
J. Math. Soc. Japan
Vol. 52, No. 1, 2000

Positive Riesz distributions on homogeneous cones
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Abstract. Riesz distributions are relatively invariant distributions supported by the

closure W of a homogeneous cone W. In this paper, we clarify the positivity condition of

Riesz distributions by relating it to the orbit structure of W. Moreover each of the

positive Riesz distributions is described explicitly as a measure on an orbit in W.

Introduction.

The study of Riesz distributions originates from the paper [9] of Marcel Riesz,

where he introduces a family of convolution operators as a generalization of the classical

Riemann±Liouville operators on the positive reals to the Lorentz cone in R
n. Riesz's

distributions are the distributions determined by the homogeneous functions ra�x� :�

�x2
1 ÿ x2

2 ÿ � � � ÿ x2
n�

a=2 �a A C� divided by G-factors (see for example the book [13,

(II.3;31)] or the article [2] for details). His aim was to solve the wave equation, and a

systematic use of analytic continuation is made. Among subsequent works carried out

by various mathematicians, Gindikin's paper [5 ] was the ®rst to consider a general-

ization of Riesz's distribution on an arbitrary homogeneous cone W. Gindikin replaces

the above ra by functions Ds �s � �s1; s2; . . . ; sr� A C
r� on W which are relatively in-

variant under a split solvable Lie group H acting linearly and simply transitively on W.

When W is the cone of positive de®nite real symmetric matrices, Ds is the product

D s1ÿs2
1 � � �Dsrÿ1ÿsr

rÿ1 Dsr
r of the principal minors D1; . . . ;Drÿ1;Dr � det. He also investigates

the gamma function GW associated to the cone W playing the role of the G-factors in

Riesz's distribution. Such being the case, we call the distributions Rs determined by

GW�s�
ÿ1
Ds dm the Riesz distributions on W, where dm is the H-invariant measure on W.

Our major concern for the Riesz distributions Rs is to determine the set X of the

parameter s for which Rs is a positive measure. The set X plays an important role in

the study of Hilbert spaces of holomorphic functions on Siegel domains as is done by

Vergne and Rossi [14 ] to deal with the analytic continuation of the holomorphic discrete

series representations of semisimple Lie groups (see also [3], [16 ] for this). For general

cones, the set X is described in Gindikin's paper [6 ]. Since the intersection of X with

the set f�a; a; . . . ; a� j a A Cg is seen to be identical with the Wallach set in the case of

symmetric cones (cf. [3]), we shall call X the Gindikin±Wallach set. However, only a

very rough sketch is given in [6 ], and the complete details seem to be unpublished until

now. Proofs available to us as of now are for the case of symmetric cones treated in [3,

Chapter VII, Section 3], where a ®ne structure of Euclidean Jordan algebras is thor-

oughly utilized. The motivation of the present work was to improve this situation.
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But more is done in this paper. In fact, not only do we have a clearer description of X

by relating it to the H-orbit structure of W, but also we give explicitly a positive measure

with its support speci®ed for each of the elements in X. Moreover, a simple algorithm

for the speci®cation is supplied.

Let us explain our results in more detail. The basic tool with which we work in

place of Jordan algebras is the structure theory of normal j-algebras developed in [8].

Based on the fact that the normal j-algebras are in one-to-one correspondence with the

Siegel domains, we shall start with a normal j-algebra g such that the corresponding

Siegel domain is of tube type. Thus g is graded as g � g�0�l g�1� and our cone W is

sitting in V :� g�1�. Moreover, h :� g�0� is the Lie algebra of the group H acting

simply transitively on W. The structure theorem of normal j-algebras (see Theorem 1.1

for details) says that there is a basis a1; . . . ; ar for the roots of g, so that h and V are

respectively direct sums of the root spaces:

h � al 0
1Uk<mUr

g�amÿak�=2

 !

; V � 0
r

k�1

gak

 !

l 0
1Uk<mUr

g�am�ak�=2

 !

;

see (1.3), (1.7) and (1.8). Let Ek A gak �k � 1; 2; . . . ; r� be the root vectors such that

� jEk;El � � dklEl . Our ®rst theorem is the following.

Theorem A. The 2r elements Ee :� e1E1 � � � � � erEr �e � �e1; . . . ; er� A f0; 1g r� form

a complete set of representatives of the H-orbits in W:

W �
G

e A f0;1g r

Oe �Oe :� H � Ee�:

In order to state our second theorem, we put for every e A f0; 1gr

pk�e� :�
X

i<k

ei dim g�akÿai�=2
;

X�e� :� fs A R
r j sk � pk�e�=2 �if ek � 0�; sk > pk�e�=2 �if ek � 1�g:

Theorem B. The Riesz distribution Rs is a relatively invariant positive measure on

Oe under the action of H if and only if s A X�e�. Thus the Gindikin±Wallach set X is the

disjoint union

X �
G

e A f0;1g r

X�e�:

It is easy to verify that our description of X reduces to that of Faraut and KoraÂny

[3, p. 138] for the case of symmetric cones (see Remark given after Theorem 6.2).

To describe the measure that Rs �s A X�e�� induces on Oe we will pick up a

subgroup H�Oe� of H which is di¨eomorphic to Oe (see (3.4) or (3.5) for an explicit

description of H�Oe�). Then transferring the left Haar measure on H�Oe� to Oe by the

orbit map Ce : t 7! t � Ee, we have an H�Oe�-invariant measure me on Oe. The measure

me turns out to be relatively invariant under H (Proposition 4.1). Then the measure

dRs �s A X�e�� is a positive number multiple of De
e�s dme with the density De

e�s which is the
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transfer of a character of H�Oe� to Oe, where e � s :� �e1s1; . . . ; ersr�. Furthermore, the

positive constant is the reciprocal of the gamma function GOe
associated to the orbit Oe

(see (4.8) for the de®nition of GOe
).

Theorem C. The measure dRs �s A X�e�� is given by

dRs � GOe
�e � s�ÿ1

D e
e�s dme:�0:1�

Theorem C is essentially proved in Section 5. The function GOe
itself is a gen-

eralization of the function GW studied by Gindikin [5 ]. We show in Theorem 4.2 that it

is expressed as a product of the usual gamma functions.

Theorem D. Up to a positive multiple depending on the normalization of the

measure concerned, one has

GOe
�s� �

Y

ei�1

G si ÿ
pi�e�

2

� �

:

We now describe the organization of this paper. In Section 1, we summarize the

basic structure of normal j-algebras. Section 2 is devoted to giving various explicit

formulas. This is done by expressing the elements in H by lower triangular matrices

with vector entries (see (2.4)). The idea of such expression is due to Vinberg [15] (see

also [5]), where the theory is based on the left symmetric algebras. Our formulation is

inspired by the book [3, Chapter VI, Section 3] of Faraut and KoraÂny in which the

framework of Jordan algebra is developed.

In Section 3, we study the H-orbit structure and an inductive structure of W. The

explicit formulas obtained in Section 2 play a fundamental role here. We remark that

the inductive description of homogeneous cones is ®rst given by Vinberg [15] and further

pursued by Rothaus [12] and Dorfmeister [1]. Theorem A above is proved in Theorem

3.5.

The purpose of Section 4 is to introduce and investigate the gamma function GOe

associated to Oe for every e A f0; 1gr mentioned above. The de®nition of GOe
requires a

function and a measure on Oe which are relatively invariant under the action of H.

These two relative invariants are de®ned through the above-mentioned di¨eomorphism

Ce : H�Oe� ! Oe. It is essentially from the convergence condition of the de®ning in-

tegral (4.8) of GOe
that the condition for X�e� is derived.

In Section 5, we consider the analytic continuations of the distributions Re
s obtained

from the relatively invariant measures on Oe de®ned by the right-hand side of (0.1).

This is done in Theorem 5.1, and comparing the Laplace transforms of these dis-

tributions, we see in Theorem 5.2 that these distributions coincide with the Riesz

distributions in each of their de®nition domains of the parameter s.

In the last section, Section 6, the Gindikin±Wallach set X is determined. Properly

speaking, we de®ne X as the disjoint union of X�e�'s and prove that X is exactly the

positivity set for the Riesz distribution. The proof is carried out by induction on

the rank of cones, and in this regard, the inductive description of W in Section 3

is of substantial importance. The algorithm mentioned above is given after Proposition

6.1.
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Let us ®x some general notations used in this paper. Let U be a real vector space

and U � its dual vector space. For A A End�U �, A� denotes the adjoint operator of A,

that is, A�x :� x � A �x A U ��. Moreover, if U is endowed with an inner product, we

denote by S�U � the Schwartz space of rapidly decreasing functions on U.

