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Abstract. Using an algebraic analog of Cartan’s method of moving frames and the
complete classification of two-dimensional subalgebras in sl(4, R), we describe all locally
homogeneous surfaces in RP3.

1. Introduction

The main aim of this work is to describe all locally homogeneous two-dimensional
surfaces in three-dimensional projective geometry. In general, a submanifold L of a
homogeneous space M with transitive transformation group G is called locally homo-
geneous if for all p and ¢ in L there is a transformation g € G such that g(p) = ¢ and
g maps an open neighborhood of p in L into L. In the first part of this paper we give
alternative definitions for locally homogeneous submanifolds. In particular, we give a
direct proof that a locally homogeneous submanifold is always an open part of an orbit
of some, not necessarily closed, subgroup of G. This will be done in the first part of the
paper.

In the second part of the paper we recall the techniques developed in and for
classifying homogeneous submanifolds. Then we apply these techniques to classify
projectively homogeneous surfaces of RP3. The classification of projectively homo-
geneous surfaces was considered with some restrictions in the works of Sophus Lie [4]
(over the field of complex numbers), by Nomizu—Sasaki [7] (only surfaces with non-
vanishing Pick invariant) and Dillen—Sasaki—Vrancken [2] (surfaces with vanishing Pick-
invariant and degenerate surfaces). For corresponding classification in unimodular and
affine three-dimensional geometries see [1], [3], [5], [6]. The techniques in [7],
are purely differential geometric: special adapted frames are constructed and the
classification is done by integrating the fundamental equations, using the fact that all
geometric invariants are constant. Here we give a different proof, based on the
language of Lie algebras.

We divide our problem into the following two parts:

1. Classification of all surfaces whose symmetry algebra has dimension 3 or higher.

2. Classification of those surfaces whose symmetry algebra is two-dimensional.

To solve the first of these two smaller problems, we use an algebraic analog of the
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method of moving frames developed in [3]. The second problem consists in describing

all two-dimensional subalgebras in sl(4, R) and their two-dimensional orbits. Here we

shall draw upon the classification methods of linear Lie algebras described in [8].
The main result of this paper is the following theorem:

THEOREM 1. Every locally homogeneous surface in RP? is either an open subset of a
cylinder or a quadric, or is equivalent to an open subset of one of the following surfaces:

1. z=x%?’.

- <x2 + y2)aebarg(x+iy).

2 2

3. arg(x+iy):aln“l+;; + barctg z.
4. z=Inx+alny.
5. z=aarg(x+iy)+bln(x*+ %), a=1,b>0 or a=0,b=1.
6. z=yp>+x%
7. z=xy+x"
8. z=xy+etdcex(] 4 x?),
2
9. <Z—xy+%x3> = <y—%x2>3.

10. z=xy+ xInx.

11. z=xy + (1 + x?)arctg x.
12. z=xy+Inx.

13. z=y> + xIlnx.

14. z= >+ Inx.

15. z=p? + e~

16. z=xy+ e~

RemArRk 1. Every locally homogeneous cylinder is equivalent to a cylinder whose
base is a locally homogeneous curve in the plane (for a list of all locally homogeneous
plane curves, see for instance [2]), while every quadric which is not a cylinder is
equivalent to one of the two quadrics z = x> + y°.

REMARK 2. For certain values of parameters, the above surfaces may turn into
quadrics or even cylinders. Moreover, in each case there is an equivalence relation on
the set of parameters. This information is given in Tables 1 and 2.

RemMARK 3. The complex version of this theorem is obtained by excluding the
surfaces 2, 3, 5, 8, 11 and changing the signs + to simply + (or —).

Below we list the symmetry groups of surfaces given in [Theorem 1. We consider
them as subgroups in GL(4,R), even though the action of GL(4,R) on RP? is not



effective and these symmetry groups are defined up to multiplication by scalar matrices.
In all cases except for 3, 8, and 11 the symmetry group preserves an affine chart, in
In all these cases we present the symmetry
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which the equation of the surface is written.

group in such a way that it lies in the standard embedding of the group of affine

motions Aff(R*) into GL(4,R).

p 0 0 O
0 g 0 0
1. b ;
0 0 p%” O
0 0 0 1
(([elcosp —elsinp 0 0
) elsinp elcosp 0 0 .
: 0 0 eZaq—i—bp 0 )
\ 0 0 0 1
efcosp —elsinp 0 0
30 ) elsinp elcosp 0 0
’ 0 0 e Ycos(ag + fp) —e sin(ag + fp)
\ 0 0 e Isin(ag + fp) e Ycos(ag + fp)
([e? 0 0 0
4 0 e’ 0 0 .
' 0 0 1 ptaq | [’
(\0 0 O 1
efcosp —elsinp 0 0
5 elsinp elcosp O 0
' 0 0 1 ap+2bg
\ 0 0 0 1
([ p 0 0 0
6 0 p>? 0 ¢ .
: 0 2pa/2q p° qz ’
(\O 0 0 1
p 0 0 0\)
0 p«t 0
7. 4 P q ,
pg 0 p* 0
(\ 0 0 0 1
e "cosp —e "sinp 0 0
g e sinp e " cosp 0 0
' cos p —gsinp ecosp —e™sinp
gsin p gcosp e?sinp e cosp
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p 0 ¢
9 pg P 0 )2
g plq pPo4/6
0 0 0 1
p 0 0 O
0 1 0
10. q
pg+np) 0 p 0
0 0 0 1
cos p —sin p 0 0
1 sin p cos p 0 0
) gcosp— psinp —gsinp— pcosp cosp —sinp
gsinp+ pcosp gcosp— psinp sinp cosp
e’ 0 0 0
=P
12. 0 e 0 piL
ge? 0 1 ¢
0 0 0 1
e? 0 0 0
0 e’ 0 g
13. , 5 ;
+pe? 2qeP? el g
0 0 0 1
e’ 0 0 0
0 1 0
14. ) 1 ;
0 2¢ 1 ¢g°tp
0 0 0 1
1 0 0 p
15 0 e> 0 g¢q _
' 0 2ge?? e? ¢ | [’
0 0 0 1
1 0 0 »p
P
16. 0 e 0 g
q pe’ e’ pq
0 0 0 1

2. Jets of submanifolds.

Let M be an m-dimensional manifold, and let L, L, be two submanifolds of
dimension / containing a point p € M.
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DEerFNITION.  The submanifolds L; and L, are said to be k-equivalent (or also to

have contact of order at least k) at p if there exists a local coordinate system (x!,..., x/,
y', ..., ™ ") with origin at p such that
1. the submanifolds L; (i = 1,2) have, in this coordinate system, equations of the
form y,.j :]l'.j (x1,...,x7), j=1,...,m—1, respectively;

2. for each j, the functions flj and fzj have the same partial derivatives of order <k
at the point (0,...,0).

