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Abstract. In this article we begin the study of X, an n-dimensional algebraic
submanifold of complex projective space PV, in terms of a hyperplane section 4 which is
not irreducible. A number of general results are given, including a Lefschetz theorem
relating the cohomology of X to the cohomology of the components of a normal crossing
divisor which is ample, and a strong extension theorem for divisors which are high index
Fano fibrations. As a consequence we describe X = PV of dimension at least five if the
intersection of X with some hyperplane is a union of r>2 smooth normal crossing
divisprs Ai,..., Ay, such that for each i, hl((ﬁ’/ﬁ) equals the genus g(/f,-) of a curve section
of A;. Complete results are also given for the case of dimension four when r = 2.

Introduction.

Let X be an n-dimensional algebraic submanifold of complex projective space P".
There are many results [5], [9] describing the structure of X under assumptions on one of
its hyperplane sections. For example, there are classifications under conditions on some
basic projective invariant such as the degree or genus of a curve section, or some
birational invariant such as not being of general type. Though, in these results
smoothness of X or of the hyperplane section of X is often relaxed slightly, they all
assume that the hyperplane section is irreducible. In this article we begin the study of
X in terms of a hyperplane section 4 which is not irreducible. We assume that A is a
union of distinct components Ay, ..., A, where r > 2. Since normal bundles of the A;
do not have to be ample (some of the 4; can have ample conormal bundles), the known
theory does not apply.

Since any line bundle becomes very ample after being twisted by a high enough
power of a very ample line bundle, it is clear that given any divisor A on a connected
projective manifold X, there is a smooth divisor 4> on X with good transversality
properties with respect to A; and with A; + A, very ample. This process produces a
divisor A4,, whose invariants are generally quite large. Looking at examples suggests
strongly that if 4 is a very ample divisor on a projective manifold X of dimension at
least two, and if A decomposes into irreducible components

i=YA.
i=1
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and if all of the 4; are “small” measured with respect to some invariant, then (X,L)
should be “‘special”.
In this paper we investigate the simplest problem of this type.

PrROBLEM A. Describe X = PV if the intersection of X with some hyperplane is a
union of r > 2 smooth normal crossing divisors, each of which has a curve section of
genus 0.

This puts numerous restraints on X, e.g., the first Betti number of X is zero, but it is
very difficult to make a complete classification of the X = PV satisfying this condition
when dim X = 2. This paper grew from the realization that such a problem becomes
progressively easier as the dimension of X increases. We give a complete answer when
r=2 and dim X =4 and for arbitrary r when dim X > 5. Indeed for dimensions >5
we solve the following more general problem.

PrOBLEM B. Describe X = PV if the intersection of X with some hyperplane is a
union of r > 2 smooth normal crossing divisors Ay, ..., A,, such that for each i, 1! (0 i)
equals the genus g(4;) of a curve section of A;.

In the course of solving these problems we identify some of the invariants controlling
this sort of problem and develop some of the theory surrounding them.

Here is the scheme of the paper. In §1 we summarize background material and
give a number of examples and preliminary results that come up in the rest of the paper.

In §2 we prove some general facts. The most striking is the very useful variant of
the First Lefschetz Theorem on hyperplane sections that follows from the usual First
Lefschetz Theorem combined with mixed Hodge theory.

In §3 we work out the structure of pairs (X, L) with L ample and A; +---+ 4, € |L|
with 7 >2, and Ky + (n —2)L not nef and big.

In §4 we prove an extension theorem which gives strong restrictions on high index
Fano fibrations as divisors on manifolds of dimension n > 4. In particular using the
results of §3 we solve Problem B, and we solve Problem A when r =2 and the di-
mension of X equals 4.

In the three dimensional case we need more stringent hypotheses, e.g., that the
hyperplane section has exactly two components. The results in this case are different
than those in this paper, and require a very detailed case by case argument based on the
special structure of the second reduction and detailed analysis of bundles on P'-bundles
over curves. For these reasons we are preparing a sequel dealing only with the results
special to three dimensions.

We thank the referee for many helpful comments. The third author would like to
thank the Alexander von Humboldt Stiftung for their support.

1. Preliminary material.

Certain special varieties arise naturally as the building blocks of adjunction theory.
We give definitions in the smooth case. For more on these varieties and on all aspects
of adjunction theory we refer to the book of Beltrametti and the third author [5].
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Given an integer kK >0, by a Fano fibration of index k, we mean a quadruple,
(M, %, p,Y) with & an ample line bundle on a connected projective manifold .#, a
normal projective variety Y and a surjective morphism with connected fibers p : # — Y
with K , + k¥ =~ p*H for some ample line bundle H on Y. The general fiber F of p is
a Fano manifold of index k, ie., —Kr =~ k% r. With appropriate interpretation, we
could let k& be merely rational, but this does not give much more generality (since writing
k as a quotient of relatively prime integers k = u/v with u > 0,v > 0, and by changing
the line bundle ¥ appropriately (see [S, Lemma 1.5.6]), such a fibration becomes a
u-Fano fibration with the same p and Y).

Some special cases are particularly important. By a scroll (.4, %) over a normal
variety Y we mean a pair consisting of an ample line bundle ¥ on a connected
projective manifold .# and a morphism p:.# — Y with connected fibers such that
Ky+(f+1)% ~p*H where H is an ample line bundle on Y and f :=dim.#—
dim Y. By a quadric fibration (#,%) (respectively a Del Pezzo fibration) over a
normal variety Y we mean a pair consisting of an ample line bundle ¥ on a connected
projective manifold .# and a morphism p:.# — Y with connected fibers such that
K y+f% = p*H (respectively K , + (f —1)% =~ p*H) where H is an ample line bundle
on Yand f:=dim.# —dim Y. The third author introduced these and a number of the
above classes of special varieties in [16]. They are better behaved than might be
expected merely from the definitions, see, [S, Chapter 12], e.g., in the case of a scroll,
the general fiber of p is (P/,0ps(1)), if f > 1 and y := dim ¥ <2, then these are P" -
bundles over Y.

We recall basic results on nefvalue morphisms, and refer the reader to [5, (1.5)] for
further discussion. Given an ample line bundle ¥ on a normal irreducible and reduced
projective variety V' of index e with at worst canonical singularities, we define the
nefvalue of the pair (V,%) to be the number

7:=min{f € R|Ky + t¥ is nef}.

The Kawamata rationality theorem and the Kawamata-Shokurov Basepoint-Free
theorem [12], assert the following.

THeOREM 1.1 (Kawamata-Shokurov). Let & be an ample line bundle on a normal
irreducible and reduced projective variety V of index e with at worst canonical singu-
larities.  Assume that Ky is not nef and let T be the nefvalue of (V,%).

1. 7 is rational and there is a morphism with connected fibers v : V. — W onto a normal
projective variety W such that given any positive integer such that Nt and N /e are
integral, there is an ample line bundle H# on W such that N(Ky +t%) =v*H.

2. Further, expressing et = u/v with u,v coprime positive integers,

u< e(max{dim v ()} + 1).

yeWw

We need the following result due to Beltrametti, Sommese, and Wisniewski [5,
Theorem 6.4.4] (see also [6]).

THEOREM 1.2 (Beltrametti, Sommese, Wisniewski). Let (#,%,v,Y) be a Fano
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fibration of index k > (n/2) + 1 where n:=dim .#. Assume that n>dimY > 0. Then
v is the contraction of an extremal ray and Pic(M) = Pic(Y) D ZZL.

The important case when dim Y =0 is due to Wisniewski [18].

THEOREM 1.3 (Wisniewski). Let (#,<L,v) be a Fano manifold of index k >
(n/2) 4+ 1 where n:= dim .4. Either Pic(.l) =~ ZZL or k = (n/2) + 1, M = P"*x P"/?,
Cll’ld g = (QPn/2><Pn/2(1, 1).

The following lemma will be useful.

LemMA 1.4. Let L be an ample line bundle on a connected projective manifold X.
Assume that there is a divisor A+ B € |L| with A and B distinct irreducible divisors. Let
n:X — Y be a surjective morphism with connected fibers onto a projective variety Y.
If dm X —dim Y > 1 then either n(AN B) is of dimension at least dimension dim Y — 1;
or n(ANB) =mn(A); or n(ANB) = n(B).

