
J. Math. Soc. Japan
Vol. 52, No. 1, 2000

Asymptotic behavior of the transition probability of a simple random walk

on a line graph
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Abstract. For simple random walks fPn
Gg on a homogeneous graph G and fPn

L�G�g
on its line graph L�G�, we obtain the relationship between the asymptotic behavior of the

n-step transition probability Pn
G �x; x� and that of Pn

L�G��x; x� as n ! y.

1. Introduction.

Let G be an in®nite connected graph and Pn
G�x; x� the probability that a simple

random walk (the de®nition will be given in Section 2) on G starting at x returns to x

at time n. It is well-known that for even n,

Pn
Z

d �x; x�@
2d d=2

�2pn�d=2
�n ! y�; �1:1�

where Z
d is the d-dimensional lattice [8]. Similarly, for the hexagonal lattice and the

Kagome lattice, one can show

Pn
Hexagonal�x; x�@ 3

���

3
p 1

�2pn�d=2
�even n!y�; Pn

Kagome�x; x�@
4

���

3
p

3

1

�2pn�d=2
�n!y�

�1:2�

by the calculation of Fourier series. Here the power d equals 2, which depends on the

fact that the vertices of both in®nite lattices can be embedded in Z
2 periodically.

Now when the transition probability of a random walk on a graph G which has

periodic structure in some sense behaves asymptotically as

Pn
G�x; x�@

CG

�2pn�d=2
�n ! y�; �1:3�

what is the meaning of the constant CG ([6])? One geometrical interpretation of CG is

given in [4]. In this paper, in connection with the problem above, we investigate how

the constant CG changes under the graph theoretical operation of G which is called line

graph.

First we prepare some de®nitions. Let G � �V�G�;E�G�� be a connected in®nite

graph, where the sets V�G� and E�G� are the vertex set and the unordered edge set of
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G, respectively. We assume a graph G is simple, that is, G has no self loops and no

multiple edges. A set Nx � fy A V�G�; xy A E�G�g is the neighborhood of a vertex x.

A graph G is called d-regular if jNxj1 d for all x A V�G�, where jAj is the cardinality of

a set A. Throughout this paper, we deal with only d-regular graphs.

Now we de®ne a line graph L�G� of G as follows:

� V�L�G�� � E�G�

� E�L�G�� � f�x; y��y; z�; xy A E�G� and yz A E�G�; x0 zg

The vertex set of L�G� is the edge set of G and vertices a and b in L�G� are adjacent if a

and b as edges in G have a common vertex in G.

Remark 1.1. One can check in Figure 1 that the line graph of the hexagonal-lattice

is the Kagome-lattice, that is, L(hexagonal-lattice) � Kagome-lattice

Next we de®ne a notion of homogeneity of graphs. A graph G is said to be

homogeneous if for any pair of vertices x and y, there exists a graph automorphism

which maps x to y. (We remark that the homogeneity in the sense above is usually

called vertex transitivity in graph theory.) When G is homogeneous, G is necessarily a

regular graph and for all n A N there exists a constant 0UCn U 1 such that

Pn
G�x; x� � Cn �Ex A V�G��:

For example, Z
d (d-dimensional lattice), triangular-lattice, hexagonal-lattice, Kagome-

lattice, Td (d-regular tree) and etc. are homogeneous in the sense above. Before we

G L�G�

Figure 1: Hexagonal-lattice and Kagome-lattice.

Figure 2: Line graph.

x w �x;w�

� y;w�
�x; y� �w; z�

y z � y; z�

G L�G�
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mention our main theorem, we recall the de®nition of a bipartite graph. A graph G is

called a bipartite graph if G has no cycles of odd length, in other words, the vertex set

V�G� can be partitioned into two disjoint subsets V1 and V2 in such a way that

V�G� � V1 q V2 and every edge in E�G� connects a vertex in V1 with a vertex in V2. If

G is bipartite, the simple random walk on G has period 2 and the spectrum s�PG� is

symmetric with respect to the origin (see Lemma 2.3).

Our main theorem is the following:

Theorem. Let G be a homogeneous d-regular graph with dV 3, PG the transition

operator associated with a simple random walk on G, and l0�G� � sup s�PG� and l1�G� �

inf s�PG�. Assume that there exists a positive constant CG > 0 and pV 0 such that

Pn
G�x; x�@

CGl0�G�
n

np
�1:4�

as n ! y (as even n ! y for (2)).