It is easily verified that the relation of being k-equivalent is well defined and is
indeed an equivalence relation. The k-equivalence class of a submanifold L at a point
p € L, denoted by [L] g , is called the k-jet of L. The totality J*(M, 1) of all k-jets at all
points of the manifold M may be endowed with a smooth manifold structure and is
called the space of k-jets of I-dimensional submanifolds of the manifold M.

For any k,n such that 1 <k <n, we define a smooth mapping

T J" (M, 1) — JE(M, T, L) — L),
and for any k > 1 we define a mapping
me J5(M 1) — M, (L]} — p.

If L is an arbitrary /-dimensional submanifold in M, then the subset L%*) = {[L];‘| pelL}
is a submanifold in J¥(M,I), called the k-th prolongation of L. 1t is clear that the
mapping 7; maps L) diffeomorphically onto L.

The following result, which we shall need later, is given here without proof, as it
follows immediately from the definitions.

Lemma 1. If two submanifolds L, and L, are k-equivalent at a point p € M, then the
following two conditions are equivalent:
l. Ly and L, are (k + 1)-equivalent at the point p;
2. the tangent spaces to the submanifolds Lgk) and Lgk) at the point q = [Li]
[Lz];c e J5(M,1) coincide.

k
4

Suppose that a certain Lie group G acts on M smoothly. Then this action may be
in a natural way extended to the action of G on J*(M,I):

g[L], =lg-Ll,

3. Invariant foliations on homogeneous spaces.

Let M be a homogeneous space of a Lie group G, o a point in M, and G the
stationary subgroup of the point 0. Then M can be identified with the set of left cosets
G/G, the point o being identified with the coset eG.

Invariant foliations on M are in a one-to-one correspondence with invariant
completely integrable distributions on M. Our goal in this sections is to prove the
following auxiliary result.

LEMMA 2. Every invariant foliation on M has the form {(gH)G},_z. where H < G
is some virtual (i.e. not necessarily closed) Lie subgroup containing G. The fiber of this
foliation at a point o is formed by the orbit of o under the action of H° on M.
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ProOOF. Suppose E is the invariant completely integrable distribution corresponding
to a certain invariant foliation on M. Let now § be the Lie algebra of G, which we
shall identify with 7,G, and let g be a subalgebra of § corresponding to the subgroup G.
We consider the natural projection 7: G — M, g — ¢gG and identify the space T, M with
g/g by means of the surjection d,m:§— T,M. Let b=d,n'(E,). Since E is
completely integrable, it follows that Iy is a subalgebra of §. Let H, be the connected
virtual Lie subgroup of the Lie group G, corresponding to the subalgebra b.

From the invariance of the distribution E it follows that the subalgebra [y is stable
under Ad G. Hence the subgroup Hj is stable under the conjugation by the elements of
G. Put H = HyG. Since H, contains the identity component of G, we see that H is a
virtual subgroup of G whose identity component coincides with Hy. It is now easy to
show that n(H) = n(Hy) is a maximal integral manifold of the distribution £ and has
the form HG = HyG. Since the foliation is invariant, the rest of its fibers have the form
(¢gH)G with g€ G.

4. Homogeneous submanifolds.

Let M be a homogeneous space of a Lie group G, and let L be an immersed
submanifold in M. We assume that the action of G on M is locally effective and
identify the Lie algebra g of G with a subalgebra of the Lie algebra of all vector fields
on M.

DerFNITION.  The symmetry algebra of a submanifold L is the subalgebra sym(L) in
g defined by

sym(L) ={X eg|X,eT,L for all peL}.

For any subalgebra ) = § and arbitrary point p e M, let b, denote the subspace
T,M of the form {X, | X eb}. For all points p € L we obviously have sym(L), = T},L.

THEOREM 2. If L is a connected immersed submanifold in M, then the following four
conditions are equivalent:

1. for any point p € L there exist a neighborhood U of p in L and a smooth mapping
¢: U — G such that ¢(q).p =q and ¢(q).U = L for all qe U,

2. given two arbitrary points p,q € L, there always exist a neighborhood U of p in L
and an element g € G, such that g.p =q and g.U  L;

3. the submanifold L is an open subset in some orbit of a connected virtual subgroup
Hc G

4. for any point p € L the following equality holds: sym(L)p =T,L.

Proor. (1) = (2). We fix an arbitrary point p € L and denote by N the set of all
points ¢ in L for which condition (2) is satisfied (i.e., there exist a neighborhood of p in
L and an element g € G such that g.p = g and g.U = L). The set N is nonempty and is
open in L. Indeed, it contains the point p itself, and it follows from condition (1) that
together with each point ¢ this set contains a certain neighborhood of ¢. By a similar
reasoning, the complement of N in L is also open. Since L is connected, we have
N =L and L satisfies condition (2).
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(2) = (3). Consider the natural lift of the action of the Lie group G to J*(M,1).
Fix a point p € L and let py = [L] ]],‘ . Let Gy denote the stationary subgroup of pi. It is
clear that Gy, = Gy for all k > 0. Hence for some sufficiently large n we shall have
dim Gn—l = dim Gn.

Denote by &; the orbit of p; under the action of G on J*(M,[). It immediately
follows from (2) that L% < &,. Define

= nn.n—1|gn P 6y — Gyt

Since the dimensions of the stationary subgroups G, and G,_; are the same, 7 is a local
diffeomorphism.

Consider the subspace E,, = T, L% of the space T, & for all k > 0. We shall now
show that E, is invariant under the isotropic action of G, on T, &,. Indeed, we have

dy g(E,) =T, (g.L)", for all ge G,.
Since the submanifolds L and g.L are n-equivalent at p, we have
Tpn—l (g'L) (”_l) = Epk—l *

But the mapping d, n is an isomorphism of the spaces 7, &, and T,  ,&,-; and
transforms each of the subspaces E,, and T, (g.L)(”) into the subspace E, ,. Hence
d,g(E, ) = E,, for all ge G,. This allows to define a G-invariant distribution £ on &,
by the formula

E,=d,g(E,), for all ge G,g.pn =q.

We show that E is completely integrable. It will actually suffice to show that L") is
an integral manifold of M. Indeed, let ¢ = 7,(g,) for any ¢, e L. Now let g be an
element of G such that g.p = g and ¢g.U < L for some neighborhood U of p in L. Then
g.p, = qn and g.U™ < L™ Tt follows that

anL(”) = dp,g (Tan(n)) = dp,9(Ep,) = Ey,.

Suppose N is the maximal integral manifold of E passing through p. By [Lemma 2|
there exists a connected Lie subgroup H < G such that N is the orbit of p, under the
action of H on J"(M,l). In addition, L is an open subset in N. Thus L is an open
subset of the orbit of p under the action of H on p.

