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Positive Riesz distributions on homogeneous cones

By Hideyuki IsH1
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Abstract. Riesz distributions are relatively invariant distributions supported by the
closure Q of a homogeneous cone Q. In this paper, we clarify the positivity condition of
Riesz distributions by relating it to the orbit structure of Q. Moreover each of the
positive Riesz distributions is described explicitly as a measure on an orbit in Q.

Introduction.

The study of Riesz distributions originates from the paper [9] of Marcel Riesz,
where he introduces a family of convolution operators as a generalization of the classical
Riemann-Liouville operators on the positive reals to the Lorentz cone in R”. Riesz’s
distributions are the distributions determined by the homogeneous functions r,(x) :=
(2 —x2—--. —x)%? (e C) divided by I'factors (see for example the book [13,
(IL1.3;31)] or the article [2] for details). His aim was to solve the wave equation, and a
systematic use of analytic continuation is made. Among subsequent works carried out
by various mathematicians, Gindikin’s paper was the first to consider a general-
ization of Riesz’s distribution on an arbitrary homogeneous cone 2. Gindikin replaces
the above r, by functions 4, (s = (s1,%2,...,5) € C") on Q which are relatively in-
variant under a split solvable Lie group H acting linearly and simply transitively on Q.
When Q2 is the cone of positive definite real symmetric matrices, 4, is the product
D' ... D" D¥ of the principal minors Dy, ..., D,_;,D, = det. He also investigates
the gamma function Iy associated to the cone Q playing the role of the I'-factors in
Riesz’s distribution. Such being the case, we call the distributions %, determined by
To(s) ' 4,du the Riesz distributions on Q, where du is the H-invariant measure on Q.

Our major concern for the Riesz distributions #; is to determine the set = of the
parameter s for which % is a positive measure. The set = plays an important role in
the study of Hilbert spaces of holomorphic functions on Siegel domains as is done by
Vergne and Rossi to deal with the analytic continuation of the holomorphic discrete
series representations of semisimple Lie groups (see also [3], for this). For general
cones, the set = is described in Gindikin’s paper [6]. Since the intersection of & with
the set {(a,a,...,a)|ae C} is seen to be identical with the Wallach set in the case of
symmetric cones (cf. [3]), we shall call = the Gindikin—Wallach set. However, only a
very rough sketch is given in [6], and the complete details seem to be unpublished until
now. Proofs available to us as of now are for the case of symmetric cones treated in [3,
Chapter VII, Section 3|, where a fine structure of Euclidean Jordan algebras is thor-
oughly utilized. The motivation of the present work was to improve this situation.
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But more is done in this paper. In fact, not only do we have a clearer description of =
by relating it to the H-orbit structure of @, but also we give explicitly a positive measure
with its support specified for each of the elements in Z. Moreover, a simple algorithm
for the specification is supplied.

Let us explain our results in more detail. The basic tool with which we work in
place of Jordan algebras is the structure theory of normal j-algebras developed in [8].
Based on the fact that the normal j-algebras are in one-to-one correspondence with the
Siegel domains, we shall start with a normal j-algebra g such that the corresponding
Siegel domain is of tube type. Thus g is graded as g = g(0) @ g(1) and our cone Q is
sitting in ¥ :=g(1). Moreover, [):=g(0) is the Lie algebra of the group H acting
simply transitively on . The structure theorem of normal j-algebras (see [Theorem 1.1
for details) says that there is a basis aj,..., o, for the roots of g, so that b and V are
respectively direct sums of the root spaces:

hb=a® ( S g(am—xk>/2)= V= <@ gak> ® ( @D g(a,,,wk)/z)’
l<k<m<r k=1 1<k<m<r

see (1.3), and [1.8]. Let Exeg, (k=1,2,...,r) be the root vectors such that
[jEk, Ei] = 0igE;.  Our first theorem is the following.

THEOREM A. The 2" elements E, .= ¢\E| + -+ + &.E, (e = (¢1,...,¢)€{0,1}") form
a complete set of representatives of the H-orbits in Q:

2= || o (0,:=H-E,).
ee{0,1}"

In order to state our second theorem, we put for every ¢e {0,1}"

pi(e) = Zei dimg, 2,

i<k
Ze):={seR"|sk = pr(e)/2 (if & =0), sx > pr(e)/2 (if & =1)}.

THEOREM B. The Riesz distribution X is a relatively invariant positive measure on
O, under the action of H if and only if s € Z(¢). Thus the Gindikin—Wallach set Z is the
disjoint union

It is easy to verify that our description of = reduces to that of Faraut and Kordny
[3, p. 138] for the case of symmetric cones (see Remark given after [Theorem 6.2).

To describe the measure that %, (se€ Z(¢)) induces on @, we will pick up a
subgroup H(0O,) of H which is diffeomorphic to O, (see (3.4) or for an explicit
description of H((,)). Then transferring the left Haar measure on H((,) to O, by the
orbit map ¥, : ¢+~ t- E,, we have an H((,)-invariant measure g, on (/,. The measure
U, turns out to be relatively invariant under H ([Proposition 4.1). Then the measure
dR (se Z(e)) is a positive number multiple of 4. du, with the density 47 which is the
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transfer of a character of H(O,) to O,, where ¢-s:= (¢51,...,&s,). Furthermore, the
positive constant is the reciprocal of the gamma function Iy, associated to the orbit ¢,
(see for the definition of Iy)).

THEOREM C. The measure dRs (s€ Z(¢)) is given by
(0.1) dRs = Ty (e-5) ' 42 du,.

Theorem C is essentially proved in Section 5. The function Iy, itself is a gen-
eralization of the function I studied by Gindikin [5]. We show in that it
is expressed as a product of the usual gamma functions.

THEOREM D. Up to a positive multiple depending on the normalization of the
measure concerned, one has

We now describe the organization of this paper. In Section 1, we summarize the
basic structure of normal j-algebras. Section 2 is devoted to giving various explicit
formulas. This is done by expressing the elements in H by lower triangular matrices
with vector entries (see (2.4)). The idea of such expression is due to Vinberg (see
also [5]), where the theory is based on the left symmetric algebras. Our formulation is
inspired by the book [3, Chapter VI, Section 3] of Faraut and Kordny in which the
framework of Jordan algebra is developed.

In Section 3, we study the H-orbit structure and an inductive structure of Q. The
explicit formulas obtained in Section 2 play a fundamental role here. We remark that
the inductive description of homogeneous cones is first given by Vinberg and further
pursued by Rothaus and Dorfmeister [1]. Theorem A above is proved in Theorem
3.5.

The purpose of Section 4 is to introduce and investigate the gamma function I,
associated to (), for every ¢ € {0,1}" mentioned above. The definition of Iy, requires a
function and a measure on (), which are relatively invariant under the action of H.
These two relative invariants are defined through the above-mentioned diffeomorphism
Y,.:H(O,) — O, 1t is essentially from the convergence condition of the defining in-
tegral of Iy, that the condition for Z(e) is derived.