(1) When l0�G� > jl1�G�j,

Pn
L�G��a; a�@

2CG

d

�2d ÿ 2�l0�L�G��

dl0�G�

� �p
l0�L�G��n

np
�1:5�

for any a A V�L�G�� as n ! y. Especially, for l0�G� � 1, as n ! y,

Pn
L�G��a; a�@

2CG

d

2d ÿ 2

d

� �p 1

np
: �1:6�

(2) When G is bipartite (automatically l0�G� � jl1�G�j), the asymptotic formulas (1.5)

and (1.6) with the coe½cient 2CG replaced by CG hold, that is,

Pn
L�G��a; a�@

CG

d

�2d ÿ 2�l0�L�G��

dl0�G�

� �p
l0�L�G��n

np
�1:7�

for any a A V�L�G�� as n ! y. Especially, for l0�G� � 1,

Pn
L�G��a; a�@

CG

d

2d ÿ 2

d

� �p
1

np
�1:8�

as n ! y.

Remark 1.2. The upper bound of the spectrum of PL�G�, l0�L�G�� in equations

(1.5) and (1.7), can be expressed by l0�G� by Lemma 2.1(4) 0, namely,

l0�L�G�� �
1

2d ÿ 2
�dl0�G� � �d ÿ 2��: �1:9�

In particular, l0�G� � 1 and l0�L�G�� � 1 are equivalent.

Remark 1.3. If G is the hexagonal lattice, then it is a bipartite 3-regular graph,

and it is easy to check that l0�G� � 1 � jl1�G�j, d � 3, p � 1. Noting Remark 1.1 we

obtain from (1.8)
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CL�G� �
4

9
CG: �1:10�

This is the relationship between the coe½cients
4

���

3
p

3
and 3

���

3
p

in (1.2).

Remark 1.4. In the case where l0�G� � 1, there are many examples for which the

assumption (1.4) holds, for example, abelian covering graphs [4]. In the case where

l0�G� < 1, there are only a few examples such as d-regular trees. However, we

conjecture that the assumption (1.4) holds for all homogeneous graphs.

2. Lemmas.

Let G be a homogeneous d-regular graph and L�G� its line graph which is

automatically �2d ÿ 2�-regular graph. We note that L�G� is not in general a homo-

geneous graph even if G is homogeneous. We consider a simple random walk on G,

that is, �PG�x; y��x;y AV�G� is the transition probability matrix which is de®ned as follows:

PG�x; y� �
1=d; if y A Nx,

0; otherwise,

�

where Nx is the neighborhood of x. Then PG is a bounded self-adjoint operator on

l
2�G� which is the set of real-valued functions on V�G� which satisfy

P

x AV�G� d � f �x�2
< y with the inner product h f ; gi �

P

x AV�G� d � f �x�g�x�. Since PG is a contraction

operator, its spectrum is contained in �ÿ1; 1�. We denote the transition probability of

a simple random walk on L�G� by PL�G�. We have obtained the relationship between

the spectrum of PG and that of PL�G� in [7 ].

Lemma 2.1. Let f : l
2�G� ! l

2�L�G�� and f�
: l

2�L�G�� ! l
2�G� be de®ned by

f f �x; y� � Cd� f �x� � f �y��; f�F�x� � Cÿ1
d

X

r ANx

F�x; r�;

where Cd � �d=�2d ÿ 2��1=2 and l
2�L�G�� is identi®ed with the space of symmetric

l
2-functions fF�x; y�; xy A E�G�; kFk2 � P

xy AE�G��2d ÿ 2�jF�x; y�j2 < yg. Then

(1) f and f� are linear bounded operators and f� is the adjoint operator of f,

(2) f�f � d�PG � 1�, ff� � �2d ÿ 2��PL�G� � 1=�d ÿ 1��,
(3) f�PL�G� � h�PG�f�, where h�x� � �1=�2d ÿ 2��fdx� �d ÿ 2�g,
(4) s�PL�G�� � fÿ1=�d ÿ 1�gU h�s�PG��, where fÿ1=�d ÿ 1�g are eigenvalues of

in®nite multiplicity. In particular,

(4) 0 l0�L�G�� � h�l0�G��, where l0�G� (resp. l0�L�G��) is the upper bound of the

spectrum s�PG� (resp. s�PL�G��).

