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Abstract. This paper is devoted to the computation of the index of a critical point

for nonlinear operators with strong coe½cient growth. These operators are associated

with boundary value problems of the type

X

jaj�1

D
afr2�u�Dau� aa�x;D

1u�g � la0�x; u;D
1u�; x A W;

u�x� � 0; x A qW;

where WHR
n is open, bounded and such that qW A C

2, while r : R ! R� can have

exponential growth. An index formula is given for such densely de®ned operators acting

from the Sobolev space W
1;m
0 �W� into its dual space. We consider di¨erent sets of

assumptions for m > 2 (the case of a real Banach space) and m � 2 (the case of a real

Hilbert space). The computation of the index is important for various problems con-

cerning nonlinear equations: solvability, estimates for the number of solutions, branching

of solutions, etc. The results of this paper are based upon recent results of the authors

involving the computation of the index of a critical point for densely de®ned abstract

operators of type �S��. The latter are based in turn upon a new degree theory for

densely de®ned �S��-mappings, which has also been developed by the authors in a recent

paper. Applications of the index formula to the relevant bifurcation problems are also

included.

1. Introduction and preliminaries.

This paper is devoted to the computation of the index of a critical point for

nonlinear elliptic operators with strong coe½cient growth. It is well known [3], [10],

[11] that the formula for the index plays a key role in problems of solvability, estimates

for the number of solutions and branching of solutions of nonlinear equations. An

application of this formula to the relevant bifurcation problem is also given herein. The

simplest example of the type of equations included in the applications of this work is the

following:

X

n

i�1

q

qxi
�eu � a�x��

qu

qxi

� �

ÿ lq�x�u � 0;�1:1�

where a�x� is a positive, bounded and measurable function and q A Ln=2�W�, for some

n > 2.
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In what follows, X is a real separable re¯exive Banach space with dual space X �.

The norm of the space X �X �� will be denoted by k � k �k � k��. We let Rn denote the

Euclidean space of dimension n and set R � R
1. For x0 A X and r > 0, we let Br�x0�

denote the open ball fx A X : kxÿ x0k < rg of X. We use the same symbol for the

open ball, with center at x0 and radius r, of any other real Banach space. Unless

otherwise stated, N is the set of natural numbers. An operator A : X ID�A� ! X � is

``bounded'' if it maps bounded subsets of its domain onto bounded sets in X �. It is

``compact'' if it is strongly continuous and maps bounded subsets of D�A� onto relatively

compact sets in X �. In what follows, the single term ``continuous'' means ``strongly

continuous''. We denote by ``!'' (``*'') strong (weak) convergence. For u A X , h A

X �, we denote by hh; ui the value of the functional h at the element u.

Let a � �a1; . . . ; an� be a multi-index with nonnegative integer components. We let

jaj � a1 � � � � � an and set ha � ha1
1 � � � han

n for a multi-index h � �h1; . . . ; hn� A R
n.

Analogously, we de®ne

D
a �

qjaj

qxa1
1 � � � qxan

n

; D
ku � fDau : jaj � kg;

where k is a nonnegative integer.

In Sections 1±5, W denotes a bounded open subset of R
n with boundary qW A C2.

We consider the boundary value problem

X

jaj�1

D
afr2�u�Dau� aa�x;D

1u�g � la0�x; u;D
1u�; x A W;�1:2�

u�x� � 0; x A qW:�1:3�

From [5 ] we see that this problem can be reduced to an operator equation with a

densely de®ned operator of type �S�� if the following conditions are satis®ed.

i) the real-valued functions aa�x; x
0� �jaj � 1�; a0�x; x�; r�u� are de®ned for x A W,

x 0 � fxg : jgj � 1g A R
n, x � fxg : jgjU 1g A R

n�1. They are continuous with respect to

x; x 0 and u, respectively, while the functions aa�x; x
0�; a0�x; x� are measurable with

respect to x;

ii) there exist positive numbers n1; n2; m such that, for x A W; x 0; h 0 A R
n, x A R

n�1 and

u A R, the following inequalities

X

jaj�1

�aa�x; x
0� ÿ aa�x; h

0���xa ÿ ha�V n1jx
0 ÿ h 0jm;�1:4�

X

jaj�1

jaa�x; x
0�j � ja0�x; x�jU n2� f �x� � jx0j

m1 � jx 0j�mÿ1;�1:5�

0U r�u�U m

� u

0

r�s� ds

�

�

�

�

�

�

�

�

� 1

� �

�1:6�

hold, where 2Um < n; 0Um1 < n=�nÿm�, f A Lm�W�.

Definition 1.1. We say that the pair fl0; u0g A R�W
1;m
0 is a ``solution'' of the

problem ((1.2), (1.3)) if
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r2�u0�D
au0 A Lm 0�W�; for jaj � 1; m 0 �

m

mÿ 1
;�1:7�

and, for every function f A W
1;m
0 �W�, the integral identity

X
jaj�1

�
W

fr2�u0�D
au0 � aa�x;D

1u0�gD
af dx� l0

�
W

a0�x; u0;D
1u0�f dx � 0�1:8�

holds.

Under the further assumptions

aa�x; 0� � 0; for jaj � 1; a0�x; 0; 0� � 0; for x A W;�1:9�

we study the bifurcation points for the problem ((1.2), (1.3)).

Definition 1.2. We say that a real number l0 is a bifurcation point for the

problem ((1.2), (1.3)) if there exists a sequence flj; ujg of solutions of the problem ((1.2),

(1.3)) such that

lj ! l0; uj ! 0 A W
1;m
0 �W� and uj 0 0:

We study the bifurcation problem by using our recent development of a new degree

theory for densely de®ned operators of type �S�� [5 ] and an index theory for such

operators in [6].

We recall some de®nitions connected with densely de®ned �S��-operators. Consider

an operator A : X ID�A� ! X � with D�A� dense in some open set D0 HX . We

assume that there exists a subspace L of X such that

D0 VLHD�A�; L � X :�1:10�

Definition 1.3. We say that the operator A satis®es Condition �S��0;L if for every

sequence fujgHD�A� such that

uj * u0; lim sup
j!y

hAuj; ujiU 0; lim
j!y

hAuj; vi � 0;�1:11�

for some u0 A X and every v A L, we have

uj ! u0; u0 A D�A�; Au0 � 0:�1:12�

We say that the operator A satis®es Condition �S��L if the operator Ah : D�A� ! X �,

Ahu � Auÿ h, satis®es Condition �S��0;L for every h A X �. We say that the operator A

satis®es Condition �S�� if it satis®es Condition �S��L with L � X .

In [5] we introduced the degree Deg�A;D; 0� of the operator A with respect to an

arbitrary open bounded subset D of X provided that

Au0 0; for u A D�A�V qD; DHD0;�1:13�

and the operator A satis®es the following conditions:

A1� there exists a subspace L of X satisfying (1.10) and such that the operator A

satis®es Condition �S��L;

Index of a critical point for nonlinear elliptic operators 111



A2� for every v A L and every ®nite-dimensional subspace F of L the mapping

a�F ; v� : F ! R, de®ned by a�F ; v��u� � hAu; vi, is continuous.

We de®ne a nonlinear operator A : W
1;m
0 �W�ID�A� ! �W 1;m

0 �W���, associated with

the problem ((1.2), (1.3)), by

hAu; fi �
X

jaj�1

�

W

fr2�u�Dau� aa�x;D
1u�gDaf�x� dx;�1:14�

for u A D�A�; f A W
1;m
0 �W�, where

D�A� � u A W
1;m
0 �W� : r2�u�Dau A Lm 0�W�; for jaj � 1;m 0 �

m

mÿ 1

n o

:�1:15�

From Theorem 5.1 in [5] we obtain the following result.

Theorem 1.1. Assume that Conditions i), ii) are satis®ed. Then the operator A,

de®ned by (1.14), satis®es Condition �S��L with respect to the space L � Cy
0 �W�.

We introduce a nonlinear operator C : W
1;m
0 �W� ! �W 1;m

0 �W��� by the equality

hCu; fi �

�

W

a0�x; u;D
1u�f�x� dx:�1:16�

Using Conditions i), ii) and the compactness of the embedding W
1;m
0 �W�HLm�W�, we

obtain that the operator C is compact. Then Theorem 1.1 implies that the operator

A� lC satis®es Condition �S��L for every l. Therefore, for every open and bounded

set DHW
1;m
0 �W�, we can de®ne Deg�A� lC;D; 0� if

Au� lCu0 0; for u A D�A�V qD;

where Deg is the degree function introduced in [5].

Using the degree of the operator A� lC we can de®ne and evaluate the index of a

critical point of it. This index computation allows us to study the bifurcation problem

by using a topological approach.

In Section 2 we recall the conditions of the result in [6] concerning the computation

of the index of a critical point for abstract operators. In that section we also formulate

a result about the index of a critical point for the operator A which is associated with

the nonlinear elliptic boundary value problem. In Sections 2, 4 and 5 we consider the

case of the Banach space W
1;m
0 �W�; m > 2.