ProoF. If dim Y <1 there is nothing to prove. Thus we can assume without loss
of generality that dim Y > 2.

Assume that dimz(ANB) <dimY — 1. Let H be a very ample line bundle on Y.
If 7(A4) and #n(B) both properly contain n(A N B), we can find general Dy,..., Dy € |H|
such that, letting Y, :=D;N---NDy, YiNn(Ad) #, YiNn(B)#, and YiN=x
(ANB) = . This implies that Y is of dimension at least one, and X} := n~!(Yy) is at
least two dimensional. Since the D; are general we can also assume without loss of
generality that Y is irreducible and normal, and X} is smooth and connected.

Let Ay := AN X} and By := BN X;. Since both are nonempty and since Ay + By is
an ample divisor on X; with dim X}, > 2, we conclude that A; N By # . This implies
that 7(ANB)N Yy # . O

COROLLARY 1.5. Let (M, ZL,v,Y) be a Fano fibration of index k > (n/2) + 1 where
n:=dim.#. Assume that n>dimY >0. Let A+ Be|¥| with A and B distinct
irreducible divisors. Then dimv(ANB) >dimY — 1.

Proor. If dimv(4NB) <dimY — 1 it follows from that after possibly
renaming, v(4) =v(ANB) and thus that dimv(4) <dimY — 1. Since v is a con-
traction of an extremal ray and since 4 misses at least one fiber of v we conclude that

there is a divisor on Y whose inverse image is A. This contradicts the conclusion
dimv(4) <dim Y — 1. O

Slightly more is true in special cases.

COROLLARY 1.6. Let (M,L,v,Y) be a Fano fibration of index k =n—2 where
n:=dim.#. Let A+ Be|¥%| with A and B distinct irreducible divisors. If n > dim Y
+2 then dimv(4ANB)>dimY — 1.

PrOOF. The result 1s clear if dimY < 1. If dimY =2 this i1s a result of Bel-
trametti and the third author [5, Theorem 14.2.3]. If dim Y =3 this is a result of
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Beltrametti, the third author, and Wisniewski, see [6, (3.2.1)] and [5, Theorem
14.1.1]. Ll

The following simple example comes up often.

ExampLE 1.7. Let L be an ample line bundle on a smooth n-dimensional projective
manifold X. Suppose that Pic(X) = Z with a generator (y4(1) for Pic(X). If L=
04(1), then every D e |L| is irreducible and reduced. More generally if L = ¢ 4(s) and
D e |L| decomposes D=3/, D; into irreducible and reduced divisors D;, then D; e
(O (s:)| with s =" s;.

ExampLE 1.8 [Scrolls of arbitrary fiber and base dimensions]. Let V' be a rank
(n —m+ 1) vector bundle over a smooth projective manifold Y of dimension m, and let
(X,L)=(P(V),&y). Assume that
1. there is a smooth connected divisor Z < Y such that V' ® [-Z] has a nowhere
vanishing section s;
2. Vs very ample in the sense that the tautological bundle &, over P(V) is very
ample; and
3. Ky +detV is ample and therefore (P(V),&y) is a scroll over Y, ie., Kp(y)+
(n—m+1)¢y @ n;, H with H ample on Y.
Letting § denote the section of &) ® 7}, [—Z] corresponding to s, B :=5~1(0) is a smooth
P !bundle over Y, A:=n,'(Z) is a smooth P""-bundle over Z, A meets B
transversely in P(Vz/(sz ® Oz)), and ¢y = A+ B. Note that given any smooth
projective manifold Y of dimension m and any integer n > m + 1, we can find V and Z
satisfying the above conditions. Indeed taking Z as a divisor which is very ample and
such that Ky + (21— 2m + 1)Z is ample, define V := [Z] @ [22]® "™,
The following theorem shows that Example 1.8 is a common state of affairs for
scrolls.

THEOREM 1.9. Let L be an ample line bundle on an n-dimensional projective manifold
X Assume that (X,L) is (P(V),&y) for a vector bundle of rank > dim Y + 1 over a
smooth positive dimensional projective manifold Y with induced projection = : X — Y. If

there are smooth connected divisors Ay,...,A, with r > 2 and with A, +---+ A, € |L|,
then (after renaming if necessary):
1. there are smooth connected divisors Dy, ...,D, 1 on Y such that A; = n~'(D;) for

1<i<r—1; and
2. A, meets the generic fiber of 7 in a hyperplane, and if dim Y < 3 then A, = P(V')
for an appropriate quotient bundle of V.

ProOOF. Let F be a general fiber of 7. Since Lp is a generator of Pic(F) = Z we
conclude that only one (say, after renaming, A,) of the A; can meet a general fiber of F
of = and A, will meet it in a hyperplane. Thus there are smooth connected divisors
Di,...,D, 1 on Y such that A4, =z '(D;) for 1 <i<r—1.

Letting f:=dimX —dimY, we have f —1=dimd4, —dimY >dmY —-1. L-—
A, 1s the pullback under = of a line bundle 2 on Y, i.e., L= A, +n*%. Choose an
ample line bundle # on Y such that 4+ # and Ky +detV + (f — 1)(Z? + H) are
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ample line bundles and L+ zn*(# + #') is very ample. Then (A4,,(L+ =" (#+ X)), )
is a scroll over Y. To see this note that

Ko+ f(L+n"(Z2+H)), =Ky + 4, + f(L+7"(2+H))),,

=Kx+(f+ 1)L+ f(n"(2+X))—2),

r

=n"(Ky +detV+(f = 1)(P+H)+ ).
Since dim A4, —dim Y > dim Y — 1 the result follows from [S, Proposition 14.1.3]. [

ReEmArRk 1.10. The condition on the base is merely to ensure that we had a
bundle. See [5, Chapter 14.1] for what is known and conjectured about the more
general case when the base is arbitrary. Indeed using the discussion following [5,
Conjecture 14.1.10] it follows that the condition dim Y <3 can be removed.

Slightly more can be said when (X, L) is a scroll over a curve.

THEOREM 1.11. Let L be an ample line bundle on an n-dimensional projective
manifold X. Assume that (X,L) is (P(V),&y) for a vector bundle of rank > 2 over a
smooth curve Y with induced projection w:X — Y. If there are r>2 irreducible

connected divisors Ay, ..., A, with A +---+ A, € |L|, then (after renaming if necessary):
1. there are distinct points Dy,...,D,_y on Y such that A;=nr"'(D;) for 1 <i<
r—1; and

2. A, meets the generic fiber of m in a hyperplane; if A, has at worst isolated
singularities then A, = P(V') for an appropriate quotient bundle of V.

ProOF. The argument from the proof of quickly reduces us (after
renaming if necessary) to showing that if A4, is the component that meets every fiber of
7, then A, 1s a fiber bundle under #. This is clear if dim A, = 1, since in this case A4,
meets the general fiber in a single point and is therefore a section. Since A4, has at
worst isolated singularities and is a Cartier divisor of dimension > 2 on a manifold, it
follows that A, is normal. Using [S, Proposition 3.2.1], it suffices to note that the fibers
of my are of equal dimension. ]

The results in [5, Chapter 7] contain the classification results we need from ad-
junction theory. Here let us summarize the main concepts from the classification.

Let L be an ample line bundle on a connected n-dimensional projective manifold X'
Assume that n>2. Up to a short list of very special pairs (X, L) described in [5,
Chapter 7], we have that Ky + (n — 1)L is nef and big. If Ky + (n— 1)L is nef and big,
then there exist a pair (X,L) called the first reduction of (X,L) and a morphism
¢: X — X called the first reduction map, where:

1. X is a projective manifold and ¢ expresses X as the blowup of X at a finite set 7;

2. L:=(¢,L)" and Ky + (n— 1)L are ample line bundles;

3. Ky+(n—1)L=¢*(Ky+ (n—1)L) (or, equivalently, L = ¢*L — ¢ ' (F)).
Furthermore if # > 3 and the first reduction of (X, L) of (X, L) exists, then up to a short
list of very special pairs (X, L) described in [5, Chapter 7|, we have that " := Ky +
(n — 2)L is nef and big. There exist a pair (X', L’) called the second reduction of (X, L)
and a morphism  : X — X’ called the second reduction map, where:
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1. X’ has isolated terminal singularities and s expresses X as a completely explicit
modification of X’ with X —~'(Z) isomorphic to X’ — Z for an algebraic set
Z with dimZ < 1;
2. L'= (4, L)”" is at worst 2-Cartier, 4" := Ky + (n—2)L’ is an ample line
bundle, and 4 =y A" =y (Ky + (n—2)L").
Here is an example where the fibers of the first reduction map are part of an ample
divisor.