The author would like to express his sincere gratitude to Professor Takaaki Nomura

for the encouragement in writing this paper. The author is also grateful to Professor

Masakazu Muro for his interest in this work.

§1. Preliminaries.

Let V be a ®nite-dimensional vector space over R and W an open convex cone in V

containing no line. We assume that W is homogeneous. This means that the group

GL�W� of linear automorphisms of the cone W acts on W transitively. Let TW :�

V � iW be the corresponding tube domain in the complexi®cation VC of V. Then TW is

homogeneous under the a½ne transformations

x� i y 7! a� t � x� it � y �a A V ; t A GL�W��:

The tube domain TW is also called a Siegel domain of type I, a special case of Siegel

domains of type II (see [8] for de®nition). Let D be a Siegel domain of type II on which

the group Hol�D� of holomorphic automorphisms of D acts transitively. By [7] there is

a split solvable closed subgroup G of Hol�D� acting simply transitively on D, and the

Lie algebra g of G has a structure of normal j-algebra. Conversely any normal j-

algebra gives rise to a homogeneous Siegel domain of type II as described in [8, Chapter 2,

Section 5], [11, Section 4A]. These observations ensure that we lose no generality by

beginning the present paper with a normal j-algebra and assuming our homogeneous

cone to be de®ned through the normal j-algebra.

Now let g be a real split solvable Lie algebra, j a linear automorphism on g such

that j2 � ÿidg, and o0 a linear form on g. The triple �g; j;o0� is called a normal

j-algebra if the following three conditions are satis®ed:

(i) �Y ;Y 0� � j�Y ; jY 0� � j� jY ;Y 0� ÿ � jY ; jY 0� � 0 for all Y ;Y 0 A g,

(ii) h� jY ; jY 0�;o0i � h�Y ;Y 0�;o0i for all Y ;Y 0 A g,

(iii) h�Y ; jY �;o0i > 0 for all non-zero Y A g.

By (ii) and (iii), we de®ne an inner product ��j��o0
on g as

�Y jY 0�o0
:� h�Y ; jY 0�;o0i �Y ;Y 0 A g�:�1:1�

Let a be the orthogonal complement of �g; g� relative to this inner product. It is known

that a is a commutative subalgebra of g and ad�a� is a commutative family of self-

adjoint operators on g. The dimension r :� dim a is called the rank of g. For a linear

form a on a, we set

ga :� fY A g j �C;Y � � hC; aiY for all C A ag:

Then �ga; gb�H ga�b, and if a0 b, we have ga ? gb with respect to the inner product

(1.1). If a0 0 and ga 0 f0g, we call a a root and ga the root space corresponding to a.

Concerning normal j-algebras, the following theorem is fundamental.
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Theorem 1.1 (Pyatetskii-Shapiro [8]). (i) There is a linear basis fA1; . . . ;Arg of a

such that if one puts El :� ÿ jAl , then �Ak;El � � dklEl �1U k; lU r�.

(ii) Let a1; . . . ; ar be the basis of a� dual to A1; . . . ;Ar. Then the possible roots are

of the following forms:

ak; ak=2 �1U kU r�;

�am ÿ ak�=2; �am � ak�=2 �1U k < mU r�:

(iii) The root spaces gak �1U kU r� are one-dimensional: gak � REk.

(iv) If m > k, then jg�amÿak�=2
� g�am�ak�=2

, and the action of j is given by

jY � ÿ�Y ;Ek� �Y A g�amÿak�=2
�:�1:2�

Moreover jgak=2 � gak=2.

Let us put

g�1� :� 0
r

k�1

gak

 !

l 0
1Uk<mUr

g�am�ak�=2

 !

; g�1=2� :� 0
r

k�1

gak=2;

g�0� :� al 0
1Uk<mUr

g�amÿak�=2

 !

:

�1:3�

Then we have g � g�1�l g�1=2�l g�0�. We also put

E :� E1 � � � � � Er; A :� A1 � � � � � Ar�1:4�

for simplicity. Then ad�A�Y � mY for Y A g�m�. Furthermore

�g�m�; g�n��H g�m� n� �m; n � 0; 1=2; 1�;�1:5�

where we understand g�m� � f0g for m > 1. It is immediately seen from Theorem 1.1

that jg�0� � g�1� with

jY � ÿ�Y ;E � �Y A g�0���1:6�

and jg�1=2� � g�1=2�.

It is known that normal j-algebras corresponding to tube domains are those for

which g�1=2� � f0g. Henceforth, let g be a normal j-algebra such that g�1=2� � f0g.

Put V � g�1� and h � g�0�. By (1.5), g is a semidirect product V c h with V a

commutative ideal. Let G be the simply connected Lie group corresponding to the Lie

algebra g. Since g is split solvable, the exponential mapping is a di¨eomorphism from

g onto G. Put H :� exp hHG. The adjoint action of H leaves V invariant, and we

write t � x for Ad�t�x �t A H; x A V �. By [11, Theorem 4.15] the H-orbit W through E

is an open convex cone containing no line. Moreover, H acts on W simply transitively.

In order to make the notation clearer, we shall put

Vmk :� g�am�ak�=2
�1U kUmU r�; hmk :� g�amÿak�=2

�1U k < mU r�:

Note that Vkk � REk �1U kU r�. We have by (1.3)
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V � 0
r

k�1

REk

 !

l 0
1Uk<mUr

Vmk

 !

;�1:7�

h � 0
r

k�1

RAk

 !

l 0
1Uk<mUr

hmk

 !

:�1:8�

Before closing this preliminary section, we shall make a brief observation about the

dual cones. The dual cone W� of W is by de®nition

W�
:� fx A V

� j hx; xi > 0 for all x A Wnf0gg:�1:9�

Then W� is also an open convex cone in V � containing no line. It is a fundamental fact

that W��
:� �W��� equals W under the canonical identi®cation of V�� with V. Let

H �
:� t�jt A Hf gHGL�V ��. It is known that H � acts simply transitively on W� (see

[15, Proposition 9]). The following lemma is a consequence of this observation.

Lemma 1.2. Take x0 A W�. One has

W � fx A V j hx; xiV 0 for all x A W�g

� fx A V j ht � x; x0iV 0 for all t A Hg:

§2. Explicit description of H-action on V.

In this section, retaining the notation of the previous section, we describe the action

of H on V explicitly by expressing the elements of H as lower triangular matrices with

vector entries. This expression visualizes not only the multiplication of the elements of

H but also the action of H on V, and makes the resultant formulas easier to understand.

We start by expressing every T A h, according to (1.8), uniquely by

T �
X

r

k�1

tkkAk �
X

m>k

Tmk �tkk A R; Tmk A hmk�:�2:1�

For the element T A h in (2.1), we put

Lk :�
X

m>k

Tmk �1U kU rÿ 1�:�2:2�

Given T A h, the symbols Tmk �m > k� as well as Lk will be used to denote the elements

in (2.1) and (2.2) without any comments in this paper. Let P be the open subset of h

de®ned by

P :� fT A h j tkk > 0 for all k � 1; 2; . . . ; rg:

Putting Tkk :� �2 log tkk�Ak �1U kU r� for T A P, we set

g�T� :� expT11 � expL1 � expT22 � � � expLrÿ1 � expTrr:�2:3�

Then g�T� A H, and we shall write it in the following form of lower triangular matrix:
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t11

T21 t22

.

.

.

.

.

.

Tr1 Tr2 trr

0

B

B

B

B

@

1

C

C

C

C

A

:�2:4�

Proposition 2.1. (i) For T ;T 0
A P, one has

t11

T21 t22

.

.

.

.

.

.

Tr1 Tr2 trr

0

B

B

B

B

@

1

C

C

C

C

A

t 011
T 0
21 t 022

.

.

.

.

.

.

T 0
r1 T 0

r2 t 0rr

0

B

B

B

B

@

1

C

C

C

C

A

�

t 0011
T 00
21 t 0022

.

.

.

.

.

.