The index theorem for nonlinear elliptic operators is proved in Section 4. This

proof is essentially based upon the regularity of solutions of linear and nonlinear elliptic

equations. Some auxiliary results connected with the regularity of solutions are given in

Section 3.

In Section 5 we establish necessary conditions for the existence of a bifurcation point

for the problem ((1.2), (1.3)) (Theorem 5.2). We also establish su½cient conditions in

terms of the degree function (Theorem 5.1) and the characteristic values of some linear

operator connected with a special linearization of the unbounded operator A (Theorem

5.3). We show that every characteristic value of odd multiplicity is a point of

bifurcation.
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In the case of the Hilbert space W
1;2
0 �W� we establish in Sections 6, 7 analogous

results with weaker assumptions about the smoothness of the coe½cients of the equation

(1.2) than those of Section 5. In the particular case of the problem ((1.1), (1.3)) the

associated linear equation is

X

jaj�1

D
af�1� a�x��Daug ÿ lq�x�u � 0; x A W:�1:17�

Denote by li; i � 1; 2; . . . ; the eigenvalues of the problem ((1.17), (1.3)) and let n�li� be

the multiplicity of the eigenvalue li. If l0 is not an eigenvalue of the problem ((1.17),

(1.3)) then the index Ind�A� l0C; 0� of the operator A� l0C with respect to zero is

de®ned by

Ind�A� l0C; 0� �
Y

li<l0

�ÿ1�n�li�;�1:18�

where the product on the right-hand side of (1.18) is taken over all li satisfying the

inequality li < l0. The operators A;C in (1.18) are de®ned for the equation (1.1) as in

the case of the equalities (1.14), (1.16).

Formula (1.18) implies that li is a bifurcation point of the problem ((1.1), (1.3)) if

n�li� is an odd number.

Bifurcation problems have been studied with di¨erent assumptions than ours by

many authors. The reader is referred, for example, to [2], [3], [4], [6], [10], [11], [12],

where conditions for the existence of bifurcation points have been established via

linearization or asymptotic behavior of nonlinear boundary value problems. All these

results involve nonlinear operators which are de®ned everywhere on some neighborhood

of the critical point. Such assumptions generate corresponding growth conditions for

the coe½cients of the relevant di¨erential equations. We are not aware of studies of

bifurcation problems with strong coe½cient growth.

2. Index of a critical point for m > 2.

We ®rst recall some de®nitions involving the index of a critical point of densely

de®ned operators. We also state the theorem for the computation of the index from [6].

Let A : X ID�A� ! X � satisfy Conditions A1�; A2� of Section 1.

Definition 2.1. A point u0 A D�A�VD0 is called a ``critical point'' of the operator

A if Au0 � 0. A critical point u0 is called ``isolated'' if there exists a ball Br�u0�HX

which does not contain any other critical point of A.

Definition 2.2. The number Ind�A; u0�, de®ned by

Ind�A; u0� � lim
r!y

Deg�A;Br�u0�; 0��2:1�

is called the ``index'' of the isolated critical point u0 of the operator A.

We formulate below a particular case of the general theorem from [6] which

corresponds to the case of a bounded operator of linearization. We may assume that

u0 � 0.
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We ®rst introduce some classes of operators. We consider a linear operator A 0
:

X ! X satisfying the following condition:

A 0� the equation A 0u � 0 has only the zero solution. There exists a compact linear

operator G : X ! X � such that

h�A 0 � G �u; ui > 0; for u A X ; u0 0;�2:2�

and the operator T � �A 0 � G �ÿ1
G : X ! X is well de®ned and compact.

We consider an operator A0 : D0 ! X � which satis®es the following condition:

A0� A0 is nonlinear, bounded, satis®es Conditions A1�; A2� and is such that

A0u

kuk
! 0; as u ! 0; A0�0� � 0:�2:3�

We assume that there exist a linear operator A 0
: X ! X � satisfying Condition A 0�

and a nonlinear operator A0 : D0 ! X � satisfying Condition A0� and such that the

following condition holds:

o� there exists a positive number e such that

Auÿ A 0u

kuk
* 0 as u ! 0; u A Z 0

e
;�2:4�

where

Z 0
e
� 6

t A �0;1�

fu A D�A� : tAu� �1ÿ t��A0u� A 0u� � 0; 0 < kukU eg:�2:5�

We note that for the case of a bounded operator A, which is FreÂchet di¨erentiable at 0,

Condition o� is satis®ed with A 0 � A 0�0�, where A 0�0� is the FreÂchet derivative of A at

0. In the general case of an unbounded, or non-di¨erentiable, operator A Condition o�

introduces a new and workable linear approximation to the operator A.

We denote by F the direct sum of all invariant subspaces of the operator T, from

Condition A 0�, corresponding to the characteristic values of it lying in the interval

�0; 1�. Let R be the closure of the direct sum of all those invariant subspaces of the

operator T which are not included in F. Then F and R are invariant subspaces of the

operator T ; F is ®nite-dimensional and the splitting

X � F � R�2:6�

holds true. We introduce a projection P : X ! F as follows:

P� f � r� � f ; for f A F ; r A R:�2:7�

Theorem 2.1 [6]. Let A : X ID�A� ! X � satisfy Conditions A1�; A2� and be such

that 0 A D�A�VD0; A�0� � 0 and

hAu; uÿ viVÿc�v�;�2:8�

for every u, v A L with kukU r0, where r0; c�v� are positive numbers with c�v� depending

only on v. Assume that there exist operators A0 : D0 ! X �; A 0
: X ! X � satisfying

A0�; A 0�; o�, and such that the following conditions hold:
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1) the operator P�A 0 � G �ÿ1
: �A 0 � G �X ! X is bounded, where the operators P;G

are de®ned by (2.7) and Condition A 0�, respectively;

2) the weak closure of the set

se � v �
u

kuk
: u A Z 0

e UZ 00
e

� �

�2:9�

does not contain zero for a su½ciently small positive e, where Z 0
e is de®ned by (2.5) and

Z 00
e � 6

t A �0;1�

fu A X : tA0u� A 0u � 0; 0 < kukU eg:�2:10�

Then zero is an isolated critical point of the operator A and its index is equal to �ÿ1�n,

where n is the sum of the multiplicities of the characteristic values of the operator T lying

in the interval �0; 1�.

We are now going to formulate our result about the index of the critical point of the

operator A : W
1;m
0 �W�ID�A� ! �W 1;m

0 �W��� de®ned by

hAu; fi �

�

W

r2�u�
X

jaj�1

D
au �Daf�

X

jajU1

aa�x; u;D
1u�Daf

8

<

:

9

=

;

dx;�2:11�

where D�A� is de®ned by (1.15).

We assume that the following conditions are satis®ed:

r� r : R ! R is continuously di¨erentiable on R and satis®es (1.6);

a1� the real valued functions aa�x; x�; jajU 1, are de®ned for x A W; x A R
n�1 and

are continuously di¨erentiable with respect to x; moreover, aa�x; 0� � 0 for x A W;

jajU 1;

a2� there exist positive constants n1; n2 such that for all x A W; x A R
n�1

; h 0 A R
n the

inequalities
X

jaj�jbj�1

aab�x; x�hahb V n1�1� jxj�mÿ2jh 0j2;�2:12�

and

X

jaj; jbjU1

jaab�x; x�j�1� jxj�jaj�jbj �
X

jajU1

X

n

i�1

jaai�x; x�j�1� jxj�jaj U n2�1� jxj�m�2:13�

hold with some integer m from the interval �2; n�. In (2.12), (2.13)

aab�x; x� �
q

qxb
aa�x; x�; aai �

q

qxi
aa�x; x�; jaj; jbjU 1; i � 1; . . . ; n:�2:14�

We introduce a linear operator A 0
: W

1;m
0 �W� ! �W 1;m

0 �W��� by

hA 0u; fi �
X

jaj; jbjU1

�

W

�r2�0�dab � a
�0�
ab �x��D

buDaf dx;�2:15�

where a
�0�
ab �x� � aab�x; 0�, dab � 1 for jaj � jbj � 1 and a � b, and dab � 0 for the rest of

the values of a; b.
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Using Condition a2� we have the following estimate for u A W
1;m
0 �W�:

hA 0u; uiV

�
W

�c1jD
1uj2 ÿ c2juj

2� dx;�2:16�

where the positive constants c1; c2 depend only on n1; n2 and m.

We de®ne an operator G : W
1;m
0 �W� ! �W 1;m

0 �W��� by

hGu; fi � g

�
W

u�x�f�x� dx; g � c1 � c2;�2:17�

where c1; c2 are the constants from (2.16). From (2.16) and (2.17) we have

h�A 0 � G �u; uiV c1

�
W

�jD1uj2 � juj2� dx; u A W
1;m
0 �W�:�2:18�

Using regularity results for linear elliptic equations (see Theorem 3.2 in Section 3)

we will establish that the operator

T � �A 0 � G �ÿ1
G : W

1;m
0 �W� ! W

1;m
0 �W��2:19�

is well de®ned and compact.

