diagrams
which we are going to explain.

DEFINITION 2. (i) A pent-diagram consists of ten circles and fifteen segments joining
circles as in Figure I with the following properties:

1. There is a bijection between $A$ and the totality of ten circles of the
pent-diagram.

2. Two circles corresponding to $a_{ij},$
$a_{i^{\prime}j^{\prime}}\in A$ are joined by a segment if and only if

$\{i, j\}\cap\{i^{\prime},j^{\prime}\}=\emptyset$ .
(ii) If $f$ is a pentagonal map, the pent-diagram for $f(A)^{\pm}$ is the pent-diagram of

which the circle corresponding to $a_{ij}$ is attached with the roots $\pm f(a_{ij})$ .

REMARK 2. Pent-diagrams are usually called Petersen graphs in literatures.

EXAMPLE 1. There is a pentagonal map $f$ such that $\Gamma=f(A)^{\pm}$ , where

$f(A)=\{\gamma_{124}, \gamma_{126}, \gamma_{245}, \gamma_{134}, \gamma_{156}, \gamma_{135}, \gamma_{235}, \gamma_{456}, \gamma_{236}, \gamma_{346}\}$ .

The following lemma is easy to prove.

Figure $I$ : A pent-diagram
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LEMMA 1. Let $\alpha_{j}(j=1,2, \ldots, 6)$ be the simple roots of $\Delta(E_{6})$ deftned by
$\alpha_{1}=\gamma_{12},$ $\alpha_{2}=\gamma_{123},$ $\alpha_{3}=\gamma_{23},$ $\alpha_{4}=\gamma_{34},$ $\alpha_{5}=\gamma_{45},$ $\alpha_{6}=\gamma_{56}$ . If $f$ is a pentagonal map such
that $f(A)$ contains

$\alpha_{1},$ $-\alpha_{2},$ $-\alpha_{3},$ $\alpha_{4},$ $-\alpha_{5},$ $\alpha_{6}$ ,

then

$f(A)=\{\alpha_{1},$ $-\alpha_{2},$ $-\alpha_{3},$ $\alpha_{4},$ $-\alpha_{5},$ $\alpha_{6},$ $-\gamma_{7},$ $\gamma_{16},$ $\gamma_{156},$
$\gamma_{345}\}$ .

In particular, $f(A)$ is uniquely determined.

This implies the following.

THEOREM 1. The group $W(E_{6})$ acts on the set of pentagonal sets transitively.

Let $G_{0}$ be the subgroup of $W(E_{6})$ generated by $s_{j,j+1}$ $(j=1,2,3,4,5)$ as in section
2. In our application, the $G_{0}$ -orbital structure of pentagonal sets is important.

THEOREM 2. The totality ofpentagonal sets is decomposed into four $S_{6}$ -orbits whose
representatives are given below:

(4)

3.2. Tetrahedral sets and tetradiagrams.
For the results of this subsection, see Sekiguchi and Tanabata [11].

DEFINITION 3. Let $B$ be a set of ten letters $a_{i}(i=1,2,3,4),$ $b_{ij}(1\leq i<j\leq 4)$

(Assume that $b_{ij}=b_{ji}$ for all $i,$ $j$).
(i) An injection $f$ of $B$ to $\Delta(E_{7})$ is called a tetrahedral map if the following

conditions hold:

1. $\langle f(a_{i}), f(a_{j})\rangle=0(i\neq j)$ .

2. $\langle f(b_{ij}), f(b_{i^{\prime}j^{\prime}})\rangle=0(\{i,j\}\neq\{i^{\prime},j^{\prime}\})$ .

3. $\langle f(a_{i}), f(b_{jk})\rangle=0$ if and only if $i\not\in\{j, k\}$ .

(ii) A subset $\Gamma$ of $\Delta(E_{7})$ is called a tetrahedral set if there is a tetrahedral map
such that $\Gamma=f(B)^{\pm}$ .

It follows from the definition that $B$ admits a natural action of $S_{4}$ , the symmetric
group on four letters. If $f$ is a tetrahedral map, so is $ f\circ\sigma$ for each $\sigma\in S_{4}$ . This
implies that the set $f(B)$ admits an $S_{4}$ -action.

To a tetrahedral map $f$, there associates a diagram similar to Dynkin diagrams
which we are going to explain.
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Figure $II$ : A tetradiagram

DEFINITION 4. (i) A tetradiagram consists of ten circles and twelve segments
joining circles as in Figure II with the following properties:

1. There is a bijection between $B$ and the totality of the circles of the tetradiagram.

2. Two circles corresponding to $a_{i},$
$a_{i^{\prime}}\in B$ (resp. $b_{ij},$ $b_{i^{\prime}j^{\prime}}\in B$) are not joined by any

segment.

3. Two circles corresponding to $a_{i},$ $b_{jk}\in B$ are joined by a segment if and only if
$i\in\{j, k\}$ .

(ii) If $f$ is a tetrahedral map, the tetradiagram for $\Gamma=f(B)^{\pm}$ is the tetradiagram
of which the circle corresponding to $a_{i}$ (resp. $b_{jk}$ ) is attached with the roots $\pm f(a_{i})$ (resp.
$\pm f(b_{jk}))$ .

EXAMPLE 2. There is a tetrahedral map $f$ such that

$f(B)^{\pm}=\{\gamma_{345}, \gamma_{123}, \gamma_{146}, \gamma_{256}, \gamma_{135}, \gamma_{167}, \gamma_{347}, \gamma_{124}, \gamma_{236}, \gamma_{257}\}^{\pm}$ .

In particular, the correspondence

$a_{1}$
$\rightarrow$

$\gamma_{345}$
$b_{12}$ $\rightarrow$

$\gamma_{135}$
$b_{23}$ $\rightarrow$

$\gamma_{124}$

$a_{2}$
$\rightarrow$

$\gamma_{123}$
$b_{13}$ $\rightarrow$

$\gamma_{167}$
$b_{24}$ $\rightarrow$

$\gamma_{236}$

$a_{3}$
$\rightarrow$

$\gamma_{146}$
$b_{14}$ $\rightarrow$

$\gamma_{347}$
$b_{34}$ $\rightarrow$

$\gamma_{257}$

$a_{4}$
$\rightarrow$

$\gamma_{256}$

induces a tetradiagram for $f(B)^{\pm}$ .

REMARK 3. You can find twenty-four extended Dynkin diagrams of type $E_{7}$

embedded in a tetradiagram.

The following lemma is shown by a direct computation.

LEMMA 2. If a tetrahedral set $\Gamma$ contains

$\gamma_{12},$ $\gamma_{23},$ $\gamma_{34},$ $\gamma_{45},$ $\gamma_{56},$ $\gamma_{67},$ $\gamma_{123}$
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Table I

(these are the simple roots in (3)), then $\Gamma$ coincides with
$\{\gamma_{12}, \gamma_{23}, \gamma_{34}, \gamma_{45}, \gamma_{56}, \gamma_{67}, \gamma_{123}, \gamma_{1}, \gamma_{7}, \gamma_{167}\}^{\pm}$ .

In virtue of this lemma, the classification of tetrahedral sets is essentially reduced to
that of fundamental systems of roots of $\Delta(E_{7})$ , which is well-known, and we get

PROPOSITION 1. If $\Gamma$ and $\Gamma^{\prime}$ are tetrahedral sets, there exists $w\in W(E_{7})$ such that
$w\Gamma=\Gamma^{\prime}$ .

The $G_{1}$ -orbit structure will be also important. For this purpose, we will introduce
fourteen tetrahedral sets.

If $\Gamma$ is a tetrahedral set which has the name $M$ in TABLE $I$ , we denote by $O_{M}$ the $S_{7^{-}}$

orbit of $\Gamma$ . If $\Gamma^{\prime}$ is a tetrahedral set such that $\Gamma^{\prime}\in O_{M}$ , we call $\Gamma^{\prime}$ a tetrahedral set of
type M. Similarly, we call a tetradiagram for $\Gamma^{\prime}$ that of type M.