In Section 5, we consider the analytic continuations of the distributions #; obtained
from the relatively invariant measures on (), defined by the right-hand side of [0.1}.
This is done in [Theorem 5.1, and comparing the Laplace transforms of these dis-
tributions, we see in that these distributions coincide with the Riesz
distributions in each of their definition domains of the parameter s.

In the last section, Section 6, the Gindikin—Wallach set = is determined. Properly
speaking, we define = as the disjoint union of Z(¢)’s and prove that = is exactly the
positivity set for the Riesz distribution. The proof is carried out by induction on
the rank of cones, and in this regard, the inductive description of Q in Section 3
is of substantial importance. The algorithm mentioned above is given after
6.1.

To(s) = H F(S,- _ Pi§8)

8,‘:1
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Let us fix some general notations used in this paper. Let U be a real vector space
and U* its dual vector space. For 4 € End(U), A* denotes the adjoint operator of A,
that is, A*¢:=¢%0A4 (£ e U*). Moreover, if U is endowed with an inner product, we
denote by #(U) the Schwartz space of rapidly decreasing functions on U.

The author would like to express his sincere gratitude to Professor Takaaki Nomura
for the encouragement in writing this paper. The author is also grateful to Professor
Masakazu Muro for his interest in this work.

§1. Preliminaries.

Let V' be a finite-dimensional vector space over R and Q an open convex cone in V'
containing no line. We assume that Q is homogeneous. This means that the group
GL(Q) of linear automorphisms of the cone Q acts on Q transitively. Let Tg :=
V' +iQ be the corresponding tube domain in the complexification V¢ of V. Then Ty is
homogeneous under the affine transformations

X+iy—a+t-x+it-y (aeV,teGL(Q)).

The tube domain Ty is also called a Siegel domain of type 1, a special case of Siegel
domains of type 11 (see [8] for definition). Let D be a Siegel domain of type Il on which
the group Hol(D) of holomorphic automorphisms of D acts transitively. By [7] there is
a split solvable closed subgroup G of Hol(D) acting simply transitively on D, and the
Lie algebra g of G has a structure of normal j-algebra. Conversely any normal j-
algebra gives rise to a homogeneous Siegel domain of type II as described in [8, Chapter 2,
Section 5], [11, Section 4A]. These observations ensure that we lose no generality by
beginning the present paper with a normal j-algebra and assuming our homogeneous
cone to be defined through the normal j-algebra.

Now let g be a real split solvable Lie algebra, j a linear automorphism on g such
that j*> = —id,, and w, a linear form on g. The triple (g,j,wo) is called a normal
j-algebra if the following three conditions are satisfied:

1) [Y, Y]+ jY,jY'+jljY,Y'|-1[jY,jY']|=0 for all Y,Y’'eg,

JY,jY',mo) =<{[Y,Y'],mp) for all Y, Y egq,

(iii) ([Y,jY],woy > 0 for all non-zero Y €g.

By and (iii), we define an inner product (-|-),, on g as
(1.1) (YY), =LY, jY 0> (Y,Y eq).

Let a be the orthogonal complement of [g, g relative to this inner product. It is known
that a is a commutative subalgebra of g and ad(a) is a commutative family of self-
adjoint operators on g. The dimension r := dima is called the rank of g. For a linear
form o on a, we set

g,:={Yeg|[C,Y]={C,a)Y for all Ce a}.

Then [ga,gﬁ] < g, and if o # f, we have g, L g; with respect to the inner product
(1.1). If o # 0 and g, # {0}, we call o a root and g, the root space corresponding to o.
Concerning normal j-algebras, the following theorem is fundamental.
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THeEOREM 1.1 (Pyatetskii-Shapiro [8]). (i) There is a linear basis {A,,...,A,} of a
such that if one puts E;:= —jA;, then [Ax,E)| =onE (1 <k, [<r).

(i) Let oy,...,0 be the basis of a* dual to Ay,...,A,. Then the possible roots are
of the following forms:

Ol o /2 (1<k<r),
(ot — %) /2, (o + o) /2 (1<k<m<r).

(ii) The root spaces g, (1 <k <r) are one-dimensional: g, = REj.
(iv) If m>k, then jgu, .2 = 8, +x)2 and the action of j is given by

(1.2) JjY = _[Y7Ek] (Y€g(0¢m—0¢k)/2)'
Moreover jgak/z = Gy )2

Let us put

g(l) = (@ g3¢k> (—B < @ g(oc,,,+ock)/2)7 g(1/2> = @g“k/z’
k=1 I<k<m<r k=1

(1.3)

g(0) :=a® ( ) g(am—ak)/2>'

I <k<m<r
Then we have g =g(1) ® g(1/2) ® g(0). We also put
(1.4) E=E + --+E, A=A+ ---+ A4,
for simplicity. Then ad(4)Y = uY for Y € g(x). Furthermore

(15) [g(ﬂ)ag(‘))] Cg(:u"_v) (,u,V:O,l/z,l),

where we understand g(u) = {0} for x> 1. It is immediately seen from
that jg(0) = g(1) with

(L6) JjY =—[Y.E] (Yeq(0)

and jg(1/2) = g(1/2).

It is known that normal j-algebras corresponding to tube domains are those for
which g(1/2) = {0}. Henceforth, let g be a normal j-algebra such that g(1/2) = {0}.
Put ' =g(1) and h=g(0). By (1.5), g is a semidirect product V' xh with V a
commutative ideal. Let G be the simply connected Lie group corresponding to the Lie
algebra g. Since g is split solvable, the exponential mapping is a diffecomorphism from
g onto G. Put H:=exph < G. The adjoint action of H leaves } invariant, and we
write ¢- x for Ad(#)x (te H, xe V). By [11, Theorem 4.15] the H-orbit 2 through E
is an open convex cone containing no line. Moreover, H acts on 2 simply transitively.
In order to make the notation clearer, we shall put

Vike := g(ocm+c¢k)/2 (1 <k<m< V), bmk = g(oszo{k)/Z (1 <k<m< l").

Note that Vix = RE, (1 <k <r). We have by (1.3)
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(1.7) V= (ét)REk) ® ( @ mG>,

1<k<m<r

(1.8) b= <§—>1RA1¢> ® (1 k(—B bmk)'

Before closing this preliminary section, we shall make a brief observation about the
dual cones. The dual cone QF of Q is by definition

(1.9) Q" :={Ee V*|{x,&) >0 for all xeQ\{0}}.

Then Q7 is also an open convex cone in V* containing no line. It is a fundamental fact
that Q™ := (Q*)" equals Q under the canonical identification of V** with V. Let
H* :={t"|[te H} <« GL(V*). It is known that H* acts simply transitively on Q2 (see
[15, Proposition 9]). The following lemma is a consequence of this observation.

LEMMA 1.2. Take &ye QF. One has

Q={xeV|[{x,& >0 for all éeQ*}
={xeV|{t-x,&)y=0 for all te H}.

§2. Explicit description of H-action on V.

In this section, retaining the notation of the previous section, we describe the action
of H on V explicitly by expressing the elements of H as lower triangular matrices with
vector entries. This expression visualizes not only the multiplication of the elements of
H but also the action of H on ¥V, and makes the resultant formulas easier to understand.