T 00
r1 T 00

r2 t 00rr

0

B

B

B

B

@

1

C

C

C

C

A

with

t 00kk � tkkt
0
kk �1U kU r�;�2:5�

T 00
mk � tmmT

0
mk �

X

k<l<m

�Tml ;T
0
lk� � t 0kkTmk �1U k < mU r�:�2:6�

(ii) The map g is a di¨eomorphism from P onto H.

Proof. (i) Let 1U iU kU r. We have

expLk � expL
0
i � expAd�expLk�L

0
i � expLk � exp eadLkL 0

i � expLk:�2:7�

In the same way, we get

expTkk � expL
0
i � exp eadTkkL 0

i � expTkk;�2:8�

expLk � expT
0
ii �

expT 0
ii � expLk �i < k�;

expT 0
kk � exp e

ÿadT 0
kkLk �i � k�:

�

�2:9�

Using (2.9) and noting that exp a is commutative, we obtain

g�T� expT 0
11 � expT11 expT

0
11 � exp e

ÿadT 0
11L1 � expT22 � � � expLrÿ1 expTrr:

Then owing to (2.7) and (2.8), we see that g�T� expT 0
11 expL

0
1 is equal to

expT11 expT
0
11 � exp e

ÿadT 0
11L1 exp�e

adT22eadL2 � � � eadLrÿ1eadTrr�L 0
1 �

� expT22 � � � expLrÿ1 expTrr:

Repetition of this argument yields g�T�g�T 0� � g�T 00�, where

T 00
kk � Tkk � T 0

kk;�2:10�

L 00
k � eÿadT 0

kkLk � eadTk�1; k�1eadLk�1 � � � eadLrÿ1eadTrrL 0
k:�2:11�

Thus (2.5) follows immediately from (2.10). To show (2.6) we observe that (1.8), (2.2)

and Theorem 1.1 imply ad �Lk�
2
L 0
i � 0, so that if i < k,

eadLkL 0
i � L 0

i � �Lk;L
0
i � � L 0

i � �Lk;T
0
ki�:�2:12�
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Similarly,

eadTkkL 0
i � tkkT

0
ki �

X

l0k; l>i

T 0
li �if i < k�; eÿadT 0

kkLk � t 0kkLk:�2:13�

Making use of (2.12) and (2.13), we calculate the right-hand side of (2.11) to arrive at

the right-hand side of (2.6).

(ii) Let ~H be the image of g. By (i), ~H is a subgroup of H. Recall the element A

in (1.4). Then g�A� equals the unit element of H. Since

d

dh

�

�

�

�

h�0

g�A� hT� � T �T A h�

as is easily seen, the map g is a local di¨eomorphism at A, so that the subgroup ~H is

open. Since H is connected, we have H � ~H. It remains to show that g is injective.

Here we need the following simple lemma.

Lemma 2.2. For two subalgebras h1 and h2 of h such that h1 V h2 � f0g, the map

exp h1 � exp h2 C �t1; t2� 7! t1t2 A H is injective.

Proof. Suppose that t1t2 � t 01t
0
2 �ti; t

0
i A exp hi; i � 1; 2�. Then there exists T A h

such that expT � tÿ1
1 t 01 � t2t

0ÿ1
2 . This implies T A h1 V h2, so that T � 0. Hence

t1 � t 01 and t2 � t 02. r

We now prove the injectivity of g. Let ni �1U iU rÿ 1� be the commutative

subalgebras of h given by

ni :� 0
m>i

hmi:�2:14�

We shall apply Lemma 2.2 repeatedly to the pairs of the subalgebras

h�l � :� 0
l

i�1

RAi

 !

l 0
l

i�1

ni

 !

; ~h�l � :� 0
l

i�1

RAi

 !

l 0
lÿ1

i�1

ni

 !

for l � 1; . . . ; rÿ 1. Suppose g�T� � g�T 0� for T ;T 0 A P. Then Lemma 2.2 with h1 :�

h�rÿ1� and h2 :� RAr gives trr � t 0rr and g�T� exp�ÿTrr� � g�T 0� exp�ÿT 0
rr� A exp h�rÿ1�.

Next, putting h1 :�
~h�rÿ1� and h2 :� nrÿ1 in Lemma 2.2, we get Lrÿ1 � L 0

rÿ1. Repeating

these arguments, we obtain T � T 0. r

We next observe the action of H on V. To do so we express every x A V as

x �
X

r

k�1

xkkEk �
X

m>k

Xmk �xkk A R; Xmk A Vmk�:�2:15�

We put Xkk :� xkkEk �1U kU r�. We shall use the symbol Xmk �mV k� to denote the

Vmk-component of a given x A V without mentioning it. The action of exp a is diagonal

and easy to describe:

exp
X

r

l�1

�2 log tll�Al

 !

� x �
X

mVk

tmmtkkXmk:�2:16�
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In order to see the action of the other elements of H, we introduce the lexicographic

order � in the index set L :� �m; k� j 1U kUmU rgf by de®ning �m; l � � �k; i� if either

``m > k'' or ``m � k, lV i ''. Since Theorem 1.1 leads us to

ad�h�Vki H 0
�m; l ���k; i�

Vml ��k; i� A L�;

we see that the action of H on V is ``lower triangular'' with respect to the order �. Let

us set

V �k�
:� 0

mVl>k

Vml :�2:17�

Since the summation range can be interpreted as �m; l � � �k � 1; k � 1�, V �k� is H-

invariant.

We now investigate the action of H on the speci®c elements more closely. For this

purpose, we ®rst need to introduce a new inner product on g. Let E � be the linear

form on g de®ned by

hx� T ; E �i :�
X

r

k�1

xkk �x A V ; T A h�:

Lemma 2.3. The bilinear form �Y jY 0� :� �1=2�h� jY ;Y 0�;E �i de®nes an inner

product on g.

Proof. We begin the proof by noting that if o0 is as in (1.1), then

hx� T ;o0i � ÿ
X

r

k�1

hkxkk �x A V ; T A h�;�2:18�

where hk :� ÿhEk;o0i > 0 for all k (see [11, (4.6)]). Now let x; x 0 A V and T ;T 0 A h

and express them as in (2.15) and (2.1) respectively. By Theorem 1.1, we have

� jXmk;X
0
mk�, � jTmk;T

0
mk� A REm. Thus (1.1) and (2.18) tell us that for m > k,

� jXmk;X
0
mk� �

1

hm
�XmkjX

0
mk�o0

Em; � jTmk;T
0
mk� �

1

hm
�TmkjT

0
mk�o0

Em:

This together with � jEk;Ek� � Ek and � jAk;Ak� � Ek gives

2�x� T j x 0 � T 0� �
X

r

k�1

xkkx
0
kk �

X

m>k

1

hm
�XmkjX

0
mk�o0

 !

�2:19�

�
X

r

k�1

tkkt
0
kk �

X

m>k

1

hm
�TmkjT

0
mk�o0

 !

:

Therefore the bilinear form ��j�� is symmetric and positive de®nite. r

The inner product ��j�� in Lemma 2.3 will be called the standard inner product in

what follows. By (2.19), the change to the standard inner product does not a¨ect the

orthogonality of the decomposition of V and h in (1.7) and (1.8) respectively.
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Corollary 2.4. �Tmk; �T
0
mk;Ek�� � 2�T 0

mkjTmk�Em.

Proof. Immediate from �T 0
mk;Ek� � ÿ jT 0

mk by (1.2). r

We set

Tmk � T
0
lk :� �Tmk; �T

0
lk;Ek�� A

Vml �m > l �;

Vlm �l > m�:

�

�2:20�

Since �Tmk;T
0
lk� � 0 �m0 l � by Theorem 1.1, Jacobi's identity gives the commutativity

Tmk � T
0
lk � T 0

lk � Tmk. With these preparations, we are now able to describe explicitly

the action of H on the elements

Ee :�
X

r

k�1

ekEk A V �e � �e1; . . . ; er� A f0; 1g r�:�2:21�

Proposition 2.5. Let x :� g�T� � Ee �T A P�. Then

xkk � ek�tkk�
2 �

X

i<k

eikTkik
2 �1U kU r�;�2:22�

Xmk � ektkk�Tmk;Ek� �
X

i<k

eiTmi � Tki �1U k < mU r�;�2:23�

where k � k stands for the norm de®ned by the standard inner product on g.