We now concentrate our attention to the tetrahedral set (cf. Example 2)

$\Gamma=\{\gamma_{345}, \gamma_{123}, \gamma_{146}, \gamma_{256}, \gamma_{135}, \gamma_{167}, \gamma_{347}, \gamma_{124}, \gamma_{236}, \gamma_{257}\}^{\pm}$ .

Put

$\sigma_{1}=s_{3}s_{15}s_{24}s_{67}$ ,

$\sigma_{2}=s_{1}s_{24}s_{36}s_{57}$ ,

$\sigma_{3}=s_{7}s_{14}s_{25}s_{36}$ ,

$c=s_{1}s_{23}s_{123}s_{45}s_{145}s_{67}s_{167}$ .

Then $c$ is the non-trivial central element of $W(E_{7})$ and it is easy to show that

$\sigma_{1}\Gamma=\sigma_{2}\Gamma=\sigma_{3}\Gamma=\Gamma$ .
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More precisely, we find that there is a tetrahedral map $f$ of $B$ to $\Delta(E_{7})$ such that

$f(a_{1})=\gamma_{345}$ , $f(a_{2})=\gamma_{123}$ , $f$ (a3) $=\gamma_{146}$ , $f(a_{4})=\gamma_{256}$ .

Then $\sigma_{1}$ (resp. $\sigma_{2},$ $\sigma_{3}$ ) corresponds to a permutation between $a_{1}$ and $a_{2}$ (resp. that
between a2 and $a_{3}$ and that between $a_{3}$ and $a_{4}$ ). Therefore the group generated by
$\sigma_{i}(i=1 , 2, 3)$ is isomorphic to $S_{4}$ by the correspondence

$\sigma_{1}\rightarrow(12)$ , $\sigma_{2}\rightarrow(23)$ , $\sigma_{3}\rightarrow(34)$ .

PROPOSITION 2. The isotropy subgroup of $\Gamma$ in $W(E_{7})$ is isomorphic to the group
$S_{4}\times Z_{2}$ .

As a consequence of Propositions 1, 2, we obtain a classification of $S_{7}$ -orbital
structure of tetrahedral sets.

THEOREM 3. The totality $^{\varpi}$ of tetrahedral sets is decomposed into fourteen $S_{7}$ -orbits
$O_{M}$ ($M\in\{A$ , Bl, . . . , B5, Cl, . . . , C4, Dl, . . .D4}).

4. Configurations of n lines on the real projective plane.

The main subject of this article is the study on configurations of seven lines on the
real projective plane. But we start this section with discussing on a general case,
namely, the case of configurations of $n$ lines, since the formulation is almost same. We
here note that there are many articles treated configurations of six, seven, eight lines (cf.
[3], [4], [6], [7], [12], [15], [16] $)$ .

A set of mutually different $n$ lines on $P^{2}(R)$ indexed by numbers 1,2, . . . , $n$ is called
a system of marked $n$ lines (on $P^{2}(R)$ ) in this article.

Let $\{l_{1}, l_{2}, \ldots, l_{n}\}$ be a system of marked $n$ lines. We give a condition on these $n$

lines:

(A) No three of $l_{1},$ $l_{2},$

$\ldots,$
$l_{n}$ intersect at a point.

We define $p$-gons for a system of marked $n$ lines $\{l_{1}, l_{2}, \ldots, l_{n}\}$ . Each connected
component of $P^{2}(R)-\bigcup_{j=1}^{n}l_{j}$ is called a polygon. If it is surrounded by $p$ lines
$l_{k_{1}},$ $l_{k_{2}}$ . . . , $l_{k_{p}}$ , it is called a $p$-gon and is written as $l_{k_{1}}l_{k_{2}}\cdots l_{k_{p}}$ .

The totality of systems of marked $n$ lines on $P^{2}(R)$ with condition (A) forms the
configuration space $P(2, n)$ ; the space $P(2, n)$ is defined by

$P(2, n)=GL(3, R)\backslash M^{\prime}(3, n)/(R^{\times})^{n}$ ,

where $M^{\prime}(3, n)$ is the set of $3\times n$ real matrices of which no 3-minor vanishes. Per-
mutations on the $n$ lines $l_{1},$ $l_{2},$

$\ldots,$
$l_{n}$ induce a biregular $S_{n}$ -action on $P(2, n)$ .

We are going to define “an action of a group $W_{n}$ (defined later) on $P(2, n)$
” in a

concrete manner. Let $L=\{l_{1}, l_{2}, \ldots, l_{n}\}$ be a system of marked $n$ lines. We assume
that the $j$-th line $l_{j}$ is defined by an equation

$l_{j}$ : $a_{1j}\xi+a_{2j}\eta+a_{3j}\zeta=0$ ,

where $(\xi : \eta : \zeta)$ is a homogeneous coordinate of $P^{2}(R)$ . To $L$ , we associate a $3\times n$
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matrix

$X=\left(\begin{array}{llll}a_{11} & a_{12} & \cdots & a_{1n}\\a_{21} & a_{22} & \cdots & a_{2n}\\a_{31} & a_{32} & \cdots & a_{3n}\end{array}\right)$ .

By a projective linear transformation, we may take as $l_{1},$ $l_{2},$ $l_{3},$ $l_{4}$ the lines defined by
$\xi$ $=0,$ $\eta=0,$ $\zeta=0,$ $\xi+\eta+\zeta=0$ , respectively. Moreover, we may divide the equation
of $l_{j}$ by $a_{1j}(5\leq j\leq n)$ . In this manner, it is possible to choose as a representative of
any system of marked $n$ lines a matrix of the form

(5) $X=\left(\begin{array}{llllllll}1 & 0 & 0 & 1 & 1 & 1 & \cdots & 1\\0 & 1 & 0 & 1 & x_{1} & x_{2} & \cdots & x_{n-4}\\0 & 0 & 1 & 1 & y_{1} & y_{2} & \cdots & y_{n-4}\end{array}\right)$

Therefore $P(2, n)$ is identified with an open subset of $R^{2(n-4)}$ by the correspondence

$\left(\begin{array}{llllllll}1 & 0 & 0 & 1 & 1 & 1 & \cdots & 1\\0 & 1 & 0 & 1 & x_{1} & x_{2} & \cdots & x_{n-4}\\0 & 0 & 1 & 1 & y_{1} & y_{2} & \cdots & y_{n-4}\end{array}\right)\rightarrow(x_{1}, x_{2}, \ldots, x_{n-4}, y_{1}, y_{2}, \ldots, y_{n-4})$ .

We introduce the following $n$ birational transformations $\sigma_{0},$ $\sigma_{1},$

$\ldots,$
$\sigma_{n-1}$ on $R^{2(n-4)}$

with the coordinate $(x, y)$ :

$\sigma_{0}$ : $x_{i}\rightarrow\frac{1}{x_{i}}$ ,
$y_{i}\rightarrow Ii$

$(i=1, \ldots, n-4)$

$\sigma_{1}$ : $(x_{1}, x_{2}, \ldots, x_{n-4}, y_{1}, y_{2}, \ldots, y_{n-4})\rightarrow(\frac{1}{x_{1}},$ $\frac{1}{x_{2}},$

$\ldots,$
$\frac{1}{x_{n-4}},$

$\frac{y_{1}}{x_{1}},$ $\frac{y_{2}}{x_{2}},$

$\ldots,$
$\frac{y_{n-4}}{x_{n-4}})$

$\sigma_{2}$ : $(x_{1}, x_{2}, \ldots, x_{n-4}, y_{1}, y_{2}, . . . , y_{n-4})\rightarrow(y_{1}, y_{2}, \ldots, y_{n-4}, x_{1}, x_{2}, \ldots, x_{n-4})$

$\sigma_{3}$ : $(x_{1}, x_{2}, \ldots, x_{n-4}, y_{1}, y_{2}, . . . , y_{n-4})\rightarrow(x_{1}^{\prime}, x_{2}^{\prime}, . . . , x_{n-4}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{n-4}^{\prime})$

$\sigma_{4}$ : $(x_{1}, x_{2}, \ldots, x_{n-4}, y_{1}, y_{2}, \ldots, y_{n-4})\rightarrow(\frac{1}{x_{1}},$ $\frac{x_{2}}{x_{1}},$

$\ldots,$
$\frac{x_{n-4}}{x_{1}},$

$\frac{1}{y_{1}},$
$\frac{y_{2}}{y_{1}},$

$\ldots,$
$\frac{y_{n-4}}{y_{1}})$

$\sigma_{k+4}$ : $x_{k}\leftrightarrow x_{k+1}$ , $y_{k}\leftrightarrow y_{k+1}$ $(k=1,2, \ldots, n-5)$ ,

where

$x_{j}^{\prime}=\frac{x_{j}-y_{j}}{1-y_{j}}$ , $y_{j}^{\prime}=\frac{y_{j}}{y_{j}-1}$ , $j=1,2,$
$\ldots,$

$n-4$ .