ExampLE 1.12 [Fibers of reduction maps|. Let L be a very ample line bundle on a
smooth connected projective n-fold X. Assume that there is a smooth divisor Ax~pr!
on X such that [AA]AA ~ Opii(—1) and L; = Ops1(1). This can always be achieved by
taking a taking X to be the blowup of a smooth projective manifold ¢ : X — X at one
point x € X, with 4 := ¢ '(x), and with L:=¢"L — A for some line bundle L which
is a tensor product of at least two very ample line bundles on X (or which, more
generally is 2-jet ample in the sense of [4]). Then L — A is spanned and choosing
a general Be|L — A| we have A+ Be|L| with 4 and B smooth and transverse.
The usual situation is that B is connected. This happens if either n >3 or n =2 and
(L—A4)*>0.

Note that A meets B transversely in a smooth quadric relative to L. Thus the
genus of a curve section of ANB is 0.

Notice that the example (X,L) arising from this construction when we choose

(X,L) = (P?,0p:(2)) is Del Pezzo.

2. A first Lefschetz theorem for reducible hyperplane sections.

In this section we collect some consequences of the first Lefschetz hyperplane section
theorem and Deligne’s mixed Hodge theory [8].

Throughout this section we let D be an ample divisor on a smooth connected
projective manifold X and assume that D =)' D; is a sum of smooth irreducible
divisors on X with all subsets of the D;’s meeting transversely. For any multi-index
I=(ip,...,05) with 1 <ip<---<ip <r, we let /() =k and D; =D;;N --- ND,,.

In this case, the mixed Hodge structure on D has been constructed in a simple and
concrete way in [10, section 4]. The weight filtration has the form

{0cWycWyc -+ <« Wy < W,,=H"(D,Q),

and tensored with C is defined by using the filtration induced on the E, term of the
spectral sequence of the double complex 477 = A7(Dl4)) by the filtration ), _, A"
Here, Dl is the disjoint union of all D; with I(I) = ¢, and A*(D) is the usual de
Rham complex.

Let d : A?7 — APT1:9 be the usual exterior derivative and let §: 474 — A7+ be

given by
g+1

=+,
(5¢)i0~~iq+1 - Z(_l)L p¢i0-»-i}---iq+1’DioﬂmmD,.q
v=0

+1

for ¢ = (¢y,..;,), with ¢, ; € AP(D;;N --- N D; ). Then the graded module associated to
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the weight filtration on H*(D) is the E, term of the spectral sequence of the double
complex (4%*,d,d), and the usual Hodge filtration on 4** induces a Hodge structure of
pure weight m on E7.

Moreover, the spectral sequence degenerates at the E, term, i.e.,

Ey=FE=---=F,

and it follows that W,,_;/W,, ;1 = H/(H"7(Dy,Q),6), where the right-hand side is
induced by the sequence

= @ H"DLO) L @ HI(D,Q) Y @ H"I(D,0)—
I(H=j-1 1(H=j I(1)=j+1
If D is an ample divisor of a smooth projective variety X, the image of H" (X, Q) —
H™(D,Q) is of pure weight m, and combining that observation with the Lefschetz
theorem yields the following theorem:

THEOREM 2.1. Let D be an ample divisor on a smooth, connected projective variety
X, and assume that D =", D; is a sum of smooth irreducible divisors with all subsets of
the collection of divisors meeting transversely. Then for j+ k < dim X

0= HX.Q) = @ (D0 == B H(D1Q)
1(1)=0 I(1)=k
is exact with the convention that H/(D;, Q) =0 if I(I) >r

In particular, the case k=0, together with the Lefschetz theorem, yields the
following.

COROLLARY 2.2. If j<dimX, the restriction map H'(X,Q) — @P,_ H/(D;, Q) is
injective. Moreover, if j<dimD, the restriction map H’(D,Q) — @_ H/(D;, Q) is
injective.

If D has two irreducible components, say D = A+ B, we have the following
corollary of Theorem 2.1.

COROLLARY 2.3. Let D be an ample divisor on a connected projective manifold X
with dim X =34 j > 3, and assume that D = A+ B, where A and B are connected
submanifolds that intersect transversely. Then

0— H'(X,0) — H'(4,0) ® H'(B,Q) — H'(ANB,Q) — 0
for i <j. In particular AN B is connected if dim X > 3.

Proor. From with » =2 we have
0—H'(X,0)— H'(4,0)®H'(B,Q) — H'(ANB,0) — 0,
from which the conclusion follows. ]

Let D be an ample divisor on a connected projective manifold X with dim X > 3,
and assume that D = A4 + B, where A and B are connected submanifolds that intersect
transversely. We call AN B the hinge variety associated to the divisor 4 + B. As a
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byproduct of our investigation we will give a complete classification of such divisors
when the curve genus of (AN B,L,np) is 0 or 1, i.e., when the genus of a curve section
of (AﬂB,LAmB) is 0 or 1.

3. Classification up to the second reduction.

In this section we let L denote an ample line bundle on a projective manifold X of
dimension 7 > 2, and we assume that 4 = Y/, 4; is a divisor in |L|, where each A; is
irreducible.  Unless otherwise stated we do not assume that the A,-’s are smooth or
intersect transversely. We do not assume that the line bundle is spanned because we
will in the course of studying very ample line bundles need to apply these results to
ample, but not necessarily spanned line bundles.

THEOREM 3.1. Let L denote an ample line bundle on a projective manifold X of
dimension n > 2. Assume that A = i A; is a divisor in |L| with r > 2, and with each
A; irreducible. If Ky + (n— 1)L is not nef then either

1. (X,L) = (P* 0p(2), r=2, and each (AAi,lA,AA’_) is a line; or

2. (X,L)=(P' x P, Opi pi(1,1)), r =2, and there are points x,y € P' such that

A= ({x} x P+ (P x {y}); or

3. (X , i,) is a scroll over a smooth curve Y, one component of A meets the general
fiber in a hyperplane, and the other components are fibers. If the A; have at worst
isolated singularities, then all the components are smooth, and the component that meets
the general fiber in a hyperplane is a scroll over a curve relative to L, and is in particular a
P"2-bundle over Y.

Moreover, each of these cases occurs.

ProOF. By adjunction theory [5, table 7.4, p. 164], any polarized manifold (X,L)
for which Ky + (n — 1)L is not nef must be one of the following:

1. (P",0pn(1)); or

2. (P*,0p(2)); or

3. (2,00(1)) where 2 is a quadric in P""'; or

4. a scroll over a smooth curve.
Since r > 2 and Pic(P") =~ Z, we conclude from Example 1.7 that (P",0p«(1)) is not
possible. The case of (P2 0p:(2)) obviously occurs with 4; a line for i=1,2.
Similarly the assertion about the quadric is clear. [Theorem 1.11 gives the assertion
about for a scroll over a smooth curve. A scroll over a smooth curve is a special
case of Example 1.8. ]

We now assume that Ky + (n — 1)L is nef. The next two theorems take us to the
first reduction (X,L).

THEOREM 3.2. Let L denote an ample line bundle on a projective manifold X of
dimension n > 2. Assume that A =.I_| A; is a divisor in |L| with r > 2, and with each
A; irreducible.  If Ky + (n— 1)L is nef but not big, then either

1. (X,L) is a Del Pezzo manifold, i.e., Ky = —(n—1)L: these are enumerated in

Theorem 3.4; or
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2. X is a quadric fibration over a smooth curve; moreover, if dim X > 3 each fiber is
irreducible and reduced; or

3. X is a scroll (and a P"-bundle of dimension >3 over a smooth surface Y), and
exactly one component of A, say A, meets every fiber. If A, is smooth and
n>4, then A, is a P"*-bundle over Y.