We will formulate the index theorem in terms of the characteristic values of the

equation

X
jaj; jbjU1

�ÿ1�jajDaf�r2dab � a
�0�
ab �x��D

bug � lgu � 0:�2:20�

We say that the pair fl0; u0g A R�W
1;m
0 �W� is a ``solution'' of the problem ((2.20),

(1.3)) if A 0u0 � l0Gu0 � 0.

Definition 2.3. A number l0 A R is a ``characteristic value'' of the problem ((2.20),

(1.3)) if there exists a solution fl0; u0g of this problem with u0 0 0.

It is clear that l0 is a characteristic value of the problem ((2.20), (1.3)) if and only if

1ÿ l0 is a characteristic value of the operator T.

Definition 2.4. The ``multiplicity'' of the characteristic value l0 of the problem

((2.20), (1.3)) is the multiplicity of the characteristic value 1ÿ l0 of the operator T

de®ned by (2.19).

Remark 2.1. If the equality

hA 0u; fi � hA 0f; ui�2:21�

is satis®ed for every u; f A W
1;m
0 �W�, then the multiplicity of the characteristic value l0

of the problem ((2.20), (1.3)) coincides with the dimension of the space of solutions of

the problem ((2.20), (1.3)) for l � l0.

Theorem 2.2. Assume that Conditions r�; a1�; a2� are satis®ed, a
�0�
ab A C1�W�, for

jaj � jbj � 1, and the equation
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X

jaj; jbjU1

�ÿ1�jajDaf�r2�0�dab � a
�0�
ab �x��D

bug � 0�2:22�

has only the zero solution in W
1;m
0 �W�. Then the index of the operator A de®ned by

(2.11) is computed by the formula

Ind�A; 0� � �ÿ1�n;�2:23�

where n is the sum of the multiplicities of the characteristic values of the problem ((2.20),

(1.3)) lying in the interval �0; 1�.

The proof of this theorem is given in Section 4, where we verify that the operator A

de®ned by (2.11) satis®es all the conditions of Theorem 2.1.

3. Auxiliary regularity results.

In this section we state some auxiliary results about the regularity of solutions of

linear and nonlinear elliptic equations.

Lemma 3.1. Let g A W 1;p�W�VLy�W�, 1 < p < n, be nonnegative and assume that

for every number rV 0 the inequality

�

W

�g�x��rjD1g�x�jp dxU c�r� 1�q
�

W

�g�x�� r�p
dx�3:1�

holds for some positive number q, where the constant c is independent of r. Then the

estimate

ess supfg�x� : x A WgUM1

�

W

�g�x��np=�nÿp�
dx

� �

�3:2�

holds, where the constant M1 depends only on n, p, q, c, W.

The proof of this lemma can be found in [11, Chapter 8, Section 1].

We now formulate a regularity result for the solutions of the di¨erential equation

ÿ
X

jaj�1

D
afr2�u�Daug �

X

jajU1

�ÿ1�jajDaaa�x; u;D
1u� � 0; x A W:�3:3�

We understand that a solution u A D�A� of Equation (3.3) is in the sense of an integral

identity analogous to that of (1.8), where D�A� is de®ned by (1.15).

Theorem 3.1. Assume that Conditions r�, a1�, a2� are satis®ed and let u0 A D�A� be

a solution of the equation (3.3). Then

u0 A W 2;2�W�VC1; d�W�;�3:4�

for some d A �0; 1�, and the estimate

ku0kW 2; 2�W� � ku0kC 1; d�W� UM2�3:5�

holds with a constant M1 depending only on n1; n2; m;m; n;W and the norm of the function

u0 A W
1;m
0 �W�.
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The assertions of this theorem follow from the results of Chapter 4, Sections 3±7, of

the monograph [8].

We are also going to use a result concerning the regularity of solutions of linear

elliptic equations. This result is for the equation

X
jaj; jbjU1

�ÿ1�jajDafaab�x�D
bug �

X
jajU1

�ÿ1�jajDa fa�x�;�3:6�

with coe½cients aab satisfying the inequalities

X
jaj�jbj�1

aab�x�xaxb V n�1�
X
jaj�1

x2a ;�3:7�

max
x AW

jaab�x�jU n�2�; jaj; jbjU 1;�3:8�

for x A W, xa A R and positive constants n�1�; n�2�.

Theorem 3.2. Assume that aab A C�W�, for jaj � jbj � 1, and the conditions (3.7) and

(3.8) are satis®ed. Assume that the equation

X
jaj; jbjU1

�ÿ1�jajDafaab�x�D
bug � 0�3:9�

has only the zero solution in W
1;2
0 �W�. Then for every p > 1 and fa A Lp�W�, jajU 1, the

equation (3.6) has a unique solution u A W
1;p
0 �W� and the following estimate holds:

X
jajU1

�
W

jDau�x�jp dxUM3

X
jajU1

�
W

j fa�x�j
p
dx;�3:10�

where the constant M3 depends only on n; p; n�1�; n�2�;W and the moduli of continuity of the

functions aab , jaj � jbj � 1.

The assertions of this theorem follow from [1] (see also [9, Theorem 6.21]).

4. Proof of the index theorem for m > 2.

We need to show that all the assumptions of Theorem 2.1 are satis®ed for the

operator A which is de®ned in (2.11).

We denote the norms of the spaces W
1;m
0 �W�, Lm�W�, �W 1;m

0 �W��� by k � k1;m, k � km,

k � k�
1;m, respectively. Choosing D0 � W

1;m
0 �W�, L � Cy

0 �W� we see that Condition

(1.10) is clearly satis®ed.

The proof of Condition A1� for the operator A is contained in [5]. The condition

A2� follows immediately from the assumptions r�, a1�. Let us prove the inequality

(2.8).

Lemma 4.1. Assume that the conditions of Theorem 2.2 are satis®ed. Then the

inequality (2.8) holds for u; v A Cy

0 �W�, kuk1;m U 1, and the operator A de®ned in

(2.11).
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Proof. Taking into account the condition a2� we need to prove only the inequality

X

jaj�1

�

W

r2�u�DauDa�uÿ v� dxVÿc 0�v�;�4:1�

where c 0�v� depends only on v and u�x�; v�x� satisfy the conditions of the lemma. Using

the condition r�, we estimate the left-hand side of (4.1) as follows:

X

jaj�1

�

W

r2�u�DauDa�uÿ v� dxV
1

2

�

W

r2�u�jD1uj2 dxÿ c 00�v�

�

W

r2�u� dx;�4:2�

where

c 00�v� �
1

2
maxfjD1v�x�j2 : x A Wg:

Let

~r�u� �

� u

0

r�s� ds:�4:3�

By the embedding theorem, we have

�

W

j~r�u�jp dxU c0

�

W

r2�u�jD1uj2 dx

� �p=2

; p �
2n

nÿ 2
;�4:4�

where c0 depends only on n.

For a function u A Cy
0 �W� and any positive number N we de®ne

EN�u� � fx A W : ju�x�j > Ng:�4:5�

From kuk1;m U 1 we have

measEN�u�U
1

Nm
:�4:6�

We estimate the second integral in the right-hand side of (4.2) by using (1.6), (4.4), (4.6)

and HoÈlder's inequality. We set rN � maxfr�s� : jsjUNg to obtain

�

W

r2�u� dx �

�

EN �u�

r2�u� dx�

�

WnEN �u�

r2�u� dx�4:7�

U 2�m2 � r2N�measW� 2m2

�

W

j~r�u�jp dx

� ��nÿ2�=n

fmeasEN�u�g
2=n

U 2�m2 � r2N�measW� 2m2c
�nÿ2�=n
0

1

Nm

� �2=n�

W

r2�u�jD1uj2 dx:

Inequality (2.8) follows now from (4.2) and (4.7) with N de®ned by

4c 00�v�m2c
�nÿ2�=n
0

1

N

� �2m=n

� 1:

This completes the proof of Lemma 4.1. r
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We de®ne the operator A0 : W
1;m
0 �W� ! �W 1;m

0 �W��� by the equality

hA0u; fi �
X
jaj�1

�
W

jD1ujmÿ2
D

auDaf dx:�4:8�

Lemma 4.2. The operator A0 de®ned by (4.8) satis®es Condition A0� of Section 2.

Proof. From (4.8) we obtain

kA0uk
�
1;m � kukmÿ1

1;m

and, consequently, Condition (2.3) is satis®ed. It is well known that the operator A0 is

continuous and satis®es Condition (S�) (see, e.g., [11, Chapter 1, Theorem 2.1]. This

completes the proof. r

Lemma 4.3. Assume that the conditions of Theorem 2.2 are satis®ed. Then the

operator A 0, de®ned by (2.15), satis®es Condition A 0) of Section 2.

Proof. Taking into account the fact that the equation (2.22) has only the zero

solution in W
1;2
0 �W� and Theorem 3.2, we obtain that the equation A 0u � 0 has also

only the zero solution. The operator G , which satis®es the relevant assumptions in

Condition A 0), is de®ned now by (2.17). The compactness of this operator follows from

the compactness of the embedding W
1;p
0 �W�HLp�W�. The inequality (2.2) is a con-

sequence of (2.18).

