Asymptotic behavior of the transition probability of a simple random walk on a line graph

By Tomoyuki Shirai

(Received Jun. 8, 1998)

Abstract

For simple random walks $\left\{P_{G}^{n}\right\}$ on a homogeneous graph G and $\left\{P_{L(G)}^{n}\right\}$ on its line graph $L(G)$, we obtain the relationship between the asymptotic behavior of the n-step transition probability $P_{G}^{n}(x, x)$ and that of $P_{L(G)}^{n}(x, x)$ as $n \rightarrow \infty$.

1. Introduction.

Let G be an infinite connected graph and $P_{G}^{n}(x, x)$ the probability that a simple random walk (the definition will be given in Section 2) on G starting at x returns to x at time n. It is well-known that for even n,

$$
\begin{equation*}
P_{\boldsymbol{Z}^{d}}^{n}(x, x) \sim \frac{2 d^{d / 2}}{(2 \pi n)^{d / 2}} \quad(n \rightarrow \infty), \tag{1.1}
\end{equation*}
$$

where \boldsymbol{Z}^{d} is the d-dimensional lattice $[\mathbf{8}$. Similarly, for the hexagonal lattice and the Kagome lattice, one can show

$$
\begin{equation*}
P_{\text {Hexagonal }}^{n}(x, x) \sim 3 \sqrt{3} \frac{1}{(2 \pi n)^{d / 2}} \quad(\text { even } n \rightarrow \infty), \quad P_{\text {Kagome }}^{n}(x, x) \sim \frac{4 \sqrt{3}}{3} \frac{1}{(2 \pi n)^{d / 2}} \quad(n \rightarrow \infty) \tag{1.2}
\end{equation*}
$$

by the calculation of Fourier series. Here the power d equals 2, which depends on the fact that the vertices of both infinite lattices can be embedded in \boldsymbol{Z}^{2} periodically.

Now when the transition probability of a random walk on a graph G which has periodic structure in some sense behaves asymptotically as

$$
\begin{equation*}
P_{G}^{n}(x, x) \sim \frac{C_{G}}{(2 \pi n)^{d / 2}} \quad(n \rightarrow \infty) \tag{1.3}
\end{equation*}
$$

what is the meaning of the constant $C_{G}([\mathbf{6}])$? One geometrical interpretation of C_{G} is given in [4]. In this paper, in connection with the problem above, we investigate how the constant C_{G} changes under the graph theoretical operation of G which is called line graph.

First we prepare some definitions. Let $G=(V(G), E(G))$ be a connected infinite graph, where the sets $V(G)$ and $E(G)$ are the vertex set and the unordered edge set of

[^0]

G

$L(G)$

Figure 1: Hexagonal-lattice and Kagome-lattice.
G, respectively. We assume a graph G is simple, that is, G has no self loops and no multiple edges. A set $N_{x}=\{y \in V(G) ; x y \in E(G)\}$ is the neighborhood of a vertex x. A graph G is called d-regular if $\left|N_{x}\right| \equiv d$ for all $x \in V(G)$, where $|A|$ is the cardinality of a set A. Throughout this paper, we deal with only d-regular graphs.

Now we define a line graph $L(G)$ of G as follows:

- $V(L(G))=E(G)$
- $E(L(G))=\{(x, y)(y, z) ; \quad x y \in E(G)$ and $y z \in E(G), x \neq z\}$

The vertex set of $L(G)$ is the edge set of G and vertices α and β in $L(G)$ are adjacent if α and β as edges in G have a common vertex in G.

Remark 1.1. One can check in Figure 1 that the line graph of the hexagonal-lattice is the Kagome-lattice, that is, L (hexagonal-lattice) $=$ Kagome-lattice

Next we define a notion of homogeneity of graphs. A graph G is said to be homogeneous if for any pair of vertices x and y, there exists a graph automorphism which maps x to y. (We remark that the homogeneity in the sense above is usually called vertex transitivity in graph theory.) When G is homogeneous, G is necessarily a regular graph and for all $n \in N$ there exists a constant $0 \leq C_{n} \leq 1$ such that

$$
P_{G}^{n}(x, x)=C_{n} \quad(\forall x \in V(G)) .
$$

For example, $\boldsymbol{Z}^{d}(d$-dimensional lattice), triangular-lattice, hexagonal-lattice, Kagomelattice, $T_{d}(d$-regular tree $)$ and etc. are homogeneous in the sense above. Before we