We start by expressing every T €l), according to (1.8), uniquely by

(2.1) T=> tudi+Y T (tk €R, Tk €,).
P

m>k

For the element T el in (2.1), we put

(2.2) Li=Y Tw (1<k<r-—1).

m>k

Given T € by, the symbols T, (m > k) as well as L; will be used to denote the elements
in (2.1) and without any comments in this paper. Let I7 be the open subset of I
defined by

II:={Tebh|ty >0 for all k=1,2,...,r}.
Putting Ty := 2logtix)Ar (1 <k <r) for T € II, we set
(2.3) WT):=expTy-expLy-expTr---expL,_i-expT,.

Then y(T) € H, and we shall write it in the following form of lower triangular matrix:
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AN
Ty i»

(2.4)
Trl Tr2 lrr
ProposiTiON 2.1. (i) For T,T' € Il, one has

/ "
ti I %

Ty 1 Ty 1, Ty 1 .
= with
1. w)\myomn o) \mommo 4
(2.5) e = tactye (1 <k <),
"o / / /
(26) mk — tmmek + Z [Tm], le] + Zkkka (1 S k <m S V).
k<l<m

(i) The map y is a diffeomorphism from II onto H.
Proor. (i) Let 1 <i<k<r. We have
(2.7) exp Ly -exp L] = exp Ad(exp L)L, - exp Ly = expe® L/ - exp L.

In the same way, we get

(2.8) exp Tir -exp L] = expe®™ T L/ . exp Ty,

exp T} - exp Ly (i<k),
29 L . T/ — " 1
( ) CXp L -CXp L ; { exp Tlék - exp efad TkkLk (l' — k)

Using and noting that expa is commutative, we obtain
y(T)exp T{, = exp Ty exp T}, - exp e T, cexp Ta -+ -exp L,_1 exp T)y.
Then owing to (2.7) and [2.8), we see that p(T)exp T}, exp L] is equal to

—adT ad Tzzead L, | 'ead L, ead T”)Li .

exp 71y exp T}, - expe 4T L exp(e
cexpTa---expL,_1exp T,

Repetition of this argument yields y(7)y(T’) = y(T"), where

(2.10) T = T + Ty,

(211) L]/(/ — e—ad Tl‘{kLk + ead Tisr, k+1eade+1 .. eadLr_]ead T,,:L]/c.

Thus follows immediately from (2.10). To show we observe that 1.8},
and imply ad (Ly)*L! =0, so that if i < k,

(2.12) L] = Lj + [Li, Lj] = Lj + [Lt, Ty,
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Similarly,

(2.13) ML =g T+ > Ty (f i<k), e Tuly =1Ly
I#k,I>i
Making use of and (2.13), we calculate the right-hand side of (2.11) to arrive at
the right-hand side of [2.6).
Let H be the image of y. By (i), H is a subgroup of H. Recall the element 4
in [T.4]. Then y(A) equals the unit element of H. Since

d

o hzoy(A +hT)=T (Teb)

as is easily seen, the map y is a local diffeomorphism at A4, so that the subgroup H is
open. Since H is connected, we have H = H. It remains to show that y is injective.
Here we need the following simple lemma.

LEMMA 2.2. For two subalgebras by, and b, of by such that b, NY, = {0}, the map
exph; xexph, 3 (#1,) — t1t, € H is injective.

PrOOF. Suppose that 11, = t{t) (t;,t] eexphl;, i =1,2). Then there exists T €}
such that expT = 7't} = r,¢7'. This implies 7 eb; Nh,, so that T =0. Hence
nh =t and £, =t). 0

We now prove the injectivity of y. Let n; (1 <i<r—1) be the commutative
subalgebras of b given by

(2.14) = P by

m>i

We shall apply repeatedly to the pairs of the subalgebras

e (hm)o(de) v (gme)e (o)

for/=1,...,r—1. Suppose y(T) = y(T’) for T, T’ € I[1. Then [Lemma 2.2 with ), :=
b(r_l) and b, := RA, gives t, =1, and p(T)exp(—T,) = y(T")exp(—T),) € exp b(’_l).
Next, putting b, := h"" and b, := n,_, in [Cemma 2.2, we get L, = L/ . Repeating
these arguments, we obtain 7 = T". ]

We next observe the action of H on V. To do so we express every x € V' as

(2.15) X = ZxkkEk + Zka (xkk ER, X, € mG).

k=1 m>k
We put Xy := xiEr (1 <k <r). We shall use the symbol X, (m > k) to denote the
Vue-component of a given x € J without mentioning it. The action of exp a is diagonal
and easy to describe:

m>k

(2.16) (exp (2 log l[DA[) X = Z melkamk.
=1
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In order to see the action of the other elements of H, we introduce the lexicographic
order > in the index set A := {(m,k) |1 <k <m <r} by defining (m,l) = (k,i) if either
“m>k” or “m=k, [ >i”. Since leads us to

ad(I)) Vki c @ le ((k7 l) € A)7

(m, 1)z (ki)

we see that the action of H on V' is “lower triangular” with respect to the order ». Let
us set

(2.17) V.= @ V.
m=I1>k
Since the summation range can be interpreted as (m,l) > (k+1,k+1), VK is H-
invariant.
We now investigate the action of H on the specific elements more closely. For this
purpose, we first need to introduce a new inner product on g. Let E* be the linear
form on g defined by

x+T, E*) ::ixkk (xeV, Teb).
i

LemMma 2.3. The bilinear form (Y|Y'):= (1/2)X[jY,Y'],E*) defines an inner
product on g.

ProOF. We begin the proof by noting that if wy is as in [I.1}, then

(2.18) x+T,m) = —anxkk (xeV, Teb),
=1

where 7, := —<{(Ey,woy > 0 for all k (see [11, (4.6)]). Now let x,x’ e V and T,T' €}
and express them as in (2.15) and (2.1) respectively. By [MTheorem 1.1, we have
[ Xy X))y [Tk, Ty ] € RE,,. Thus (1.1} and [2.18) tell us that for m > k,

. 1 , 1

[JXWI]C?Xr:’tk] = n_(ka|Xr:1k)w0Erm [J Tk Tr:1k] = H_(ka|T;;1k>onM'
m m

This together with [jEy, Ex] = E; and [jAy, Ax] = Ej. gives

(2.19) 2x+ T X'+ T = Z(xkkxkk + Z (X | X, >

k= mk 'Tm
+ Z (fkktkk + Z (Toe| T, > :
m>k M
Therefore the bilinear form (|-) is symmetric and positive definite. ]

The inner product (-|-) in will be called the standard inner product in
what follows. By [2.19), the change to the standard inner product does not affect the
orthogonality of the decomposition of V' and b in (1.7) and (1.8) respectively.
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COROLLARY 2.4. [Ty, [T, ., Ex]] = 2(T,) ;.| Touic) Em-

mk>
ProoF. Immediate from [7),, Ex] = —;T,, by [L.2). O
We set
Vi (m>1)
2.20 Toi© T := [Tk, [T, E " ’
( ) mhk O L e [ mk,[ k> k]]e{ Vi (l>l’l’l)
Since [Tk, Tj] =0 (m # 1) by Theorem 1.1, Jacobi’s identity gives the commutativity

Tpr o Ty = Ty o Te. With these preparations, we are now able to describe explicitly
the action of H on the elements

(2.21) E,:=) aEeV (¢=(a,...,s)e{0,1}).
k=1
ProposiTION 2.5. Let x:=y(T)-E, (T €lIl). Then
(222) kazak(tkk)z—f—Zé‘iHTki”Z (1 Skﬁr),
i<k
(2.23) Xk = Eklkk[ka,Ek] + ZEiTmi o Ty (1 <k<m< l”),
i<k
where || || stands for the norm defined by the standard inner product on g.