(3) = (1). Let p be an arbitrary point in the submanifold L, and let N be the orbit
of p under the action of H on M. Consider the natural projection n: H — N,
g — ¢g.p. Then n is a fibration, and in some neighborhood U of p there exists a section
¢: U — H of r. We may assume without loss of generality that U — L. But then the
neighborhood U and the mapping ¢ satisfy condition (1).

(3) = (4). Let ) be a subalgebra of g corresponding to the subgroup H. It is
clear that h csym(L), and b, =T,L for all pelL. It now easily follows that
sym(L), = T,,L for all pe L.

(4) = (3). Let H be the connected virtual subgroup of G corresponding to the
subalgebra sym(L) — g, and let p be an arbitrary point of L. It is easy to show that the
orbit of p under the action of H on M contains L as an open subset.
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DErFINITION. A connected immersed submanifold L in M is called (locally) ho-
mogeneous if it satisfies one of the equivalent conditions of Theorem 2.

5. Symmetry algebras of homogeneous surfaces.

Consider a smooth manifold M with a transitive action of a Lie group G. Let ) be
an arbitrary subalgebra of g, and H the corresponding connected virtual subgroup of G.
Then the orbits of H can be considered as embedded submanifolds of M. We say that
L is an orbit of b through a point p € M if L is a connected open submanifold (in the
internal topology) of the orbit of H through the point p, and p e L. Of course, an orbit
of ) through p € M is not unique, but any two orbits coincide in a certain neighborhood
of p.

Let L be an orbit of ). Then, obviously, )  sym(L). It is easy to see that L
is locally homogeneous. But, generally speaking, sym(L) is bigger than . The next
theorem determines the whole symmetry algebra of L.

THEOREM 3 ([3]). Let a be a fixed point on M, and let L be an orbit of by through a.
Define a subalgebra g < g as follows: g={Xeg|X,=0}

1. The subalgebra sym(L) is the greatest subalgebra a such that iy c a = g+ .

2. Consider the series of subalgebras g =gy > g, > --- such that

90:g7 gn-‘rl :{XEQHHX,[)] Dgll+[)}7
and let g, = ﬂ:;o g, Then
sym(L) = g, + .

COROLLARY. The subalgebra Yy < § is a symmetry algebra of some homogeneous
submanifold L containing a if and only if by satisfies one of the following equivalent
conditions:

(1) every subalgebra of § that contains Yy and lies in g+, coincides with b;

2) g, <h.

DeriNiTION.  We call a subalgebra ) < g admissible (with respect to the pair (g,g)) if
it satisfies the condition of the corollary.

Let us now develop a method for the classification of all admissible subalgebras
h = g. Suppose that ) is such a subalgebra. Define the following vector spaces and
linear mappings between them:

- let V,=(b+g,)/s, =§/g, for al n>0, and Ve, =(h+g,)/9,, =3/9,;

— letm,:§3—3/g, and 7, : §/g,,, — §/g, be the natural projections for all n > 0,

and in a similar way we define 7.

We have the following commutative diagram (here vertical arrows correspond to the
natural embeddings):

b —— Vo n — "
§ —— 3/a., “ . §/e —— 3/g,
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This diagram is finite, ie. g, =g, = =96, and V, =V, =--- for sufficiently
large n.

It is ecasy to sec that these objects satisfy the following conditions:
g, =bNg, for all n>0.
dim V, = dim V,, for all n > 0.
rn|VnH is an isomorphism of V, | to V, for all n > 0.
G ={x€g,|x.V, c V,}. (Here we consider §/g, as a natural g,-module.)
h=nr(V).
. The subspace V, for all n > 1 satisfies the following condition:

CS: for every two elements x+g,, y+g, € V,, the element [x,y|+g,_, lies in
V, |

We say that two subalgebras of g are equivalent if they can be transformed into
each other by means of the elements of Aut(g,g). For a given subspace V,  §/g,,
denote by G, the subgroup in Aut(g,g) consisting of all automorphisms that preserve
the subalgebra g, and induce on §/g, a transformation preserving V). From the
definition it follows that G, also preserves g,,, and, therefore, induces a group of
linear transformations on §/g,.

From the above considerations we obtain the following algorithm for the description
(up to equivalence) of all admissible subalgebras in § corresponding to locally ho-
mogeneous submanifolds of a given dimension m.

1. Describe all subspaces ¥y of dimension m in §/g (up to the transformations
induced by Aut(g,g)).

2. For each subspace V), found before, find the subalgebra g, ,, the group G,41,
and the subspace W =1,'(V,) in §/g,,,.- If g,, # g, then describe (up to G,4) all
subspaces V.1 in W such that

Vg1 is complementary to kert, = g,/g,.;

—  V,41 satisfies the condition CS.

Then repeat this step again.

3. Ifg, =g, then find the subspace b = - Y(V,) ing. Ifhis a subalgebra, then
implies that it is a symmetry algebra of a certain homogeneous submanifold.
Moreover, all admissible algebras can be obtained in this way.

[o0)

oL R W

6. Three-dimensional projective geometry.

In this section we apply the above algorithm to the case of three-dimensional
projective geometry, so that § = sl(4,R) and M = RP>. Fix the subspace V = R* of
the form

O O O =

The subspace V' will also be considered as a point o € RP3; the projective co-
ordinates of this point are 0 =[1:0:0:0]. Then g = g, is the algebra of the stabilizer
of V. It may be found from the formula ¢ = {X € §| X.V < V'} and has the following
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form:

—trd4d B
g:{<; A)’Aegl(3,R),BeMat1x3(R)}.

To describe the group Aut(g,g), consider the group

Aut(g, V) = {a,, g€ GL(4,R) | 9.V =V},

where, as usual, a, € Aut(g) is the conjugation by the element g, that is, a, : 4 — gAg~'.

It is easily verified that Aut(g,g) = Aut(g, V).
In order to get rid of homotheties, we identify Aut(g,g) with the subgroup

1Y
Gy = {(0 X) ’Xe GL(3,R), Y e Matlx3(R)} < GL(4,R).

Consider the action of Gy on §/g. To this end, we write the elements of §/g in the

form
0 0
_ AeR’.
“ (A 0>+9’ ©

Then the action of Gy on §/g establishes the following equivalence relation: A4 ~ XA,
X € GL(3,R). It follows that any two one-dimensional or two-dimensional subspaces
of §/g are equivalent up to the group Gyj.

To simplify the notation, we shall identify the quotient spaces §/g, with certain
complements of g, in g.