Proof. Let 1U iU r. If l > i, then Theorem 1.1 implies that expLl � Ei � Ei and

expTll � Ei � Ei. Thus

g�T� � Ei � expT11 � � � expLiÿ1 � �expTii expLi � Ei�:

Since Ei lies in the H-invariant subspace V �iÿ1� (see (2.17)), it holds that expTii expLi �

Ei A V �iÿ1�. Furthermore, if hU i ÿ 1, Theorem 1.1 shows that expLh as well as expThh

acts trivially on V �iÿ1�. It follows that

g�T� � Ei � expTii expLi � Ei:

Noting ad�Li�
3
Ei � 0 and using (2.16), we have

expTii expLi � Ei � expTii � �Ei � �Li;Ei� � �1=2��Li; �Li;Ei���

� �tii�
2
Ei � tii�Li;Ei� � �1=2��Li; �Li;Ei��:

�2:24�

Substituting Li �
P

m>i Tmi in the last term, we obtain by Corollary 2.4 and (2.20)

g�T� � Ei � �tii�
2
Ei �

X

m>i

tii�Tmi;Ei� �
X

k>i

kTkik
2
Ek �

X

m>k>i

Tmi � Tki;

from which the formulas (2.22) and (2.23) follow immediately. r

Remark. If one expresses x A V by the symmetric matrix

x11 X21 � � � Xr1

X21 x22 Xr2

.

.

.
.
.

.

Xr1 Xr2 xrr

0

B

B

B

B

@

1

C

C

C

C

A

;
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then Proposition 2.5 may be better understood. The elements Ee being expressed by the

diagonal matrices De � diag�e1; . . . ; er�, the formulas (2.22) and (2.23) are the matrix

multiplication rule for x � g�T� �De �
tg�T � under an appropriate interpretation.

§3. Orbit decomposition of W.

From now on, we shall regard H as a subgroup of GL�V � by the adjoint rep-

resentation. Let H denote the closure of H in End�V �. Then H is a semigroup.

Recalling (1.7), we denote by Pml �1U lUmU r� the orthogonal projection V ! Vml .

For k � 1; . . . ; r, we de®ne a map ck : �0;y� ! End�V � by

ck�t� :� t2Pkk � t
X

i<k

Pki �
X

m>k

Pmk

 !

�
X

m>i
m0k; i0k

Pmi:�3:1�

The formula (2.16) says that ck�t� � exp��2 log t�Ak� A H for t > 0. Thus ck�t� belongs

to H for any tV 0. Let P be the closure of P in h:

P � fT A h j tkk V 0 for all k � 1; 2; . . . ; rg:

In view of (2.3), we de®ne a map g : P ! H by

g�T� :� c1�t11� � expL1 � c2�t22� � � � expLrÿ1 � cr�trr�:�3:2�

Evidently g extends g, so that we express g�T � still by the matrix (2.4). We remark that

the formulas in Propositions 2.1 (i) and 2.5 remain valid for g�T � by continuity.

Proposition 3.1. (i) Let W be the closure of W in V. Then H � E � W.

(ii) g�P� � H.

Proof. (i) Clearly H � EHW. To prove the converse inclusion we take ~x A W.

Then there exists a sequence fx�n�gn AN in W such that x�n� ! ~x as n ! y. According to

Proposition 2.1 (ii), we take T �n� A P for which x�n� � g�T �n�� � E. By (2.22) with e �

�1; . . . ; 1�, we have

x
�n�
kk � �t

�n�
kk �

2 �
X

i<k

kT
�n�
ki k

2 �1U kU r�:�3:3�

Since (3.3) says that all the sequences ft
�n�
kk gn AN and fT

�n�
ki gn AN are bounded, we take a

strictly increasing sequence fnng of positive integers such that all of the limits ~tkk :�

lim t
�nn�
kk and ~Tki :� limT

�nn�
ki exist. Put ~T :�

P

~tkkAkk �
P

~Tki. Then T �nn� ! ~T A P as

n ! y. Therefore ~x � g� ~T� � E A H � E, whence (i) follows.

(ii) For ~t A H, we take a sequence ft�n�gn AN in H such that t�n� ! ~t as n ! y. Put

~x :� ~t � E A W and x�n� :� t�n� � E A W. Then x�n� ! ~x as n ! y, and repeating the

argument in (i), we ®nd ~T A P for which ~t � g� ~T�. Hence (ii) is proved. r

We denote by Oe the H-orbit in V through Ee A W. Then Oe is contained in W.

Note that O�1; ...;1� � W and Oe H qW if e0 �1; . . . ; 1�. For x A V , let Hx :� ft A H j

t � x � xg be the stabilizer at x in H.
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Proposition 3.2. (i) Let x :� g�T� � Ee with T A P. If x A 0r

k�1
REk, then

ekTmk � 0 for all 1U k < mU r and x �
Pr

k�1 ek�tkk�
2
Ek.

(ii) If e0 e 0, then the two orbits Oe and Oe 0 are distinct.

(iii) One has

HEe
� fg�T� A H j if ei � 1; then tii � 1 and Tki � 0 �k > i�g:

Proof. (i) We shall prove ekTmk � 0 by induction on k. By (2.23) and (1.2), we

have

0 � Xm1 � e1t11�Tm1;E1� � ÿe1t11 jTm1:

Since t11 0 0, we obtain e1Tm1 � 0. Assume next that eiTmi � 0 �m > i� for i � 1; . . . ;

k ÿ 1. Then, again by (2.23) and (1.2) we have for m > k,

0 � ektkk�Tmk;Ek� �
X

i<k

eiTmi � Tki � ÿektkk jTmk:

Hence ekTmk � 0. The second assertion follows from this and (2.22).

(ii) Clear from (i) by considering the intersection with 0r

k�1
REk.

(iii) The assertion follows from (i) and Proposition 2.5. r

Let hEe
be the Lie algebra of HEe

. Then Proposition 3.2 (iii) tells us that

hEe
� 0

ei�0

�RAi l ni�;

see (2.14) for the de®nition of ni. Let h�Oe� be the orthogonal complement of hEe
in h.

Then

h�Oe� � 0
ei�1

�RAi l ni�:

Note that h�Oe� coincides with hE1ÿe
, where 1 :� �1; . . . ; 1� A f0; 1g r. In particular, h�Oe�

is a subalgebra of h. Put H�Oe� :� exp h�Oe�. Then H�Oe� � HE1ÿe
, so that

H�Oe� � fg�T� A H j if ei � 0; then tii � 1 and Tki � 0 �k > i�g:�3:4�

De®ne a map pe : H ! H�Oe� by

t11

T21 t22

.

.

.
.
.

.

Tr1 Tr2 trr

0

B

B

B

B

@

1

C

C

C

C

A

7!

�t11�
e1

e1T21 �t22�
e2

.

.

.
.
.

.

e1Tr1 e2Tr2 �trr�
er

0

B

B

B

B

@

1

C

C

C

C

A

:�3:5�

Clearly pe is surjective.

Lemma 3.3. (i) For t A H, one has t � Ee � pe�t� � Ee:

(ii) The map Ce : H�Oe� C t 7! t � Ee A Oe is bijective.

Proof. (i) If ei � 0, the right-hand sides of (2.22) and (2.23) do not contain tii nor

Tki �k > i�. Hence the assertion holds.
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(ii) The surjectivity of Ce follows from (i). Since hEe
V h�Oe� � f0g, the injectivity

is clear. r

We set for k � 1; 2; . . . ; rÿ 1;

�k� :� � 0; . . . ; 0
|����{z����}

k times

; 1; . . . ; 1� A f0; 1gr
:�3:6�

Then E�k� �
P

m>k Em belongs to the H-invariant subspace V �k� de®ned in (2.17), and O�k�

is a homogeneous cone in V �k� of rank rÿ k, where the rank of a cone is the rank of the

corresponding normal j-algebra. In fact, O�k� is the homogeneous cone corresponding to

the normal j-subalgebra h�O�k��lV �k�. Thus it is natural to denote the orbit O�k� by

W�k�. Accordingly, we write H�W�k�� instead of H�O�k��. Let PV �k� be the orthogonal

projection V ! V �k�. De®ne E �
�k� A V � by

hx;E �
�k�i :�

X

m>k

xmm:�3:7�

By (2.22), we have

hg�T� � E�k�; E
�
�k�i �

X

m>k

�tmm�
2 �

X

m>l>k

kTmlk
2

( )

�T A P�:�3:8�

If g�T� � E�k� 0 0, then the right-hand side of (3.8) is strictly positive owing to Prop-

osition 2.5. Thus Proposition 3.1 and (1.9) tell us that E �
�k�jV �k� belongs to �W�k���, the

dual cone of W�k�.