Proor. Let 1 <i<r. Ifl>i then implies that exp L; - E; = E; and
expTy - E; = E;. Thus

WT)-E;=expTi---expLi_y-(expTyiexpL;- E;).

Since E; lies in the H-invariant subspace V=1 (see [2.17)), it holds that exp Tj;exp L; -
E; e V-1 Furthermore, if h <i— 1, shows that exp L, as well as exp Ty,
acts trivially on V=11, Tt follows that

)(T)-E;i=expTiexpL;- E;.
Noting ad(L;)’E; = 0 and using (2.16), we have

(224 expTyexpL;- E; = exp Tj; - (E; + [Li, Ej] + (1/2)[L;, [L;, Ej]])
2.24
= (lii)in + ti[Li, Ei| + (1/2)[L;, [Li, Ej]].

Substituting L; =), . T,; in the last term, we obtain by [Corollary 2.4 and
y(T) - E; = (1) °E; + > il T )+ I Tel* Exc + > Twio T,

m>i k>i m>k>i

from which the formulas and follow immediately. ]

REMARK. If one expresses x € V' by the symmetric matrix

X Xa oo Xy
X0 x» X

Xrl XrZ Xrr
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then [Proposition 2.5 may be better understood. The elements E, being expressed by the
diagonal matrices D, = diagley,...,¢&], the formulas [2.22) and |[2.23) are the matrix
multiplication rule for x = (7T) - D, - "p(T) under an appropriate interpretation.

§3. Orbit decomposition of Q.

From now on, we shall regard H as a subgroup of GL(V') by the adjoint rep-
resentation. Let H denote the closure of H in End(V). Then H is a semigroup.
Recalling [1.7), we denote by P,; (1 <! <m <r) the orthogonal projection V — V.
For k=1,...,r, we define a map ¥, : [0,00) — End(V) by

(3.1) (1) = tszk+l<ZPki+ZP,,,k)+ > Pu

i<k m>k m>i
m#k,i#k

The formula (2.16) says that (1) = exp((2log?)Ax) € H for t > 0. Thus () belongs
to H for any t>0. Let II be the closure of IT in b:

IH={Teb|t =0 for all k=1,2,...,r}.
In view of [2.3), we define a map 7: 11 — H by

(3.2) P(T) = (t11) - exp Ly - a(t22) - - exp Lyt - Y, (L)

Evidently 7 extends y, so that we express 7(7') still by the matrix (2.4). We remark that
the formulas in Propositions 2.1 (i) and 2.5 remain valid for 7(7) by continuity.

PropPoSITION 3.1. (i) Let Q be the closure of Q in V. Then H-E = Q.

(i) (1) =H.

ProoF. (i) Clearly H-E <= Q. To prove the converse inclusion we take X e Q.
Then there exists a sequence {x("} _5 in Q such that x") — X as v — c0. According to
[Proposition 2.1 [ii), we take 7" e IT for which x") =»(T").E. By with & =
(1,...,1), we have

(33) i =P+ ITN (1 <k<n),
i<k

Since says that all the sequences {t,(cvk)}ve ~ and {T,g)}v .y are bounded, we take a
strictly increasing sequence {v,} of positive integers such that all of the limits 7 :=
lim t,((;:) and T}, := lim T,g") exist. Put T:= fuudw + 5 Tii. Then T — T e IT as
n— oo. Therefore ¥ =7(T)-E e H-E, whence (i) follows.

For 7 e H, we take a sequence {#")} _y in H such that ") — fasv — co. Put
i:=7-Ee®Q and x":=¢V.EecQ. Then x — % as v— oo, and repeating the
argument in (i), we find 7 e IT for which 7=7(T). Hence is proved. O

We denote by (J, the H-orbit in V through E, € Q. Then O, is contained in Q.
Note that Oy )= and O, < 0Q if e# (1,...,1). For xeV, let H,:={teH|
t-x=x} be the stabilizer at x in H.
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ProPOSITION 3.2. (i) Let x:=y(T)-E, with Tell. If xe@,_REx, then
e T =0 for all 1 <k <m<r and x=Y,_, ek(tkk)zEk.

(i) If e #¢', then the two orbits O, and O, are distinct.

(iii) One has

HEgz{y(T)EH|1f & = 1, then liizl and Tk;=0(k>l)}

Proor. (i) We shall prove & T, = 0 by induction on k. By (2.23) and [1.2), we
have

0= X =eatnu[Tm, E\] = —e1t11jTp-

Since #;; # 0, we obtain & T,,; =0. Assume next that &7, =0 (m>i) fori=1,...,
k —1. Then, again by (2.23) and [1.2) we have for m > k,

0 = exti[ Tone, E) + O &Tmi © Tai = —&ictioej Tonkc
i<k
Hence T, =0. The second assertion follows from this and (2.22).
Clear from (i) by considering the intersection with (P,_, REx.
(i) The assertion follows from (i) and [Proposition 2.5 ]

Let by be the Lie algebra of Hg,. Then [Proposition 3.2 (iii) tells us that
I)E,; = @(RAI S) ni)7

8,':0

see for the definition of n;.  Let b(¢,) be the orthogonal complement of b in b.
Then

[)((96) = @(RA, (—D TI,‘).

6121

Note that h(¢,) coincides with hz, , where 1:= (1,...,1) € {0,1}". 1In particular, §(0,)
is a subalgebra of ). Put H(CO,) :=exph(O,). Then H(CO,) = Hg, ,, so that

(3.4) H(O,)={y(T)e H|if =0, then t; =1 and T}; =0(k >i)}.
Define a map n, : H — H(0,) by

i (t1n)”
T tn e1Tor (t2)”
(3.5) , , s
Ta Tn Ly &1 &Tn (trr) o

Clearly 7, is surjective.

Lemma 3.3. (i) For te H, one has t- E, = n.(t) - E,.
(i) The map ¥, : H(O,) at—t-E, €0, is bijective.