Let $W_{n}$ be the group generated by $n$ elements $\sigma_{0},$ $\sigma_{1},$

$\ldots,$
$\sigma_{n-1}$ . In the cases $n=6,7$ ,

the correspondence

$s_{12}\rightarrow\sigma_{1}$ , $s_{123}\rightarrow\sigma_{0}$ , $s_{j,j+1}\rightarrow\sigma_{j-1}$ $(j=3, \ldots, n-1)$

induces a surjective homomorphism $p_{W(E_{n})}$ of $W(E_{n})$ to the group $W_{n}$ . In the sequel,
we frequently confuse $g\in W(E_{n})$ with $p_{W(E_{n})}(g)$ and subgroups of $W(E_{n})$ with their
images by $p_{W(E_{n})}$ for simplicity.
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REMARK 4. In spite that in this article, we do not treat the Weyl group $W(E_{8})$ of
type $E_{8}$ , for the case $n=8$ , the argument above goes well for this case, namely, there is
a surjective homomorphism of $W(E_{8})$ to $W_{8}$ .

We now define a set $R_{n}$ consisting of irreducible polynomials $f_{1},$
$\ldots,$

$f_{N}$ of variables
$(x, y)$ with the following properties:

1. Neither $f_{j}$ nor $f_{i}/f_{j}$ are constants if $i\neq j$ .

2. $f_{1}=x_{1}$ .

3. For each $i=1,$
$\ldots,$

$N,j=0,1,$
$\ldots,$

$n-1$ ,

$f_{i}\circ\sigma_{j}=c_{ij}f_{1}^{m_{1}}\cdots f_{N}^{m_{N}}$ ,

where $c_{ij}$ is a non-zero constant and $m_{k}\in Z(k=1, \ldots, N)$ .

4. The number $N$ is minimal under the conditions 1, 2, 3.

Let $P_{0}(2, n)$ be the intersection of $f_{j}\neq 0(j=1,2, \ldots, N)$ in $R^{2(n-4)}$ . Then $W_{n}$ acts
on $P_{0}(2, n)$ biregularly.

LEMMA 3. (i) If $n=6,7$ , then $N=15,35$ , respectively.
(ii) Assume that $n=6,7$ . Let $L=\{l_{1}, l_{2}, \ldots, l_{n}\}$ be a system of marked $n$ lines on

$P^{2}(R)$ . Then $L$ is contained in $P_{0}(2, n)$ if and only if the following conditions hold.
(A) No three of $l_{1},$ $l_{2},$

$\ldots,$
$l_{n}$ intersect at a point.

(B) There is no conic tangent to any six of $l_{1},$ $l_{2},$

$\ldots,$
$l_{n}$ .

REMARK 5. In the case $n=8$ , it is possible to describe the condition for
$\{l_{1}, l_{2}, \ldots , l_{8}\}\in P(2,8)$ to be contained in $P_{0}(2,8)$ if we treat the dual points. Namely,
let

$P_{1}=(1$ : 0:0 $)$ , $P_{2}=(0$ : 1:0 $)$ , $P_{3}=(0$ : 0:1 $)$ , $P_{4}=(1$ : 1:1 $)$ ,

$P_{5}=$ $($ 1 : $x_{1}$ : $y_{1})$ , $P_{6}=(1 : x_{2} : y_{2})$ , $P_{7}=(1 : x_{3} : y_{3})$ , $P_{8}=(1 : x_{4} : y_{4})$

be eight points of $P^{2}(R)$ . Then the $3\times 8$ matrix defined by $P_{1},$
$\ldots,$

$P_{8}$ is contained in
$P_{0}(2,8)$ if and only if the following conditions hold:

1. The points $P_{1},$
$\ldots,$

$P_{8}$ are mutually different.
2. There is no line passing through any three of $P_{1},$

$\ldots,$
$P_{8}$ .

3. There is no conic passing through any six of $P_{1},$
$\ldots,$

$P_{8}$ .
4. There is no cubic passing through all of $P_{1},$

$\ldots,$
$P_{8}$ and having one of $P_{1},$

$\ldots,$
$P_{8}$

as a double point.

For the case $n=7$ , we are going to construct the polynomials of $R_{n}$ con-
cretely. Let $X$ be the matrix of the form (4), namely,

(6) $X=\left(\begin{array}{lllllll}1 & 0 & 0 & 1 & 1 & 1 & 1\\0 & 1 & 0 & 1 & x_{1} & x_{2} & x_{3}\\0 & 0 & 1 & 1 & y_{1} & y_{2} & y_{3}\end{array}\right)$ .
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We write $X=(x_{1}x_{2}x_{3}x_{4}x_{5}x_{6}x_{7})$ for simplicity. Let $D_{ijk}$ be the determinant of the
$3\times 3$ minor $(x_{i}x_{j}x_{k})$ of $X(1\leq i<j<k\leq 7)$ . Clearly $D_{123},$ $D_{124},$ $D_{134},$ $D_{23k}(k>3)$

are constants but the remaining ones are irreducible polynomials. As a result, we
obtain $7!/(3!\cdot 4!)$ - $7=28$ polynomials. Moreover, we have to construct seven
polynomials. Let $L=\{l_{1}, l_{2}, \ldots, l_{7}\}$ be a system of marked seven lines defined by
the matrix $X$. We pick out a line $l_{j}$ from $L$ . Then it is easy to write down an
equation $p_{j}=0$ for the condition that there is a conic tangent to the six lines
$l_{k}(k\neq j)$ . Polynomials $p_{1},$

$\ldots,$
$p_{7}$ are given as follows (cf. [9]):

$p_{1}(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3})=(1-y_{2})(x_{1}-x_{2})(x_{3}-x_{1}+y_{1}-y_{3}+x_{1}y_{3}-x_{3}y_{1})$

$-(1-y_{3})(x_{1}-x_{3})(x_{2}-x_{1}+y_{1}-y_{2}+x_{1}y_{2}-x_{2}y_{1})$ ,

$p_{2}(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3})=x_{3}(x_{2}-y_{2})(x_{1}-x_{2})(x_{3}-x_{1}+y_{1}-y_{3}+x_{1}y_{3}-x_{3}y_{1})$

$-x_{2}(x_{3}-y_{3})(x_{1}-x_{3})(x_{2}-x_{1}+y_{1}-y_{2}+x_{1}y_{2}-x_{2}y_{1})$ ,

$p_{3}(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3})=y_{3}(x_{2}-y_{2})(y_{1}-y_{2})(x_{3}-x_{1}+y_{1}-y_{3}+x_{1}y_{3}-x_{3}y_{1})$

$-y_{2}(x_{3}-y_{3})(y_{1}-y_{3})(x_{2}-x_{1}+y_{1}-y_{2}+x_{1}y_{2}-x_{2}y_{1})$ ,

$p_{4}(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3})=x_{2}y_{3}(x_{1}-x_{3})(y_{1}-y_{2})-x_{3}y_{2}(x_{1}-x_{2})(y_{1}-y_{3})$ ,

$p_{5}(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3})=x_{2}y_{3}(1-x_{3})(1-y_{2})-x_{3}y_{2}(1-x_{2})(1-y_{3})$ ,

$p_{6}(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3})=x_{1}y_{3}(1-x_{3})(1-y_{1})-x_{3}y_{1}(1-x_{1})(1-y_{3})$ ,

$p_{7}(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3})=x_{1}y_{2}(1-x_{2})(1-y_{1})-x_{2}y_{1}(1-x_{1})(1-y_{2})$ .