ProOF. From adjunction theory [S5, Theorem 7.3.2, p. 169] we know that X is
either a Del Pezzo manifold (i.e., one with Ky = —(n — 1)L), a quadric fibration over a
smooth curve, or a scroll over a normal surface.

In the case of a quadric fibration, the assertion about the fibers follows easily from
the fact that Ly = ©5(1) for any fiber F. 1In the case of a scroll, the assertion about the
components of A follows from the fact that L"'-F =1, as in Proposition 3.1. The
fact that 7: X — Y is a P">-bundle when n > 4 (respectively A, is a P">-bundle when
n > 3) over a smooth surface follows from the discussion after Conjecture 5.3 of [1] (see

also [16, Theorem 3.3]). O
For the purpose of this paper, the case of dimension > 3 treated in

suffices. The two dimensional case is a straightforward consequence of the classification
of Del Pezzo surfaces, but has many special cases. The following simple lemma is
needed.

LEMMA 3.3. Let L be an ample line bundle on a connected projective manifold X of
dimension n > 3. Assume that L" =2, and that A=, A; € |L| is a sum of irreducible
divisors A;. If Ky = —(n— 1)L then r = 1.

PROOF. Assume that r>2. By we can assume that n = 3. Since
2=L=L1"4A=) L’ 4,

we see that we can assume that r =2. We know that L is spanned by [9, page 44].
From this and Goren’s theorem [9, Theorem (1.1)], we conclude that (A4, L)~
(P"!,0psi(1)) for i=1,2. From this and Ky = —(n— 1)L we conclude that the
normal bundle of 4; is =~ Opn-1(—1) for i =1,2. This is absurd since this would allow
us to contract one of the 4;, say 4, on X, which would give rise to a holomorphic map
on A,, which has a positive dimensional image and which contracts the positive di-
mensional set Al ﬂAz c A}. O

THEOREM 3.4. Let L be an ample line bundle on a connected projective manifold X
of dimension n > 3. Assume that A =YI_, A; € |L| is a sum of v > 2 irreducible divisors
A;, each having at worst isolated singularities. Assume that the A; meet pairwise
transversely If Ky = —(n— 1)L then either

1. (X,L)= (P! ><P1 X P1 Ui pi, pi (1,1,1)); or

2. ()2,12) = (P*x P2, 0p> po(1,1)); 0

3. (Afvl:):( ( P2) iTz); or R

4. (X,L) has first reduction (P*,0p3(2)) with X the blowup of P* at most one point.
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ProoOF. For the Del Pezzo case we use Fujita’s classification [9, 8.11]. We first
note that 1 <d <8, where d = L" is the degree of L. If r>1 then d # 1. Indeed
since L is ample, L" =3/ L"! A >

Moreover, d # 2 by [Lemma 3.3.

The Del Pezzo manifolds with 3 < d < 8, except for the ones listed in the prop-
osition above, have Pic(X’ ) = Z with generator L, which contradicts the assumption that
r> 1. L]

REMARK 3.5. It is easy to see that each of the cases listed in the above propositions
can occur. Scrolls over normal surfaces are special cases of example 1.8. The blowup
of P? at a point is a special case of example 1.12. On P(Tp:) we get a divisor by
considering the section of the tautological bundle induced by a vector field on P? with
zero set consisting of a point and a line. To get a quadric fibration we modify example
1.8 by taking X to be a smooth section of 2¢j,, where V has rank n—m + 2, and
constructing the divisor A + B as in that example.

It follows from Propositions 3.1 and 3.2 that, with the exceptions listed, the first
reduction (X, L) exists; i.e., X is the blowup ¢: X — X of a finite set .# on a smooth
projective variety X, and L := (¢,L)™ is an ample line bundle with Ky + (n — 1)L
ample. If E = ¢_1(x) is an exceptional divisor over a point x € X, then E =~ P""! with
[Elz = Opii(—1) and Ly = Opii(1) (see [5, 7.3]).

It follows that if £ is not a component of the ample divisor A it can meet at most
one component, say Ay, and it must meet it transversely in a smooth P"? lying entirely
in the set of regular points of 4; and with Opn2(—1) as the normal bundle of E N4, in
A;. In this case, blowing down E does not reduce the number of components, so that
we obtain a divisor 4 =Y. | 4; in X, where the singularities of the A4,’s are no worse
than those of the A;’s in X.

If E is a component of A, say E = A, then we must have [>/, A;]; = Opi1(2),
from which it follows that either

e E meets exactly one other component A4; with i # 1 in an (n — 2)-dimensional

smooth quadric 2 lying entirely in the set of regular points of 4; and with
normal bundle —L, in 4;; or

e FE meets exactly two other components A, AA_,- with 1 <i < j. In this case each

of ENA; = reg(A;) and ENA;  reg(4;) is a P""2, and the normal bundles of
ENA; in 4; and of ENA; in A4; are both isomorphic to €p.2(—1); or
e [E meets exactly one other component in a singular (possibly nonreduced)
quadric.
Obviously, the third alternative can not occur if the A; are all smooth and intersect
transversely.

It is also clear that if more than one component of A is exceptional with respect to
¢, then no two of the exceptional components can intersect (otherwise the intersection
would be a divisor in P"~! with negative normal bundle).

We sum up these observations in the following propositions.

THEOREM 3.6. Let L be an ample line bundle on a connected projective manifold X
of dimension n > 3. Assume that A=Y, A; is a divisor in |L|, where r > 2, each A; is
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irreducible with at worst isolated singularities, and A; # AAj Jori# j. Assume that Ky +
(n— 1)L is nef and big. Let ¢ : X — X denote the first reduction. Let A; = ¢(4;). If
no component of A is a fiber of ¢, then
1. ¢ is a biholomorphism in a neighborhood of any point belonging to at least two of
A;. Thus if all subsets of the A; have transverse intersection, then all subsets of
the A; have transverse intersection.
2. The map ¢; : A — A; expresses A; as the blowup of A; at the finite set F N A; of
regular pomts of A; with LA =¢ "Ly — ¢A (fﬂA) Thus the singularilies of
A; = ¢(4;) are the same as the singularities of A; and the curve genus of (A,,L )
is the same as the curve genus of (A;,Ly,).

THEOREM 3.7. Let L be an ample line bundle on a connected projective manifold X
of dimension n>3. Assume that A =3I_| A; is a divisor in |L|, with r > 2, with each
A; having at worst isolated singularities and with the A; irreducible and meeting pair-
wise transversely Assume that Slng( ;)N Sing(A4 ) O for i #j. Assume that Ky +
(n—1)L is nef and big. Let ¢: X — X denote the first reduction. Assume (after
renaming if necessary) that dim ¢(A4 ) < dimA; if and only if i=s+1,...,r. Then for
i >, ¢( ,~) is a point x;, A; meets at least one other A} with j < s and at most two other
such A]. If it meets just one other A}, then x; is a nondegenerate quadratic singularity of
$(4;). Moreover, s > 1 and ¢ maps A onto a divisor A=}, A,.

We now pass to the first reduction; that i1s we consider an n-dimensional projective
manifold X with an ample divisor 4 = Y} | 4; and assume that the line bundles L = [4]
and Ky + (n— 1)L are both ample. We do not assume that the A;’s are smooth or that
their intersections are transversal. Adjunction theory gives us the following proposition.

THEOREM 3.8. Let L be an ample line bundle on a connected n-dimensional projective
manifold X. Assume that Ky + (n — 1)L is ample. Assume that there is an A € |L| with
A =", A; for distinct irreducible divisors A;. Then Ky + (n — 2)L is nef, except in the
following cases:

1. (X,L) = (P* 0pi(2)).

2. (X,L) = (235,0,,2), where (23,0,,(1)) is a smooth quadric 3-fold in P*.

3. (X,L)= (P 0p:(3)).

4. X is a P*-bundle over a smooth curve Y, v:X — Y with 2Ky + 3L = v*A# for

an ample line bundle # on Y. Thus (F,Lr) = (P? 0p(2)) for a general fiber
F. There are two possibilities:

(a) Except for one of the A; which meets a general fiber in a smooth conic, the A;

are fibers; or

(b) Two of the A; are scrolls over Y, each meets a fiber of v in a line, and the

remaining A; are fibers of v.
Moreover, all of these cases can occur with s > 1.