7. Surfaces whose symmetry algebras are at the least three-dimensional.

7.1.  PRELIMINARY STAGE. In this section we shall focus on symmetry algebras of
surfaces. Then, in accordance with our algorithm, dim V;,, = 2 for all n. Here we shall
not consider cases in which g, = {0}. Since all two-dimensional subspaces of §/g are
equivalent up to the action of Gy, we may assume that

0 0 0 O
x 0 0 O

Vo = , R

0 y oo oflMVE
0 00 O

Using the definition of g, and G, we find that
—d—-tr4d B e
9 = 0 A C||A4Aegl(2,R),B,'CeMat;,»(R),d,ecR },

0 d

0
1 Y u
G = 0 X Z||XeGL2,R),Y,'ZecMat.»(R),tc R*,uecR
0 0 ¢
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Every subspace V) satisfying the condition 7o(¥;) = V) may be identified with a

subspace of the form
0 0 0
Vi = (A 0 0) AeR?
0 4-P O

where P is a 2 x 2 matrix. It follows from CS that the matrix P is symmetric, and the
group G defines the following equivalence relation: P ~ XP'X, X € GL(2,R). Hence,
up to this equivalence relation, P has one of the forms

0. P

I
L

[a—y
"
I
O

3. P

()
~
Il
SN TN TN

—_— O O

Now for each of these cases we find the subalgebra g,:
20. g,=g;. In this case the algorithm terminates, and the corresponding ad-
missible subalgebra has the form

A B
1 = A R), Be R’ }.
(n n={(y o) |AeacR. BeR)
It is clear that b, corresponds to the plane z = 0.
2.1.
2a—b ¢ d e
0 —3a f g ,
= ‘ ,d,e, f.g.heR
9 0 0 a4 h a,b,c,d,e, f,g,he
0 0 0 b

In the following this case will be called parabolic.

2.2.
—a ¢ d e
0 0 b f
92: 0 —b 0 g a,b,c,d,e,f,geR
0 0 0 a

In the following this case will be called elliptic.
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2.3.
—a ¢ d e
0 b 0 f
9 = 0 0 —b g a,b,c,d,e,f,geR
0 0 0 a

In the following this case will be called hyperbolic. Consider as an example the
parabolic case.

7.2. PARABOLIC CASE. Here we have

0 0 0 O
x 0 0 O
Vi = yeRY,
1 y 0 0 0 X,y €
00 y 0
2a—b ¢ d e
0 -3a f ¢
9 = 0 0 {l h a>b>c7daeafagahER 3
0 0 0 b
1 X3 X4 X5
0 X1 X X7 "
=910 o Y X X1, X2 € R*, X3, X4, X5, X6, %7, X3 € R
0 0 0

Then any subspace V, may be identified with a subspace of the form

—ox —yy 0 0 0
X ax+yy 0 O
V)= R
2 y pPx+doy 0 0 h Ve
0 0 y 0

From CS we have f =0 and « =J. Up to the action of the group G,, we may assume
that « =y =0. In accordance with our algorithm, we find g; and Gi:

0 0 0 O
x 0 0
Vy, = R
2 ¥ O 0 0 X,y € 9
0 0 y O
20 — b 0

d e

@< abederer,
a d
0 b
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G; = x,yeR" z,t,u,ve R

yt
y2

Then all possible subspaces V3 may be written as

S O O -
[}
=

0 ox+py O 0
b 0 0 0
Vi = ,VER
: y 0 0 yx+oy Hre

o 0 y 0

Using the condition CS, we find that « = 0 and f = —3y. The subspaces V3, viewed up
to the action of the group G3, have the form:

0 -3y 0 0
x 0 0 0
2.1.1 V3 = R
3 y 0 0 x X,y € )
0O 0 y» O
a 0 ¢ =2b
0 3a b d
= RY:
Oa 0 0 —a o a,b,c,d e :
0 0 0 —3a
0 0 0 O
x 0 0 O
2.1.2 Vi = R
’ y oo oflVF
0 0 y O
2a—b 0 d 0
0 —3a ¢ e
= ,C,d, R
s 0 0 4 d a,b,c,d,ee
0 0

Consider the case 2.1.1. The group G, has the form

1 0 y —2xz+y%/2
G |0 U = ' XeR', y,zteR
0 0 «x Xy
0 0 O x?
We write V, in the form
ax+yy =3y 0 fx+0y
X 0 0 0
V4= ,VER
' y 0 0 b Ve

0 0 y —ax—yy
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From CS it follows that « = 0 and f = —y. Then all subspaces V4(’8 ) are equivalent up
to the action of Gs. Consequently,

0 —3y 0 0
x 0 0 0
= , R
Va y 0 0 x X,y ENR o,
0O 0 y O
a 0 0 =2b
0 3a b 0
05 = 0 0 - 0 a,beR 3,
0 0 0 -=3a
I 0 0 —2xy
0 1/x y» O ,
Gs = xeR” R
| 0 0 x o |[T°FF
0 0 0 «x?

Every subspace Vs may in its turn be identified with a subspace of the form

0 -3y ax+yy 0
x 0 0 Px+0y
Vs = R
i y 0 0 (a+Dxtpy ||70F
0 0 ¥ 0

Using CS, we obtain that « = —4 and y = —5f. Up to the action of the group Gs, we
may assume that f =0 and 6 =0 or 6 = +1. However the subalgebra g, is nontrivial
only when 6 =0. Hence the only interesting case is

0 -3y —-4x O
0 0

X 0
Ve — R
5 y O O —3)C X,y € s
o 0 y 0
a 0 0 0
0 3 0 0
p— R
9 00 —a o0 ||9F
00 0 -3

The subspace Vs may be written as

0 -3y —4x 2(ax+py)

x 0 oax+pfy 0
Ve = o yeR
6 y o0 0 _3x Hre
0 0 » 0

A straightforward calculation shows that g; # {0} if and only if « = =0. Thus the
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case 2.1.1 yields a single subalgebra ), which may be conveniently written as

3z —x O 0
-3y z 4x O
2 b, =
) 2 0 y -z 3x

0 0 y -3z

x7yszR s

and the orbit must be taken to pass through the point o’ =[0:1:0:0] e RP.

Notice that the subalgebra I, is isomorphic to sl(2, R) and its natural representation
of b, in R* is irreducible. Therefore the corresponding virtual subgroup H> = SL(4, R)
will be isomorphic to SL(2, R) and will act irreducibly on R*. It is well known that this
action is equivalent to the following action of SL(2,R) on the space Rs[t, 1] of all
homogeneous polynomials in ¢, # of degree 3:

(ccl Z).p(ll,l‘z) = p(ah + ct, bt —I—dlz) Vp e R3[t1,1‘2}.