Figure 2: Line graph.
mention our main theorem, we recall the definition of a bipartite graph. A graph G is called a bipartite graph if G has no cycles of odd length, in other words, the vertex set $V(G)$ can be partitioned into two disjoint subsets V_{1} and V_{2} in such a way that $V(G)=V_{1} \amalg V_{2}$ and every edge in $E(G)$ connects a vertex in V_{1} with a vertex in V_{2}. If G is bipartite, the simple random walk on G has period 2 and the spectrum $\sigma\left(P_{G}\right)$ is symmetric with respect to the origin (see Lemma 2.3).

Our main theorem is the following:
Theorem. Let G be a homogeneous d-regular graph with $d \geq 3, P_{G}$ the transition operator associated with a simple random walk on G, and $\lambda_{0}(G)=\sup \sigma\left(P_{G}\right)$ and $\lambda_{1}(G)=$ $\inf \sigma\left(P_{G}\right)$. Assume that there exists a positive constant $C_{G}>0$ and $p \geq 0$ such that

$$
\begin{equation*}
P_{G}^{n}(x, x) \sim \frac{C_{G} \lambda_{0}(G)^{n}}{n^{p}} \tag{1.4}
\end{equation*}
$$

as $n \rightarrow \infty$ (as even $n \rightarrow \infty$ for (2)).
(1) When $\lambda_{0}(G)>\left|\lambda_{1}(G)\right|$,

$$
\begin{equation*}
P_{L(G)}^{n}(\alpha, \alpha) \sim \frac{2 C_{G}}{d}\left(\frac{(2 d-2) \lambda_{0}(L(G))}{d \lambda_{0}(G)}\right)^{p} \frac{\lambda_{0}(L(G))^{n}}{n^{p}} \tag{1.5}
\end{equation*}
$$

for any $\alpha \in V(L(G))$ as $n \rightarrow \infty$. Especially, for $\lambda_{0}(G)=1$, as $n \rightarrow \infty$,

$$
\begin{equation*}
P_{L(G)}^{n}(\alpha, \alpha) \sim \frac{2 C_{G}}{d}\left(\frac{2 d-2}{d}\right)^{p} \frac{1}{n^{p}} \tag{1.6}
\end{equation*}
$$

(2) When G is bipartite (automatically $\lambda_{0}(G)=\left|\lambda_{1}(G)\right|$), the asymptotic formulas (1.5) and (1.6) with the coefficient $2 C_{G}$ replaced by C_{G} hold, that is,

$$
\begin{equation*}
P_{L(G)}^{n}(\alpha, \alpha) \sim \frac{C_{G}}{d}\left(\frac{(2 d-2) \lambda_{0}(L(G))}{d \lambda_{0}(G)}\right)^{p} \frac{\lambda_{0}(L(G))^{n}}{n^{p}} \tag{1.7}
\end{equation*}
$$

for any $\alpha \in V(L(G))$ as $n \rightarrow \infty$. Especially, for $\lambda_{0}(G)=1$,

$$
\begin{equation*}
P_{L(G)}^{n}(\alpha, \alpha) \sim \frac{C_{G}}{d}\left(\frac{2 d-2}{d}\right)^{p} \frac{1}{n^{p}} \tag{1.8}
\end{equation*}
$$

as $n \rightarrow \infty$.
Remark 1.2. The upper bound of the spectrum of $P_{L(G)}, \lambda_{0}(L(G))$ in equations (1.5) and (1.7), can be expressed by $\lambda_{0}(G)$ by Lemma 2.1(4)', namely,

$$
\begin{equation*}
\lambda_{0}(L(G))=\frac{1}{2 d-2}\left(d \lambda_{0}(G)+(d-2)\right) \tag{1.9}
\end{equation*}
$$