We need to prove only the fact that the operator T � �A 0 � G �ÿ1
G : W

1;m
0 �W� !

W
1;m
0 �W� is well de®ned and compact. For v A W

1;m
0 �W�, we de®ne u A W

1;m
0 �W� as a

solution of the equation

X
jaj; jbjU1

�ÿ1�jajDaf�r2�0�dab � a
�0�
ab �x��D

bug � gu � gv:�4:9�

From Theorem 3.2 we have the uniqueness of u�x� and the a priori estimate

kuk1;m UK1kvkm;�4:10�

where the constant K1 is independent of v. Taking into account the de®nition of

the operators A 0, G, we obtain �A 0 � G �u � Gv. This means that u � Tv. We have

established that the operator T is de®ned on the space W
1;m
0 �W�. The compactness of T

follows from the estimate (4.10) and the compactness of the embedding W
1;m
0 �W�H

Lm�W�. The proof is complete. r

Lemma 4.4. Assume that the conditions of Theorem 2.2 are satis®ed. Then the

operators A;A 0;A0, de®ned by (2.11), (2.15) and (4.8), respectively, satisfy Condition o) of

Section 2.

Proof. We will prove that the set Z 0
e , de®ned in (2.5), is empty for su½ciently

small e. Assume that the contrary is true. Then Z 0
e 0q for every e > 0. Thus, there

exist sequences ftjg; fujg such that

ftjgH �0; 1�; fujgHD�A�; 0 < kujk1;m <
1

j
; t ! t0
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and

tjAuj � �1ÿ tj��A0uj � A 0uj� � 0:�4:11�

This means that the function uj A W
1;m
0 �W� is the solution of the equation

ÿ
X

jaj�1

D
a�r2j �u�D

au� �
X

jajU1

�ÿ1�jajDaaj;a�x; u;D
1u� � 0;�4:12�

where

r2j �u� � tjr
2�u� � �1ÿ tj�r

2�0�;

aj;a�x; x� � tjaa�x; x� � �1ÿ tj� jx 0jmÿ2
x 0
a �

X

jbjU1

a
�0�
ab �x�xb

8

<

:

9

=

;

�4:13�

and x 0
a � xa for jaj � 1, x 0

a � 0 for a � 0. It is easy to check that the functions rj�u�,

aj;a�x; x� satisfy Conditions r�, a1�, a2�, with some positive constants n1; n2; m, instead of

n1; n2; m, respectively. These constants n1; n2; m are independent of j. Thus, by Theorem

3.1, we have the a priori estimate

kujkC 1; d�W� UM;�4:14�

where the positive numbers d, M are independent of j. By the compactness of the

embedding C 1; d�W�HC1�W� and kujk1;m ! y we get

lim
j!y

kujkC 1�W� � 0:�4:15�

We rewrite aj;a�x; x� in the form

aj;a�x; x� �
X

jbjU1

a
� j�
ab �x; x�xb � �1ÿ tj�jx

0jmÿ2
x 0
a;

where

a
� j�
ab �x; x� � tj

�1

0

aab�x; sx� ds� �1ÿ tj�a
�0�
ab �x�

with aab�x; x� de®ned in (2.14). By the de®nition of a solution of the equation (4.12) we

have the following integral identity for uj�x�:

X

jaj; jbjU1

�

W

�r�2��uj�dab � jD1ujj
mÿ2

dab � a
� j�
ab �x; uj;D

1uj��D
bujD

af dx � 0;�4:16�

for an arbitrary f A W
1;m
0 �W� and the same dab as in (2.15). From (4.16) with f�x� �

uj�x�, the estimate (4.14) and Conditions (1.6), (2.12), (2.13) we obtain the estimate

kujk1;2 U ckujk2�4:17�

with a positive constant c independent of j.
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The sequence vj�x� � uj�x�=kujk
ÿ1
2 is bounded in W 1;2�W�. By passing to a

subsequence, if necessary, we may assume that vj�x� converges to some function v0�x�

weakly in W
1;2
0 �W� and strongly in L2�W�. Since kvjk2 � 1, we have v0 0 0.

Dividing (4.16) by kujk2 and then taking the limit as j ! y we obtain by virtue of

(4.15)

X
jaj; jbjU1

�
W

�r2�0�dab � a
�0�
ab �x��D

bv0�x�D
af dx � 0; f A W

1;m
0 �W�:

The last equality is obviously true for every f A W
1;2
0 �W�, which establishes the fact that

v0�x� is a solution of the equation (2.22) in W
1;2
0 �W�. Since v0 0 0, we obtain a

contradiction with the assumption of Theorem 2.2. Consequently, Z 0
e � q for a

su½ciently small e and the assertion of Lemma 4.4 has been proved. r

We consider the splitting

W
1;m
0 �W� � F � R�4:18�

as we did in (2.6) for the operator T de®ned by (2.19). Let P be the projection of

W
1;m
0 �W� onto F associated with the splitting (4.18).

Lemma 4.5. Assume that the conditions of Theorem 2.2 are satis®ed. Then the

operator P�A 0 � G �ÿ1
: �A 0 � G �W 1;m

0 �W� ! W
1;m
0 �W� is bounded.

Proof. Let l1; . . . ; lI be the characteristic values of the operator T de®ned by

(2.19), and let ni be the multiplicity of the characteristic value li. De®ne, for the

natural number N, the space

Fi�N� � fu A W
1;m
0 �W� : �I ÿ liT�Nu � 0g:�4:19�

It is well known [13] that Fi�N� is a ®nite-dimensional subspace of W 1;m
0 �W� and there

exists a number Ni such that

Fi�N� � Fi�Ni�; for NVNi; dimFi�Ni� � ni:�4:20�

Now, the space F corresponding to the operator T is the direct sum of the spaces Fi�Ni�,

i � 1; . . . ; I , and F can be de®ned (see [13, p. 317]) by

F � fu A W
1;m
0 �W� : �I ÿ ~T�u � 0g;�4:21�

where

~T � I ÿ
YI
i�1

�I ÿ liT�Ni :�4:22�

Analogously, the space R from the splitting (4.18) can be given by

R � f�1ÿ ~T�u : u A W
1;m
0 �W�g;�4:23�

where the operator ~T is de®ned by (4.22).
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Let fj�x�; j � 1; . . . ; n, be a basis for the space F. The projection P : W
1;m
0 �W� ! F

can be de®ned by

Pu �
Xn

i�1

hzi; ui fi�x�;�4:24�

where zj A �W 1;m
0 �W��� and satis®es

hzj; fii � dij ; hzj; ri � 0;�4:25�

for i; j � 1; . . . ; n, and any function r�x� from R. In (4.25) dij is the Kronecker delta

symbol.

Using the representation of a functional from �W 1;m
0 �W��� we can ®nd functions

za; j A Lm 0�W�, such that, for jaj � 1 and m 0 � m=�mÿ 1�, we have

hzj; fi �
X
jaj�1

�
W

za; j�x�D
af�x� dx; f A W

1;m
0 �W�:�4:26�

De®ne a function v A W
1;m 0

0 as the solution of the equation

Dvj�x� �
X
jaj�1

D
aza; j�x�;�4:27�

where D is the Laplace operator. The existence of such a function vj�x� follows from

Theorem 3.2. From (4.26), (4.27) we obtain

hzj; fi �
X
jaj�1

�
W

D
avj�x�D

af�x� dx; f A W
1;m
0 �W�:�4:28�

We will prove that for every p > 1 we have

vj A W
1;p
0 �W�:�4:29�

Using (4.23) and the second equality in (4.25) we obtain

X
jaj�1

�
W

D
avj�x�D

af�x� dx �
X
jaj�1

�
W

D
avj�x�D

a ~Tf�x� dx;�4:30�

for every f A W
1;m
0 �W�.

Inclusion (4.29) is certainly true for p � m 0. Let us assume that it is true for some

p � p1 Vm 0. Consider the functional

Ij�f� �
X
jaj�1

�
W

D
avj�x�D

a ~Tf�x� dx;�4:31�

for f A Cy
0 �W�. By HoÈlder's inequality and (4.29) we have the estimate

jIj�f�jU c1k ~Tfk1;p 0
1
; p 0

1 �
p1

p1 ÿ 1
;�4:32�

for some constant c1 independent of f.
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As in (4.10), we have the estimate

kTfk1;p 0
1
U c2kfkp 0

1
�4:33�

with a constant c2 independent of f. From (4.22), (4.33) we have the analogous

inequality for the operator ~T :

k ~Tfk1;p 0
1
U c3kfkp 0

1
:�4:34�

Using the estimates (4.32), (4.33) we obtain

jIj�f�jU c4kfkp 0
1
;�4:35�

which says that the functional I�f� can be extended to a continuous functional Ij :

Lp 0
1
�W� ! R. From the representation of such a functional follows the existence of a

function hj A p1�W�è such that

Ij�f� �

�
W

hj�x�f�x� dx;�4:36�

for f A Lp 0
1
�W�.