Let us introduce the non-homogeneous coordinates in the projective space, asso-
ciated with Rj[t|,;], in such way that the point (x, y,z) corresponds to the class of
polynomials which are proportional to #; + 3xt7t + 6y#11; + 6z15. The corresponding
action of SL(2,R) on the projective space RP;[t|, ;] has exactly three orbits:

1. a one-dimensional orbit O;, consisting of all polynomials of the form
(o1 +oc2t2)3 . In the non-homogeneous coordinates this orbit has the form:
(x,1/2x2,1/6x3), x e R;

2. a two-dimensional orbit, consisting of all polynomials having a linear multiplier
of multiplicity 2. It is easy to verify that this orbit is the developable of O,
excluding O itself. In the non-homogeneous coordinates it is given by the
following equation:

¥\ 2 8 ¥\’
(3) <Z—xy—|—?> ——§<y—7> ;

3. an open three-dimensional orbit O, consisting of all polynomials without
multiple multipliers.
Hence, the required orbit of the subgroup H, up to projective transformations is
equivalent to that one given by (3).
Consider now the case 2.1.2. We have:

0 0 0 O
V3 = jj 8 8 8 X, yeR
0 0 » O
2a—b 0 d O
g4 = 8 —ga :l fl a,b,c,d,ec R },
0 0 0 b
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1 0 ¢ #2)2

Gy = 0 x z u x,yeR" z,t,ue R
0 0 y yt
0 0 0

All possible subspaces V4 may be written in the form

0 0 0 ax+py
x 00 0

=91y 00 0 Y, yek
00 5 0

From CS it follows that « = 0. Up to the action of the group G4 we may assume that
f=1or f=0. Thus V4 has one of the following forms:

0 0 0 y
x 0 0 0
2.1.2.1 Vy= , R},
4 y 000 X, V€
0 0 y O
a 0 c 0
0 -3a b d
gs = 0 0 a ¢ a,b,c,deR };
0O 0 0 a
0 0 0 O
x 0 0 0
2.1.2.2 Vs = R
3 yoo ol
0 0 y O
2a—-b 0 d 0
0 -3a ¢ e
s = g4 = 0 0 a d a,b,c,d,ec R
0 0 0 b

In the latter case we at once get an admissible subalgebra which is equivalent to the
subalgebra

-3z u v w
0 t+z 0
(4) by = 0 —; )ZC X, y,z,t,u,v,weR 3,
0 0 y z—t

and the orbit must be taken to pass through the point o' =[0:1:0:0].
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Consider the subalgebra

oS o =

u,v,weR },

o
W~
I
oo o o
o o o
o o o

in bh;. The corresponding subgroup H; has the form:

HY =

S OO =
O O = o=
S = O
—_ O O N

and the set of its orbits consists of the point 0 =[1:0:0:0] and lines of the form
(5) l[alzaz:az] = {{l‘ tdptap a3] | te R},

where [a; : @y : a3] is an arbitrary point in RP.

Now let H3 be the connected subgroup in SL(4, R) corresponding to the subalgebra
bs, and let L be an orbit of Hj through o’. Notice, that the point o is also stable with
respect to the action of Hi, and, therefore, is not contained in L. Hence, L is fibered
by lines of the form (5), i.e. it is a cylinder whose base is a curve in RP? which is an
orbit of the subalgebra

t+z x 0
53: y oz X X, y,z,teR
0 y z—t

through the point [1:0:0]. As in the case 2.1.1, considering the three-dimensional
irreducible representations of the Lie algebra sl(2, R) and the Lie group SL(2, R), we get

that this curve is a parabola y = x>. Hence, the surface L is the cylinder with the

parabola y = x? as its base. (See also for more details.)
Consider the case 2.1.2.1. The group Gs has the form

1 0 ¢t )2

Gs = 0 xy = xXeR* yz,teR
0 0 1
0 0 O 1

We identify V5 with a subspace of the form

( 3
ax+pfy 0 0 y
X 0 0 0
Vs = R
5 y 0 0 0 X, )€
0 0 y —ax—py
\ J

Using the condition CS, we find that « = 0. Up to the action of Gs, we let f = 0.



216 F. DiLLEN, B. DouBrov, B. KomMrakov, and M. RABINOVICH

Then we have

0 0 0 y
x 0 0 0
Vs = R
5 y 0 0 0 X, Y€ ’
0 0 » O
a 0 0 0
0 -3a b ¢
0 = 0 0 4 0 a,b,ceR },
0 0 0 a
1 0 0 0
0 x y z .
Ge = 00 1 0 xeR",y,zeR
0 0 0 1

All possible subspaces Vs may be written in the form

0 0 ax+py y

Ve = x 0 0 0 X,yeR
6~ y 0 0 ax + fy Y
0 0 ¥ 0

From CS it follows that « = 0. It is easy to sece that in this case the action of the group
G 1s trivial. In addition, g, = g, for all . Thus we obtain a new subalgebra, which
up to conjugation has the form

=3y u v w
0 [
(6) b, = yoex X X, y,u,v,we R
0 x y ax

0 0 x vy

As in the case 2.1.2.2, we obtain that the corresponding orbits are cylinders whose bases
are formed by locally homogeneous curves in RP? with one-dimensional symmetry
algebras of the form:

0 ax x
64: x 0 ax||xeR
0 x O

See also for more details.

This completes the discussion of the parabolic case. The elliptic and the hyperbolic
cases are discussed in much the same way, and we omit here all computations in these
cases.

In the elliptic case we get the only surface with at least three-dimensional symmetry
algebra. It is the quadric z= x>+ y>. In the hyperbolic case we get the quadric z =
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3 (see also [3] for similar computation in the

y> — z? and the Cayley surface z = xy — x
case of affine geometry).

As a result, we obtain the following proposition:

PROPOSITION.  Up to projective equivalence, every surface in RP? whose symmetry
algebra is at least three-dimensional is one of the following:
(1) cylinders with plane locally homogeneous curves as their bases;
2) quadrics of the form z = x> + y?;
3)  Cayley surface: z=xy—x’/3;
4)  developable surface of the curve (t,t2/2,13/6):

I AN TR
FTYTR) T 9\ T )

8. Another approach to the classification of homogeneous manifolds.

(
(
(

8.1. CLASSIFICATION ALGORITHM. In the previous section we regarded submani-
folds as orbits of certain subalgebras passing through a fixed point 0 € RP?. Now we
shall no longer fix any point. Instead we shall consider pairs (b, W), where ) is a
subalgebra in sl(4,R) and W is a one-dimensional subspace of R*. The action of
the group GL(4,R) on pairs (b, W) is defined in the obvious way: X.(h, W)=
(XbX~1 XW). The orbit of GL(4,R) passing through (b, W) will be denoted by
(D, W)]Ge-

A submanifold in RP? will be regarded as an orbit of a subalgebra ) = § through a
one-dimensional subspace W < R*, viewed as a point in RP>. Then two submanifolds
are projectively equivalent if the corresponding pairs (I, W) are equivalent up to the
action of GL(4,R). This approach is justified by the next proposition.