In particular, $\lambda_{0}(G)=1$ and $\lambda_{0}(L(G))=1$ are equivalent.
Remark 1.3. If G is the hexagonal lattice, then it is a bipartite 3-regular graph, and it is easy to check that $\lambda_{0}(G)=1=\left|\lambda_{1}(G)\right|, d=3, p=1$. Noting Remark 1.1 we obtain from (1.8)

$$
\begin{equation*}
C_{L(G)}=\frac{4}{9} C_{G} . \tag{1.10}
\end{equation*}
$$

This is the relationship between the coefficients $\frac{4 \sqrt{3}}{3}$ and $3 \sqrt{3}$ in (1.2).
Remark 1.4. In the case where $\lambda_{0}(G)=1$, there are many examples for which the assumption (1.4) holds, for example, abelian covering graphs [4]. In the case where $\lambda_{0}(G)<1$, there are only a few examples such as d-regular trees. However, we conjecture that the assumption (1.4) holds for all homogeneous graphs.

2. Lemmas.

Let G be a homogeneous d-regular graph and $L(G)$ its line graph which is automatically $(2 d-2)$-regular graph. We note that $L(G)$ is not in general a homogeneous graph even if G is homogeneous. We consider a simple random walk on G, that is, $\left(P_{G}(x, y)\right)_{x, y \in V(G)}$ is the transition probability matrix which is defined as follows:

$$
P_{G}(x, y)= \begin{cases}1 / d, & \text { if } y \in N_{x} \\ 0, & \text { otherwise }\end{cases}
$$

where N_{x} is the neighborhood of x. Then P_{G} is a bounded self-adjoint operator on $\ell^{2}(G)$ which is the set of real-valued functions on $V(G)$ which satisfy $\sum_{x \in V(G)} d \cdot f(x)^{2}$ $<\infty$ with the inner product $\langle f, g\rangle=\sum_{x \in V(G)} d \cdot f(x) g(x)$. Since P_{G} is a contraction operator, its spectrum is contained in $[-1,1]$. We denote the transition probability of a simple random walk on $L(G)$ by $P_{L(G)}$. We have obtained the relationship between the spectrum of P_{G} and that of $P_{L(G)}$ in [7].

Lemma 2.1. Let $\phi: \ell^{2}(G) \rightarrow \ell^{2}(L(G))$ and $\phi^{*}: \ell^{2}(L(G)) \rightarrow \ell^{2}(G)$ be defined by

$$
\phi f(x, y)=C_{d}(f(x)+f(y)), \quad \phi^{*} F(x)=C_{d}^{-1} \sum_{r \in N_{x}} F(x, r),
$$

where $C_{d}=(d /(2 d-2))^{1 / 2}$ and $\ell^{2}(L(G))$ is identified with the space of symmetric ℓ^{2}-functions $\left\{F(x, y) ; x y \in E(G),\|F\|^{2}=\sum_{x y \in E(G)}(2 d-2)|F(x, y)|^{2}<\infty\right\}$. Then
(1) ϕ and ϕ^{*} are linear bounded operators and ϕ^{*} is the adjoint operator of ϕ,
(2) $\phi^{*} \phi=d\left(P_{G}+1\right), \phi \phi^{*}=(2 d-2)\left(P_{L(G)}+1 /(d-1)\right)$,
(3) $\phi^{*} P_{L(G)}=h\left(P_{G}\right) \phi^{*}$, where $h(x)=(1 /(2 d-2))\{d x+(d-2)\}$,
(4) $\sigma\left(P_{L(G)}\right)=\{-1 /(d-1)\} \cup h\left(\sigma\left(P_{G}\right)\right)$, where $\{-1 /(d-1)\}$ are eigenvalues of infinite multiplicity. In particular,
$(4)^{\prime} \quad \lambda_{0}(L(G))=h\left(\lambda_{0}(G)\right)$, where $\lambda_{0}(G)\left(\right.$ resp. $\left.\lambda_{0}(L(G))\right)$ is the upper bound of the spectrum $\sigma\left(P_{G}\right)\left(\right.$ resp. $\left.\sigma\left(P_{L(G)}\right)\right)$.