Lemma 3.4. (i) For t A H�W�k�� and x A V , one has t � PV �k��x� � PV �k��t � x�.

(ii) For 1U kU rÿ 1, one has PV �k��W� � W
�k�
.

Proof. (i) Let �V �k��? be the orthogonal complement of V �k� in V. Then by

(2.17),

�V �k��? � 0
k

i�1

0
r

l�i

Vli:

If iU k < m, then Theorem 1.1 ensures that 0r

l�i
Vli and hence �V �k��? are stable under

the adjoint action of nm. Since h�W�k�� � 0
m>k

�RAm l nm�, it follows that �V �k��? is

stable under H�W�k��. The H�W�k��-stability of V �k� being evident, the assertion (i)

holds.

(ii) Let x A W. According to Proposition 3.1 (i), we take ~t A H for which x � ~t � E.

If t0 A H�W�k��, we obtain by (i), (3.7) and (2.22)

ht0 � PV �k��x�;E �
�k�i � hPV �k��t0 � x�; E

�
�k�i � ht0~t � E; E

�
�k�iV 0:

Therefore, applying Lemma 1.2 to the cone W�k� in the vector space V �k�, we obtain

PV �k��x� A W
�k�
. Hence PV �k��W�HW

�k�
. The converse inclusion is clear because W

�k�
H

W. r

We now arrive at the main result of this section.
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Theorem 3.5. The H-orbit decomposition of W is given as

W �
G

e A f0;1g r

Oe:

Proof. By Proposition 3.2 (ii) and Lemma 3.3 (ii), it su½ces to show

Claim. Given x A W, there exist e A f0; 1g r
and t A H�Oe� such that x � t � Ee.

We shall prove the claim by induction on the rank r of cones. The rank one case is

obvious. Assume that the claim holds when the rank is rÿ 1. In particular, the claim

holds for W�1�. Let x A W. According to Proposition 3.1, we take ~T A P such that x �

g� ~T� � E (though ~T is not necessarily unique). We assume ®rst that x11 � 0. Then
~t11 � �x11�

1=2 � 0 by (2.22), so that Xm1 � ~t11� ~Tm1;E1� � 0 �m > 1� by (2.23). Thus x �

PV �1��x� A W
�1�

by Lemma 3.4 (ii). Then the claim holds in this case by the induction

hypothesis. Next, let us consider the case x11 > 0. Put

~t1 :�

~t11
~T21 1

.

.

.
.
.

.

~Tr1 0 1

0

B

B

B

B

@

1

C

C

C

C

A

; ~t�1� :�

1

0 ~t22

.

.

.
.
.

.

0 ~Tr2 ~trr

0

B

B

B

B

@

1

C

C

C

C

A

:

Then g� ~T� � ~t1~t�1� A H by Proposition 2.1, and we have ~t11 � �x11�
1=2 > 0 by (2.22), so

that ~t1 A H. On the other hand, we have ~t�1� � E�1� A W
�1�
. By the induction hypothesis,

there exist unique e 0 :� �0; e2; . . . ; er� A f0; 1gr and t 0 � g�T 0� A H�Oe 0� �T 0 A P� such

that ~t�1� � E�1� � t 0 � Ee 0 . Put e :� �1; e2; . . . ; er� and t :� ~t1t 0 A H�Oe�. Then by Propo-

sition 2.5 and Lemma 3.3 (i), we get

x � ~t1~t�1� � �E1 � E�1�� � ~t1 � E1 � ~t�1� � E�1�

� ~t1 � E1 � t 0 � Ee 0 � ~t1t 0�E1 � Ee 0� � t � Ee;

which means that the claim holds when the rank is r. Therefore the theorem is

proved. r

The second half of this section is devoted to an inductive description of W which will

be needed in the proof of Theorem 6.2.

We set

P�Oe� :� fT A h�Oe� j tii > 0 for all i such that ei � 1g:�3:9�

By (3.4), the map P�Oe� C T 7! g�A1ÿe � T� A H�Oe� is bijective, where

Ae :� jEe �
X

r

k�1

ekAk A a:

Proposition 3.6. Let e; e 0 A f0; 1g r. If e� e 0 A f0; 1gr, the map

Oe � Oe 0 C �x; x 0� 7! x� x 0
A V�3:10�

gives a di¨eomorphism from Oe � Oe 0 onto Oe�e 0 .
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Proof. Given x A Oe, we take unique elements t A H�Oe� and T A P�Oe� for which

x � t � Ee and t � g�A1ÿe � T �. Similarly, we take t 0 A H�Oe 0� and T 0 A P�Oe 0� for x 0 A

Oe 0 to have x 0 � t 0 � Ee 0 . Put

~t :� g�A1ÿ�e�e 0� � T � T 0� A H�Oe�e 0�:

Then it is clear that pe�~t� � t and pe 0�~t� � t 0 by (3.5). Thus, by Lemma 3.3 (i),

x� x 0 � t � Ee � t 0 � Ee 0 � ~t � �Ee � Ee 0� � ~t � Ee�e 0 A Oe�e 0 ;

showing that the image of the map in (3.10) is contained in Oe�e 0 . Since the map

H�Oe� �H�Oe 0� 3 �t; t 0� 7! ~t A H�Oe�e 0� is visibly bijective by (3.5), our map in (3.10) is

bijective from the above discussion. r

We de®ne bilinear maps Q�i �
: ni � ni ! V �i � �i � 1; 2; . . . ; rÿ 1� by

Q�i ��L;L 0� :�
1

2
�L; �L 0;Ei��:�3:11�

Lemma 3.7. For every i � 1; 2; . . . ; rÿ 1, one has Q�i ��L;L� A W
�i �

for any L A ni, and

if Li �
P

m>i Tmi, then

Q�i ��Li;Li� �
X

m>i

kTmik
2
Em �

X

m>k>i

Tmi � Tki:�3:12�

Proof. By (2.24) we have expL � Ei � Ei � �L;Ei� �Q�i ��L;L� �L A ni�. Therefore

Q�i ��L;L� � PV �i ��expL � Ei� A PV �i ��W� � W
�i �
;

where we have used Lemma 3.4 to get the last equality. The second assertion follows

from this and Proposition 2.5. r

Let x�1� :� PV �1��x� for x A V . By (2.15) we have x � x11E1 �
Pr

m�2 Xm1 � x�1�.

Proposition 3.8. One has

W � W
�1�
U x A V j x11 > 0; x�1� ÿ

1

x11
Q�1�

X

jXm1;
X

jXm1

� �

A W
�1�

� �

:

Proof. If x A W, then Proposition 3.6 for e � �1; 0; . . . ; 0�; e 0 � �1� tells us that

there exist unique t11 > 0, L1 A n1, and y A W�1� such that x � c1�t11� expL1 � E1 � y.

Using (2.24) and (1.2), we get

x � �t11�
2
E1 ÿ t11 jL1 �Q�1��L1;L1� � y:�3:13�

Hence x�1� � Q�1��L1;L1� � y. On the other hand, comparing (3.13) with (2.15), we

obtain x11 � �t11�
2 and Xm1 � ÿt11 jTm1. Therefore

L1 �
X

m>1

Tm1 � �x11�
ÿ1=2

X

m>1

jXm1;

so that

W�1�
C y � x�1� ÿQ�1��L1;L1� � x�1� ÿ

1

x11
Q�1�

X

jXm1;
X

jXm1

� �

:
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Thus, for a > 0, we see that the set WV fx A V j x11 � ag equals

aE1 �
X

Xm1 � x�1� A V

�

�

�

�

x�1� ÿ
1

a
Q�1�

X

jXm1;

X

jXm1

� �

A W
�1�

� �

:

We also obtain WV fx A V j x11 � 0g � W
�1�

as was shown in the proof of Theorem 3.5.

Hence the proposition is proved. r

§4. Gamma integrals on H-orbits.

In this section, we shall de®ne and evaluate G-type integrals on the H-orbits Oe after

introducing functions and measures on Oe relatively invariant under the action of H.