Proor. The proposition is simply a restatement of [S, Theorem 7.3.4, p. 171],
except for the claim that each example occurs. Cases 1 through 3 are evident. An
example of case 4(a) is obtained by taking X = P(Op1 ® Opi(a) ® Opi (b)) over P! with
0<a<b and letting L :=2&+ F, where & is the tautological bundle and F is a
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fiber. An example of case 4(b) is obtained with the same X, by letting L :=
(E+F)+(E+F). O

THEOREM 3.9. Let L be an ample line bundle on a connected n-dimensional projective
manifold X. Assume that Ky + (n — 1)L is ample. Assume that there is an A € |L| with
A =>".| A; for distinct irreducible divisors A;. Assume that Ky + (n —2)L is nef but
not big. Let v:X — Y be the nefvalue morphism associated to (X,L), ie., v is a
surjective morphism with connected fibers onto a normal projective variety Y, and
Kx + (n—2)L = v* A for an ample line bundle # on Y. Then one of the following must
hold.

1. (X,L) is a Mukai variety; i.e., Ky = —(n—2)L. If s > 1 then either dim X <5

or (X,L)=(P>x P 0p pi(1,1)).

2. (X,L) is a Del Pezzo fibration over a smooth curve under v.

3. (X,L) is a quadric fibration over a normal surface under v.

4. (X,L) is a scroll over a normal 3-fold under v.

Proor. This proposition is a restatement of [5, Theorem 7.5.3, p. 176], except for
the second statement in case 1, which follows immediately from Theorem 1.3 |

As an application of the above results we have the following results we will need
below.

THEOREM 3.10. Let L be an ample and spanned line bundle on an n-dimensional
projective manifold X. Assume that n>3 and that there are two smooth transverse
divisors A,B on X with A+ Be|L|. Assume that the genus g(h) of a curve section of
h:=ANB is 0. Then either:

1. (X,L) is a scroll over a smooth curve; or

2. (X,L) is Del Pezzo (see Theorem 3.4); or

3. (X,L) is a quadric fibration over a smooth curve (there are two possibilities:  the

general possibility plus the special three dimensional case over a rational curve
with A and B both P'-bundles); or

4. X is a scroll over a smooth surface, and only one component, say A meets every

fiber, and is a P"3-bundle over the base surface; B is the inverse image under the
scroll projection of a rational curve on the surface;

5. Ky+(n— 1)2, is nef andA bz;g and either A or B is a fiber of the first reduction

mapping associated to (X,L); or

6. Ky + (n— 1)L is nef and big with first reduction (X, L) and neither A nor B is a

fiber of the first reduction mapping ¢:X — X associated to (X,L). Let
A:=¢§(A) and B:= B. The following cases occur:

(a) (X,L) = (P* 0ps(2)); or
(b) (X,L) = (23,0,,(2)), where (23,05,(1)) is a smooth quadric 3-fold in P*; or
(©) (X,L) = (P, 0p(3)); or
(d) X is a P*-bundle over a smooth curve Y, v: X — Y with 2Ky + 3L = v*# for

an ample line bundle # on Y. Thus (F,Lr) = (P? 0p:(2)) for a general fiber
F. There are two possibilities:
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i. After renaming if necessary B is a fiber and A meets a general fiber in a smooth
conic; or
ii., A and B are scrolls over Y =~ P!, each meets a fiber of v in a line.

PrOOF. By theorem 3.1, if Ky + (n— 1)L is not nef then (X, L) is a scroll over a
smooth curve. We may therefore assume that Ky + (n — 1)L is nef. Then by theorem
3.2, Ky + (n— 1)L is big except when (X, L) is Del Pezzo; or a quadric fibration over a
smooth curve; or a scroll over a smooth surface.

Now assume that Ky + (n— 1)L is nef and big and denote by (X,L) its first
reduction. Assume that neither 4 nor B is a fiber of the first reduction map : X — X
and call 4 =¢(4), B=¢(B).

By Ky + (n—2)L is nef unless (X,L) = (P* 0p:(2)); or (X,L)=
(23,04,(2)), where (23,0,,(1)) is a smooth quadric 3-fold in P* or (X,L)=
(P?,0ps(3)); or X is a P*-bundle over a smooth curve Y, v:X — Y with 2Ky +
3L =~ v*# for an ample line bundle # on Y, and (F,Lr) = (P?,0p:(2)) for a general
fiber F. In the last case (after possibly renaming), 4 meets a fiber in a smooth conic
and B is a fiber; or both 4 and B are scrolls over ¥ =~ P!.

These cases account for the cases in part 6 of the theorem.

Hence we may now assume that Ky + (n — 2)L is nef. But then ¢(h) is isomorphic
to h, and 2g(h) —2 = (Ky +(n—2)L)-A-B-L"3 >0, contrary to g(h) = 0. ]

THEOREM 3.11. Let L be an ample and spanned line bundle on an n-dimensional
projective manifold X. Assume that n>3 and that there are two smooth transverse
divisors A,B on X with A+ Be|L|. Assume that the genus g(h) of a curve section of
h:=ANB is 1. Then either:

1. n=3 and ()? ,i) is a quadric fibration over an elliptic curve with A and B

P'-bundles over the elliptic curve; or

2. X is a scroll over a smooth surface, and only one component, say A meets every
fiber, and when n >4, A is a P"3-bundle over the base surface; B is the inverse
image under the scroll projection of an elliptic curve on the surface; or

3. X is a P*-bundle over an elliptic curve Y, v: X — Y with 2Ky + 3L = v A for
an ample line bundle A on Y. Thus (F, Lr) = (P*,0p:(2)) for a general fiber
F, A and B are Pl-bundles and each meets a fiber of v in a line.

4. The first reduction ¢: (X,L) — (X,L) exists with L, Ky + (n— 1)L ample,
and with Ky + (n —2)L nef Neither A nor B are exceptional divisors for o
and ¢ is a biholomorphism in a neighborhood of h. Letting A := ¢(A ) and
B := ¢(B) we have

(a) (X,L) is Mukai with dimX <5 or (X,L) = (P> x P?,0ps, ps(1,1)); or

(b) (X, L) is a Del Pezzo fibration over a smooth curve under v: after renaming, A is
a fiber and B meets the general fiber in a Del Pezzo manifold;

(c) X is three-dimensional and (X, L) is a quadric fibration over a smooth surface
under v;

(d) X is four-dimensional and (X,L) is a scroll over a normal threefold under v.

() Ky + (n—2)L is nef and big and either A or B is a divisor which gets mapped to
a point under the second reduction mapping Y : X — X' associated to (X, L).
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ProoF. We let g(h) = 1 denote the genus of a curve section of (4, L;). Note that
by Ky + (n—1)L is nef. By either Ky + (n— 1)L is big or
one of the following happens.

1. (X,L) is a Del Pezzo manifold, ie., Ky = —(n — 1)L;

2. X is a quadric fibration over a smooth curve and since dim X > 3 then each

fiber is irreducible and reduced;

3. X is a scroll over a smooth surface, and only one component, say 4 meets every

fiber; moreover, if dim X >4, then A is a P"3-bundle over the base surface.
Note the first cannot happen since it would yield the absurdity

0=2g(h)—2=(Ky+(n—-2)L)-L" > 4-B=-L-h<0.

In the second case we have either

1. Bisa fiber and 4 is a divisor meeting a general fiber in a quadric. In this case
the genus of a curve section of ANB is zero; or

2. dimX =3 and A4, B are P! bundles meeting in a section. This is possible if the
base curve is elliptic, giving the first case in the theorem.

In the third case we can get an elliptic curve as a curve section of the inter-

section. This gives the second case of the theorem.

Thus we can assume without loss of generality that Ky + (n— 1)L is nef and
big. Let (X,L) be the first reduction of (X,L). Note that neither 4 nor B is an
exceptional fiber of the first reduction map since a curve section of 4 would then be a
smooth rational curve. Thus 4 and B are mapped to smooth divisors 4, B in X and
any exceptional fibers do not meet AN B, thus, a neighborhood of ANB in X is
isomorphic to a neighborhood of AN B in X.