Proof. The proof can be found in [7].
We remark that $\ell^{2}(L(G))$ is decomposed into two closed subspaces, that is, $\underline{\ell^{2}(L(G))}=\overline{\phi\left(\ell^{2}(G)\right)} \oplus \overline{\phi\left(\ell^{2}(G)\right)^{\perp}}$. The spectrum of $P_{L(G)}$ restricted to the subspace $\frac{\left(\ell^{2}(G)\right)}{}$ is $h\left(\sigma\left(P_{G}\right)\right)$ and that of $P_{L(G)}$ restricted to $\frac{P^{L(G)}}{\phi\left(\ell^{2}(G)\right)^{\perp}}$ is $\{-1 /(d-1)\}$.

Let $e_{x} \in \ell^{2}(G)$ and $e_{\alpha} \in \ell^{2}(L(G))$ be defined by $e_{x}=d^{-1 / 2} \delta_{x} \in \ell^{2}(G), e_{\alpha}=$ $(2 d-2)^{-1 / 2} \delta_{\alpha} \in \ell^{2}(L(G))$. Then $\left\{e_{x}\right\}_{x \in V(G)}$ (resp. $\left.\left\{e_{\alpha}\right\}_{\alpha \in V(L(G))}\right)$ is an orthonormal basis of $\ell^{2}(G)$ (resp. $\left.\ell^{2}(L(G))\right)$. We can show the following lemma.

Lemma 2.2. Let G be a homogeneous d-regular graph. Then for each $\alpha=x y \in$ $V(L(G))=E(G)$,

$$
\begin{equation*}
(d-1) P_{L(G)}^{n+1}(\alpha, \alpha)+P_{L(G)}^{n}(\alpha, \alpha)=\left\langle\left(1+P_{G}\right) h\left(P_{G}\right)^{n} e_{x}, e_{x}\right\rangle \tag{2.1}
\end{equation*}
$$

Proof. We calculate $I_{n}=\left\langle\phi^{*} P_{L(G)}^{n} e_{\alpha}, \phi^{*} e_{\alpha}\right\rangle$ in two ways. Firstly by Lemma 2.1 (1) and (2), we obtain

$$
\begin{aligned}
I_{n} & =\left\langle\phi \phi^{*} P_{L(G)}^{n} e_{\alpha}, e_{\alpha}\right\rangle=\left\langle(2 d-2)\left(P_{L(G)}+\frac{1}{d-1}\right) P_{L(G)}^{n} e_{\alpha}, e_{\alpha}\right\rangle \\
& =(2 d-2) P_{L(G)}^{n+1}(\alpha, \alpha)+2 P_{L(G)}^{n}(\alpha, \alpha) .
\end{aligned}
$$

On the other hand, using Lemma 2.1 (3) and the definition of ϕ^{*}, we have

$$
\begin{aligned}
I_{n} & =\left\langle h\left(P_{G}\right)^{n} \phi^{*} e_{\alpha}, \phi^{*} e_{\alpha}\right\rangle=\left\langle h\left(P_{G}\right)^{n}\left(e_{x}+e_{y}\right),\left(e_{x}+e_{y}\right)\right\rangle \\
& =2\left(\left\langle h\left(P_{G}\right)^{n} e_{x}, e_{x}\right\rangle+\left\langle h\left(P_{G}\right)^{n} e_{x}, e_{y}\right\rangle\right),
\end{aligned}
$$

where $\alpha=x y$ and we used the homogeneity of G for the last equality. Then we obtain

$$
\begin{equation*}
(d-1) P_{L(G)}^{n+1}(\alpha, \alpha)+P_{L(G)}^{n}(\alpha, \alpha)=\left\langle h\left(P_{G}\right)^{n} e_{x}, e_{x}\right\rangle+\left\langle h\left(P_{G}\right)^{n} e_{x}, e_{y}\right\rangle \tag{2.2}
\end{equation*}
$$

where the function h is the same one as in Lemma 2.1 (3).
For any homogeneous graph G, it is easy to see that for $\lambda \in \boldsymbol{C} \backslash \sigma\left(P_{G}\right)$

$$
\lambda g_{\lambda}(x, x)=1+g_{\lambda}(r, x) \quad\left(\forall r \in N_{x}\right)
$$

where $g_{\lambda}(x, y)$ is a green function (or a resolvent kernel), that is, $g_{\lambda}(x, y)=$ $\left(\lambda-P_{G}\right)^{-1}(x, y)$. Then using the functional calculus, for any function k analytic on a neighborhood of the spectrum $\sigma\left(P_{G}\right)$, especially for any polynomial k, we have

$$
\begin{equation*}
P_{G} k\left(P_{G}\right)(x, x)=k\left(P_{G}\right)(r, x) \quad\left(\forall r \in N_{x}\right) \tag{2.3}
\end{equation*}
$$

Hence by using the equality (2.3) in (2.2) we obtain the lemma.
Next lemma can be considered as part of an extension of the Perron-Frobenius theorem for positive matrices, which is essentially obtained in [2].