From (4.30), (4.31) and (4.36) we obtain that vj�x� is a solution to the equation

ÿDvj�x� � hj�x�:�4:37�

Thus, from (4.29), (4.37) and a priori estimates for solutions of linear elliptic equations

[1] we have vj A W 2;p1�W�. By the embedding theorem,

vj A W
1; ~p
0 �W�;�4:38�

where ~p is an arbitrary number if p1 V n and ~p � p1n=�nÿ p1� if p1 < n. Starting from

(4.29) with p � m 0 and using (4.38) we can establish after ®nitely many steps that the

®nal value of ~p satis®es ~p > n. Thus, (4.29) holds for every p > 1.

We are now able to estimate the operator P�A 0 � G �ÿ1. Let g � �A 0 � G �w be a

functional in �W 1;m
0 �W���, for some w A W

1;m
0 �W�. Using the representation of the

functional g we can de®ne functions ga A Lm 0�W�, jaj � 1, such that

hg; fi �
X
jaj�1

�
W

ga�x�D
af�x� dx; f A W

1;m
0 �W�;�4:39�

and

X
jaj�1

kgakm 0 U c5kgk
�
1;m;�4:40�

where c5 is some positive constant independent of g. Using (4.39), (4.40) and Theorem

3.2 we have the estimate

kwk1;m 0 UC6kgk
�
1;m;�4:41�

where the function w A W
1;m
0 �W� satis®es the equation �A 0 � G �w � g.
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Using (4.24), (4.28) we obtain

P�A 0 � G �ÿ1
g �

X

n

j�1

X

jaj�1

�

W

D
avj�x�D

aw�x� dx � fj�x�:

From (4.29) with p � m, (4.41) and HoÈlder's inequality we get the estimate

kP�A 0 � G �ÿ1
gk1;m U c7kgk

�
1;m;

where the positive constant c7 is independent of g. This ends the proof. r

Lemma 4.6. Assume that the conditions of Theorem 2.2 are satis®ed. Then there

exists a positive number e such that for t A �0; 1� the equation

t
X

jaj�1

D
afjD1ujmÿ2

D
aug�4:42�

ÿ
X

jaj; jbjU1

�ÿ1�jajDaf�r2�0�dab � a
�0�
ab �x��D

bug � 0

has only the zero solution in the ball Be�0�.

Proof. Denote by N1�t� the set of solutions of (4.42) in the ball B1�0� and let N1 �

6
t A �0;1� N1�t�. At ®rst, we are going to establish a priori estimates for an arbitrary

u A N1. There exists a constant M�0� independent of u such that

max
x AW

ju�x�jUM�0�
; u A N1:�4:43�

Taking into account the fact that the equation (4.42) with t � 0 has only the zero

solution in B1�0� we consider heretofore only the case where u A N1�t� for t > 0. By

Theorem 3.1 u A W 2;2�W�VC1; d�W� with d > 0.

In the integral identity

�

W

t
X

jaj�1

jD1ujmÿ2
D

auDaf�
X

jaj; jbjU1

�r2�0�dab � a
�0�
ab �x��D

buDaf

8

<

:

9

=

;

dx � 0;�4:44�

which is valid for f A W
1;m
0 �W�, we let f be the test function

f�x� � �1� ju�x�j� ru�x�;

where r is an arbitrary positive number. After some standard calculations we obtain

the inequality

�

W

ftjD1ujm � jD1uj2g�1� ju�x�j� dxU c8�1� r�

�

W

�1� ju�x�j� r�2
dx;

and the estimate (4.43) from it and Lemma 3.1 with q � 0. By cj ; j � 8; . . . ; we denote

constants independent of the function u.
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Now, we will show the estimate

max
x AW

jD1
u�x�jUM

�1�; u A N1;�4:45�

under the assumption that u A N1�t�; t > 0. As in the proof of Lemma 2.1 [8, Chapter

6], we can establish the estimate

max
x A qW

jD1
u�x�jUM

0; u A N1;�4:46�

with a constant M 0 independent of u.

Letting in (4.44) f�x� � �q=qxi�c�x�, with c A Cy
0 �W�, we obtain the equality

�

W

(

t

X

jaj�1

q

qxi
�jD1

ujmÿ2
D

a
u�Dac�4:47�

�
X

jaj; jbjU1

q

qxi
��r2�0�dab � a

�0�
ab �x��D

a
u�Dac

)

dx � 0:

It is easy to verify that this equality is also true for an arbitrary function c A W
1;2
0 �W�.

We will now obtain an L2-estimate for the second derivatives of u A N1. Namely,

we are going to establish the following inequality
�

W

�tjD1
ujmÿ2 � 1�jDa

uj2f2�x� dx�4:48�

U c9

�

W

�tjD1
ujmÿ2 � 1�jD1

uj2�f2�x� � jD1fj2� dx;

for jaj � 2 and some function f A Cy�W�. Letting c�x� � �q=qxi�u�x�f
2
0�x�, with f0 A

Cy
0 �W�, in (4.47) we obtain after a simple calculation the inequality (4.48) with f�x� �

f0�x�. If in some neighborhood U�x� of a point x A qW the equation of U�x�V qW is

given by the equality xn � 0, then we let in (4.47) c�x� � �q=qxi�u�x�f�x�, with i < n,

f A Cy
0 �U�x��, to obtain the inequality (4.48) with jaj � 2, an 0 2, f�x� � f�x�. Using

this estimate and the equation (4.42) we get the inequality (4.48) with jaj � 2, an � 2,

f�x� � f�x�. Passing to local coordinates near the boundary qW and choosing a

corresponding partition of unity, we derive the estimate (4.48) with f�x�1 1. Thus, we

have proved the inequality

�

W

�tjD1
ujmÿ2 � 1�jD2

uj2 dxUM
�2�; u A N1;�4:49�

where the constant M�2� > 0 is independent of u, t.

We de®ne the function w as follows:

w�x� � maxfjD1
u�x�j2 ÿ �M 0�2; 0g;�4:50�

where M 0 is the number from the estimate (4.46), and let in (4.47)

c�x� � or�w�x��
qu�x�

qxi
; where or�s� �

sr�1

1� s
; rV 0:
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After some standard calculations we derive the inequality

�

W

ftjD1u�x�jmÿ2 � 1gor�w�x��jD
2u�x�j2 dx�4:51�

U c10

�

W

for�w�x���jD
1uj2 � 1� � o 0

r�w�x���jD
1uj4 � 1�g dx;

where o 0
r�s� � �d=ds�or�s�. De®ne

w�x� � maxf
����������

w�x�
p

; 1g; E � fx A W; w�x� > 1g

and note that the following estimates hold:

or�w�x��V c11jD
1u�x�j2r; w�x�V c11jD

1u�x�j2; x A E;�4:52�

jD1u�x�jU c11w�x�; or�w�x��U c11�w�x��
2r;

o 0
r�w�x��U c11�r� 1��w�x��2rÿ2; x A W:

�4:53�

Using the inequalities (4.51)±(4.53) we deduce

�

W

�w�x��2rjD1w�x�j2 dx �

�

E

�w�x��2rjD1w�x�j2 dx�4:54�

U c12

�

E

or�w�x��jD
2u�x�j2 dx

U c13�r� 1�

�

W

�w�x��2r�2
dx:

From the estimates (4.49), (4.53) we have the following inequality:

�

W

jD1w�x�j2 dxU c14

�

W

jD2u�x�j2 dxU c14M
�2�:�4:55�

The estimate (4.45) follows immediately from (4.54), (4.55) and Lemma 3.1.

Let us now show that Ne � f0g for su½ciently small e. Assume that this is not

true. Then there exist sequences ftjg, fuj�x�g such that uj A N1�tj�; uj 0 0; kujk1;m ! 0.

From (4.44) with t � tj, u�x� � uj�x�, f�x� � uj�x� we obtain the estimate

kujk1;2 U c15kujk2�4:56�

with a constant c15 independent of j.

Taking into account (4.56) we may assume that the sequence vj�x� � uj�x�=kujk2
converges weakly in W

1;2
0 �W� to some function v0�x� such that v0 0 0. Dividing the

equality (4.44), with t � tj; u�x� � uj�x�, by kujk2 and passing to the limit at j ! y we

obtain by virtue of (4.45)

X

jaj; jbjU1

�

W

�r2�0�dab � a
�0�
ab �x��D

bv0�x�D
af�x� dx � 0; f A W

1;m
0 �W�:
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This contradicts with our assumptions of Theorem 2.2 and completes the proof of the

lemma.