By Ky + (n—2)L is nef unless:

1. (X,L) = (P* 0p:(2))
2. (X,L) = (2;3,04(2)), where (23,0,,(1)) is a smooth quadric 3-fold in P*

3. (X,L)= (P 0p:(3))

4. X is a P*bundle over a smooth curve Y, v: X — Y with 2Ky + 3L ~ v*#°
for an ample line bundle # on Y. Thus (F,Lr) = (P* 0p:(2)) for a general
fiber F. There are two possibilities:

(a) After renaming if necessary, 4 meets a fiber in a smooth conic and B is a fiber;

or

(b) Both 4 and B are P'-bundles over Y.

Only the last case with Y an elliptic curve is possible, which gives the third case of the
theorem.

If Ky + (n—2)L is nef but not big then by one of the following
occurs. Let v: X — Y be the nefvalue morphism associated to (X,L), ie., v is a
surjective morphism with connected fibers onto a normal projective variety Y, and
Ky + (n—2)L ~v*s# for an ample line bundle »# on Y. Then one of the following
must hold.

1. (X,L) is a Mukai variety; ie., Ky=—(n—2)L. Either dimX <5 or

(X,L) = (P? x P?,0ps, ps(1,1)).
2. (X,L) is a Del Pezzo fibration over a smooth curve under v; or
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3. (X,L) is a quadric fibration over a normal surface under v; or

4. (X,L) is a scroll over a normal 3-fold under v.
Note that 0 = 2g(h) =2 = (Kxy +(n—2)L)-L"3-A-B=v*#-A-B-L" 3. Thus his
contained in a fiber of the map v. Thus the first case that (X, L) is a Mukai variety can
occur. The second can also with 4 a fiber and B meeting the general fiber in a Del
Pezzo manifold. In the remaining cases we note that since 4 B must go to a point
under v we must have that either 4 or B also goes to a point, by [Lemma 1.4. Using
Corollary 1.6 we see that in the last two cases we must have that dim X — dimv(X) = 1.
Note the base surface of the quadric fibration is smooth by a theorem of Besana [7].

Thus we can assume without loss of generality that Ky + (n — 2)L is nef and big.

Let y: X — X’ be the second reduction map. By [2, Theorem 0.2.1]  is an
isomorphism outside of a union of irreducible divisors of X, and for each such divisor D,
either (D) is a point, or (D,Lp) is a scroll over a curve.

Observe that at most one of 4 and B is one of these exceptional divisors.

Now we shall show that exactly one of 4 and B is exceptional. To see this, assume
that neither 4 nor B is exceptional. Then since Ky + (n—2)L = *#" for an ample
line bundle #' on X’ and

0=2g(h) —2=(Ky+(n—3)L+A+B)-L" > - A-B=y A" -h-L",

h must go to a point under . Choosing general D;,..., D, 3 € |L| we can slice 4, B
and consider the situation in dimension » = 3. Since neither 4 nor B is an exceptional
divisor we conclude that L = 4 + B meets each exceptional divisor in a curve containing
two copies of 4. This 1s impossible by an inspection of the list of exceptional divisors
given in [2, Theorem 0.2.1].

Thus, after renaming if necessary, we may assume that B is exceptional. Since
Ky + (n—2)L = y* A" for some ample line bundle #’ on X', we have

2g(h) —2=(Ky+(n—-3)L+A+B)-L">-4-B
= (Ky+(n—2)L)-L">-4-B
=y L A-B=yp At L Ap.

If B goes to a point under ¥ we have that %" is trivial and thus 4" - L33
A B = 0.

Otherwise, (B,Lp) is a scroll over a curve C under yy. We shall show that this
situation cannot occur. Choosing general Dj,...,D, 3€|L| we can slice 4,B and
reduce to the case of dimension n=3. In this case we have 2g(h) —2 =4 - Ap.
Since A - is ample we have that ;7" is numerically equivalent to a positive multiple
tf of some fiber f of Yyp:B— C. Since L-f =1 and B-f =—1 we have that
A-f=2 and thus 2g(h) =2 =y - Ag=1tf-A=2t>0. O

4. High index Fano fibrations as components of divisors.

In this section we investigate smooth, connected projective varieties that contain an
ample divisor with one or more components that are k-Fano fibrations.
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Our main tool in studying the structure of high dimensional projective manifolds
with an ample divisor equal to a union of scrolls is the following proposition and its
corollary.

THEOREM 4.1. Suppose that & is an ample line bundle on a normal irreducible
projective variety V with at worst canonical singularities. Assume that A is an irreducible
and reduced Cartier divisor on V with at worst canonical singularities. ~Assume that K4 is
not nef, let t denote the nefvalue of (A, ¥ 4), and let ¢ : A — Y be the nefvalue morphism
of (A, %,). Assume that Ky +1% is nef. There is a morphism ¢:V — ¥ with
connected fibers from V onto a normal projective variety % and an embedding i: Y — %
such that the diagram

A c | 4
% V
Y —l> 7

commutes. If F is an irreducible positive dimensional fiber of ¢ and F¢ A, then
FNA= and N(Ky +1%); = OF for positive integers N such that Nt is integral and
NKy is Cartier.

Proor. We first observe that Ky +t% + A4 is nef. For if C is an irre-
ducible effective curve with C#£ A, then (Ky +7¥ 4+ A4)-C=(Ky+1¥%)-C+4-C
>0, since A is effective and Ky + 1% is nef. On the other hand, if C < 4, then
(Ky +1¥+A4) C=(Ky+1%4)-C=>0, since (Ky+1%,4) is nef.

Therefore by Kleiman’s criterion (tL+(T-1)(Ky+1t¥+A4)) is an
ample line bundle for all positive integers 7 and all positive integers ¢ such that
(tL 4+ (T - 1)Ky +1% + A)) is a line bundle.

Let e denote the index of V, i.e., assume that e is the smallest positive integer such
that eK), i1s Cartier. By the Kawamata-Shokurov Basepoint-Free theorem we can
choose a positive integer N’ such that N'/e and N’z are integral and N'(Ky + 7.%) is
spanned by global sections. Let ¢’ denote the index of 4. Choose an integer N > 0
which is a positive multiple of N and such that N/e’ is integral and N(K, + 1% 4) =
¢* A for a very ample line bundle # on Y. Note that N(Ky + %) =Ky + 1L+
(N —1)(Ky +1%). Using the sequence

0-Ky+1t+N-1)(Ky+1¥L+A) - NKy+1L+A4) - NKs+1%4) —0

we see that I'(N(Ky +1¥ + A)) —» I'(N(K4+1%4)) is surjective, and thus that
N(Ky + 1% + A) is spanned in a neighborhood of 4 by global sections. Furthermore,
since N(Ky +t%) is spanned, the bundle N(Ky +1t¥% + A) = N(Ky +1¥%)+ NA is
spanned at all points of V' — A. Thus N(Ky + 1% + A4) is spanned.

Replace N by a positive multiple N such that the morphism associated to
IN(Ky + 1% + A)| has connected fibers and a normal image %. The map ¢: V — ¥
associated to N(Ky + 1% + A) extends ¢ as asserted.

To see the last assertion about F, note that |N(Ky + 1% + A)| maps F to a point.
Thus since N(Ky + %) is spanned, and ANF # F, N(Ky + %) is trivial on F. []
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COROLLARY 4.2. Let &, V,A,Y, ¢,t be as in Theorem 4.1. Let B be any irre-
ducible subvariety of V with Pic(B) = Z. If V is smooth and dim A — dim Y + dim B >
dim V' then either BNA = & or there exists a ye Y with B < ¢ '(y).

PrOOF. Let n:=dim V. Suppose that BNA # ¢ and BZA. Then Ap is ef-
fective, and therefore, since Pic(B) = Z, it is ample. In addition, (Ky + 7%), is nef;
so from Kleiman’s criterion we see that (Ky + 1% + A4)p is ample. Therefore the map
¢ is finite to one on B. Let F’ be an irreducible component of a fiber of ¢ that meets
ANB. Observing that dim F' > dimA4 —dim ¥ we get

dmFNB>dimF' +dimB—-n>dimA4 —dimY +dimB —n > 0,

which contradicts the finite-to-oneness of ¢5z. Thus B = A. The same argument shows
that in fact B < ¢ '(y) for some ye Y. O

We remark that includes the case when B=V.

We now apply to study the structure of the morphism y: V — W
associated to N(Ky +1.%). First, we make the following general observation.