Lemma 2.3. Let T be a bounded self-adjoint operator on a Hilbert space H having the positivity preserving property, that is, $T f \geq 0$ if $f \geq 0$. Put $\lambda_{0}(T)=\sup (\sigma(T))$ and $\lambda_{1}(T)=\inf (\sigma(T)) . \quad$ Then,

$$
\begin{equation*}
\lambda_{0}(T)+\lambda_{1}(T) \geq 0 \tag{2.4}
\end{equation*}
$$

In particular, for the transition operator P_{G} associated with a simple random walk on G,

$$
\begin{equation*}
\lambda_{0}(G)+\lambda_{1}(G) \geq 0 \tag{2.5}
\end{equation*}
$$

where $\lambda_{0}(G)=\sup \left(\sigma\left(P_{G}\right)\right)$ and $\lambda_{1}(G)=\inf \left(\sigma\left(P_{G}\right)\right)$. The equality $\lambda_{0}(G)+\lambda_{1}(G)=0$ holds if G is bipartite.

Proof. By the positivity preserving property, for any $f \in H$, we obtain

$$
\begin{align*}
\lambda_{0}(T)\|f\|^{2}+\langle T f, f\rangle & \geq\langle T| f|,|f|\rangle+\langle T f, f\rangle \\
& =\frac{1}{2}(\langle T(|f|+f),| f|+f\rangle+\langle T(|f|-f),| f|-f\rangle) \\
& =2\left(\left\langle T f_{+}, f_{+}\right\rangle+\left\langle T f_{-}, f_{-}\right\rangle\right) \\
& \geq 0 \tag{2.6}
\end{align*}
$$

where $f_{+}=\max (f, 0)$ and $f_{-}=\max (-f, 0)$. We can choose a sequence of f_{n} such that $\left\|\left(T-\lambda_{1}(T)\right) f_{n}\right\| \rightarrow 0$ and $\left\|f_{n}\right\|=1$ by Weyl's criterion [5]. Consequently, putting $f=$ f_{n} in (2.6) and letting $n \rightarrow \infty$, we obtain

$$
\begin{equation*}
\lambda_{0}(T)+\lambda_{1}(T) \geq 0 \tag{2.7}
\end{equation*}
$$

For a bipartite graph G with bipartition $V(G)=V_{1} \amalg V_{2}$, we define a unitary operator $U: \ell^{2}(G) \rightarrow \ell^{2}(G)$ as $U f(x)=f(x)$ if $x \in V_{1} ; U f(x)=-f(x)$ if $x \in V_{2}$. It is easy to check that $-P_{G}=U P_{G} U^{-1}$ and so P_{G} and $-P_{G}$ are unitarily equivalent. Consequently, $\lambda_{0}(G)=-\lambda_{1}(G)$.

The asymptotic behaviors of $P_{L(G)}^{n+1}(\alpha, \alpha)$ and $P_{L(G)}^{n}(\alpha, \alpha)$ are a little different in strongly transient case. Indeed, we have the following lemma.

Lemma 2.4. Let G be a homogeneous d-regular graph, P_{G} the transition operator associated with a simple random walk on G and $\lambda_{0}(G)=\sup \sigma\left(P_{G}\right)$.