We may take $R_{7}$ as the set consisting of $D_{ijk}((i,j, k)\neq(1,2,3),$ $(1,2,4),$ $(1,3,4)$ ,
$(2, 3, l)(l>3))$ and $p_{j}(j=1, \ldots, 7)$ .

We return to the general case. Let $\mathscr{P}_{n}$ be the set of connected components of
$P_{0}(2, n)$ . The action of $W_{n}$ on $P_{0}(2, n)$ naturally induces that on $\mathscr{P}_{n}$ . Then it is
interesting to attack the problem below:

PROBLEM 1. Determine the $W_{n}$ -orbital structure of $\mathscr{P}_{n}$ .

5. Geometry of six lines on the real projective plane.

In this section, we review the results of Sekiguchi and Yoshida [12]. For the details
of the statements of this section, see [12].

We first state an answer to Problem 1 in the previous section for the case $n=6$ .

THEOREM 4. (i) There are 432 connected components of $P_{0}(2,6)$ .
(ii) The Weyl group $W(E_{6})$ acts on the set $\mathscr{P}_{6}$ transitively.
(iii) For each connected component of $P_{0}(2,6)$ , its isotropy subgroup in $W(E_{6})$ is

isomorphic to the symmetric group $S_{5}$ .
(iv) The set $\mathscr{P}_{6}$ is in $a$ one to one correspondence with that of pentagonal sets.
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Table II

.

F.igure $m$

Let $L=\{l_{1}, \ldots, l_{6}\}\in P_{0}(2,6)$ be a system of marked six lines. The totality of the
systems in $P_{0}(2,6)$ which can be obtained by continuous deformations of the $l_{j}^{\prime}s$ form a
connected component of $P_{0}(2,6)$ , which is a 4-dimensional cell. There are four $S_{6^{-}}$

orbits of the sets of connected components of $P_{0}(2,6)$ , refered to as $O,$ $I,$ $II$ , III. Each
orbit is characterized by the numbers of polygons so that any of the systems in it cut out
(cf. [7]):

A system of marked six lines is said to be of type $T\in$ { $O,$ $I,$ $II$ , III} if it belongs to
the orbit T.

Let $L$ be the system of marked six lines given in FIGURE III. Then there are ten
triangles given as follows:

$l_{1}l_{2}l_{3},$ $l_{1}l_{2}l_{5},$ $l_{1}l_{3}l_{6},$ $l_{1}l_{4}l_{6},$ $l_{2}l_{3}l_{4},$ $l_{2}l_{4}l_{6},$ $l_{2}l_{5}l_{6},$ $l_{3}l_{4}l_{5},$ $l_{3}l_{5}l_{6},$ $l_{1}l_{4}l_{5}$ .

You can find that there is a bijective map between the set of ten triangles given above
and the pentagonal set in Example 1. This gives a correspondence between $\mathscr{P}_{6}$ and the
totality of pentagonal sets in Theorem 4 (iv).

6. Systems of marked seven lines.

In this section, we construct a $W(E_{7})$ -equivariant map of the totality of tetrahedral
sets into the set $\mathscr{P}_{7}$ . For this purpose, we first take a 3 $\times 7$ matrix
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Table III

Figure IV

(7) $X_{0}=\left(\begin{array}{lllllll}1 & 0 & 0 & 1 & 1 & 1 & 1\\0 & 1 & 0 & 1 & \frac{2}{3} & \frac{1}{2} & -3\\0 & 0 & 1 & 1 & \frac{1}{3} & \frac{5}{8} & -\frac{7}{4}\end{array}\right)$

In other words, $(x, y)$ $=(a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3})$ , where

$(a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3})=(\frac{2}{3},$ $\frac{1}{2},$ $-3,$ $\frac{1}{3},$ $\frac{5}{8},$
$-\frac{7}{4})$ .

In the sequel, we write $(a, b)=(a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3})$ for simplicity. Let $L_{0}=$

$\{l_{1}, l_{2}, \ldots, l_{7}\}$ be the system of marked seven lines corresponding to $X_{0}$ (cf. FIGURE
$IV)$ . There are ten triangles $T_{j}(j=1,2, \ldots , 10)$ for $L_{0}$ which are given in TABLE III:
From TABLE III, we define a set of roots of $\Delta(E_{7})$

(8) $\Gamma_{0}=\{\gamma_{125}, \gamma_{136}, \gamma_{146}, \gamma_{157}, \gamma_{234}, \gamma_{237}, \gamma_{256}, \gamma_{345}, \gamma_{356}, \gamma_{467}\}^{\pm}$ .

It is clear from the definition that $\Gamma_{0}$ is a tetrahedral set.

REMARK 6. The correspondence between ten triangles for $L_{0}$ and roots of $\Delta(E_{7})$ in
TABLE III is easily obtained once we write down roots of $\Delta(E_{7})$ as in section 2.

We now consider the polynomials

$D_{125}=y_{1}$ , $D_{237}=1$ ,

$D_{136}=-x_{2}$ , $D_{256}=y_{2}-y_{1}$ ,

(9) $D_{146}=y_{2}-x_{2}$ , $D_{345}=x_{1}-1$ ,

$D_{157}=x_{1}y_{3}-x_{3}y_{1}$ , $D_{356}=x_{2}-x_{1}$ ,

$D_{234}=1$ , $D_{467}=x_{2}y_{3}-x_{3}y_{2}-x_{2}+x_{3}+y_{2}-y_{3}$ ,
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which are $3\times 3$ minors of the matrix $X$ (cf. (6)) and whose indices are same as those of
the triangles for $L_{0}$ . Since $D_{234}$ , $D_{237}$ are constants, we neglect these two in the
subsequent arguments.

It is easy to see that

$D_{125}(a, b)>0,$ $D_{136}(a, b)<0,$ $D_{146}(a, b)>0,$ $D_{157}(a, b)<0$ ,

$D_{256}(a, b)>0$ , D345 $(a, b)<0,$ $D_{356}(a, b)<0,$ $D_{467}(a, b)<0$ .

Noting these, we consider an open subset $F$ of $(x, y)$ -space defined by the inequalities of
the eight polynomials in (9) with signatures same as the values at $(x, y)=(a, b)$ , namely,

$F=\{(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3})\in R^{6}; D_{125}>0, \ldots, D_{467}<0\}$ .

Our goal of this section is to find a connected component $\Omega$ of $F$ so that the cor-
respondence $\Gamma_{0}\rightarrow\Omega$ extends to a $W(E_{7})$ -equivariant map of $^{\varpi}$ to $\mathscr{P}_{7}$ .

We begin the study with investigating the properties of $F$. It follows from the
definition that

$F=\{(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3})\in R^{6}$ ; $(x_{1}, x_{2}, y_{1}, y_{2})\in F_{0}$ ,

$\frac{1-y_{2}}{1-x_{2}}x_{3}+\frac{y_{2}-x_{2}}{1-x_{2}}<y_{3}<\frac{y_{1}}{x_{1}}x_{3}\}$ ,

where

$F_{0}=\{(x_{1}, x_{2}, y_{1}, y_{2})\in R^{4};0<x_{2}<x_{1}<1,0<y_{1}<y_{2}, x_{2}<y_{2}\}$ .

It is easy to see that there are 14 polynomials of the forms $D_{ijk}$ which are not
constant and are independent of $x_{3},$ $y_{3}$ . Let $R_{6}^{\prime}$ be the set of these 14 polynomials. We
put

$E=\{(x_{1}, x_{2}, y_{1}, y_{2})\in R^{4};p(x_{1}, x_{2}, y_{1}, y_{2})\neq 0(\forall p\in R_{6}^{\prime})\}$ .