We have veri®ed that the operator A, de®ned by (2.11) satis®es all the assumptions

of Theorem 2.1. Consequently, (2.23) follows from Theorem 2.1. This is the end of

the proof of Theorem 2.2. r

5. Bifurcation of solutions for m > 2.

We consider in this section the bifurcation of solutions of the problem ((1.2), (1.3))

for the case of the Banach space W
1;m
0 �W�;m > 2. We ®rst assume that the functions

r�u�, aa�x; x
0� �jaj � 1�, a0�x; x� satisfy (1.9) and Conditions i), ii) of Section 1. Let the

operators A, C be de®ned by (1.14), (1.16) and let l0 be some real number. We assume

that, for some d0 > 0, zero is an isolated critical point of the operator A� lC for every

l from the interval �l0 ÿ d0; l0 � d0�. If this is not the case, then l0 would be a

bifurcation point. Taking into account Theorem 1.1 and De®nition 2.2 we can de®ne

the index Ind�A� lC; 0� of the operator A� lC at zero for jlÿ l0j < d0.

Let

iG�l0� � lim sup
l!l0G

Ind�A� lC; 0�; iG�l0� � lim inf
l!l0G

Ind�A� lC; 0�:�5:1�

Theorem 5.1. Assume that Conditions i), ii) of Section 1 and (1.9) are satis®ed and

assume that at least two of the numbers

iÿ�l0�; i��l0�; iÿ�l0�; i��l0�; Ind�A� l0C; 0��5:2�

are distinct for the operators A, C de®ned by (1.14), (1.16), respectively. Then l0 is a

bifurcation point of the problem ((1.2), (1.3)).

The assertion of Theorem 5.1 follows immediately from Theorem 5.1 of the paper

[6].

Now, we will establish a necessary condition for the bifurcation point in terms of the

linearized boundary value problem. We assume that the coe½cients of the equation

(1.2) satisfy Conditions r), a1), a2) of Section 2 and introduce the operators A 0
:

W
1;m
0 �W� ! �W 1;m

0 �W���, C 0
: W

1;m
0 �W� ! �W 1;m

0 �W��� by

hA 0u; fi �
X

jaj�jbj�1

�
W

�r2�0�dab � a
�0�
ab �x��D

buDaf dx�5:3�

hC 0u; fi �
X
jajU1

�
W

a
�0�
0a �x�D

auf�x� dx;�5:4�

where

a
�0�
ab �x� � aab�x; 0�; aab�x; x� �

q

qxb
aa�x; x�;

dab � 1 for a � b and dab � 0 otherwise.
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From (2.12) we have

hA 0u; uiV n0kuk
2
1;2; u A W

1;m
0 �W�;�5:5�

where n0 is a positive constant independent of u. As in the proof of Lemma 4.3, we see

that the operator

T � ÿ�A 0�ÿ1
C 0

: W
1;m
0 �W� ! W

1;m
0 �W��5:6�

is well de®ned and compact.

We introduce the linearized equation

X

jaj�jbj�1

D
af�r2�0�dab � a

�0�
ab �x��D

bug ÿ l
X

jajU1

a
�0�
0a �x�D

au; x A W;�5:7�

and de®ne a pair fl0; u0g A R�W
1;m
0 �W� to be a ``solution'' of the problem ((5.7), (1.3))

if A 0u0 � lC 0u0 � 0.

Definition 5.1. A number l0 A R is said to be a ``characteristic value'' of the

problem ((5.7), (1.3)) if there exists a solution fl0; u0g of this problem such that u0 0 0.

Definition 5.2. The ``multiplicity'' of the characteristic value l0 of the problem

((5.7), (1.3)) is the multiplicity of the characteristic value l0 of the operator T de®ned by

(5.6).

We note that the characteristic values of the problem ((5.7), (1.3)) and the operator

T coincide.

Lemma 5.1. Assume that the coe½cients r�u�, aa�x; x
0� �jaj � 1�, a0�x; x� of the

equation (1.2) satisfy the relevant conditions r�, a1�, a2� of Section 2. Let �l1; l2� be a

closed interval which does not contain any characteristic values of the problem ((5.7),

(1.3)). Then there exists a positive number e, depending only on l1; l2, such that for every

l A �l1; l2� the boundary value problem ((1.2), (1.3)) has only the zero solution in the ball

Be�0�HW
1;m
0 �W�.

The proof of this lemma is similar to that of Lemma 4.4. It is therefore omitted.

Theorem 5.2. Assume that Conditions r�, a1�, a2� of Section 2 are satis®ed by the

coe½cients of the equation (1.2). A necessary condition that l0 be a bifurcation point of

the problem ((1.2), (1.3)) is that l0 is a characteristic value of the problem ((5.7), (1.3)).

Proof. Assume that l0 is not a characteristic value of the problem ((5.7), (1.3)).

We need to show that l0 is not a bifurcation point of the problem ((1.2), (1.3)). We

know that the characteristic values of the problem ((5.7), (1.3)) and the operator T

coincide and that the set of characteristic values of the compact operator T is discrete.

Consequently, there exists d1 > 0 such that some interval �l0 ÿ d1; l0 � d1� contains no

characteristic values of the problem ((1.2), (1.3)). Thus, by Lemma 5.1, there is some

ball Be1�0�HW
1;m
0 �W� which contains only the zero solution of the boundary value

problem ((1.2), (1.3)) for jlÿ l0jU d1. This says that l0 is not a bifurcation point of

the problem ((1.2), (1.3)) and completes the proof of Theorem 5.2. r
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Theorem 5.3. Assume that the conditions of Theorem 5.2 are satis®ed and let l0

be a characteristic value of the problem ((5.7), (1.3)) of odd multiplicity. Then l0 is a

bifurcation point of the problem ((1.2), (1.3)).

Proof. Choose a positive number d1 such that the interval �l0 ÿ d1; l0 � d1�

contains only one characteristic value of the operator T which is de®ned by (5.6). Let

lÿ, l� be arbitrary numbers from the intervals �l0 ÿ d1; l0�, �l0; l0 � d1�, respectively.

Then the operators Aÿ � A� lÿC, A� � A� l�C satisfy all the assumptions on A of

Theorem 2.2. Thus, by that theorem,

Ind�Aÿ; 0� � �ÿ1�nÿ ; Ind�A�; 0� � �ÿ1�n� ;�5:8�

where nG is the sum of the multiplicities of the characteristic values of the operator T on

the interval �0; lG�. If n0 is the multiplicity of the characteristic value l0, then n� �

nÿ � n0 and, by the condition of the theorem, we have from (5.8)

Ind�A� lÿC; 0� � ÿInd�A� l�C; 0�;�5:9�

for any lÿ A �l0 ÿ d1; l0�, l� A �l0; l0 � d1�.

From (5.9) we have

lim
l!l0ÿ

Ind�A� lC; 0� � ÿ lim
l!l0�

Ind�A� lC; 0�

and the assertion of Theorem 5.3 follows from Theorem 5.1. r

6. Bifurcation of solutions for m � 2.

We formulate ®rst a result about the computation of the index of a critical point for

abstract operators in the case of a real separable Hilbert space H instead of the Banach

space X . We denote by h� ; �i the scalar product in the space H. The conditions A1�,

A2�, A 0�, A0�, o�, C�, which we will use below, are given in Sections 1, 2.

Theorem 6.1. Let H be a real separable Hilbert space and let A : HID�A� ! H

satisfy (2.8), Conditions A1�, A2� and be such that 0 A D�A�VD0, A�0� � 0. Assume that

there exist a bounded linear operator A 0
: H ! H and compact linear operators G0 : H !

H, G : H ! H such that

h�A� G0�u; uiV ckuk2; u A D�A�; kukU 1;

h�A 0 � G�u; uiV ckuk2; u A H;

where c is a positive constant. Assume that the equation A 0u � 0 has only the zero

solution and the condition o� is satis®ed with A0u � kukA 0u. Then zero is an isolated

critical point of the operator A and its index equals �ÿ1�n, where n is the sum of the

multiplicities of the characteristic values of the operator T � �A 0 � G�ÿ1
G lying in the

interval �0; 1�.

Proof. We note that from the second inequality in (6.1) it follows that the

operator �A 0 � G�ÿ1
G is well de®ned on all of H and compact. Similarly, the operator

A0 : H ! H, de®ned by A0u � kukA 0u, satis®es the condition A0�. We are going to
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verify that the conclusion of Theorem 6.1 follows from that of Theorem 2.1. From

(6.1) we have the boundedness of the operator �A 0 � G�ÿ1
: H ! H and, consequently,

Condition 1) of Theorem 2.1 is satis®ed.

Let us verify that Condition 2) of Theorem 2.1 is satis®ed. From the choice of A0

and the conditions for the operator A 0 we have that the set Z 00
1 , de®ned by (2.10), is

empty. Let ftjg, fujg be two sequences such that tj A �0; 1�, uj A D�A� and

tjAuj � �1ÿ tj��A0uj � A 0uj� � 0; 0 < kujkU 1:�6:2�

We may assume that the sequence vj � uj=kujk converges weakly to some v0. From

(6.1), (6.2) we have

c�tj � �1ÿ tj��kujk � 1��kujk
2
U tjhG0uj; uji� �1ÿ tj��kujk � 1�hGuj; uji;

which says that v0 0 0. This establishes the validity of Condition 2) of Theorem 2.1

and ®nishes the proof of Theorem 6.1. r

Throughout this and the following sections we assume that W is an open and

bounded subset of Rn. Before we state and prove the index result of this section, we go

over some auxiliary facts and assumptions. The operator A : W
1;2
0 �W�ID�A� !