Proof. The proof can be found in [7]. r

We remark that l
2�L�G�� is decomposed into two closed subspaces, that is,

l
2�L�G�� � f�l2�G��l f�l2�G��?. The spectrum of PL�G� restricted to the subspace

f�l2�G�� is h�s�PG�� and that of PL�G� restricted to f�l2�G��? is fÿ1=�d ÿ 1�g.
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Let ex A l
2�G� and ea A l

2�L�G�� be de®ned by ex � dÿ1=2dx A l
2�G�, ea �

�2d ÿ 2�ÿ1=2
da A l

2�L�G��. Then fexgx AV�G� (resp. feaga AV�L�G��) is an orthonormal

basis of l
2�G� (resp. l

2�L�G��). We can show the following lemma.

Lemma 2.2. Let G be a homogeneous d-regular graph. Then for each a � xy A

V�L�G�� � E�G�,

�d ÿ 1�Pn�1
L�G��a; a� � Pn

L�G��a; a� � h�1� PG�h�PG�
n
ex; exi: �2:1�

Proof. We calculate In � hf�Pn
L�G�ea; f

�eai in two ways. Firstly by Lemma 2.1

(1) and (2), we obtain

In � hff�Pn
L�G�ea; eai � �2d ÿ 2� PL�G� �

1

d ÿ 1

� �

Pn
L�G�ea; ea

� �

� �2d ÿ 2�Pn�1
L�G��a; a� � 2Pn

L�G��a; a�:

On the other hand, using Lemma 2.1 (3) and the de®nition of f�, we have

In � hh�PG�
n
f�ea; f

�eai � hh�PG�
n�ex � ey�; �ex � ey�i

� 2�hh�PG�
n
ex; exi� hh�PG�

n
ex; eyi�;

where a � xy and we used the homogeneity of G for the last equality. Then we obtain

�d ÿ 1�Pn�1
L�G��a; a� � Pn

L�G��a; a� � hh�PG�
n
ex; exi� hh�PG�

n
ex; eyi; �2:2�

where the function h is the same one as in Lemma 2.1 (3).

For any homogeneous graph G, it is easy to see that for l A Cns�PG�

lgl�x; x� � 1� gl�r; x� �Er A Nx�;

where gl�x; y� is a green function (or a resolvent kernel), that is, gl�x; y� �

�lÿ PG�
ÿ1�x; y�. Then using the functional calculus, for any function k analytic on

a neighborhood of the spectrum s�PG�, especially for any polynomial k, we have

PGk�PG��x; x� � k�PG��r; x� �Er A Nx�: �2:3�

Hence by using the equality (2.3) in (2.2) we obtain the lemma. r

Next lemma can be considered as part of an extension of the Perron±Frobenius

theorem for positive matrices, which is essentially obtained in [2].

Lemma 2.3. Let T be a bounded self-adjoint operator on a Hilbert space H having

the positivity preserving property, that is, T f V 0 if f V 0. Put l0�T� � sup�s�T�� and

l1�T� � inf�s�T��. Then,

l0�T� � l1�T�V 0: �2:4�

In particular, for the transition operator PG associated with a simple random walk on G,

l0�G� � l1�G�V 0; �2:5�
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where l0�G� � sup�s�PG�� and l1�G� � inf�s�PG��. The equality l0�G� � l1�G� � 0

holds if G is bipartite.

Proof. By the positivity preserving property, for any f A H, we obtain

l0�T�k f k2 � hT f ; f iV hT j f j; j f ji� hT f ; f i

�
1

2
�hT�j f j � f �; j f j � f i� hT�j f j ÿ f �; j f j ÿ f i�

� 2�hT f�; f�i� hT fÿ; fÿi�

V 0; �2:6�

where f� � max� f ; 0� and fÿ � max�ÿ f ; 0�. We can choose a sequence of fn such that

k�T ÿ l1�T�� fnk ! 0 and k fnk � 1 by Weyl's criterion [5]. Consequently, putting f �

fn in (2.6) and letting n ! y, we obtain

l0�T� � l1�T�V 0: �2:7�

For a bipartite graph G with bipartition V�G� � V1 q V2, we de®ne a unitary

operator U : l
2�G� ! l

2�G� as U f �x� � f �x� if x A V1; U f �x� � ÿ f �x� if x A V2. It

is easy to check that ÿPG � UPGU
ÿ1 and so PG and ÿPG are unitarily equivalent.

Consequently, l0�G� � ÿl1�G�. r

The asymptotic behaviors of Pn�1
L�G��a; a� and Pn

L�G��a; a� are a little di¨erent in

strongly transient case. Indeed, we have the following lemma.