Proor. (i) If ¢ = 0, the right-hand sides of {2.22) and [(2.23) do not contain ¢; nor
Ty (k> 1i). Hence the assertion holds.
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The surjectivity of ¥, follows from (i). Since by NH(¢;) = {0}, the injectivity
is clear. 0

We set for k=1,2,...,r—1,
3.6 k] = (0,...,0,1,...,1) e {0,1}".
(3.6) [k] = ( )€{0,1}

k times

Then Eyy = ", En belongs to the H-invariant subspace V¥ defined in [2.17), and Oy
is a homogeneous cone in V¥ of rank r — k, where the rank of a cone is the rank of the
corresponding normal j-algebra. In fact, Oy is the homogeneous cone corresponding to
the normal j-subalgebra b(Uy) ® VK. Thus it is natural to denote the orbit Oy by
QK Accordingly, we write H(Q") instead of H (Opg). Let Py be the orthogonal
projection ¥ — V. Define E[}*{] e V* by

(37) <X, E[}kc]> = mem-

m>k

By [2.22), we have

m>k m>I>k
If (T) - Eyy # 0, then the right-hand side of is strictly positive owing to Prop-
osition 2.5. Thus [Proposition 3.1 and (1.9) tell us that E%,|,x belongs to (2%)* the
(k]'V
dual cone of QM.

LemMA 3.4. (i) For te H(QW) and x eV, one has t- Pyu(x) = Pyu(t-x).

(i) For 1 <k <r—1, one has Pyu(Q) = o"
Proor. (i) Let (V)" be the orthogonal complement of V¥ in V. Then by
(2.17),

r

VI =P PV
i=1 I=i
If i <k < m, then ensures that (P,_,V;; and hence (V)" are stable under
the adjoint action of n,,. Since h(Q") =P, _, (R4, ® ), it follows that (V*)* is
stable under H(QK). The H(Q )-stability of V¥ being evident, the assertion (i)
holds.
Let x € Q. According to [Proposition 3.1 (i), we take 7 € H for which x =7 - E.
If 1 e H(QM), we obtain by (i), [3.7) and [2.22)

{to - Pyw(x), Egyy = {Pyw(to - x), Ejyy = tol - E, Ejy) = 0.

Therefore, applying to the cone Q¥ in the vector space V', we obtain
Pyu(x)e 2", Hence Puu(Q) c 2", The converse inclusion is clear because 8" <

Q. 0

We now arrive at the main result of this section.
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THEOREM 3.5. The H-orbit decomposition of Q is given as

Q= |_| 0,.

eeq{0,1}"
Proor. By [Proposition 3.2 and [Lemma 3.3 [ii), it suffices to show

CLAIM. Given x € Q, there exist ¢€ {0,1}" and t e H(O,) such that x =t E,.

We shall prove the claim by induction on the rank r of cones. The rank one case is
obvious. Assume that the claim holds when the rank is r — 1. In particular, the claim
holds for QY. Let xe Q. According to [Proposition 3.1, we take T € IT such that x =
5(T) - E (though T is not necessarily unique). We assume first that x;; = 0. Then
Z~11 = (x11)1/2 =0 by , so that Xml = fll[Tnﬂ,E]] =0 (m > 1) by . Thus x =
Pyun(x) e ol by (if]. Then the claim holds in this case by the induction
hypothesis. Next, let us consider the case x;; > 0. Put

l~11 1
T 1 0
1‘1 _ 21 7 f[l] - 22
Trl 0 1 0 TrZ er

Then 7(T) = 77!/ € H by [Proposition 2.1, and we have 7;; = (x11)"/* > 0 by [2.22), so
that 7' € H. On the other hand, we have 7!l - Ejjj e 2", By the induction hypothesis,
there exist unique &' := (0,&,...,&)€{0,1}" and ¢ =9(T')e H(O,) (T’ € II) such
that 7l Eyy=1¢'-E,. Put ¢:=(lL,&,...,5) and ¢:=17't' € H(O;). Then by Propo-
sition 2.5 and (1), we get

x=11 (B + Ey) =1 B+ By
=i - E+t -E,=01"{(E,+E,)=1-E,

which means that the claim holds when the rank is r. Therefore the theorem is
proved. L]

The second half of this section is devoted to an inductive description of € which will
be needed in the proof of Theorem 6.2
We set

(3.9) I(0,) :={T eh(O,) | t; > 0 for all i such that & = 1}.
By (3.4), the map II(0,)> T — y(41_.+ T) € H(O,) is bijective, where

Ay = JE, =) adrea
k=1

PROPOSITION 3.6. Let ¢,¢' €{0,1}". If e+¢&' €{0,1}", the map
(3.10) O, x Op3(x,x")—>x+x'eV

gives a diffeomorphism from O, x O, onto O,
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Proor. Given x € (;, we take unique elements t € H((;) and T € II(0,) for which
x=t-E;and t =y(41_.+ T). Similarly, we take t' € H(O,) and T' € I1(0,) for x' €
O, to have x’ =t -E,. Put

i:= V(Alf(s%’) +T+T') e H(Osr0).
Then it is clear that #,(7) =¢ and 7,(7) = ¢’ by [3.5) Thus, by (i),
x+x' =t-E, 4+t -Ey=t- (E8+Es’) = z'E£+s/ € Ogyer,

showing that the image of the map in 3.10) is contained in (... Since the map
H(O,) x H(Oy) > (t,t') — t € H(O,,) is visibly bijective by [3.5), our map in [3.10) is
bijective from the above discussion. ]

We define bilinear maps Q! :m; xn; — VI (i=1,2,...,r = 1) by
. |
(3.11) 0L, L") =5 [L,[L", E}].
LemMmA 3.7.  For every i =1,2,...,r — 1, one has QV)(L,L) e o for any L € n;, and
if Li =) ,~; Tmi, then

(312) Q[Z] Lz,L Z ||Tml|| Em + Z Tmi o Tki-

m>i m>k>i
PrROOE. By (2.24) we have expL - E; = E; + [L, E] + QU)(L,L) (L ew,). Therefore
Q(L,L) = Pyu(expL- E) € Py (Q) = @[ﬂ}

where we have used [Lemma 3.4 to get the last equality. The second assertion follows
from this and [Proposition 2.5, [

Let X[ = PV[l](X) for xe V. By (2.15) we have x = x;1 E| + Z;;:Z X -I-X[l].

ProroSITION 3.8. Omne has

_ _ 1 _
Q= Qm U {XG Vx>0, X —x—Qm (ZJXW’I’Z]X’”I) € Qm}.
11

Proor. If x e Q, then [Proposition 3.6 for ¢ = (1,0,...,0), & =[1] tells us that
there exist unique #; >0, L; € ny, and yeQm such that x =, (¢t;;)expL; - E; + y.
Using (2.24) and (1.2), we get

(3.13) x = (t1)’Er — tnjLi + Q"(Li, L) + .
Hence x| = OM(L,, L))+ y. On the other hand, comparing (3.13) with (2.15), we
obtain xj; = (111)2 and X,,; = —t1jTm. Therefore
L= Z Tim = (xll)_l/ZZijl,
m>1 m>1
so that

1
Qs y =y — QM(L1, i) = xpy — x—“Qm (ZijthXml)-
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Thus, for @ > 0, we see that the set QN {xe V|x;; =a} equals

X —éQ“] (D= /%o, X ) € 5_2[”}.