Lemma 4.3. Let ¥ be an ample line bundle on a projective variety V with at worst
canonical singularities and index e. Suppose the bundle N(Ky + t.¥) is spanned and non-
trivial for some rational T >0 and some positive integer N with Nt and N/e inte-
gral. Let n be the induced morphism, and assume that the general fiber of n has positive
dimension. Then dim V —dimn(V) > 17— 1.

Proor. Let F be a general fiber of #. Our assumptions about the singularities of
V' assure that F has canonical singularities of index e and that N(Kp+ t%p) =

Op. Thus by Theorem 1.1 we have the assertion. 0
We now come to the main result of this section.

THEOREM 4.4. Let & be an ample line bundle on an n-dimensional connected
projective manifold, V. Let A be an irreducible divisor on V with at worst canonical
singularities and with index e'. Assume that K, is not nef and that t is the nefvalue of
(A, %4) and ¢: A — Y is the nefvalue morphism of (A, <% 4). Further assume that
Ky +1'% is nef for some rational t' satisfying 0 <t/ <t. Let :V — W be the
morphism (which exists by the Kawamata-Shokurov Basepoint-Free Theorem) from V onto
a normal projective variety W such that y*# =~ N(Ky + ' ¥) where A is ample and N
is a positive integer such that Nt' is integral. ~ Assume that " > (n+3)/2. Then we can
conclude the following.
1. Ifdim W < dim V, then A is the pullback under \y of a divisor in W; moreover, s
is of maximal rank in a neighborhood of a general fiber lying in A.

2. Assume that dim W =dim V. If the image under ¢ of the singularities of A is
not all of Y, then for a general fiber f of ¢ : A — Y, it follows that Pic(f) = Z,
Ay <0, and Ky + 1'% is ample on f.

Proor. We first consider the case in which dim W < dim V. Applying
gives dim V' —dim W > ¢’ — 1. Applying the same lemma to ¢: 4 — Y, we get dim 4
—dmY>7t—-1>7—-1.
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Thus, if F is a general fiber of , we have
dmA4 —-dimY +dimF >2(z' = 1) >n+ 1.

Moreover, since 7’ > (n+3)/2 > (dim F + 2)/2, implies that Pic(F) = Z.
Therefore, from we get that either FN A= @ or Fc ¢ '(y) fora ye Y.
The latter alternative is clearly impossible if F is a general fiber of i and A is a divisor
of V. Therefore, Ap is trivial; in other words, 4 is in the kernel of the restriction map
Pic(V') — Pic(F).

Since dim W < dim V, the bundle N(Ky + /%) is spanned but not ample, and thus
7’ is the nefvalue of (V,%). In that case it is known from that  is a
Mori contraction, and, in particular, the sequence Pic(WW) — Pic(V) — Pic(F) is exact.
Therefore, the divisor A is in the image of Pic(W); i.e., it is the pullback under ¥ of a
divisor on W.

To see that i is of maximal rank in a neighborhood of a general fiber F lying in
A, note that F is smooth since F is a general fiber of the morphism ¥ ,. Since
Krp =—17%p <0, we have H'(F,0p) =0. Letting A p 4 (respectively, ./"p\ ) be the
normal bundle of F in A4 (respectively, in V'), we have the short exact sequence:

0— Npa— Npy — [Ap —0.

Using the facts that [4], = O = A'p 4, and that H'(F,0p) =0, we conclude that
N ey =N pa®[Alp =N pa® COF, and therefore that 4 gy is also trivial. Using
H'(F,0p) =0, we have that H'(F, /s ) =0. It follows from deformation theory
that around any point p € F we have a neighborhood of the form U x 7~, where
1. peUc F and 7" is transverse to F with i giving a biholomorphism of 7~ with
an open neighborhood (7") of y(p); and
2. under the biholomorphism ¥~ — y(77), Y., 1is identified to the product
projection U x ¥~ — ¥ .
Therefore, V,.,~ maps ¥~ one-to-one onto W, and hence has maximal rank at p.
We next consider the case when dim W =dim V. Let f be a general fiber of ¢ :
A — Y. Note that if the image under ¢ of the singularities of 4 is not all of Y, then a
general fiber f is smooth. Applying theorem 1.3 gives Pic(f) = Z.
Since the map ¢ is induced by N(K, + 1% 4), we have

(KA—FTB?A):(KV—I—‘&,?)J(—FA]:O

Moreover, since (Ky +71%), is nef, we have A4, <0.

We claim that, in fact, 4, <0; for, if 4, =0, then (KV-I—TL)f:O as well.
Therefore = v’/ and the map y : V' — W contracts . Furthermore, the same argument
we gave in the previous case shows that the normal bundle A"\ 4 of fin 4 is trivial,
and, therefore the normal bundle /"y in V' must also be trivial because [4], is
trivial. ~ Also, Ky <0, so H'(f, N pv)=0. But then the fibers of y fill out an open
set around f, and therefore dim W < dim V', contrary to hypothesis.

From A4y <0 we get (Ky +1%), >0, so that (Ky +1.%), is ample as asserted.

[l

Many nonexistence results follow from the above results. We restrict ourselves to a
few illustrative results, the first of which we need below.
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THEOREM 4.5. Let & be an ample line bundle on an n-dimensional connected
projective manifold V. Assume that Ky + (n — 1) is nef and big and that n > 4. Let
Ay, ..., A, be r > 2 distinct irreducible divisors whose union is connected, e.g., whose union
is the reduction of an ample divisor. Assume that each (A;, % 4,) is either a scroll over a
curve, a quadric, or (P"',0p.1(1)). Then n=4 and all of the (4;, %4, are scrolls.

ProoF. First we assume that n > 4 and that not all of the (A4;, % 4,) are scrolls over
a curve. After renaming if necessary we can assume that (4, % 4,) is not a scroll. Let
A; (after possibly renaming) be an A; distinct from A4, such that 4N A4, # . Let
¢, : Ay — Y be the nefvalue morphism of (4, %, ). By hypothesis the image of ¢,
is either a point or a curve. Let ¢, : ¥V — % be the extension of ¢1 that exists by
Theorem 4.1. Since Pic(4,) = Z, [Corollary 4.2 implies that 4, < ¢;' (¢;(x)) for some
xe A1 NA,. This is absurd since 4; and A, are distinct irreducible divisors.

Thus we have reduced to the situation when n > 5 and all of the (A4;, %4,) are
scrolls. Let ¢, : 4; — Y; be the nefvalue morphism of (4;, %4,). After renaming if
necessary we can assume that A; and A, meet. Let xe 41N A;. Let B denote the
fiber ¢,'(¢,(x)). Note that B~ P"> and Pic(B) = Z. Let ¢,V — ¥, be the ex-
tension of ¢, that exists by Theorem 4.1. Note that B = ¢;'(¢,(x)) by [Corollary 4.2,
From rigidity of proper maps we conclude that given any fiber F of the map ¢, we have
that ¢,(F) is a point. From we see that Ky + (n— 1)% must be trivial
when restricted to any fiber of ¢, not contained in 4;. But this implies that a Zariski
open set of A4, is contained in a component of the exceptional set of the first adjunction
map. This gives the absurdity that 4, ~ P"!. ]

Here is the solution to Problem B of the Introduction for dimensions at least five.

COROLLARY 4.6. Let L be an ample and spanned line bundle on an n-dimensional
connected projective mamfold X with n>5. Assume that there is a normal crossing
divisor A=A, +---+ A, € \L|. Assume that r > 2. If for each i the genus of a curve
section of (A”LA,-) equals h'( 0;); then (X,L) is a scroll over a smooth curve, one
component of A meets each fiber in a hyperplane, and the other components are fibers.

Proor. By [9, Theorem 11.7], Theorem 3.1, and [Theorem 4.5, each (/iivifi,.) is a
scroll over a curve. Then since n >4, rules out the possibility that
Ky + (n—1)L could be nef and big.

Now suppose that Ky + (n — 1)L is nef but not big. By theorem 3.2, (X,L) is
either a Del Pezzo manifold as in [Theorem 3.4, a quadric fibration over a smooth curve,
or X is a scroll over a normal surface. However, the Del Pezzo manifolds exhibited in
Theorem 3.4 all have dim X < 4, so the first case does not occur. Likewise, the latter
two cases are inconsistent with the (A;, L, )’s being scrolls over curves.