PROPOSITION.  The orbits of the action of the group GL(4, R) on pairs (b, W) are in a
one-to-one correspondence with the orbits of the action of Gy = Aut(g,qg) on subalgebras
b < sl(4,R).

Proor. The correspondence may be defined as follows. Let [(h, W), be the
orbit of GL(4,R) through the pair (b, W). It is clear that [(h, W)|,, contains an
element of the form (b, V). To each orbit [(D, W), we assign the orbit #([(h, W)|;,)
= [b] Aut(gq)- That the mapping 7 is well defined follows from the formula Aut(g, V') =
Aut(g,g), which was proved in §3. The fact that z is surjective and injective is
obvious. ]

Since we no longer fix any points, we must modify accordingly the concept of
admissibility. We shall say that a pair (b, ) is admissible if every subalgebra of g that
contains b and is contained in g, + b, coincides with ). Based on the above, we
suggest the following algorithm for the classification of projectively homogeneous
submanifolds:

1. Classify subalgebras [y = § up to the conjugation by the elements of GL(4,R).

2. For every b c g, compute the group Gy = Aut(g,b) and classify, up to this
group, all one-dimensional subspaces W < R*.
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3. Find the connected virtual subgroup H < SL(4,R) corresponding to the sub-
algebra ). Then find the orbit H through a subspace W, viewed as a point in RP°.
The resulting submanifold L will be homogeneous since Sym(L) > H. Hence the
corresponding pair (b, ') will not be admissible if and only if dim Sym(Z) > dimb. In
this case L is projectively equivalent to one of the manifolds obtained in Section 7.

8.2. SUBALGEBRAS OF gl(V'). In this subsection we develop mathematical tools
necessary to classify all subalgebras of gl(}'), where V is a finite-dimensional vector
space over a field of characteristic 0. After we have done this, to classify subalgebras in
sl(V) we need only add the natural condition on the trace of matrices. The idea
underlying this approach consists in the assignment to cach subalgebra of a certain
collection of invariants with respect to the conjugation by the elements of GL(V).

Here we outline only the main results used in the classification. For complete
proofs and further details see [8]. We begin by introducing several new concepts.

DErFINITION.  Let g be a subalgebra of gl(77). The greatest ideal of g consisting of
nilpotent endomorphisms is called the greatest nilpotency ideal of the identical repre-
sentation.

We shall denote this ideal by n(g).

DEFINITION. A subalgebra g < gl(V') is said to be separating if it contains the
semisimple and the nilpotent part of each of its elements.

It is clear that the intersection of separating subalgebras is again a separating
subalgebra, and hence the following concept is well defined.

DerINITION.  If g is a subalgebra of gl(V'), the separating envelope of g is the
smallest separating subalgebra of gl(}’) containing g. The separating envelope of g will
be denoted by e(g).

It is easy to see that if two subalgebras of gl(?') are conjugate, then so are their
separating envelopes and the greatest nilpotency ideals of the identical representation.
Taking this into account, we can classify subalgebras of gl(7") by implementing the
following algorithm:

1. Describe all subalgebras n < gl(}") that consist of nilpotent elements.

2. For each subalgebra n found in 1, describe all separating subalgebras ¢ < gl(V)

such that n(e) =n.

3. For each subalgebra ¢ obtained in 2, find all subalgebras g — e such that

e(g) =e.

The first step of this algorithm presents no serious problems. By the Engel
theorem, the subalgebra n < gl(7’) may be brought into the strictly upper triangular
form, which means that we must classify subalgebras n up to conjugation.

The next two theorems enable us to implement step 2 of our algorithm.

THEOREM 4. Let g be a separating subalgebra of the Lie algebra gl(V'). Then there
exists a subalgebra m < g such that m is reductive in gi{(V') and g is the semidirect product
of m and the ideal n(g), that is, g =m A n(g).
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Let N denote the normalizer of n in gl(?7). It is clear that N is a separating
subalgebra, and hence, in view of [Theorem 4] we have the following decomposition:
N = it A n(N).

Let /(n)={peGL(V)|gng™' =n}. If ¢e./(n), then obviously ¢gN(n)p' =
N(n). The following theorem provides a method for the classification of subalgebras

discussed 1n eorem 4.

THEOREM 5.
1) Every subalgebra m < N(n) which is reductive in gl(V') is conjugate (with respect
to the group </ (n)) to a subalgebra of .
2) If two subalgebras of W which are reductive in gl(V') are conjugate with respect to
o/ (n), then they are conjugate with respect to .o/ (n,im).
Theorems 4 and 5 provide the following algorithm for the classification of the
separating subalgebras ¢ < gl(¥') such that n(e) =
1. Find a subalgebra it < N(n) which is reductive in gl(?) and satisfies the
following condition:

N(n) = it A n(N(n)).

2. Describe (up to the group .o/ (n,ii)) all subalgebras m < it which are reductive
in gl(7). The desired separating subalgebras will then arise as subalgebras of the form
e=mAn.

The implementation of the third step of our algorithm is simplified by the following
theorem:

THEOREM 6 [8]. Let g be an arbitrary subalgebra of gl(V). For a separating
subalgebra ¢ = gl(V') to be the separating envelope of g, it is necessary and sufficient that
the following three conditions are satisfied.

(i) le,ef =g
(i) g+m=c¢;
(i) g+n=ec

Moreover, in this case we have [e,¢] = [g,g].

Thus, to implement step 3, we must classify all subspaces in e satisfying conditions
(1)—(iii) with respect to the action of the group .«/(¢) < .o/(n).

9. Homogeneous submanifolds with two-dimensional symmetry algebras.

9.1. SYMMETRY ALGEBRAS OF DIMENSION 2. In this section we classify all locally
homogeneous surfaces in RP? whose symmetry algebras are two-dimensional. We
should also be able to determine whether a given pair (b, W) is admissible. This may
be done with the help of Theorems 7 and 8.

The first of these theorems allows to verify whether the surface corresponding to the
pair (b, W) is a cylinder. To state this theorem, we shall need some extra notation. If
U < R* is an D-invariant subspace, consider the subspace ¥ = R*/U and the subspace
W which is defined to be the image of W on passing to the quotient R* — 7. One can
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also consider the subalgebra [ c gl(V) which arises when the action of b is induced
to V.

THEOREM 7. The surface given by the pair (b, W) is a cylinder if and only if one of
the following two conditions is satisfied.

1) There exists a three-dimensional Y-invariant subspace containing W.

2) There exists a one-dimensional W-invariant subspace U < R* such that the pair

(b, W) defines a curve in P(V).

PrOOF. Assume that the orbit L of b passing through W is a cylinder. If L is a
plane, then the pair (f), W) satisfies condition 1). If, however, L is a nondegenerate
cylinder, the corresponding group H contains translations along a certain one-dimensional
subspace U. Since the cylinder is non-degenerate, this subspace is uniquely defined. It
follows that U ish-invariant. Then, on passing to the quotient, we obtain a pair (f), W) which
defines a curve in RP?>—the generator of our cylinder.