Then the connected components of $E$ contained in $F_{0}$ are the following six open subsets:

$E_{1}=\{(x_{1}, x_{2}, y_{1}, y_{2})\in F_{0;}y_{1}<x_{1}, y_{2}<1\}$ ,

$E_{2}=\{(x_{1}, x_{2}, y_{1}, y_{2})\in F_{0}; y_{1}<x_{1}, y_{2}>1\}$ ,

$E_{3}=\{(x_{1}, x_{2}, y_{1}, y_{2})\in F_{0;}y_{1}>x_{1}, y_{2}<1\}$ ,

$E_{4}=\{(x_{1}, x_{2}, y_{1}, y_{2})\in F_{0;}y_{1}<1, y_{2}>1\}$ ,

$E_{5}=\{(x_{1}, x_{2}, y_{1}, y_{2})\in F_{0}; y_{1}>1, (1-x_{1})y_{2}<(1-y_{1})x_{2}+y_{1}-x_{1}\}$ ,

$E_{6}=\{(x_{1}, x_{2}, y_{1}, y_{2})\in F_{0}; y_{1}<y_{2}, (1-x_{1})y_{2}>(1-y_{1})x_{2}+y_{1}-x_{1}\}$ .

We now consider a $3\times 6$ matrix

$X^{\prime}=\left(\begin{array}{llllll}1 & 0 & 0 & 1 & 1 & 1\\0 & 1 & 0 & 1 & x_{1} & x_{2}\\0 & 0 & 1 & 1 & y_{1} & y_{2}\end{array}\right)$

and the corresponding system of marked six lines which we denote by $L^{\prime}=\{l_{1}, \ldots, l_{6}\}$ .
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Figure $V$

LEMMA 4. (i) The type of the system $L^{\prime}$ is III, $II,$ $II,$ $I,$ $I,$ $O$ if $(x_{1}, x_{2}, y_{1}, y_{2})$ is
contained in $E_{1},$ $E_{2},$ $E_{3},$ $E_{4},$ $E_{5},$ $E_{6}$ , respectively.

(ii) The triangles for $L^{\prime}$ are given by the table below if $(x_{1}, x_{2}, y_{1}, y_{2})$ is contained in
$E_{1},$ $E_{2}$ , E3, $E4,$ $E5,$ $E6$ .
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The proof of this lemma is easy but is a little lengthy. Therefore we omit it.
As an easy consequence of Lemma 4 we find the following.

PROPOSITION 3. Let $L\in P_{0}(2,7)$ be a system of marked seven lines obtained from $L^{\prime}$

by adding a seventh line $l_{7}$ . If $(x_{1}, x_{2}, y_{1}, y_{2})$ is a point of one of $E_{2},$
$\ldots,$

$E_{6}$ , the set of
triangles for $L$ does not coincide with $\{T_{1}, T_{2}, \ldots, T_{10}\}$ .

PROOF. It follows from Lemma 4 that if $(x_{1} , x_{2}, y_{1}, y_{2})$ is contained in one of
$E_{2},$

$\ldots,$
$E_{6}$ , there is no triangle $l_{1}l_{4}l_{6}$ for $L$ . This implies the proposition. $\square $

Noting this proposition, we focus our attention on an open subset $F^{\prime}$ of $F$ defined
by

$F^{\prime}=\{(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3})\in R^{6}$ ; $(x_{1}, x_{2}, y_{1}, y_{2})\in E_{1}$ ,

$\frac{1-y_{2}}{1-x_{2}}x_{3}+\frac{y_{2}-x_{2}}{1-x_{2}}<y_{3}<\frac{y_{1}}{x_{1}}x_{3}\}$ .

If $(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3})$ is contained in $F^{\prime}$ , then

$\frac{1-y_{2}}{1-x_{2}}x_{3}+\frac{y_{2}-x_{2}}{1-x_{2}}<y_{3}<\frac{y_{1}}{x_{1}}x_{3}$ , $\frac{y_{2}-x_{2}}{1-x_{2}}>0$ ,

which imply

$(\frac{1-y_{2}}{1-x_{2}}-\frac{y_{1}}{x_{1}})x_{3}<-\frac{y_{2}-x_{2}}{1-x_{2}}<0$ .

Therefore $F^{\prime}$ is decomposed into two parts $F_{+}^{\prime},$
$F_{-}^{\prime}$ of $F^{\prime}$ defined by

$F_{+}^{\prime}=\{(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3})\in F^{\prime};x_{3}>0,$ $\frac{1-y_{2}}{1-x_{2}}-\frac{y_{1}}{x_{1}}<0\}$ ,

$F_{-}^{\prime}=\{(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3})\in F^{\prime};x_{3}<0,$ $\frac{1-y_{2}}{1-x_{2}}-\frac{y_{1}}{x_{1}}>0\}$ .

REMARK 7. We explain a geometric meaning of the condition $(1-y_{2})/(1-x_{2})-$

$(y_{1}/x_{1})=0$ . Let $S$ be the surface obtained by six points $P_{j}(j=1,2, \ldots, 6)$ blowing up
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of $P^{2}$ , where

$P_{1}=(1$ : 0:0 $)$ , $P_{2}=(0$ : 1:0 $)$ , $P_{3}=(0$ : 0:1 $)$ , $P_{4}=(1$ : 1:1 $)$ ,

$P_{5}=$ $($ 1 : $x_{1}$ : $y_{1})$ , $P_{6}=(1 : x_{2} : y_{2})$ .

Then $S$ is a cubic surface in $P^{3}$ . The condition above corresponds to the condition that
$S$ has an Eckardt point.

At the present stage, we need the following lemma.

LEMMA 5. (i) The two sets $F_{+}^{\prime}$ and $F_{-}^{\prime}$ are connected and mutually disjoint. Moreover
dirn $\overline{F_{+}^{\prime}}\cap\overline{F_{-}^{\prime}}<5$ .

(ii) The triangles for the system of marked seven lines corresponding to $(x, y)\in F_{+}^{\prime}$

are

$l_{1}l_{2}l_{3},$ $l_{1}l_{3}l_{6},$ $l_{1}l_{4}l_{5},$ $l_{1}l_{5}l_{7},$ $l_{2}l_{3}l_{7},$ $l_{2}l_{4}l_{6},$ $l_{2}l_{5}l_{6},$ $l_{3}l_{4}l_{5},$ $l_{3}l_{5}l_{6},$ $l_{4}l_{6}l_{7}$ .

(iii) The triangles for the system of marked seven lines corresponding to any
$(x, y)\in F_{-}^{\prime}$ are $T_{1},$ $T_{2},$

$\ldots,$
$T_{10}$ .

PROOF. (i) It is easy to reduce the claim on the connectivity of $F_{+}^{\prime},$
$F_{-}^{\prime}$ to the fact

that $E_{1}$ is connected. We omit the details.
As to the dimension of $\overline{F_{+}^{\prime}}\cap\overline{F_{-}^{\prime}}$ , the claim follows from computations of inequalities

defining both $F_{+}^{\prime},$
$F_{-}^{\prime}$ .

(ii) It is easy to see that

$(\frac{2}{3},$ $\frac{1}{2},10,$ $\frac{1}{3},$ $\frac{4}{5},$
$\frac{24}{5})\in F_{+}^{\prime}$ .

Since $F_{+}^{\prime}$ is connected, it suffices to determine the triangles for a system of marked seven
lines corresponding to (2/3, 1/2, 10, 1/3, 4/5, 24/5) and the result follows from a direct
computation.

(iii) Noting that $(a, b)\in F_{-}^{\prime}$ , we can easily show the claim. $\square $

By direct computation, we find that the codimension one boundaries of $F_{-}^{\prime}$ are the
hypersurfaces

$D_{125}=0,$ $D_{136}=0,$ $D_{146}=0,$ $D_{157}=0,$ $D_{256}=0,$ $D_{345}=0,$ $D_{356}=0,$ $D_{467}=0$ .

LEMMA 6. For each polynomial $p$ of $R_{7},$ $p(x, y)/p(a, b)>0$ for all $(x, y)\in F_{-}^{\prime}$ .