For any s � �s1; . . . ; sr� A C
r, let ws be the character of H given by

ws :

t11

T21 t22

.

.

.
.
.

.

Tr1 Tr2 trr

0

B

B

B

B

@

1

C

C

C

C

A

7! �t11�
2s1�t22�

2s2 � � � �trr�
2sr
:

Then ws�s 0�t� � ws�t�ws 0�t�. For each e A f0; 1gr, we set

C�e� :� fs A C
r j si � 0 for all i such that ei � 0g:�4:1�

When s A C�e�, we have ws�t� � 1 for all t A HEe
by Proposition 3.2 (iii). Thus for every

s A C�e�, we can de®ne a function D e
s on Oe by

D e
s �t � Ee� :� ws�t� �t A H�:

Clearly we have

De
s �t � x� � ws�t�D

e
s �x� �t A H; x A Oe�:�4:2�

In other words, D e
s is relatively invariant under the action of H.

Remark. If s A Z
r VC�e�, one can show that D e

s is a rational function. We do not

give the details here, however.

We put

nki :� dim hki �1U i < kU r�;�4:3�

and de®ne p�e� � �p1�e�; . . . ; pr�e�� A Z
r by

pk�e� :�
X

i<k

einki �
X

i<k; ei�1

nki �1U kU r�:�4:4�

For s A C
r and e A f0; 1gr, let

e � s :� �e1s1; e2s2; . . . ; ersr�:�4:5�

It is clear that e � s A C�e�.
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When e0 0 :� �0; . . . ; 0�, we make use of P�Oe� in (3.9) as coordinates for Oe and

de®ne a measure me on Oe by

dme�t � Ee� � wÿe��1�p�e��=2�t�
Y
ei�1

dtii
Y

ei�1; k>i

dTki;�4:6�

where t � g�A1ÿe � T� A H�Oe� �T A P�Oe�� and dTki stands for the Euclidean measure

on hki normalized by the standard inner product on g. Let m0 be the Dirac measure at

x � 0. Recalling the H�Oe�-equivariant di¨eomorphism Ce : H�Oe� ! Oe in Lemma 3.3,

we see from the following proposition that me is the transfer of the left Haar measure on

H�Oe� by Ce.

Proposition 4.1. The measure me is relatively invariant under H:

dme�t0 � x� � w�1ÿe��p�e�=2�t0� dme�x� �t0 A H�:�4:7�

In particular, me is H�Oe�-invariant.

Proof. The case e � 0 is trivial. Assume that e0 0. Given t0 A H, we take

T 0 A P for which t0 � g�T 0�. Consider the map H�Oe� C t 7! t 0 :� pe�t0t� A H�Oe�. In

view of (2.5) and (2.6), di¨erentiation of this map gives

dt 0ii � t0ii dtii;

dT 0
ki � t0kk dTki � �terms including dtii or dTli �i < l < k��:

Considering the lexicographic order � introduced in Section 2, we obtain

Y
ei�1

dt 0ii

Y
ei�1;k>i

dT 0
ki �

Y
ei�1

t0ii dtii
Y

ei�1;k>i

�t0kk�
nki dTki

� w�e�p�e��=2�t0�
Y
ei�1

dtii
Y

ei�1;k>i

dTki:

Now, if x � t � Ee, then t0 � x � t 0 � Ee by Lemma 3.3 (i). Therefore

dme�t0 � x� � wÿe��1�p�e��=2�t
0�
Y

dt 0ii

Y
dT 0

ki

� wÿe��1�p�e��=2�t0t�w�e�p�e��=2�t0�
Y

dtii
Y

dTki

� w�1ÿe��p�e�=2�t0� dme�x�:

Hence (4.7) is proved. For the last assertion, note �1ÿ e� � p�e�=2 A C�1ÿ e� and

H�Oe� � HE1ÿe
. r

We now study the integral

GOe
�s� :�

�
Oe

eÿhx;E �iDe
s �x� dme�x� �s A C�e��:�4:8�

Theorem 4.2. The integral (4.8) converges if and only if s A C�e� satis®es the

following condition:

Rsi > pi�e�=2 for all i such that ei � 1:�4:9�
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Moreover, when this condition is satis®ed, one has

GOe
�s� � 2ÿjejpjp�e�j=2

Y

ei�1

G si ÿ
pi�e�

2

� �

;�4:10�

where jej :�
Pr

i�1 ei and jp�e�j :�
Pr

i�1 pi�e�.

Proof. If e � 0, the integral (4.8) reduces to 1. Thus (4.9) and (4.10) hold

trivially. Assume now that e0 0. By (2.22), we have for T A P�Oe�

hg�T� � E;E �i :�
X

ei�1

�tii�
2 �

X

ei�1; k>i

kTkik
2 �

X

ei�1

f�tii�
2 � kLik

2g:

Since (2.22) and (2.23) lead us to

g�T� � E � g�T� � Ee � g�A1ÿe � T� � Ee;�4:11�

we get from (4.6) by setting t � g�A1ÿe � T � and dLi �
Q

k>i dTki,

GOe
�s� �

�

P�Oe�

exp ÿ
X

ei�1

f�tii�
2 � kLik

2g

 !

wsÿe��1�p�e��=2�t�
Y

ei�1

dtiidLi

�
Y

ei�1

�y

0

eÿ�tii�
2

�tii�
2siÿ1ÿpi�e� dtii

Y

ei�1

�

ni

eÿkLik
2

dLi

�
Y

ei�1

1

2

�y

0

eÿuusiÿ1ÿpi�e�=2 du

� �

Y

ei�1

p�dimni�=2:

Therefore the convergence argument is reduced to the one for the ordinary gamma

functions. Since (2.14), (4.3) and (4.4) imply

X

ei�1

dim ni �
X

ei�1; k>i

nki �
X

r

k�1

pk�e� � jp�e�j;

we obtain (4.10). r

We introduce the following subsets in C
r:

D�e� :� fs A C
r j si � pi�e�=2 for all i such that ei � 0g;�4:12�

XC �e� :� fs A D�e� jRsi > pi�e�=2 for all i such that ei � 1g:�4:13�

Clearly we have

D�e� � �1ÿ e� � p�e�=2� C�e�:

For every s A C
r, let

~s :� sÿ �1ÿ e� � p�e�=2:�4:14�

If s A D�e�, then we have ~s A C�e�, so that De
~s is de®ned. Proposition 4.1 and (4.2) tell

us that if t A H and s A D�e�, then

D e
~s �t � x� dme�t � x� � ws�t�D

e
~s �x� dme�x�:�4:15�
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Proposition 4.3. Let s A XC �e� and t A H. Then ~s satis®es (4.9) and

�

Oe

eÿhx; t ��E �iD e
~s �x� dme�x� � GOe

�~s�wÿs�t�:

Proof. Observe that R~si � Rsi provided ei � 1. Hence ~s satis®es (4.9), and the

proposition follows from (4.8) and (4.15). r

§5. Riesz distributions.

We begin this section by considering the map Y�T� :� g�T� � E from P to V. By

Proposition 2.5 with e � 1, we see that Y is a polynomial map. Therefore we consider

from now on that the de®nition domain of Y is the whole space h. Thus, if x � Y�T�

�T A h� with the expressions (2.15) and (2.1), we have

xkk � �tkk�
2 �

X

i<k

kTkik
2
; Xmk � tkk�Tmk;Ek� �

X

i<k

Tmi � Tki:�5:1�

For c � �c1; . . . ; cr� A fÿ1; 1gr, let gc be the linear automorphism on h de®ned by

gc
X

tkkAk �
X

Tmk

� �

:�
X

cktkkAk �
X

ckTmk:

Then by (5.1), Y is gc-invariant:

Y�gcT� � Y�T� �T A h�:�5:2�

Since Y�P� � W by Proposition 3.1, the equality (5.2) tells us that Y�h� � W. For

every e A f0; 1gr, we set

R�e� :� C�e�VR
r � fs A R

r j si � 0 for all i such that ei � 0g;�5:3�

R��e� :� fs A R�e� j si > 0 for all i such that ei � 1g:�5:4�

Theorem 5.1. (i) Let s A XC�e� and ~s be as in (4.14). Then, for j A S�V �, the

following integral converges:

hRe
s ; ji :�

1

GOe
�~s�

�

Oe

j�x�De
~s �x� dme�x�:�5:5�

(ii) hRe
s ; ji admits an analytic continuation as a holomorphic function of s A D�e�,

and de®nes a tempered distribution.