1) When $\lambda_{0}(G)>\left|\lambda_{1}(G)\right|$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{P_{G}^{n+1}(x, x)}{P_{G}^{n}(x, x)}=\lambda_{0}(G) \quad \text { for any } x \in V(G) . \tag{2.8}
\end{equation*}
$$

In particular, for the line graph $L(G)$ of a homogeneous d-regular graph $G, \lambda_{0}(L(G))>$ $\left|\lambda_{1}(L(G))\right|$ holds if $d \geq 3$, and then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{P_{L(G)}^{n+1}(\alpha, \alpha)}{P_{L(G)}^{n}(\alpha, \alpha)}=\lambda_{0}(L(G)) \quad \text { for any } \alpha \in V(L(G)) \tag{2.9}
\end{equation*}
$$

2) When G is bipartite (and necessarily $\lambda_{0}(G)=\left|\lambda_{1}(G)\right|$),

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{P_{G}^{2 n+2}(x, x)}{P_{G}^{2 n}(x, x)}=\lambda_{0}(G)^{2} \quad \text { for any } x \in V(G) \tag{2.10}
\end{equation*}
$$

Proof. 1) By the assumption and Lemma 2.3, G is non-bipartite. Then a simple random walk on G is aperiodic; $P_{G}^{n}(x, x)>0$ for any sufficiently large integer n. Let $E_{G}(\xi)$ is the resolution of the identity of P_{G} and put $d v(\xi)=d\left\|E_{G}(\xi) e_{x}\right\|^{2}$ (independent of $x \in V(G)$ due to the homogeneity). Since $\lambda_{0}(G)$ is in the spectrum $\sigma\left(P_{G}\right)$ and G is homogeneous, it can be easily checked that $v\left(\left[\lambda_{0}(G)-\varepsilon, \lambda_{0}(G)\right]\right)>0$ for any $\varepsilon>0$.

Then we obtain

$$
\begin{equation*}
P_{G}^{n}(x, x)=\int_{\lambda_{1}(G)}^{\lambda_{0}(G)} \xi^{n} d v(\xi) \sim \int_{\lambda_{0}(G)-\varepsilon}^{\lambda_{0}(G)} \xi^{n} d v(\xi) . \tag{2.11}
\end{equation*}
$$

Hence we have

$$
\lambda_{0}(G)-\varepsilon \leq \liminf _{n \rightarrow \infty} \frac{P_{G}^{n+1}(x, x)}{P_{G}^{n}(x, x)} \leq \limsup _{n \rightarrow \infty} \frac{P_{G}^{n+1}(x, x)}{P_{G}^{n}(x, x)} \leq \lambda_{0}(G)
$$

and since $\varepsilon>0$ is arbitrary, (2.8) holds.
For the second assertion, we remark on the structure of the spectrum of $P_{L(G)}$. Since $\sigma\left(P_{G}\right)$ is contained in $[-1,1]$ for any G, the image $h\left(\sigma\left(P_{G}\right)\right)$ is contained in $[-1 /(d-1), 1]$, where h is the same one as in Lemma 2.1 (3). So because of Lemma 2.1 (4) we have

$$
\lambda_{1}(L(G))=\inf \sigma\left(P_{L(G)}\right)=\frac{-1}{d-1} .
$$

We also note that the upper bound of the spectra of d-regular graphs is greater than that of the d-regular tree T_{d}, that is, $\lambda_{0}(G) \geq \lambda_{0}\left(T_{d}\right)=2 \sqrt{d-1} / d$ for any d-regular graph G [1]. When $d \geq 3$, we obtain

$$
\begin{equation*}
\left|\lambda_{1}(L(G))\right|=\left|\frac{-1}{d-1}\right|<\frac{1}{2 d-2}(2 \sqrt{d-1}+(d-2))=h\left(\lambda_{0}\left(T_{d}\right)\right) \leq \lambda_{0}(L(G)) . \tag{2.12}
\end{equation*}
$$

2) When G is bipartite, it is sufficient to note that $P_{G}^{2 n}(x, x)>0$ and $P_{G}^{2 n+1}(x, x)=0$ for any n.

Remark 2.5. This lemma holds for more general symmetric random walks on infinite graphs under appropriate modification.