PROOF. It follows from the definition of $F_{-}^{\prime}$ that

$D_{125}=y_{1}>0$ , $D_{135}=-x_{2}<0$ , $D_{136}=-x_{3}>0$ ,

$D_{145}=-x_{1}+y_{1}<0$ , $D_{146}=-x_{2}+y_{2}>0$ , $D_{157}=x_{1}y_{3}-x_{3}y_{1}<0$ ,

$D_{246}=1-y_{2}>0$ , $D_{156}=y_{1}-y_{2}<0$ , D345 $=1-x_{1}>0$ ,

$D_{356}=-x_{1}+x_{2}<0$ , $D_{467}=x_{2}y_{3}-x_{3}y_{2}-x_{2}+x_{3}+y_{2}-y_{3}<0$ .
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It is easy to check that the signature of each polynomial of the form $D_{ijk}$ contained in
$R_{7}$ is invariant on the set $F_{-}^{\prime}$ and same as that of $D_{ijk}(a, b)$ . More concretely, we have
the following inequalities on $F_{-}^{\prime}$ :

$D_{125}>0$ , $D_{126}>0$ , $D_{127}<0$ , $D_{135}<0$ , $D_{136}<0$ , $D_{137}>0$ , $D_{145}<0$ ,

$D_{146}>0$ , $D_{147}>0$ , $D_{156}>0$ , $D_{157}<0$ , $D_{167}>0$ , $D_{245}>0$ , $D_{246}>0$ ,

D247 $>0$ , $D_{256}<0$ , D257 $>0$ , $D_{267}>0$ , D345 $<0$ , $D_{346}<0$ , D347 $<0$ ,

$D_{356}<0$ , D357 $<0$ , $D_{367}<0$ , $D_{456}<0$ , D457 $<0$ , $D_{467}<0$ , $D_{567}>0$ .

Next we show that the signature of each $p_{j}$ i $s$ invariant on $F_{-}^{\prime}$ . For this purpose,
we first note:

$p_{7}=(1-x_{1})(x_{1}y_{2}-x_{2}y_{1})+y_{2}(x_{1}-x_{2})(x_{1}-y_{1})$ ,

$p_{6}=(1-x_{1})(x_{1}y_{3}-x_{3}y_{1})+y_{3}(x_{1}-x_{3})(x_{1}-y_{1})$ ,

$p_{5}=(1-x_{2})(x_{2}y_{3}-x_{3}y_{2})+y_{3}(x_{2}-x_{3})(x_{2}-y_{2})$ ,

$p_{1}=(x_{3}-x_{1})(y_{3}-y_{1})D_{456}+(1-x_{2})(1-y_{1})(y_{2}-y_{1})(x_{3}-x_{1})$

$-(1-x_{1})(1-y_{2})(x_{2}-x_{1})(y_{3}-y_{1})$ ,

$p_{2}=\frac{-x_{3}D_{467}p_{7}+x_{1}D_{456}p_{5}}{1-y_{2}}$ ,

$p_{3}=\frac{y_{3}D_{467}p_{7}-y_{1}D_{456}p_{5}}{1-x_{2}}$ ,

$p_{4}=x_{3}y_{1}y_{2}(x_{2}-x_{1})-y_{3}x_{1}x_{2}(y_{2}-y_{1})+x_{3}y_{3}(x_{1}y_{2}-x_{2}y_{1})$ .

From these identities, we easily conclude that
$p_{1}<0,$ $p_{2}<0,$ $p_{3}>0,$ $p_{4}>0,$ $p_{5}>0,$ $p_{6}<0,$ $p_{7}>0$

on $F_{-}^{\prime}$ . lm

Summarizing the arguments above, we obtain the theorem below:

THEOREM 5. An open subset $\Omega$ of $R^{6}$ deftned by the inequalities

$0<x_{2}<x_{1}<1,0<y_{1}<y_{2},$ $y_{2}<x_{2},$ $\frac{1-y_{2}}{1-x_{2}}x_{3}+\frac{y_{2}-x_{2}}{1-x_{2}}<y_{3}<\frac{y_{1}}{x_{1}}x_{3},$ $\underline{x_{3}<0}$

has the following properties.
(0) $\Omega$ is a connected component of $P_{0}(2,7)$ .
(i) $\Omega$ is a connected component of the open subset $F$ deftned by

$D_{125}>0,$ $D_{136}<0,$ $D_{146}>0,$ $D_{157}<0,$ $D_{256}>0$ , D345 $<0,$ $D_{356}<0,$ $D_{467}<0$ .

The codimension one boundary of $\Omega$ is the union of non-empty open subsets of hyper-
surfaces

$D_{125}=0,$ $D_{136}=0,$ $D_{146}=0,$ $D_{157}=0,$ $D_{256}=0$ , D345 $=0,$ $D_{356}=0,$ $D_{467}=0$ .
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(ii) For each $(x, y)\in\Omega$ , the triangles for the system of marked seven lines cor-
responding to $(x, y)$ are $T_{1},$ $T_{2},$

$\ldots,$
$T_{10}$ .

(iii) There is no connected component of $P_{0}(2,7)$ other than $\Omega$ satisfying the
conditions same as (i), (ii).

PROOF. Since $\Omega=F_{-}^{\prime}$ , the theorem follows from the arguments before in this
section.

We now put

$h_{1}=s_{5}s_{13}s_{26}s_{47},$ $h_{2}=s_{6}s_{13}s_{27}s_{45},$ $h_{3}=s_{7}s_{16}s_{23}s_{45},$ $c=s_{1}s_{23}s_{123}s_{45}s_{145}s_{67}s_{167}$ .

Then it is easy to show the following.

LEMMA 7. (i) $h_{j}^{2}=1(j=1,2,3),$ $(h_{1}h_{2})^{3}=(h_{2}h_{3})^{3}=1,$ $(h_{1}h_{3})^{2}=1$ .
(ii) The group $H^{\prime}$ generated by $h_{1},$ $h_{2},$ $h_{3}$ is isomorphic to $S_{4}$ .
(iii) $ H=H^{\prime}\times\langle c\rangle$ is the stabilizer of the tetrahedral set $\Gamma_{0}$ in $W(E_{7})$ .

PROOF. Easy.

We now study the action of $H$ on the set $\Omega$ .

LEMMA 8. $ h\Omega=\Omega$ for all $h\in H$ .

PROOF. Since $\Omega$ is connected, so is $h\Omega(\forall h\in H)$ . In virtue of that $h_{1},$ $h_{2},$ $h_{3},$ $c$

generate $H$ , it suffices to show that $h_{j}\cdot(a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3})\in\Omega(j=1,2,3)$ ,
$ c\cdot(a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3})\in\Omega$ . By direct computation, we find that

$h_{1}\cdot(a, b)=(\frac{524}{711},$ $\frac{1}{12},$ $-\frac{19}{3},$ $\frac{262}{3441},$ $\frac{5}{16},$ $-\frac{7}{4})$ ,

$h_{2}\cdot(a, b)=(\frac{25}{33},$ $\frac{131}{374},$ $-\frac{21}{11},$ $\frac{1}{3},$ $\frac{917}{2294},$ $-1)$ ,

$h_{3}\cdot(a, b)=(\frac{1}{3},$ $\frac{1}{5},$ $-\frac{1501}{524},$ $\frac{1}{6},$ $\frac{2}{5},$ $-\frac{553}{338})$ ,

$c$ . $(a, b)=(a, b)$ .

Then it is easy to see that $h_{j}\cdot(a, b)\in\Omega(j=1,2,3),$ $ c\cdot(a, b)\in\Omega$ . So the lemma
follows. $\square $

REMARK 8. The central element $c$ acts on the $(x, y)$ -space as an identity.

THEOREM 6. Let $\Gamma_{0}$ be the tetrahedral set deftned in (8). If $\Gamma=g\Gamma_{0}$ for some
$g\in W(E_{7})$ , we deftne $f(\Gamma)$ as the connected component of $P_{0}(2,7)$ containing
$g\cdot(a, b)$ . Then $f$ defines a $W(E_{7})$ -equivariant injection of $\varpi$ to $\mathscr{P}_{7}$ .