Proof. (i) Put x � Y�T � in the integral (5.5). We have (5.1) and, proceeding as in

the proof of Theorem 4.2, we get

hR e
s ; ji �

1

GOe
�~s�

�

P�Oe�

j�Y�T��
Y

ei�1

dLi

Y

ei�1

�tii�
2siÿpi�e�ÿ1

dtii:�5:6�

Here putting ne :� 0
ei�1

ni for simplicity, we de®ne ~Iej A Cy�R�e�� and Iej A

Cy�R��e�� by
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~Iej�t11; . . . ; trr� :�

�

ne

j

�

Y

�

X

ei�1

�tiiAi � Li�

��

Y

ei�1

dLi;�5:7�

Iej�u1; . . . ; ur� :� 2ÿjej~Iej��u1�
1=2; . . . ; �ur�

1=2�:�5:8�

Since jtkkj
2, kTkik

2
U xkk by (5.1), the integral in (5.7) converges and ~Iej A S�V �. By

(5.2), we see that ~Iej is an even function in each variable. Thus, all the derivatives of

Iej can be extended to R��e� as continuous functions. By (5.6), (5.7) and (5.8), we have

hRe
s ; ji �

1

GOe
�~s�

�

R��e�

Iej�u1; . . . ; ur�
Y

ei�1

�ui�
siÿ1ÿpi�e�=2 dui:�5:9�

If s A XC �e�, then the last integral converges, which proves (i).

(ii) Take b � �b1; . . . ; br� A Z
r VR��e�. Using the obvious identity

�ui�
siÿ1ÿpi�e�=2 �

Y

biÿ1

l�0

si � l ÿ
pi�e�

2

� �ÿ1
( )

q

qui

� �bi

�ui�
si�biÿ1ÿpi�e�=2;

we have by (4.10) and (5.9),

hRe
s ; ji �

2jejpÿjp�e�j=2

Q

ei�1 G�si � bi ÿ pi�e�=2�
�

�

�

R��e�

Y

ei�1

ÿ
q

qui

� �bi

�Iej��u1; . . . ; ur�
Y

ei�1

�ui�
si�biÿ1ÿpi�e�=2 dui:

The right-hand side is holomorphic for s A ÿ b � XC �e�. Hence hRe
s ; ji can be

continued analytically to ÿb � XC�e�. Since b A Z
r VR��e� is arbitrary, the assertion

(ii) holds. r

We simply write Rs for R
1

s , and call it the Riesz distribution on W. We note that

~s � s if e � 1 and that since D�1� � C
r, Rs is de®ned for all s A C

r.

Theorem 5.2. (i) Let s A D�e� and x A W�. Then the Laplace transform of R
e
s is

given as hRe
s ; e

ÿhx;xiix � wÿs�t�, where t A H is taken so that x � t� � E �.

(ii) The distribution R
e
s coincides with Rs for any e A f0; 1gr

and s A D�e�. In

particular, suppRs HOe if s A D�e�.

(iii) For s; s 0 A C
r, one has Rs �Rs 0 � Rs�s 0 .

Proof. (i) If s A XC �e�, the claim follows from Proposition 4.3. By analytic

continuation, we see that the assertion holds for any s A D�e�.

(ii) The assertion is clear from (i) and the injectivity of the Laplace transform.

(iii) The assertion also follows from the injectivity of the Laplace transform. r

We obtain the following proposition from (4.15) by analytic continuation.

Proposition 5.3. For s A C
r, j A S�V � and t A H, one has

hRs; j�t
ÿ1 � x�ix � ws�t�hRs; j�x�ix:
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We conclude this section by deriving some formulas which will be used in the next

section. Fix k such that 1U kU rÿ 1. For s � �0; . . . ; 0; sk�1; . . . ; sr� A D��k��, put

s :� �sk�1; . . . ; sr� A C
rÿk. Since O�k� � W�k�

HV �k�, the de®nition (5.5) of R
�k�
s �� Rs�

tells us that

hRs; ji � hR�W�k��s; jjV �k�i �j A S�V��;�5:10�

where R�W�k��s stands for the Riesz distribution on W�k�. Setting

dk � �0; . . . ; 0; 1
�k�
; 0; . . . ; 0� A f0; 1gr;�5:11�

we put

M k�z� :� z � dk � p�dk�=2 �z A C�:�5:12�

Then it is easy to check that M k�z� A D�dk� (see (4.12)). Since

p�dk� � �0; . . . ; 0; nk�1;k; . . . ; nrk�;�5:13�

we see that jp�dk�j �
P

m>k nmk � dim nk by (2.14). Assume that Rz > 0. Then

M k�z� A XC �dk�, and we have by (5.6) and (4.10)

hRM k�z�; ji � 2pÿ�dim nk�=2

G�z�

�

Pk

j�Y�T�� dLk�tkk�2zÿ1
dtkk;�5:14�

where Pk :� P�Odk � for simplicity. Now if T A Pk, we have by (4.11)

Y�T� � g�T� � E � g�A
1ÿdk � tkkAk � Lk� � Ek � ck�tkk� expLk � Ek:

Thus by (2.24), (1.2) and (3.11), we get

Y�T� � �tkk�2Ek ÿ tkk jLk �Q�k��Lk;Lk�:

Then, changing the variable tkk �
���

u
p

, we see that the right-hand side of (5.14) is

pÿ�dim nk�=2

G�z�

�y

0

�

nk

j�uEk ÿ
���

u
p

jLk �Q�k��Lk;Lk�� dLk u
zÿ1 du:

Let rz denote the Riesz distribution on �0;�y� given by

hrz;ci :� 1

G�z�

��y

0

c�u�uzÿ1 du �c A S�R��:�5:15�

Then hRM k�z�; ji is rewritten as

pÿ�dim nk�=2 rz;

�

nk

j�uEk ÿ
���

u
p

jLk �Q�k��Lk;Lk�� dLk

� �

u

:�5:16�

By analytic continuation, we see that this expression for hRM k�z�; ji is valid for any

z A C . Since r0 is the Dirac measure at u � 0, we get by putting z � 0,

hRp�dk�=2; ji � pÿ�dimnk�=2
�

nk

j�Q�k��Lk;Lk�� dLk:�5:17�
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Combining (5.17) with (5.10), we obtain for f A S�V �k��,
�

nk

f�Q�k��Lk;Lk�� dLk � p�dimnk�=2hR�W�k���nk�1; k=2; ...;nrk=2�
; fi:�5:18�

§6. Gindikin±Wallach sets.

We now investigate the positivity set (Gindikin±Wallach set) of the parameter s of

the Riesz distribution Rs and describe it in connection with the H-orbit structure in W.

Let us set

X�e� :� XC �e�VR
r:�6:1�

By (4.13) and (5.4) it is evident that

X�e� �
1

2
p�e� � R��e�:�6:2�

For s A X�e� and 1U kU r, let

s�k� :� sÿ
1

2

X

kÿ1

i�1

ei p�d
i�:�6:3�

We note here that (4.4) and (5.13) give

p�e� �
X

rÿ1

i�1

ei p�d
i�:�6:4�

Since pk�d
i� � 0 for iV k, we have s

�k�
k � s

�r�
k . Moreover (6.2), (6.3) and (6.4) imply

s�r� A R��e�, so that

s
�k�
k > 0 �if ek � 1�; s

�k�
k � 0 �if ek � 0�:

This together with (6.3) gives us

s�k� �
s�kÿ1� ÿ p�dkÿ1�=2 �if s

�kÿ1�
kÿ1 > 0�;

s�kÿ1� �if s
�kÿ1�
kÿ1 � 0�:

(

�6:5�

Proposition 6.1. For s A R
r, de®ne s�1�; . . . ; s�r� A R

r inductively by s�1� :� s and, for

2U kU r,

s�k� :�
s�kÿ1� ÿ p�dkÿ1�=2 �if s

�kÿ1�
kÿ1 > 0�;

s�kÿ1� �if s
�kÿ1�
kÿ1 U 0�:

(

�6:6�

Then s A X�e� if and only if s�r� A R��e�.