We also obtain QN {xe V|x;; =0} = 0" as was shown in the proof of Theorem 3.5.
Hence the proposition is proved. O

{aEl + ZX’”I + X[ € V

§4. Gamma integrals on H-orbits.

In this section, we shall define and evaluate I'-type integrals on the H-orbits (), after
introducing functions and measures on (), relatively invariant under the action of H.
For any s = (s1,...,5,) € C', let x, be the character of H given by

A3
s T:21 2 . = ()2 (12) % (1) ™
];rl T | Loy
Then y,, (1) = x,(t)y,(t). For each € {0,1}", we set

(4.1) C(e):={se C"|s; =0 for all i such that ¢ = 0}.

When s € C(¢), we have y,(¢) = 1 for all 1 € Hg, by [Proposition 3.2 (iii). Thus for every
s € C(e), we can define a function 4 on ¢, by

At E) = 7,(0) (te H).
Clearly we have
(4.2) Ai(t-x) =y ()4i(x) (te H, x € O,).
In other words, 4] is relatively invariant under the action of H.

ReMARK. If se€ Z"N C(e), one can show that 4¢ is a rational function. We do not
give the details here, however.

We put
(4.3) ng =dimby, (1<i<k<r),
and define p(e) = (p;(e),...,p,(¢)) € Z" by

(4.4) pele) =) emi= > my (1<k<r).

i<k i<k,e=1

For se C" and ¢€{0,1}", let
(4.5) e85 := (151,882, .., &Sr).

It is clear that ¢-s€ C(e).
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When ¢ # 0 := (0,...,0), we make use of I7((,) in (3.9) as coordinates for ¢/, and
define a measure x, on O, by

(4.6) dp,(t- E) = 1 oiipey ) [ dti T] T

&=1, k>i

where t = y(41_.+ T) e H(O,) (T € II(0;)) and dT}; stands for the Euclidean measure
on by; normalized by the standard inner product on g. Let g, be the Dirac measure at
x =0. Recalling the H(0,)-equivariant diffecomorphism ¥, : H((,) — O, in Lemma 3.3,
we see from the following proposition that u, is the transfer of the left Haar measure on

H(0,) by Y,

PROPOSITION 4.1.  The measure p, is relatively invariant under H:
(4.7) A (10 - X) = X (1—e)p(e) 2 (f0) di(x) (10 € H).
In particular, p, is H(0O,)-invariant.

Proor. The case ¢ =0 is trivial. Assume that ¢ #0. Given 7)€ H, we take
T € IT for which ty = y(T°). Consider the map H(0;) 3t — t' := m,(tot) € H(O,). In
view of and [2.6), differentiation of this map gives

dt), = 10 dt;;,
dT}; = t,?k dTy; + (terms including dt; or dT; (i <l <k)).

Considering the lexicographic order > introduced in Section 2, we obtain

Hdz” H T}, = Ht,, dt; H (12)™ dTy;

=1,k>i =1,k>i

X(s+p(£))/2<l0) H dt;; H dTy;.

ei=1 ei=1,k>i

Now, if x=1-E,, then tp-x=1-E, by (i). Therefore
dﬂ£<t0 ) x) X—e-(14p(e) H dtll H dil

= fe-<1+p<s>)/2(t0f>X ewptoy (i) [ Tt ] [ dTo

- X(lfs)-p(e)/Z(tO) d:uf‘(x)
Hence is proved. For the last assertion, note (1 —¢)-p(e)/2e C(1—¢) and

/

H((OC) = HEI%. ]
We now study the integral
(48) Te(s) = J e ED A1) dpy(x) (€ Cle)).
(C{:

THEOREM 4.2. The integral (4.8) converges if and only if se€ C(e) satisfies the
following condition:

(4.9) Rs; > p;(e)/2  for all i such that & = 1.
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Moreover, when this condition is satisfied, one has

(4.10) T, (s) = 2 Fzr@2 T 1 (s,- - pT(g)> ’

8,':1

where |e| :=> & and |p(e)| := >, p;(e).

Proor. If ¢=0, the integral reduces to 1. Thus (4.9) and (4.10) hold
trivially. Assume now that ¢ # 0. By (2.22), we have for T e I1(C,)

GT)-EEy =) (ta)+ Y Tul*=>_{()* + L%}

gi=1 g=1, k>i &=

Since [2.22) and {2.23) lead us to

(4.11) WT)-E=¥T) -E,=y(A1-.+T)-E,
we get from by setting ¢ = p(41_,+ T) and dL; = [[;.,;dTx,

Io,(s) = JH(C | exp (- > {(t)? + ||Li||2}>Xs_g.(1+p(g))/z(f) [ dtaLi
03 81’:1 Eiil

o0
_ J e*(tii)2 (tii)zsi—l—pi(S) dt; H J eiHL"szLi
0 ei=1

8,':1 Ci— n;

_ (l JOO e_uus,._1_p,-(g)/2 du) Hn(dimn,-)/z.
~1\2Jo &i=1

Therefore the convergence argument is reduced to the one for the ordinary gamma
functions. Since (2.14), [4.3) and [4.4) imply

Zdimm = Z Nki = ipk(g) = |p(e)],
Py =1

8,':1, k>i

we obtain (4.10). ]
We introduce the following subsets in C':
(4.12) D(e) :=={se C"|s; = p;(¢)/2 for all i such that ¢ = 0},
(4.13) Ec(e) :=={se D(e) | Rs; > p;(¢)/2 for all i such that ¢ = 1}.
Clearly we have
D(e) = (1 —¢)-p(e)/2+ Cle).
For every se C", let
(4.14) s:=s5s—(1—¢)-p(e)/2.

If s € D(¢), then we have §e C(¢), so that 4{ is defined. [Proposition 4.1 and (4.2} tell
us that if 1€ H and s e D(e), then

(4.15) Ag(t - x) dp, (1 - x) =y, (1) 45(x) dp (x).
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PROPOSITION 4.3. Let s€ Ec(e) and t€ H. Then § satisfies (4.9) and
L eI ED 45(x) dp,(x) = T, (5)7(1).

PrOOF. Observe that Rs; = Rs; provided ¢ = 1. Hence § satisfies (4.9), and the
proposition follows from (4.8) and |4.15). O

§5. Riesz distributions.

We begin this section by considering the map @(T) :=%(T) - E from II to V. By
IProposition 2.5 with ¢ = 1, we see that @ is a polynomial map. Therefore we consider
from now on that the definition domain of @ is the whole space ). Thus, if x = O(T)
(T eh) with the expressions (2.15) and (2.1), we have

(5.1) X = (1) + Y N Taill®s Xk = tiae[ Towes Bl + Y Toni © T

i<k i<k

For ¢ = (¢1,...,¢,) e {=1,1}", let g. be the linear automorphism on § defined by

ge <Z Ak + ) ka> = et + Y kT

Then by (5.1), O is g.-invariant:

(5.2) O(g.T) =O(T) (Tebh)

Since O(I1) = Q by [Proposition 3.1, the equality tells us that @(h) = Q. For
every ¢ € {0,1}", we set

(5.3) R(e):=C(e)NR"={se R"|s; =0 for all i such that ¢ = 0},
(5.4) R (¢):=={seR(e)|s; >0 for all i such that & = 1}.