PROOF. Let $\tilde{H}$ be the isotropy subgroup of $\Gamma_{0}$ in $W(E_{7})$ . Then Lemma 8 implies
that $H$ is contained in $\tilde{H}$ . Therefore, as a $W(E_{7})$ -equivariant map, $f$ is well-defined.

What we have to show is that $f$ is injective. Our proof of this fact is based on the
classification of the $S_{7}$ -orbital structure of $\varpi$ . In virtue of Theorem 3 we find that
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there are fourteen $S_{7}$ -orbits of $^{\varpi}$ . If $\Gamma$ is a tetrahedral set of type $M$ , we also call the
system of marked seven lines corresponding to $f(\Gamma)$ of type M. It follows from TABLE
IV given in the next section that if there are ten triangles for a system $\Gamma$ of marked
seven lines, the type of $\Gamma$ is A. This easily implies that $f$ is injective and the theorem
follows.

REMARK 9. In spite that we do not discuss on the $W(E_{7})$ -orbital structure of $\mathscr{P}_{7}$ , it
is provable (cf. [10]) that the $W(E_{7})$ -action on $\mathscr{P}_{7}$ is transitive. Our proof for this
statement is based on a detailed study on a cross ratio variety for the root system of
type E7 (cf. [9]) and we shall treat this subject elsewhere.

7. Fourteen systems of marked seven lines.

Cummings [3], White [16] (cf. Gr\"unbaum [7], Chap. 18) showed that there are
eleven equivalent classes of systems of seven lines with condition (A). In this section,
we discuss the relationship between our results and their studies.

We first compute representative matrices for all types of systems of marked seven
lines:

(10) $X_{A}=\left(\begin{array}{llllll}1 & 0 & 0 & 1 1 & 1 & 1\\0 & 1 & 0 & \frac{37}{100}1 & \frac{1961}{260} & \frac{2479}{1840}\\0 & 0 & 1 & 1 \frac{37}{10} & \frac{148}{13} & \frac{481}{184}\end{array}\right)$

$X_{B1}=\left(\begin{array}{lllllll}1 & 0 & 0 & 1 & 1 & 1 & 1\\0 & 1 & 0 & 1 & \frac{100}{37} & \frac{260}{1961} & \frac{1840}{2479}\\0 & 0 & 1 & 1 & \frac{10}{37} & \frac{13}{148} & \frac{184}{481}\end{array}\right)$

$X_{B2}=\left(\begin{array}{lllllll}1 & 0 & 0 & 1 & 1 & 1 & 1\\0 & 1 & 0 & 1 & \frac{100}{37} & \frac{265}{13} & \frac{335}{92}\\0 & 0 & 1 & 1 & 10 & \frac{373}{13} & \frac{3041}{368}\end{array}\right)$

(11) $X_{B3}=\left(\begin{array}{lllllll}1 & 0 & 0 & 1 & 1 & 1 & 1\\0 & 1 & 0 & 1 & -\frac{37}{63} & \frac{148}{13} & \frac{999}{644}\\0 & 0 & 1 & 1 & \frac{37}{7} & \frac{1184}{65} & \frac{4329}{1288}\end{array}\right)$

$X_{B4}=\left(\begin{array}{lllllll}1 & 0 & 0 & 1 & 1 & 1 & 1\\0 & 1 & 0 & 1 & \frac{3041}{2600} & \frac{312577}{62530} & \frac{67}{130}\\0 & 0 & 1 & 1 & \frac{92}{65} & \frac{736}{169} & \frac{184}{481}\end{array}\right)$
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$X_{B5}=(_{0}^{1}0$
$001$ $001$ $111$

$\frac{12436070343834734383471}{1243607}$ $\frac{}{32227}\frac{3125771}{31257762530}$ $\frac{}{180412}\frac{3125771}{272320,312577})$

$X_{C1}=(_{0}^{1}$

$0$
$001$ $001$ $111$

$-\frac{127}{5113}\frac$ $\frac{41}{-\frac{355}{3}5}$ $-\frac{3125772386381875431}{8439579}$ )$\frac$

$X_{C2}=\left(\begin{array}{lllllll}1 & 0 & 0 & 1 & 1 & 1 & 1\\0 & 1 & 0 & 1 & \frac{80}{27} & -\frac{31738}{33611} & -\frac{252}{13}\\0 & 0 & 1 & 1 & -\frac{170}{201} & -\frac{44387}{100833} & -\frac{1071}{890}\end{array}\right)$

(12)

$X_{C3}=\left(\begin{array}{lllllll}1 & 0 & 0 & 1 & 1 & 1 & 1\\00 & 10 & 01 & 11 & -\frac{293193}{}-\frac{1269692488655}{754952} & -\frac{727553}{2085640,251384637765}\frac{3}{1} & -\frac{4116770583553744}{403328}\frac{1}{4}\end{array}\right)$

$X_{C4}=(_{0}^{1}0$
$001$ $001$ $111$

$-\frac{33197029471884131}{1161895}\frac$ $-\frac{}{2438600}-\frac{9997471}{243860,999747}$ $-\frac{3798441459948662251}{1353245}\frac{4}{67})$

$X_{D1}=\left(\begin{array}{lllllll}1 & 0 & 0 & 1 & 1 & 1 & 1\\0 & 1 & 0 & 1 & \frac{170}{371} & \frac{44387}{145220} & \frac{1071}{1961}\\0 & 0 & 1 & 1 & \frac{80}{53} & \frac{373}{265} & \frac{312577}{180412}\end{array}\right)$

$X_{D2}=\left(\begin{array}{lllllll}1 & 0 & 0 & 1 & 1 & 1 & 1\\0 & 1 & 0 & 1 & \frac{504160}{312577} & \frac{49320}{15869} & \frac{27400}{18277}\\0 & 0 & 1 & 1 & \frac{2672048}{1562885} & \frac{548}{185} & \frac{274}{175}\end{array}\right)$

(13)

$X_{D3}=\left(\begin{array}{lllllll}1 & 0 & 0 & 1 & 1 & 1 & 1\\0 & 1 & 0 & 1 & \frac{540}{71} & \frac{100}{37} & \frac{80}{27}\\0 & 0 & 1 & 1 & \frac{211491}{43436} & \frac{373}{148} & \frac{373}{108}\end{array}\right)$
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Table IV

$X_{D4}=(_{0}^{1}0$
$001$ $001$ $111$

$\frac{5755271}{1825,-}\frac{1431583}{445}$ $-\frac{884131}{-\frac{161896801}{3115}15}$ $\frac{9074971}{21,-\frac{3361157805}{5785}})$

The index $M$ of the matrix $X_{M}$ means the type of the system of marked seven lines
corresponding to $X_{M}$ for $M\in$ { $A$ , Bl, . . . , D4}.

Observing the configurations of the fourteen systems of marked seven lines (cf.
FIGURE $V$), we conclude that the numbers of polygons for each system are given in
TABLE $IV$ .

We now discuss the relationship between these fourteen systems of marked
seven lines and simple 2-arrangements of seven lines (for the definition of simple 2-
arrangements of seven lines, see Gr\"unbaum [7] $)$ . Let $L$ be a system of marked seven
lines with conditions (A), (B). Forgetting the indices of lines of $L$ , we obtain a simple
2-arrangement of seven lines on the real projective plane. Two 2-arrangements are
equivalent provided there exists a one-to-one incidence-preserving correspondence be-
tween their polygons. Comparing our results with those in [7], Chap. 18, we observe
the following.