Hence we conclude that (X, L) is not nef. So by theorem 3.1, (X,L) is a scroll
over a smooth curve, all the components of A but one are fibers, and the remaining one
meets each fiber in a hyperplane. O

We need the following useful lemma.

LEmMMA 4.7. Let L be a very ample line bundle on a four-dimensional connected
projective manifold X. Let A and B be two smooth divisors on X meeting transversely in
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a nonempty manifold h.  Assume that (A,L4) and (B,Lg) are scrolls over smooth curves
of and A respectively with scroll projections a: A — <o/ and b : B — A respectively. If
Ky + 3L is nef and big, then (a,b) maps h isomorphically onto o/ x 3.

Proor. Using the argument of we see that if Ky 4 3L is nef and big
then no fiber of a meets a fiber of b in a positive dimensional set. In particular
a(h) = o/ and b(h) = A.

First note that (a,b) is one-to-one on h. If not there are two points that are
identified by @ and by b. Since L is very ample and the fibers of ¢ and b are linear, we
conclude that the line / between these two points is in the fibers of ¢ and b. Thus
/ < h. This contradicts the fact that no fiber of a can meet a fiber of b in a positive
dimensional set. The same argument shows that no tangent vector of 4 can be mapped
to zero by the differential of (a,b). O

[Cemma 4.7 is very strong. It lets us use Theorems and B.I1 to solve Problem
A of the Introduction under the assumptions that r =2 and n = 4.

COROLLARY 4.8. Let L be a very ample line bundle on a four-dimensional connected
projective manifold X. Assume that there is a normal crossing divisor A+ Be |i| If
the genus of a curve section of (A,L ;) and the genus of a curve section of (B, ﬁg) both
equal zero, then

1. (X,L) is a scroll over P'; or

2. (X,L)=(P*x P*,Up p:(1,1)); or

3. (X,L) = (P(V),&y) where V = 0p(1) @ Op2(1) ® Op2(2) and (after possibly

renaming) B is equal to the inverse image of a conic in P*> under the scroll
projection, (zéf, ﬁA) ~ (P?x Pl,@Pszl(l, 1)), and A is the unique divisor
e|L - B|; or

4. (X,L) is Mukai, ie., —Ky = 2L.

A ~

PrROOF. By either Ky + 3L is nef or else (X,L) is a scroll over a
curve, which gives the first case of the theorem.
Thus we may assume that Ky + 3L is nef. Now using [Theorem 3.2, we see that

Ky + 3L is big except when (X’ ,i,) i1s a Del Pezzo manifold, a quadric fibration over a
smooth curve, or a scroll over a smooth surface. In the Del Pezzo case, we have
(X,L) = (P> x P>,0p>p:(1,1)) by Mheorem 3.4.

The case of a quadric fibration over a curve is not possible. To see this let 7 :
X — C be the quadric fibration morphism onto the smooth curve C. There is an ample
line bundle H on C with Ky +3L =~ n*H. Since the general fiber of 7 is irreducible,
we see that after renaming A4 is a fiber and B meets the general fiber in a smooth
quadric. Also since C is a curve, all of the fibers of 75 have equal dimension. Since
the curve genus of (B,Lz) is 0 we have

—2=(Ky+B+2L;)-B-L>=(n"H—-A)-B-L*.

But 7*H is numerically equivalent to ¢4 for some ¢ > 1 and (AN B) - L* = 2 so we have
the contradiction that —2 =2(r—1) > 0.
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We now work out the case of a scroll 7: X — Y over a surface.

First note that both 4 and B are scrolls over curves. If not then after possibly
renaming, A would be P* or a three-dimensional quadric. In these cases Pic(4) = Z so
n(A) can only be three dimensional or a point, according to [Corollary 4.2, Since
dim Y = 2 we conclude that A4 is contained in a fiber of 7. This is impossible since 7 is
a P>-bundle ([16, Theorem 3.3], [5, Chapter 12]), while dim A = 3.

Thus A and B are scrolls over curves. Since the genera of curve sections of 4 and
B are both zero, A and B are both scrolls over P'.

After renaming if necessary we conclude by that B=n"'(C) for a
smooth rational curve C, and A meets a general fiber in a linear P'. Since L is very
ample and since the fibers of both 7 and the scroll projection g : A — P! are linear P*’s,
we see that a fiber of ¢ is a section of #z. Thus Y = P?, and therefore

(Bl =~ n*Op:(b) with h=1 or b=2.

Since (X, L) is a scroll over P? we have by definition that Ky + 3L =~ *0p>(c) with
c>1. Weclaim that c=1and b =2. To see this observe that a curve section of 4 is
rational so we have

—2=(K;+2L;) L2=(Ky+3L-B)-A-L>=n"0Op:(c—b) - A- L*.

From this we conclude that ¢ — b < 0. Since ¢ >0 and b=1 or 2 we see that ¢ =1
and b = 2.

Let V:==.,L. Two distinct fibers of ¢g: A — P' give two disjoint sections of 7
therefore we obtain an exact sequence with x, y,ze Z

0= Op2(x) =V — Op2(y) ® Op2(z) — 0.

This sequence splits since the first cohomology of any line bundle on P? vanishes.
Hence V' is a direct sum of line bundles. Since Kp: +detV = Op:(b) = Op2(1), we
conclude that detV =~ (p:(4). Thus V = Op:(1) @ Op2(1) @ Op2(2) with B equal to

the inverse image of a conic in P?> under n and with 4 € |[L — B|. Since
ﬂ*(i — é) = (sz(—l) &) (QP2<—1) &) (QP2,

we see that (AA,IAJA) ~ (P* x P',0pr pi(1,1)). From this explicit description existence
follows.

Now assume that K + 3L is nef and big. Then by Mheorem 4.3, 4 and B are both
scrolls over P'. Also, h= ANB is isomorphic to P' x P' by Lemma 4.7.

A fiber of the map P' x P! — P! induced by the inclusion of / in A is a smooth P!
inside a fiber P> of A — P!, hence is of degree 1 or 2. Likewise for the map from B.
Then Ly is either Opi pi(1,1), Op1 p1(2,1), Opi pi(1,2), o Cpi pi(2,2) and we have
g(h) <1

If the genus of a curve section of / is zero then, by [Theorem 3.10, either 4 or B is a
fiber of the first reduction map or (X,L) = (P* 0p:(2)). But the first case would
contradict A4 and B’s both being scrolls. The second case (X, L) = (P*, p:(2)) is also
not possible. Indeed we must have 4, B e |0ps(1)|. In this case 4 = P?, L;=0p(2),
and the genus of a curve section of (P (p3(2)) is one and not zero.
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Otherwise the sectional genus is one. According to [Theorem 3.11, this implies that
the first reduction (X, L) of (X, L) exists with Ky + 2L nef and the first reduction map a
biholomorphism in a neighborhood of 4N B. Note that X = X. To see this suppose
there were an exceptional fiber E for the first reduction ‘map. Then E meets A + B, so

we may assume without loss of generality that it meets 4. Since 4 is a scroll 7: 4 — C
over a curve we see that £ would have to contain at least one curve of a fiber of x.
This would force 4 to equal E, in contradiction to 4’s being a scroll. Thus Ky + 2L is
nef.

Let v: X — Y denote the morphism with connected fibers onto a normal projective
variety Y such that KX—|—2l: ~ y*H for an ample line bundle H on Y. Since 0=
(Ky + 21) -A-B-L, we conclude that v maps 4N B to a point. Since 4N B contains
curves in fibers of the scroll maps of A and B we conclude that v maps A+Btoa
point. Thus v maps X to a point. Thus —-K; = 2L. ]

The solution of the following general problem would complement for reducible
divisors the results we know for irreducible ample divisors [5, Chapter 6] and [3].

ProBLEM C. Let L be a very ample line bundle on a connected n-dimensional
projective manifold X. Classify (X’ ﬁ) when there exists a divisor A=A+ - +A4.¢€
|L| with all A; degenerate, e.g., with x(Kj, + (dim 4; — k) i) < dim 4; if n >k—|—1
where k is either 1, 2, or 3.
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