Lemma 2.4. Let G be a homogeneous d-regular graph, PG the transition operator

associated with a simple random walk on G and l0�G� � sup s�PG�.

1) When l0�G� > jl1�G�j,

lim
n!y

Pn�1
G �x; x�

Pn
G�x; x�

� l0�G� for any x A V�G�: �2:8�

In particular, for the line graph L�G� of a homogeneous d-regular graph G, l0�L�G�� >

jl1�L�G��j holds if dV 3, and then

lim
n!y

Pn�1
L�G��a; a�

Pn
L�G��a; a�

� l0�L�G�� for any a A V�L�G��: �2:9�

2) When G is bipartite (and necessarily l0�G� � jl1�G�j),

lim
n!y

P2n�2
G �x; x�

P2n
G �x; x�

� l0�G�2 for any x A V�G�: �2:10�

Proof. 1) By the assumption and Lemma 2.3, G is non-bipartite. Then a simple

random walk on G is aperiodic; Pn
G�x; x� > 0 for any su½ciently large integer n. Let

EG�x� is the resolution of the identity of PG and put dn�x� � dkEG�x�exk
2 (independent

of x A V�G� due to the homogeneity). Since l0�G� is in the spectrum s�PG� and G

is homogeneous, it can be easily checked that n��l0�G� ÿ e; l0�G��� > 0 for any e > 0.
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Then we obtain

Pn
G�x; x� �

� l0�G�

l1�G�
xn dn�x�@

� l0�G�

l0�G�ÿe

xn dn�x�: �2:11�

Hence we have

l0�G� ÿ eU lim inf
n!y

Pn�1
G �x; x�
Pn
G�x; x�

U lim sup
n!y

Pn�1
G �x; x�
Pn
G�x; x�

U l0�G�

and since e > 0 is arbitrary, (2.8) holds.

For the second assertion, we remark on the structure of the spectrum of PL�G�.
Since s�PG� is contained in �ÿ1; 1� for any G, the image h�s�PG�� is contained in

�ÿ1=�d ÿ 1�; 1�, where h is the same one as in Lemma 2.1 (3). So because of Lemma

2.1 (4) we have

l1�L�G�� � inf s�PL�G�� �
ÿ1

d ÿ 1
:

We also note that the upper bound of the spectra of d-regular graphs is greater than that

of the d-regular tree Td , that is, l0�G�V l0�Td� � 2
�����������

d ÿ 1
p

=d for any d-regular graph G

[1]. When dV 3, we obtain

jl1�L�G��j � ÿ1

d ÿ 1

�

�

�

�

�

�

�

�

<
1

2d ÿ 2
�2

�����������

d ÿ 1
p

� �d ÿ 2�� � h�l0�Td��U l0�L�G��: �2:12�

2) When G is bipartite, it is su½cient to note that P2n
G �x; x� > 0 and P2n�1

G �x; x� � 0 for

any n. r

Remark 2.5. This lemma holds for more general symmetric random walks on

in®nite graphs under appropriate modi®cation.

Next we consider the asymptotic behavior of moments.

Lemma 2.6. Let jaj < l0 and m be a probability measure supported on �a; l0� such

that for pV 0

� l0

a

xn dm�x�@ Aln
0

np
�2:13�

as n ! y. Let v A C2��a; l0�� be a function which has the unique maximum at l0 in

�a; l0� and v 0�l0� > 0, and u be a function continuous at l0. Then we have

� l0

a

u�x�v�x�n dm�x�@ Au�l0�v�l0�p
�l0v 0�l0��p

v�l0�n
np

�2:14�

as n ! y.

Proof. The asymptotic behavior depends only on x near l0 and since u is

continuous at l0
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� l0

a

u�x�v�x�n dm�x�@ u�l0�

� l0

a

v�x�n dm�x�: �2:15�

We ®rst assume that l0 � 1 and v�1� � 1. Since v A C2, one can check that

log v�x� � �v 0�1� �O�j1ÿ xj�� log x �2:16�

as x ! 1. So for any e > 0 there exists a positive constant 0 < x0 < 1 such that

�1

h

v�x�n dm�x�U

�1

h

xn�v 0�1�ÿe� dm�x� �2:17�

for x0 < Eh < 1. Since v 0�1� > 0, for jaj < h < 1, we have

lim sup
n!y

np

�1

a

v�x�n dm�x� � lim sup
n!y

np

�1

h

v�x�n dm�x�

U lim sup
n!y

np

�1

h

xn�v 0�1�ÿe� dm�x�

�
A

�v 0�1� ÿ e�p
: �2:18�

Similarly, we obtain

lim inf
n!y

np

�1

a

v�x�n dm�x�V
A

�v 0�1� � e�p
: �2:19�

Since e > 0 is arbitrary, we conclude that

�1

a

v�x�n dm�x�@
A

v 0�1�p
1

np
�2:20�

as n ! y. In general case, it is su½cient to consider v�l0x�=v�l0� as a function v�x�

and dm�l0x� as a measure dm�x�. r

3. Proof of the theorem.

Using the lemmas which are obtained in the previous section, we can compute the

asymptotic behavior of Pn
L�G��a; a� as n ! y.

Assume that the following asymptotic behavior holds:

Pn
G�x; x�@

CGl0�G�n

np
�n ! y� �3:1�

and ®rst assume that

l0�G� > jl1�G�j; �3:2�

where l0�G� � sup s�PG� and l1�G� � inf s�PG�. (Note that in general l0�G�V jl1�G�j

by Lemma 2.3.)
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Theorem 3.1. Let G be a homogeneous d-regular graph. The assumptions (3.1),

(3.2) hold. Then, for any a A V�L�G��, as n ! y,

Pn
L�G��a; a�@

2CG

d

�2d ÿ 2�l0�L�G��

dl0�G�

� �p
l0�L�G��

n

np
: �3:3�

Especially, for l0�G� � 1, as n ! y,

Pn
L�G��a; a�@

2CG

d

2d ÿ 2

d

� �p
1

np
: �3:4�

Proof. The assumption (3.1) says that

� l0�G�

l1�G�

xndkEG�x�exk
2
@

CGl0�G�n

np
; �3:5�

where EG�x� is the resolution of the identity of PG. Therefore by (3.2) and Lemma 2.6,

for the function h in Lemma 2.1 (3), we obtain

h�1� PG�h�PG�
n
ex; exi �

� l0�G�

l1�G�

�1� x�h�x�ndkEG�x�exk
2

@

CG�1� l0�G��h�l0�G��p

�l0�G�h 0�l0�G���
p

h�l0�G��n

np

� CG�1� l0�G��
�2d ÿ 2�l0�L�G��

dl0�G�

� �p
l0�L�G��n

np
�3:6�

as n ! y. By Lemma 2.4 and Lemma 2.1 (4) 0, we have

�d ÿ 1�Pn�1
L�G��a; a� � Pn

L�G��a; a�@ ��d ÿ 1�l0�L�G�� � 1� � Pn
L�G��a; a�

�
d

2
�l0�G� � 1�Pn

L�G��a; a� �3:7�

as n ! y. Therefore using Lemma 2.2 we obtain the theorem. r

Corollary 3.2. If G is a bipartite homogeneous d-regular graph (and so l0�G� �

jl1�G�j), and the assumption (3.1) holds for even n ! y, then

Pn
L�G��a; a�@

CG

d

�2d ÿ 2�l0�L�G��

dl0�G�

� �p
l0�L�G��

n

np
: �3:8�

Especially, for l0�G� � 1, as n ! y,

Pn
L�G��a; a�@

CG

d

2d ÿ 2

d

� �p
1

np
: �3:9�

Proof. It is su½cient to note that if a graph G is bipartite then PG and ÿPG are

unitarily equivalent, which implies that (3.1) is equivalent to
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� l0�G�

0

xndkEG�x�exk
2
@

CGl0�G�n

2np
�3:10�

as n ! y. r

Remark 3.3. The assumption (3.2) should be replaced with G being non-bipartite.

We conjecture that if G is homogeneous and the spectrum is symmetric (in the sense that

l0�G� � jl1�G�j) then G is bipartite. In general, if G is not homogeneous, the con-

jecture above is not true. For example, let Z 1 � �V�Z 1�;E�Z 1�� be the ordinary one-

dimensional lattice and G � �V�G�;E�G�� the graph such that V�G� � V�Z 1�U fag and

E�G� � E�Z 1�U f�0; a�; �1; a�g. Since the compact perturbation does not change the

essential spectrum we obtain s�PG� � s�P
Z

1� � �ÿ1; 1� and so the spectrum of G is

symmetric. However, G has a cycle of length 3 and so G is not bipartite. So far we

have shown that if G is homogeneous and non-bipartite, and l0�G� � 1 then jl1�G�j is

strictly less than 1, in other words, the spectrum is not symmetric [3].
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