On the other hand, if a surface L corresponds to a pair (b, W) satisfying condition
1) or 2), then it is easily seen that L is a cylinder. O

Condition 2) of may be written in the algebraic language. To do this,
consider the mapping

¢:B®W—> V/W, XQwW— x.w+ W.

Then condition 2) is equivalent to the following one: dimim¢ = 1.
To prove this fact, consider the orbit of the group H < GL(V') through the point W

on the Grassmannian manifold Gr; (V). In order to find the dimension of H.W in
Gr(V), it suffices to find the dimension of the tangent space to our orbit at the point
W. Using the isomorphism Ty Gri(V) =~ W ® (V/W)", we find that this dimension is
equal to dimim¢ = 1.

allows to find out if the surface L is equivalent to a quadric.

THEOREM 8. The surface corresponding to a pair (b, W) is a quadric if and only if
there exists a nondegenerate symmetric bilinear form 0 with the following two properties:

1) The subalgebra by preserves 0.

2)  The subspace W is isotropic for 0, that is, O(w,w) =0 for all we W.

Proor. Suppose that the orbit of ) through W is a quadric. Then ) may be
embedded into one of the symmetry algebras corresponding to quadrics (subalgebras
s0(3,1) and sn(2,2)). However for each of these subalgebras there exists a non-
degenerate symmetric bilinear form 0’ satisfying conditions 1) and 2) of the theorem
(here W may be chosen to be the original one-dimensional subspace V). Knowing (',
we can easily construct a form 0 for the pair (b, ).

Now assume that (b, W) is a pair such that there exists a nondegenerate symmetric
bilinear form 0 satisfying conditions 1) and 2). Then the subgroup H < GL(4,R)
corresponding to the subalgebra by also preserves the form @; in other words, ‘X0X = 0
for any X € H. Then, given a subspace U = X.W in the orbit of W, in view of
condition 2 we obtain ‘UOU ='"W'XOXW ='"WOW =0. Hence H.W is a quadric.

L]
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It is clear that in order to classify subalgebras of dimension 2, we need only those
subalgebras of nilpotent elements whose dimension does not exceed 2. To simplify the
notation, we shall omit the curly brackets, assuming that x and y run over R for all
subalgebras.

0. dimn=0: n={0}.

dimn=1:
0 x 0 O 0 x 0 0 0 x 0 0 0 x 00
0 0 0 O 0 0 x O 0 0 0 0 0 0 x O
. . 1.4
= 0 0 0 O 1.2 0 0 0 0 = 0 0 0 x 0 0 0 x
0 0 0 O 0 0 0 O 0 0 0 O 0 0 0 O
dimn=2:

0 0 x O 0 0 x vy 0 0 y x 0 0 0 x
0 0 0 y 0 0 —y x 0 0 0 y 0 0 0 y
21 0 0 0O 21 0 0 0 O 22 0 0 0 O 23 0 0 0 O
0 0 0O 0 0 0 O 0 0 0 0 0 0 0 O

0 0 x vy 0 x y O 0 0 x vy 0 0 x O

0 0 0 O 0 0 0O 0 0 0 0 0 0 0 y

24 2. 2. 2.

0 0 0 0 > 0 0 0 y 6 0 0 0 x 7 0 0 0 x

0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0
0 x 0 y 0 x y O 0 x y O 0 x y O
0 0 x O 0 0 x y 0 0 0 y ,10 0 0 x

2.8 2.9 2.10 2.10

0 0 0 x 0 0 0 x 0 0 0 x 0 0 0 y
00 0 O 0 0 0 O 0 0 0 O 0 0 0 0

Consider the case 0. It is obvious that in this case N =N(n) =g, n(N) = {0}.
Then, in accordance with our algorithm, we must describe all subalgebras m of di-
mension 2 which are reductive in sl(4, R). Since semisimple Lie algebras are at least
three-dimensional, the subalgebra m is toral.

Then m is the linear envelope of semisimple commuting endomorphisms 4, and 4,,
and one of the following two cases takes place:

0.2a The eigenvalues of any element X € m are all real.

0.2b Not all elements of m have only real eigenvalues, but there exists a one-

dimensional subspace which is invariant with respect to n.
0.2c No one-dimensional subspace is invariant with respect to m.
In the case 0.2a, the subalgebra ) = m = (4|, 4> may be brought into the form

x 0 0 0
0y 0 0
_ R
b2, 0 0 ox+fy 0 e
00 0 —(I+ta)x—(1+h)y
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Notice, that conjugation of b, ; by monomial matrices, corresponding to the ele-
ments of the symmetric group Sy, gives us the subalgebras of the same form and induces
a finite transformation group on the set of parameters (o, f). Explicitly, this group is
generated by the following mappings:

) ) (. (5.-) (-1 25,

o Cltolatl

Since in generic case the subalgebra g, = {X e gl(4, R) [ [X,h] = b} has the form
0

(8) gy = a,b,c,d e R

o o O 9
S OO
QU O o O

b
0
0

we see that two subalgebras l),,, corresponding to different sets of parameters, are
conjugate if and only if these sets of parameters belong to the one orbit of the S, action
determined by (7). The equality (8) is not satisfied when

(a, ) = (1,0),(0,1),(2,—1),(=1,2), and (1/2,1/2).

In all these cases o+ f =1, and the corresponding surfaces are cylinders. So, these
cases can be excluded without loss of generality.

Taking into account the remark we have made above concerning W, we may
assume that up to Gy the subspace W R* is equal to

XeR

2R o= o=

Applying [Theorem 7, we get that the corresponding surface in a cylinder if and only
if one of the following equations is satisfied:

a+p=1, a+pf=-3, a-3=1, -Ba+p=1,
and from we obtain that this surface is a non-degenerate quadric if and only
if (o, p) equals to (—1,0) or (0,—1).

In affine coordinates, the surface corresponding to the pair (b, W) is defined by the
equation

z=x9y". (2.1),
where a =(1+3a—f)/B+a+p), b=(1—-a+38)/3+a+p).
The equivalence relation on (a,b) has the form: (a,b) ~ (b,a) ~(1/a,—b/a) ~
(—a—b+1,b). Singular values of parameters a, b, when this surface degenerates to a
cylinder or a quadric, lie on the straight lines

a=0, b=0, a+b=1
and at the points (1,—1), (=1,1), and (1,1).
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Consider now the case 0.2b. In this case there exists a two-dimensional subspace
U < R* with the following two properties:

1) U is invariant with respect to m;

2) no one-dimensional subspace of U is invariant with respect to .