THEOREM 5.1. (1) Let s€ Ec(e) and § be as in (4.14). Then, for pe L (V), the
following integral converges:

(5:5) RS, 0 = p(x)45(x) dp,(x).

el
I, (5) Jo,

(ii) <%, ¢) admits an analytic continuation as a holomorphic function of s € D(e),
and defines a tempered distribution.

PrOOF. (i) Put x = @(T) in the integral [5.5]. We have (5.1) and, proceeding as in
the proof of [Theorem 4.2, we get

. 1 28— pile)—1
5.6 <<@§,¢>:—~J p(O(T)) [] dL; T ()™ " .
(5.6) : 0.6 e, (6( ))gl:1 81:1( )

Here putting n, := E")s,:l n; for simplicity, we define Lpe C*(R(¢)) and ILpe
C”(Ry () by
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5.7 ig yeeeylpy) = (&) iiAi L,‘ dL,‘,
(57) ot 1) j(p( (;u ¥ >))Hl
(5.8) LoGuy, ... ,u) =2 Lo(w)"?,. .., (u)"?).

Since |tie|?, || Twill* < xe by (5.1), the integral in converges and Ly e (V). By
(5.2), we see that Ly is an even function in each variable. Thus, all the derivatives of
Ip can be extended to R. (&) as continuous functions. By [5.6), [[5.7) and [5.8), we have

1 —p(e)/2
5.9 RE, 0y = _ J Lo(ui,. .. u, u) P2 gy
(5.9) A0 =7 e o(uy ) [J(w)

Eizl

If se Z¢(e), then the last integral converges, which proves (i).
Take = (f,,...,0,) € Z"N R, (¢). Using the obvious identity

Bi—1 -1 Bi
()™ = {H (s 1-257) }@) () AP,

1=0
we have by (4.10) and [5.9],
o Sl lp(e)]/2

D LT b))

o\ B (e
X JR (©) H (_ a_ul) [18¢](u17 s 7“)’) (ul) = 1-pa)/2 dui'

Sizl 8,':1

The right-hand side is holomorphic for se —f+ Z¢(e). Hence {(%;,¢) can be
continued analytically to —f+ Z¢(¢). Since fe Z"'N R, (¢) is arbitrary, the assertion

holds. ]

We simply write #; for 9?}, and call it the Riesz distribution on Q. We note that
s§=us if e=1 and that since D(1) = C’, %, is defined for all se C".

THEOREM 5.2. (i) Let s€ D(e) and &€ Q*. Then the Laplace transform of R: is
given as {R: e~y =y (1), where te H is taken so that ¢ =t*-E*.

(i) The distribution R: coincides with R, for any ¢€{0,1}" and se D(g). In
particular, supp A = O, if s e D(e).

(iii) For s,5' € C'", one has Rs+ Ry = Ry .

Proor. (i) If se Z¢(e), the claim follows from [Proposition 4.3. By analytic
continuation, we see that the assertion holds for any se D(e).

The assertion is clear from (i) and the injectivity of the Laplace transform.

(i) The assertion also follows from the injectivity of the Laplace transform. []

We obtain the following proposition from (4.15) by analytic continuation.
ProposITION 5.3. For se C', pe (V) and t€ H, one has

(R, (17" X)> = 2,(){ Ry, p(x) .
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We conclude this section by deriving some formulas which will be used in the next
section. Fix k such that 1 <k <r—1. For s=(0,...,0,8.1,...,5) € D([k]), put
0= (Sks1y---,8) € C'*. Since Oy = QW < YK the definition of e%s[k} (= Xy)
tells us that

(5.10) (R, 0y = <R olyu> (pe L (V)),

where 2(Q") stands for the Riesz distribution on Q. Setting

g

(k) ,
(5.11) 0" =1(0,...,0,1,0,...,0) € {0,1}",
we put

(5.12) MK(z) :=z-6"+ p(o") )2 (ze ).

Then it is easy to check that M*¥(z) € D(6%) (see (4.12)). Since

(5.13) P05 =(0,...,0, 1.4y 10k,

we see that [p(6%)| = Y ok Mmk = dimmy. by (2.14).  Assume that Rz > 0. Then
M¥(z) € 2¢(0%), and we have by [5.6] and [4.10)

zn—(dim n)/2

(5.14) g0 = | oO) L) o

where I := II(Oy) for simplicity. Now if T e ITy, we have by
O(T) = 7(T) - E = y(Ay_ys + tidi + Li) - B = Y (1) exp Ly - Ey.
Thus by (2.24), (1.2) and (3.11), we get

O(T) = (tr)* Ex — tracjLic + QW (Ly, Ly).

Then, changing the variable #; = \/u, we see that the right-hand side of (5.14) is
n—(dimnk)/2

7J J o(uE, — ujLi + QW(Ly, Ly)) dLy u~" du.
F(Z) Ny

0

Let p. denote the Riesz distribution on (0,400) given by

(5.15) P =

1 +o0 -
,,(Z)jo Y du (f € S(R)).

Then {Zpsx(z), p) 1s rewritten as

(5.16) n_(dimnk)/2<pZ,J g/)(uEk — \/ﬁij + Q[k] (Lk,Lk)) de> .
1y

u

By analytic continuation, we see that this expression for (Z (), ) is valid for any
ze C. Since p, is the Dirac measure at u =0, we get by putting z =0,

(5.17) P52 97 = ﬂ(dim"")/zj p(QM(Li, Ly)) dLy.

LS
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Combining (5.17) with (5.10), we obtain for ¢ e .7 (VI),

(5.18) J ¢(Q[k] (L, Lk)) dLi = n(dimnk)/2<’%(g[k])(nk+1‘k/27~--7”rk/2)’ %
s

§6. Gindikin—Wallach sets.

We now investigate the positivity set (Gindikin—Wallach set) of the parameter s of
the Riesz distribution %, and describe it in connection with the H-orbit structure in Q.
Let us set

(6.1) Z(e):=EZc(e)NR".
By (4.13) and (5.4) it is evident that
(62) 2(2) = 5 p(e) + Ro (o)

For se Z(¢) and 1 <k <r, let

=
(6.3) — EZ
We note here that and [5.13] give
r—1
(6.4) ple) =) ap()
=1

Since p,(0') =0 for i >k, we have s,(ck) = s,(:). Moreover (6.2), and imply
s") e R, (¢), so that

s,((k) >0 (if & =1), s,({k) =0 (if & =0).
This together with gives us

(6 5) s(k) _ (k b <6k 1)/ (lf Sl(ck 11) > 0)7
' st=D) (if s\ =0).
PROPOSITION 6.1.  For s € R’, define 6V, ... 6" € R" inductively by ¢V := s and, for
2<k<r,

(6.6) (&) ::{ a*=V — p(* N2 (if o) > 0),

k=1 (if a}({k:ll) <0).