W
1;2
0 �W� is de®ned by

hAu; fi �

�

W

r2�u�
X

jaj�1

D
auDaf�

X

jajU1

aa�x; u;D
1u�Daf

8

<

:

9

=

;

dx;�6:3�

where

D�A� � fu A W
1;2
0 �W� : r2�u�Dau A L2�W� for jaj � 1g:�6:4�

We assume the following conditions.

~r) r : R ! R is continuous and satis®es (1.6);

~a1� the real valued functions aa�x; x�, jajU 1, are de®ned on W� R
n�1 and are

measurable with respect to x and continuously di¨erentiable with respect to x; moreover,

aa�x; 0� � 0, for x A W, jaj � 1;

~a2) there exist positive constants n1, n2 such that for x A W, x A R
n�1, ha A R the

inequalities

X

jaj�jbj�1

aab�x; x�hahb V n1
X

jaj�1

h2a ;�6:5�

and

X

jaj; jbjU1

jaab�x; x�jU n2

hold, where aab�x; x� � �q=qxb�aa�x; x�.

We introduce a linear operator A 0
: W

1;2
0 �W� ! W

1;2
0 �W� by (2.15). As in Section

2, we de®ne an operator G : W
1;2
0 �W� ! W

1;2
0 �W� by (2.17) and then establish (2.18).
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Using Condition ~a2), it is easy to verify the estimate

h�A� G0�u; uiV k1kuk
2
1;2; u A D�A�;�6:6�

where k1 > 0 and

hG0u; fi � g0

�

W

u�x�f�x� dx;

with the constant g0 su½ciently large. From the compactness of the embedding

W
1;2
0 �W�HL2�W� we have that the operators G , G0 are compact. As in Lemma 5.3,

we can verify that the operator

T � �A 0 � G�ÿ1
G : W

1;2
0 �W� ! W

1;2
0 �W��6:7�

is well de®ned and compact.

We consider the linearized equation
X

jaj; jbjU1

�ÿ1�jajDaf�r2�0�dab � a
�0�
ab �x��D

bug � lgu � 0�6:8�

with the same dab, a
�0�
ab as in (2.15). In view of De®nitions 2.3, 2.4, we de®ne anal-

ogously the characteristic value and the multiplicity of the characteristic value of the

problem ((6.8), (1.3)).

Theorem 6.2. Assume that Conditions ~r�, ~a1�, ~a2� are satis®ed and that the equation

(6.8) has only the zero solution in W
1;2
0 �W� for l � 0. Then the index of the operator A,

de®ned by (6.3), is computed by the formula

Ind�A; 0� � �ÿ1�n;�6:9�

where n is the sum of the multiplicities of the characteristic values of the problem ((6.8),

(1.3)) lying in the interval �0; 1�.

Proof. We need to prove that the operator A, de®ned by (6.3), satis®es all the

conditions of Theorem 6.1. The inequality (2.8) follows immediately from Lemma 4.1,

while the inequalities (6.1) follow from (2.18) and (6.6).

We need to check only Condition o). Let fujgHD�A�, ftjgH �0; 1� be such that

tjAuj � �1ÿ tj��A0uj � A 0uj� � 0; 0 < kujk1;2 <
1

j
; tj ! t0;�6:10�

for some t0 A �0; 1�. The function uj�x� satis®es the following integral identity:

�

W

tj
X

jajU1

aa�x; uj ;D
1uj�D

af�x� �
X

jaj�1

r2�uj�D
auj�x�D

af�x�

2

4

3

5 dx

8

<

:

�6:11�

� �1ÿ tj��1� kujk1;2�
X

jaj; jbjU1

�r2�0�dab � a
�0�
ab �x��D

bujD
af�x�

)

dx

� 0;
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for every f A W
1;2
0 �W�. It is well known that Condition ~a2) guarantees the boundedness

of the function uj�x� (see [8, Chapter 4, Section 7]). We estimate the maximum

of juj�x�j. Letting f�x� � juj�x�j
r
uj�x� in (6.11) with rV 0 and repeating standard

calculations we obtain the inequality

�

W

juj�x�j
2jD1uj�x�j

2
dxU k2�1� r�

�

W

juj�x�j
2�r

dx;�6:12�

where the constant k2 is independent of j, r. Thus, from (6.10), (6.12) and Lemma 3.1

we have

maxfjuj�x�j : x A Wg ! 0 as j ! y:�6:13�

For f A W
1;2
0 �W� we have

hkujk
ÿ1
1;2�Auj ÿ A 0uj�; fi �

�

W

(

X

jaj�1

�r2�uj� ÿ r2�0��Davj�x�D
af�x��6:14�

�
X

jaj; jbjU1

�1

0

�aab�x; suj; sD
1uj� ÿ aab�x; 0��D

bvj�x�D
af�x� ds

)

dx;

where vj�x� � uj�x�=kujk
ÿ1
1;2, and the convergence of the right-hand side of (6.14) to zero

follows from (6.10), (6.13), Conditions ~r�, ~a1�, ~a2� and the continuity of the Nemytskii

operator. We have shown the convergence in (2.4) and the proof is complete. r

Now, we consider the bifurcation of the solutions of the boundary value problem

((1.2), (1.3)) when the coe½cients of the equation (1.3) satisfy the conditions ~r�, ~a1�,

~a2�. We introduce the operators A 0
: W

1;2
0 �W� ! W

1;2
0 �W�, C 0

: W
1;2
0 �W� ! W

1;2
0 �W�

and T : W
1;2
0 �W� ! W

1;2
0 �W� by (5.3), (5.4) and (5.6), respectively, and de®ne a line-

arized equation in accordance with (5.7). Note that the inequality (5.5) for the operator

A 0 is satis®ed. We maintain the validity of De®nitions 5.1, 5.2 for the boundary value

problem ((5.7), (1.3)) under consideration.

Theorem 6.3. Assume that the coe½cients r�u�, aa�x; x
0� �jaj � 1�, a0�x; x� of the

equation (1.2) satisfy the relevant conditions ~r), ~a1), ~a2) and let l0 be a bifurcation point of

the problem ((1.2), (1.3)). Then l0 is a characteristic value of the problem (5.7), (1.3).

Proof. Let flj ; ujg be a sequence of solutions of the problem ((1.2), (1.3)) with

lj ! l0; kujk1;2 ! 0; uj 0 0:�6:15�

The function uj�x� satis®es the following integral identity:

X

jaj�1

�

W

fr2�uj�D
auj � aa�a;D

1uj�gD
af�x� dx�6:16�

� lj

�

W

a0�u; uj;D
1uj�f dx � 0; f A W

1;2
0 �W�:

We let f � uj above and obtain, after some standard calculations,
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kujk1;2 U k3kujk2;�6:17�

with the constant k3 independent of j. We may thus assume that the sequence vj�x� �

uj�x�=kujk2 converges weakly in W
1;2
0 �W� to v0�x� and v0 0 0 by virtue of (6.17). As in

the proof of Theorem 6.2, we can establish that (6.13) holds for the sequence uj�x�.

From (6.16) we have

X

jaj�1

�

W

r2�uj�D
avj �

X

jbj�1

�1

0

aab�x; sD
1uj�D

bvj ds

8

<

:

9

=

;

D
af�x� dx�6:18�

� lj
X

jajU1

�

W

� 1

0

a0a�x; suj; sD
1uj�D

avj�x�f�x� dsdx � 0:

Using (6.13) and (6.15) we can pass to the limit in (6.18) to obtain that fl0; v0g is a

solution of the problem ((5.7), (1.3)). Taking into account that v0 0 0, we see that the

proof of the theorem is complete. r

Theorem 6.4. Assume that the conditions of Theorem 6.3 are satis®ed and let l0
be a characteristic value of the problem ((5.7), (1.3)) of odd multiplicity. Then l0 is a

bifurcation point of the problem ((1.2), (1.3)).

The proof follows from Theorem 6.2 by repeating the arguments of the proof of

Theorem 5.3.

7. Bifurcation of unbounded solutions.

In this section we demonstrate the possibility to study the bifurcation problem for

the equation (1.2) even if the solutions of the problem ((1.2), (1.3)) are unbounded. We

consider the case of the Hilbert space W
1;2
0 �W� and let, for simplicity, a0�a; x� be the

linear function de®ned by

a0�x; x� �
X

jajU1

qa�x�xa;�7:1�

where

qa A Ln�W� for jaj � 1; q0�x� A Ln=2�W�:�7:2�

It is known that the solutions of the problem ((1.2), (1.3)) can be unbounded under the

assumptions (7.1), (7.2) (see, e.g., [8, Chapter 1, Section 2]).

In order to study the bifurcation problem with the function a0�x; x�, de®ned by

(7.1), (7.2), we will use a weak variant of Condition o) that is suggested from a careful

examination of the proof of Theorem 2.1 in [6].