Accordingly, the restriction of m to U may have dimension 1 or 2. Hence the
subalgebra [y = m has one of the following forms:

X -y 0 0 »x —x 0 0
y X 0 0 , x y»x O 0
pu— [ ==
b2 0 0 ox+py 0 oF D22 0 0 y 0
0 0 0 —(+2)x—py 0 0 0 —2yx—y

where x, y run over R.
The subalgebra gy = Ny(b) is in both cases equal to

a —b 0 0
b a 0 0

gy = 0 0 ¢ 0 a,b,c,de R
0 0 0 d

Up to the action of Gy the subspace W < R* has the form

xeR

R O

Again, considering conjugations by monomial matrices that preserve the form of
b,-» and b,, we get the following equivalence relation on parameter sets: (o,f) ~
(o, =) ~ (—a—2,—p), for the subalgebra by,,; and y ~ —y for the subalgebra b, ,.

The singular values for Iy, , derived from Theorems 7 and 8 are given by the straight
lines « =1 and o = —3 and by the point (—1,0). The only singular value for by, is
y=0.

A straightforward computation shows that the family of surfaces corresponding to
the subalgebras l),, and )5, is given by the equation

z = (x? 4 y?)ebareltiy) (2.2)

where a = (e +1)/(a+3), b = (4f)/(« + 3) for the subalgebra b,,; and a =1, b = —4y
for b;,.

The equivalence relation on (a,b) for this surface may be written as follows:
(a,b) ~ (a,—b) ~ (a/(2a—1),b/(2a —1)). The singular values for this surface are
a=1/2, (a,b) = (0,0); (1,0).

In the case 0.2c we obtain the following subalgebra I:

X -y 0 0
y X 0 0
— , R
23 0 0 —X —(ax+ By) YE
0 0 ax+py —X
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Then, as usual, we find the subalgebra g, and the subspace W:

a —-b 0 0 X
b a 0 0

gy = 0 0 ¢ —d a,b,ec,de R, W= . xeR
0 0 d ¢ 0

The surface corresponding to the pair (b, W) is given by the equation

2 2

arg(x +iy) = aln%erarctgz. (2.3)

Singular points for both the subalgebra b, ; and the surface are (0,0), (0,1), and (0, —1).
The equivalence relation on parameters is as follows: (a,b) ~ (a,—b) ~ (—a,—b) ~
(a/b,1/b).

The case that dimn =0 and dimm =2 is now fully considered.

All other cases may be considered in a similar way. As a result we get the
following list of two-dimensional subalgebras in the Lie algebra sl(4, R), that contain
non-nilpotent elements. In this list we always assume that x,y,z run through
R. Parameters are denoted by o,f,y and belong to R, if it is not stated otherwise.

x 0 0 0
oo 0
10 0 ax+py 0 ’
00 0 —(at+Dx—(B+1)y
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(0 —1)x X b 0 x x 0 y
2. 0 (0 —1)x 0 0 _— 0 x x 0 ;
0 0 (04 1)x 0 0 0 x O
0 0 0 (1 = 3a)x 0 0 0 —-3x
3x x y 0 x x y 0
)5, 0 3x 0 0 . 26, 0 x x O
0O 0 —x vy 0 0 x O
0 0 0 -=5x 0 0 0 —-3x
x y +x 0 -3x 0 0 y
0 x vy 0 0 x x 0
27. 28. ;
0 0 x 0 | 0 0 x x|’
0 0 0 —3x 0 0 0 x
5x y 0 0 x x y 0
0 x O y | 0 x 0 vy
2 0 0 -3x «x | 30. 0 0 —x x
0 0 0 —3x 0 0 0 —x

Then according to the algorithm, we classify for each subalgebra b listed above all
one-dimensional subspaces W < R* up to the group Gy, check if the resulting pair
(b, W) is admissible, and construct surfaces corresponding to admissible pairs.

As a result we get the following list of admissible pairs. As before we assume that
X, y,z run through R. Parameters are denoted by o,f and belong to R, if it is not
stated otherwise. As for surfaces, for some singular values of parameters these pairs
may become non-admissible.

x 0 0 0 z
) 0 y 0 0 z
) 0 0 ax+py 0 ’ z | [’
0 0 0 —(14+o0)x—(1+p)y L \z/ )
([x -y 0 0 z\ )
) y X 0 0 0
) 0 0 ax+py 0 ’ z | [’
(\0 O 0 —(+2)x —py L\ 2
([yx —x 0 0 z\ )
, x yx 0 0 0
2°. :
0 0 vy 0 ) z ’
(\O0 0 0 —2yx-—y L \z/ )
X -y 0 0 z
3. ) y X 0 0 0 .
' 0 0 —x  —(x+p) | [’ z | [’
L \0 0 oax+pgy —X 0
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([x x y 0 0
+z
13, 4 0 x 0 0 7 + ;
0 0 —x/3 ¥ 0
L \0 O 0 —5x/3 L\ z
x y +x 0 \) (/0 )
0 x 0 0
14. ;
) 0 0 «x 0 ’ z (3
(\0 0 0 -3x/ L \z/ |
5 0 y 0 ([ +z
0 -3x 0 «x 0
15. ) ;
0 0 x vy 0
(\ 0 0 0 -3x L\ =z
X x y 0 z
0 x 0 vy 0
16. 0 0 —x x ’ 0
0 0 0 —x z

The corresponding list of surfaces (with the same numbering) is given in [Theorem 1.
Singular values of parameters and equivalence relations induced on sets of parameters
are listed in Tables 1 and 2, and the correspondence between parameters in subalgebras
and equations of surfaces is given in Table 3.

10. Tables

Table 1. Singular values of parameters

1. a=0,b=0,a+b=1,
(a,b) = (1,-1), (—1,1), (1,1).

2. | a=1/2, (a,b) = (0,0), (1,0).

3. (a,b)=(0,0), (0, 1), (0, 1).

4 a=0

5 (a,b) = (0,0)
6 a=0,1,2

7 a=-1,0,1,2,3.
8 a=0
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Table 2. Equivalence relation on parameters

1. | (a,b) — (b,a), (1/a,—b/a), (—a—b+1,b).
2. (a,b) — (a, —b), (—261"_1.,—2&”_ 1).

3. (a,b) — (a,—b), (—a,—b), (a/b,1/b).

4. ar1/a.

S. (a,b) — (Ja, +2b),Ae R".

6. no

7. a—2—a.

8. a— —a.

9. no

Table 3. Correspondence between parameters in subalgebras and surfaces

| a_l+3a—[f b_l—a+3/f
' S 3+a+p’ T 3+a+p
a+1 4p
2. = b=
4 oc+3'b a+3
27, a=1,b=—-4y
o
3' a__Z'/b_/))
4. _2tB
oa—3
o
. — B bh==
5 a=2p, 7
2
6. =
T3 0,
7. a= 2
o+ 1
8. a=2u
1
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