LEMMA 9. Let $\Gamma$ be a tetrahedral set and let $L$ be a system of marked seven lines
contained in $f(\Gamma)$ . Then, for $j=1,2,$

$\ldots,$
$7,$ $\Gamma$ contains a root $\gamma_{j}$ of $\Delta(E_{7})$ if and only if

the system $L_{j}$ of marked six lines obtained from $L$ by taking off the j- th line is of type $O$,
in other words, there is no hexagon for $L_{j}$ .
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As easy consequences of this lemma and other observations, we find the following.
1. If there is no hexagon for the system of marked six lines obtained from $L$ by

taking off any line of $L$ , then type of $L$ is one of $A$ , Bl, B3.
2. Systems of marked seven lines of types Bl and D3 are not distinguished each

other by the numbers of polygons. If $L$ is of type D3, there is a hexagon for
one of systems of marked six lines obtained from $L$ by taking off a line and if $L$

is of type Bl this doesn’t happen.
3. Systems of marked seven lines of types B3 and B4 are not distinguished each

other by the numbers of polygons. If $L$ is of type B4, there is a hexagon for
one of systems of marked six lines obtained from $L$ by taking off a line and if $L$

is of type B3, this doesn’t happen.
4. Systems of marked seven lines of types C2 and D2 are equivalent.
5. Systems of marked seven lines of types C4 Dl, D4 are equivalent.
6. Eleven systems of marked seven lines of types $A$ , Bl, B2, B3, B4, B5, Cl, C2,

C3, C4, D3 are neither equivalent.

We stress here that of the statements above, the last one actually agrees with the
classification of simple 2-arrangements of seven lines by Cummings and White.

REMARK 10. Needless to say, we have to study properties of conics tangent to five
lines of seven lines of 2-arrangements to distinguish systems of types C2 and D2 each
other and also those of types C4 Dl, D4.

8. Tetradiagrams and Shrikhande graphs.

In this section, being irrelevant to the arguments of the previous sections, we
mention a relationship between tetradiagrams and Shrikhande graphs. For the defi-
nition and properties of Shrikhande graphs, see [2], [14]. Most of the statements of this
section are obtained by the discussions with A. Munemasa.

A Shrikhande graph consists of sixteen vertices which correspond to roots of $\Delta(E_{7})$

(see FIGURE $VI$). To treat it convenient for our purpose, we put the vertices on the
lattice points

I $=\{(\sqrt{3}(m-n), m+n);m, n\in Z\}$

and identify two vertices modulo

$\Sigma_{0}=\{(\sqrt{3}(m-n), m+n);m, n\in 4Z\}$ .

Moreover we consider the lines

(14) $x=\frac{\sqrt{3}m}{2},y=\pm\sqrt{3}x+m,$ $(\forall m\in Z)$ .

These connect the vertices.

LEMMA 10. There is a subset $S$ of $\Delta(E_{7})$ with the following conditions:
1. The order of $S$ is 16.
2. There is a bijection $h$ of $S$ to $\Sigma/\Sigma_{0}$ such that for $\alpha,\beta\in S,$ $\langle\alpha,\beta\rangle\neq 0$ if and only if

$h(\alpha)$ and $h(\beta)$ are contained in one of the lines deftned by equations (14) and are
adjacent to each other.
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DEFINITION 5. A set $S$ (resp. a map $h$) of Lemma 10 is called a Shrikhande set
(resp. a Shrikhande map).

We are going to construct a Shrikhande set $S$ from a tetrahedral set $\Gamma$ with the
following condition: If $G_{S}$ (resp. $G_{\Gamma}$ ) is the isotropy subgroup of $S^{\pm}$ (resp. f) in
$W(E_{7})$ , then $G_{\Gamma}$ is a subgroup of $G_{S}$ . We note that the order of $G_{S}$ is 192. We first
recall the set $B$ and a tetrahedral map $f$ of Definition 3. We put

$B_{1}=\{a_{j};j=1,2,3,4\}$ , $B_{2}=\{b_{ij};1\leq i<j\leq 4\}$ .

Then $f(B_{1})^{\perp}=V_{1}^{\pm}\cup W_{1}^{\pm}$ , where

$V_{1}=\{\beta_{j};j=1,2,3,4\}$ , $W_{1}=\{\delta_{j};j=1,2,3,4\}$

and $\langle\beta_{j},\beta_{k}\rangle=0$ , $\langle\delta_{j},\delta_{k}\rangle=0(j\neq k)$ . We may assume that $U_{1}=f(B_{1}),$ $V_{1},$ $W_{1}$ are
subsets of $\Delta(E_{7})^{+}$ . It is easy to see that the union $U_{1}^{\pm}\cup V_{1}^{\pm}\cup W_{1}^{\pm}$ is a root system of
type $D_{4}$ and that there is a unique root, say $\delta_{1}$ , of $V_{1}\cup W_{1}$ which is orthogonal to the
set $f(B_{2})$ . Then we find that $Z=\{\alpha\in\Delta(E_{7})^{+}; \langle\alpha,\delta_{1}\rangle\neq 0\}$ consists of thirty-two
elements. For each $j=2,3,4$ , we consider the set $Z_{j}=\{\alpha\in Z;\langle\alpha,\delta_{j}\rangle\neq 0\}$ . Then
$Z_{j}=U_{j}^{\pm}\cup V_{j}^{\pm},$ where

$U_{j}=\{\alpha_{j,k};k=1,2,3,4\}$ , $V_{j}=\{\beta_{j,k}; k=1,2,3,4\}$ ,

and $\langle\alpha_{j,k}, \alpha_{j,k^{\prime}}\rangle=0,$ $\langle\beta_{j,k},\beta_{j,k^{\prime}}\rangle=0,$ $(k\neq k^{\prime})$ . Let $G_{U_{1}}$ be the group of automorphisms
of $U_{1}^{\pm}$ in $W(E_{7})$ . It follows that the set $\{U_{j}^{\pm} , V_{j}^{\pm};j=2,3,4\}$ is decomposed into two
$G_{U_{1}}$ -orbits consisting of three sets. We may take $\{U_{j}^{\pm};j=2,3,4\}$ and $\{V_{j}^{\pm};j=2,3,4\}$

as the two $G_{U_{1}}$ -orbits. Then one of $\bigcup_{j=1}^{4}U_{j},$ $U_{1}\cup(\bigcup_{j=2}^{4}V_{j})$ is a Shrikhande set and
the other is not. So we may assume that $U=\bigcup_{j=1}^{4}$ U7 is a Shrikhande set. Then
$V=\bigcup_{j=1}^{4}V_{j}$ is also a Shrikhande set and $s_{\delta_{1}}(U)=V$ , where $s_{\delta_{1}}$ is a reflection with
respect to $\delta_{1}$ .

PROPOSITION 4. Let $G_{U}$ (resp. $G_{V}$ ) be the group of automorphisms of $U^{\pm}$ (resp. $V^{\pm}$ )
in $W(E_{7})$ . Then $G_{U}=G_{V}$ and $G_{U_{1}}\subset G_{U}$ .

PROOF. It is easy to show the proposition by using the following example.

EXAMPLE 3. We consider the case where for a tetrahedral map $f$,

$f(B_{1})=\{\gamma_{135}, \gamma_{146}, \gamma_{236}, \gamma_{245}\}$ ,

$f(B_{2})=\{\gamma_{14}, \gamma_{147}, \gamma_{25}, \gamma_{257}, \gamma_{36}, \gamma_{367}\}$ .

Then $\delta_{1}=\gamma_{7}$ and

$U_{1}=\{\gamma_{135}, \gamma_{146}, \gamma_{236}, \gamma_{245}\}$ , $V_{1}=\{\gamma_{136}, \gamma_{145}, \gamma_{235}, \gamma_{246}\}$ ,

$U_{2}=\{\gamma_{1}, \gamma_{27}, \gamma_{134}, \gamma_{156}\}$ , $V_{2}=\{\gamma_{2}, \gamma_{17}, \gamma_{234}, \gamma_{256}\}$ ,

$U_{3}=\{\gamma_{3}, \gamma_{47}, \gamma_{123}, \gamma_{356}\}$ , $V_{3}=\{\gamma_{4}, \gamma_{37}, \gamma_{124}, \gamma_{456}\}$ ,

$U_{4}=\{\gamma_{5}, \gamma_{67}, \gamma_{125}, \gamma_{345}\}$ , $V_{4}=\{\gamma_{6}, \gamma_{57}, \gamma_{126}, \gamma_{346}\}$ .
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Figure $VI$ : Shrikhande graph

A correspondence of the Shrikhande set $U=\bigcup_{j=1}^{4}U_{j}$ and the totality of the vertices of
$\Sigma/\Sigma_{0}$ is given in FIGURE $VI$ .
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