Remark 7.1. Assume that all the conditions of Theorem 2.1 are satis®ed, except

Condition o�. Then the conclusion of this theorem is true if the following modi®ed

condition ~o is satis®ed:
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~o� there exists a positive number e such that for every sequence fujg such that uj A

Z 0
e�tj�, uj ! 0 we have

lim
j!y

tj

kujk
hAuj ÿ A 0uj; vi � 0;�7:3�

for each v A L, where, for t A �0; 1�,

Z 0
e�t� � fu A D�A� : tAu� �1ÿ t��A0u� A 0u� � 0; 0 < kukU eg:�7:4�

De®ne a linear operator C : W
1;2
0 �W� ! W

1;2
0 �W� by

hCu; fi �
X

jajU1

�

W

qa�x�D
au�x�f�x� dx;�7:5�

where qa�x� satis®es (7.2).

Lemma 7.1. Assume that n > 2 and (7.2) is satis®ed. Then the operator C, de®ned

by (7.5), is compact.

Proof. We only check that if fujg, ffjgHW
1;2
0 �W� converge weakly to u0, f0,

respectively, then we have

lim
j!y

hCuj; fji � hCu0; f0i:�7:6�

By HoÈlder's inequality, we estimate

jhCuj; fj ÿ f0ijU k4kujk1;2

(

X

jaj�1

�

W

jqa�x��fj�x� ÿ f0�x��
2j dx

� �

�7:7�

�

�

W

jq0�x��fj�x� ÿ f0�x��j
p0dx

� �1= p0
)

;

where p0 � 2n=�n� 2� and k4 is a constant independent of j. From the embedding

theorem we have that the sequences fqa�x��fj�x� ÿ f0�x��g, jajU 1, converge to zero in

measure as j ! y. Using (7.2) and HoÈlder's inequality we obtain that the integrals in

the right-hand side of (7.7) are uniformly absolutely continuous. Consequently, the

right-hand side of (7.7) tends to zero as j ! y. Thus, (7.6) is true and the proof is

complete. r

Lemma 7.2. Assume that n > 2 and that the functions r�u�, aa�x; x� �jaj � 1� satisfy

the conditions ~r�, ~a1�, ~a2� of Section 6. Assume that the function a0�x; x� satis®es

Conditions (7.1), (7.2). Let A, A 0, C be the operators de®ned by (1.14), (5.3) and (7.5),

respectively. Then for every l A R the operators ~A � A� lC, ~A 0 � A 0 � lC and ~A0

(de®ned by ~A0u � kuk1;2A
0u) satisfy Condition ~o) with e � 1.

Proof. Let fujgHW
1;2
0 �W� be such that

�

W

r2�uj�jD
1uj j

2
dx < �y; kujk1;2 ! 0; 0 < kujk1;2 U 1;�7:8�

and, for some tj A �0; 1� and every f A W
1;2
0 �W�,
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�

W

(

tj
X

jaj�1

�r2�uj�D
auj � aa�x;D

1uj��D
af�7:9�

� �1ÿ tj�
X

jaj�jbj�1

�1� kujk1;2��r
2�0�dab � a

�0�
ab �x��D

bujD
af

� l
X

jajU1

qa�x�D
aujf

)

dx � 0:

From (7.9) with f � uj we have

tj

�

W

r2�uj�jD
1ujj

2
dxU k5kujk

2
1;2:�7:10�

Using the notation (4.3) and the inequalities (4.4) and (7.10) we have

t
p=2
j

�

W

j~r�uj�j
p
dxU k6kujk

p
1;2:�7:11�

For f A Cy
0 �W� we have

tjkujk
ÿ1
1;2h

~Auj ÿ ~A 0uj; fi�7:12�

� tjkujk
ÿ1
1;2

�

W

X

jaj�1

�r2�uj� ÿ r2�0��Dauj�x�D
af�x� � tjkujk

ÿ1
1;2

�
X

jaj�jbj�1

� 1

0

�

W

�aab�x; sD
1uj� ÿ a

�0�
ab �x��D

buj�x�D
af�x� dx:

The convergence to zero of the second summand above follows from (7.8) and the

continuity of the Nemytskii operator.

We see that the ®rst summand of (7.12) is bounded above by

k7kfkC 1�W� �

�

W

tj

kujk
2
1;2

jr2�uj� ÿ r2�0�jjD1ujj
2

( )1=2

�7:13�

�

�

W

tj jr
2�uj� ÿ r2�0�j dx

� �

The ®rst integral in (7.13) is bounded above by virtue of (7.10). The integrand in the

second integral of (7.13) converges to zero in measure by virtue of (7.8) and the

embedding theorem. The sequence of the second integrals in (7.13) satis®es the

condition of uniform absolute continuity. This follows from the condition r�, (7.8) and

(7.11). Consequently, the right-hand side of (7.12) tends to zero and the proof of the

lemma is complete. r

We consider the linearized equation

X

jaj�jbj�1

D
af�r2�0�dab � a

�0�
ab �x��D

bug ÿ l
X

jajU1

qa�x�D
au � 0; x A W:�7:14�
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Using Lemmas 7.1, 7.2 and Remark 7.1 we establish the following results in a manner

analogous to that of Theorems 6.3 and 6.4.

Theorem 7.1. Assume that n > 2 and the functions r�u�, aa�x; x� �jaj � 1�, a0�x; x�

satisfy the conditions of Lemma 7.2. Let l0 be a bifurcation point of the problem ((1.2),

(1.3)). Then l0 is a characteristic value of the problem ((7.14), (1.3)).

Theorem 7.2. Assume that n > 2 and the functions r�u�, aa�x; x� �jaj � 1�, a0�x; x�

satisfy the conditions of Lemma 7.2. Let l0 be a characteristic value of the problem

((7.14), (1.3)) of odd multiplicity. Then l0 is a bifurcation point of the problem ((1.2),

(1.3)).

References

[1] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial

di¨erential equations satisfying general boundary conditions, Comm. Pure Appl. Math. 12 (1959), 623±

727.

[2] M. A. Del Pino and R. F. Manasevich, Global bifurcation from the eigenvalue of the p-Laplacian, J.

Di¨erential Equations 92 (1991), 226±251.

[3] P. DraÂbek, Solvability and bifurcation of Nonlinear Equations, Pitman Res. Notes Math. Ser., a264,

Longman, Harlow, 1992.

[4] N. Fukagai, M. Ito and K. Narukawa, A bifurcation problem of some nonlinear degenerate equa-

tions, Adv. Di¨erential Equations 2 (1997), 895±926.

[5] A. G. Kartsatos and I. V. Skrypnik, Topological degree theories for densely de®ned mappings involving

operators of type (S�), Adv. Di¨erential Equations 4 (1999), 413±456.

[6] A. G. Kartsatos and I. V. Skrypnik, The index of a critical point for densely de®ned operators of type

(S�) in Banach spaces (to appear).

[7] M. Krasnoselskij, Topological methods in the theory of nonlinear integral equations, Pergamon Press,

Oxford, 1964.

[8] O. A. Ladyzhenskaya and N. N. Uraltseva, Linear and quasilinear elliptic equations, Academic Press,

New York-London, 1968.

[9] E. Magenes, Interpolation spaces and partial di¨erential equations, Uspekhi Math. Nauk 21 (1966),

169±218.

[10] I. V. Skrypnik, Nonlinear higher order elliptic equations, Naukova Dumka, Kiev, 1973.

[11] I. V. Skrypnik, Methods for analysis of nonlinear elliptic boundary value problems, Amer. Math. Soc.

Transl. Ser. II, a139, Providence, Rhode Island, 1994.

[12] K. Taira and K. Umezh, Bifurcation for nonlinear elliptic boundary value problems III, Adv.

Di¨erential Equations 1 (1996), 709±727.

[13] A. E. Taylor, Introduction to functional analysis, John Wiley, New York, 1967.

Athanassios G. Kartsatos

Department of Mathematics

University of South Florida

Tampa, Florida 33620-5700

USA

Igor V. Skrypnik

Institute for Applied Mathematics and Mechanics

R. Luxemburg Str. 74

Donetsk 340114

Ukraine

E-mail: hermes@math.usf.edu, skrypnik@iamm.ac.donetsk.ua

Index of a critical point for nonlinear elliptic operators 137


	1. Introduction and preliminaries.
	THEOREM 1.1. ...

	2. Index of a critical ...
	THEOREM 2.1 ...
	THEOREM 2.2. ...

	3. Auxiliary regularity ...
	THEOREM 3.1. ...
	THEOREM 3.2. ...

	4. Proof of the index ...
	5. Bifurcation of solutions ...
	THEOREM 5.1. ...
	THEOREM 5.2. ...
	THEOREM 5.3. ...

	6. Bifurcation of solutions ...
	THEOREM 6.1. ...
	THEOREM 6.2. ...
	THEOREM 6.3. ...
	THEOREM 6.4. ...

	7. Bifurcation of unbounded ...
	THEOREM 7.1. ...
	THEOREM 7.2. ...

	References