Then s e Z(¢) if and only if o) € R, (e).

Proor. If se Z(¢), then the argument preceding [Proposition 6.1 says that
o) = s e R, (¢). Suppose conversely that o) e R+g ¢). If m>k—1, we have
Pe1(6™) =0, so that 6" = 6\t by (6.6). Thus 6" =6\, and (6.6) is rewritten
as

1 _
k=1 — Egk_lp(gk 1) + g%
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Therefore by 5.13) and (6.2) we arrive at

2Zekp o € 5p(e) + Role) = Z(o)

completing the proof of |Proposition 6.1l ]

Let ¢,¢ €{0,1}". If ¢#¢', then clearly R, (¢)NR,(¢') = &, so that we have
Z(e)NE(e") = g by [Proposition 6.1. Set

= || =2@.

Based on [Theorem 6.2 which we are going to prove, we shall call = the Gindikin—
Wallach set for the Riesz distributions %Z,. We note here that [Proposition 6.1 supplies
us a simple algorithm for determining whether se€ Z or not for a given seR’.
Moreover, if se Z, the algorithm tells us the ¢ € {0,1}" for which se Z(¢). In fact,

given se R’, we compute ¢ (k=1,...,r) by the formula (6.6). If once al(ck) <0
for some k, we then conclude that s ¢ =. If a,((k) >0 for all k =1,2,...,r, then putting

e =1 (if a,((k) >0), &:=0 (f a,(ck) =0),

we have s e Z(e).
Before stating [Theorem 6.2, we note that if s € Z(¢), then we have §=¢- s by [4.5),

(4.12), (4.13), and (6.1).

THEOREM 6.2. The Riesz distribution X is positive if and only if s€ Z. Moreover,
if se Z(e), then Ry is a measure on the H-orbit O, and one has

(6.7) ARy =Ty (e-5) " 42 du,.

Proor. If se Z(g), then Theorems B.1 and say that %, is a positive measure
given by on the H-orbit O,. To show the converse assertion, we assume that %, is
positive. Since e=%"E" > 0 for x € Q and t € H, we have y_(t) = (R, e EDS >
0 by [Theorem 3.2l Hence s is necessarily real. We shall prove s € £ by induction on
the rank r of the cone Q.

Let us consider first the case r =1. In this case %, coincides with p, given by
(5.15). Take ¢,e€ L(R) (v=1,2,...) such that ¢,(x)=(x+(1/v))e ™ (x>0) and
¢, >0. Then 0<<{p,¢,>=s+(1/v). Letting v— o0, we get s >0, so that the
claim holds in this case. Assume next that the claim holds for cones of rank r — 1. In

particular, the claim holds for the cone Q! = V. For ¢ = (02,...,0,) € C', let R,
be the Riesz distribution %(Qm) on Q. Let Z be the Gindikin—-Wallach set for .
We have = = ], _ 0.1 Z(&) with Z(8) (6= (&2,...,&)) having a description similar to

(6.2): E(é) p(é / —l— + (&) for the obvious definition of R, (Z) (see (5.4)) and p(&) =
(P2(8), ..., P,(8)) W

(6.8) @) =) e

2 <i<k
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Put §:=(s2,...,5,) € R 5= (na1,...,n,) and
M(s1) == M"(s1) = (s1,m21/2,...,n1/2) € D(6"),
see (5.12). Then s— M(s;) = (0,5 —1n/2) e D([1]). Since Rs;= Rpr(s,) * Rs—m(s1) DY
(iii), we have, thanks to (5.16) and (5.10),
(P py = (G2

(6.9) .
X <P51,J (P2, 9(uEy — JujLy + QW(Ly, Ly) + ), dL1>

u

for p e (V). We consider the functions of the form

p(x) == (Pl(xll)(ﬂz(x[l]) (x =xnk + ZXml + X € V)

m>1

with g, € C*(R), p, € C* (V). By virtue of [Proposition 3.8, we see that suppp N Q is
compact, so that %, can be applied to 9. Now by (6.9), we have

Py =7 S ¢1>J

n

(R 32,02 (QV (L1, Ly) + p)>, dL
(6.10) |

= <Psl7(ﬂ1><=@?ﬁ/2 * gés'fﬁ/% Py = <Ps1>(/’1><=%?s3 792

where we have used for the second equality. Take a positive integer N such that
s +N >0. Since <{p,,(u+ N)e "), =51+ N >0, a suitable choice of non-negative
¢, € C¥(R) approximating (u+ N)e™ on [0,+00) yields {p,,¢;) >0. If p, >0, the
positivity of Z; tells us (%5, p,» = {p,,, 0> (A, 9> = 0 by [6.10). Thus %; is positive
and the induction hypothesis ensures that §e Z() for some &= (e, ...,&) € {0,1}"".
We next fix a non-negative ¢, such that (%s, ¢, is strictly positive. Then using
again, we get {p;,p;» >0 for any ¢; >0 in turn. Therefore p; 1is positive, so that
s1 = 0. If 51 =0, then putting ¢:= (0,&,...,&), we get se Z(e).

It now remains the case s; > 0. Before proceeding we remark that the map
(0, +0) x 1y x VI — {xe V|x;; >0} given by

(u, L1, y) — uEy — JujLy + QU(Ly, Ly) + y

is a diffeomorphism. In fact, as is suggested by the proof of |Proposition 3.8 and can be
checked directly, the inverse map is given by

_ , 1 : :
X (Xn, Can) ™2 X, Xy _x—an (Z]XmI»Z]Xnﬂ))-

Now let us consider the functions ¢ € C°(V') given by

[ 1wy (L1)ps(y)  (x11 > 0),
P = {01 2 3 (x11 <0),

with ¢, € C(0,+0), ¢, € CX (1), ¢3€ C*(V}yy). Then we have by (6.9)

0y = G2 GG s j

n

¢>(Ly)dL,.
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Since s; > 0, the positivity assumption of #; yields that ﬂj,ﬁ/z is positive. Hence by
the induction hypothesis we have §—7i/2 € Z(&) for some &= (e,...,&) € {0,1} "
Put ¢:= (1,&,...,¢). Then by and we have py(e) = pp(8) + gy for k =

2,...,r. Thus §—1ii/2 e Z(¢) is equivalent to

si>pie))2 (if e=1), s;=p;i(e)/2 (if &=0)
for i=2,...,r. Since we have s; > 0= p,(¢)/2, we see that se Z(¢). Hence the
theorem is completely proved. O

REMARK. For every >0, we set

gt)y=1 (if t>0), er)=0 (if t=0).

Then we have
Rio(e)={ueR"|u;>0,¢(u;) =¢ for all i=1,2,...,r}.
Making s,u € R" correspond to each other by s =u+ p(e)/2, we see by (6.2) that
seZ(e) & ueR. (e).

Moreover if 2 is symmetric and simple, then d := dimby; = dim V; is independent of
k,i, so that (4.3) and (4.4) imply

pile) =d(er + - +éek1).

From these observations follows the description of = for the case of symmetric cones
given in [3, p. 138].
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