Proof. If s A X�e�, then the argument preceding Proposition 6.1 says that

s�r� � s�r� A R��e�. Suppose conversely that s�r� A R��e�. If mV k ÿ 1, we have

pkÿ1�d
m� � 0, so that s

�m�
kÿ1 � s

�m�1�
kÿ1 by (6.6). Thus s

�kÿ1�
kÿ1 � s

�r�
kÿ1, and (6.6) is rewritten

as

s�kÿ1� �
1

2
ekÿ1 p�d

kÿ1� � s�k�:
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Therefore by (5.13) and (6.2) we arrive at

s � s�1� �
1

2

Xrÿ1

k�1

ek p�d
k� � s�r� A

1

2
p�e� � R��e� � X�e�;

completing the proof of Proposition 6.1. r

Let e; e 0 A f0; 1g r. If e0 e 0, then clearly R��e�VR��e
0� � q, so that we have

X�e�VX�e 0� � q by Proposition 6.1. Set

X :�
G

e A f0;1g r

X�e�:

Based on Theorem 6.2 which we are going to prove, we shall call X the Gindikin±

Wallach set for the Riesz distributions Rs. We note here that Proposition 6.1 supplies

us a simple algorithm for determining whether s A X or not for a given s A R
r.

Moreover, if s A X, the algorithm tells us the e A f0; 1gr for which s A X�e�. In fact,

given s A R
r, we compute s�k� �k � 1; . . . ; r� by the formula (6.6). If once s

�k�
k < 0

for some k, we then conclude that s B X. If s
�k�
k V 0 for all k � 1; 2; . . . ; r, then putting

ek :� 1 �if s
�k�
k > 0�; ek :� 0 �if s

�k�
k � 0�;

we have s A X�e�.

Before stating Theorem 6.2, we note that if s A X�e�, then we have ~s � e � s by (4.5),

(4.12), (4.13), (4.14) and (6.1).

Theorem 6.2. The Riesz distribution Rs is positive if and only if s A X. Moreover,

if s A X�e�, then Rs is a measure on the H-orbit Oe and one has

dRs � GOe
�e � s�ÿ1

D e
e�s dme:�6:7�

Proof. If s A X�e�, then Theorems 5.1 and 5.2 say that Rs is a positive measure

given by (6.7) on the H-orbit Oe. To show the converse assertion, we assume that Rs is

positive. Since eÿhx; t ��E �i > 0 for x A W and t A H, we have wÿs�t� � hRs; e
ÿhx; t ��E �iiV

0 by Theorem 5.2. Hence s is necessarily real. We shall prove s A X by induction on

the rank r of the cone W.

Let us consider ®rst the case r � 1. In this case Rs coincides with rs given by

(5.15). Take fn A S�R� �n � 1; 2; . . .� such that fn�x� � �x� �1=n��eÿx �xV 0� and

fn V 0. Then 0U hrs; fni � s� �1=n�. Letting n ! �y, we get sV 0, so that the

claim holds in this case. Assume next that the claim holds for cones of rank rÿ 1. In

particular, the claim holds for the cone W�1�
HV �1�. For s � �s2; . . . ; sr� A C

rÿ1, let �Rs

be the Riesz distribution R�W�1��s on W�1�. Let �X be the Gindikin±Wallach set for �Rs.

We have �X �
F

�e A f0;1g rÿ1 �X��e� with �X��e� ��e � �e2; . . . ; er�� having a description similar to

(6.2): �X��e� � �p��e�=2� �R���e� for the obvious de®nition of �R���e� (see (5.4)) and �p��e� �

��p2��e�; . . . ; �pr��e�� with

�pk��e� :�
X

2U i<k

einki:�6:8�
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Put �s :� �s2; . . . ; sr� A R
rÿ1, �n :� �n21; . . . ; nr1� and

M�s1� :� M 1�s1� � �s1; n21=2; . . . ; nr1=2� A D�d1�;
see (5.12). Then sÿM�s1� � �0; �sÿ �n=2� A D��1��. Since Rs � RM�s1� �RsÿM�s1� by

Theorem 5.2 (iii), we have, thanks to (5.16) and (5.10),

hRs; ji � pÿ�dim n1�=2 �

� rs1 ;

�

n1

h �R�sÿ�n=2; j�uE1 ÿ
���

u
p

jL1 �Q�1��L1;L1� � y�iy dL1

� �

u

�6:9�

for j A S�V �. We consider the functions of the form

j�x� :� j1�x11�j2�x�1�� x � x11E1 �
X

m>1

Xm1 � x�1� A V

 !

with j1 A Cy
c �R�, j2 A Cy

c �V �1��. By virtue of Proposition 3.8, we see that supp jVW is

compact, so that Rs can be applied to j. Now by (6.9), we have

hRs; ji � pÿ�dim n1�=2hrs1 ; j1i

�

n1

h �R�sÿ�n=2; j2�Q�1��L1;L1� � y�iy dL1

� hrs1 ; j1ih
�R�n=2 � �R�sÿ�n=2; j2i � hrs1 ; j1ih

�R�s; j2i;

�6:10�

where we have used (5.18) for the second equality. Take a positive integer N such that

s1 �N > 0. Since hrs1 ; �u�N�eÿuiu � s1 �N > 0, a suitable choice of non-negative

j1 A Cy
c �R� approximating �u�N�eÿu on �0;�y� yields hrs1 ; j1i > 0. If j2 V 0, the

positivity of Rs tells us h �R�s; j2i � hrs1 ; j1i
ÿ1hRs; jiV 0 by (6.10). Thus �R�s is positive

and the induction hypothesis ensures that �s A �X��e� for some �e � �e2; . . . ; er� A f0; 1grÿ1.

We next ®x a non-negative j2 such that h �R�s; j2i is strictly positive. Then using (6.10)

again, we get hrs1 ; j1iV 0 for any j1 V 0 in turn. Therefore rs1 is positive, so that

s1 V 0. If s1 � 0, then putting e :� �0; e2; . . . ; er�, we get s A X�e�.
It now remains the case s1 > 0. Before proceeding we remark that the map

�0;�y� � n1 � V �1� ! fx A V j x11 > 0g given by

�u;L1; y� 7! uE1 ÿ
���

u
p

jL1 �Q�1��L1;L1� � y

is a di¨eomorphism. In fact, as is suggested by the proof of Proposition 3.8 and can be

checked directly, the inverse map is given by

x 7! x11; �x11�ÿ1=2
X

jXm1; x�1� ÿ
1

x11
Q�1�

X

jXm1;
X

jXm1

� �

� �

:

Now let us consider the functions j A Cy
c �V � given by

j�x� :� f1�u�f2�L1�f3�y� �x11 > 0�;
0 �x11 U 0�;

�

with f1 A Cy
c �0;�y�, f2 A Cy

c �n1�, f3 A Cy
c �V�1��. Then we have by (6.9)

hRs; ji � pÿ�dim n1�=2hrs1 ; f1ih
�R�sÿ�n=2; f3i

�

n1

f2�L1� dL1:
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Since s1 > 0, the positivity assumption of Rs yields that �R�sÿ�n=2 is positive. Hence by

the induction hypothesis we have �sÿ �n=2 A �X��e� for some �e � �e2; . . . ; er� A f0; 1grÿ1.

Put e :� �1; e2; . . . ; er�. Then by (4.4) and (6.8) we have pk�e� � �pk��e� � nk1 for k �

2; . . . ; r. Thus �sÿ �n=2 A �X��e� is equivalent to

si > pi�e�=2 �if ei � 1�; si � pi�e�=2 �if ei � 0�

for i � 2; . . . ; r. Since we have s1 > 0 � p1�e�=2, we see that s A X�e�. Hence the

theorem is completely proved. r

Remark. For every tV 0, we set

e�t� � 1 �if t > 0�; e�t� � 0 �if t � 0�:

Then we have

R��e� � fu A R
r j ui V 0; e�ui� � ei for all i � 1; 2; . . . ; rg:

Making s; u A R
r correspond to each other by s � u� p�e�=2, we see by (6.2) that

s A X�e� , u A R��e�:

Moreover if W is symmetric and simple, then d :� dim hki � dimVki is independent of

k; i, so that (4.3) and (4.4) imply

pk�e� � d�e1 � � � � � ekÿ1�:

From these observations follows the description of X for the case of symmetric cones

given in [3, p. 138].
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