Next we consider the asymptotic behavior of moments.
Lemma 2.6. Let $|a|<\lambda_{0}$ and μ be a probability measure supported on $\left[a, \lambda_{0}\right]$ such that for $p \geq 0$

$$
\begin{equation*}
\int_{a}^{\lambda_{0}} \xi^{n} d \mu(\xi) \sim \frac{A \lambda_{0}^{n}}{n^{p}} \tag{2.13}
\end{equation*}
$$

as $n \rightarrow \infty$. Let $v \in C^{2}\left(\left[a, \lambda_{0}\right]\right)$ be a function which has the unique maximum at λ_{0} in [a, λ_{0}] and $v^{\prime}\left(\lambda_{0}\right)>0$, and u be a function continuous at λ_{0}. Then we have

$$
\begin{equation*}
\int_{a}^{\lambda_{0}} u(\xi) v(\xi)^{n} d \mu(\xi) \sim \frac{A u\left(\lambda_{0}\right) v\left(\lambda_{0}\right)^{p}}{\left(\lambda_{0} v^{\prime}\left(\lambda_{0}\right)\right)^{p}} \frac{v\left(\lambda_{0}\right)^{n}}{n^{p}} \tag{2.14}
\end{equation*}
$$

as $n \rightarrow \infty$.
Proof. The asymptotic behavior depends only on ξ near λ_{0} and since u is continuous at λ_{0}

$$
\begin{equation*}
\int_{a}^{\lambda_{0}} u(\xi) v(\xi)^{n} d \mu(\xi) \sim u\left(\lambda_{0}\right) \int_{a}^{\lambda_{0}} v(\xi)^{n} d \mu(\xi) \tag{2.15}
\end{equation*}
$$

We first assume that $\lambda_{0}=1$ and $v(1)=1$. Since $v \in C^{2}$, one can check that

$$
\begin{equation*}
\log v(\xi)=\left(v^{\prime}(1)+O(|1-\xi|)\right) \log \xi \tag{2.16}
\end{equation*}
$$

as $\xi \rightarrow 1$. So for any $\varepsilon>0$ there exists a positive constant $0<\xi_{0}<1$ such that

$$
\begin{equation*}
\int_{\eta}^{1} v(\xi)^{n} d \mu(\xi) \leq \int_{\eta}^{1} \xi^{n\left(v^{\prime}(1)-\varepsilon\right)} d \mu(\xi) \tag{2.17}
\end{equation*}
$$

for $\xi_{0}<\forall \eta<1$. Since $v^{\prime}(1)>0$, for $|a|<\eta<1$, we have

$$
\begin{align*}
\limsup _{n \rightarrow \infty} n^{p} \int_{a}^{1} v(\xi)^{n} d \mu(\xi) & =\limsup _{n \rightarrow \infty} n^{p} \int_{\eta}^{1} v(\xi)^{n} d \mu(\xi) \\
& \leq \limsup _{n \rightarrow \infty} n^{p} \int_{\eta}^{1} \xi^{n\left(v^{\prime}(1)-\varepsilon\right)} d \mu(\xi) \\
& =\frac{A}{\left(v^{\prime}(1)-\varepsilon\right)^{p}} \tag{2.18}
\end{align*}
$$

Similarly, we obtain

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} n^{p} \int_{a}^{1} v(\xi)^{n} d \mu(\xi) \geq \frac{A}{\left(v^{\prime}(1)+\varepsilon\right)^{p}} \tag{2.19}
\end{equation*}
$$

Since $\varepsilon>0$ is arbitrary, we conclude that

$$
\begin{equation*}
\int_{a}^{1} v(\xi)^{n} d \mu(\xi) \sim \frac{A}{v^{\prime}(1)^{p}} \frac{1}{n^{p}} \tag{2.20}
\end{equation*}
$$

as $n \rightarrow \infty$. In general case, it is sufficient to consider $v\left(\lambda_{0} \xi\right) / v\left(\lambda_{0}\right)$ as a function $v(\xi)$ and $d \mu\left(\lambda_{0} \xi\right)$ as a measure $d \mu(\xi)$.

3. Proof of the theorem.

Using the lemmas which are obtained in the previous section, we can compute the asymptotic behavior of $P_{L(G)}^{n}(\alpha, \alpha)$ as $n \rightarrow \infty$.

Assume that the following asymptotic behavior holds:

$$
\begin{equation*}
P_{G}^{n}(x, x) \sim \frac{C_{G} \lambda_{0}(G)^{n}}{n^{p}} \quad(n \rightarrow \infty) \tag{3.1}
\end{equation*}
$$

and first assume that

$$
\begin{equation*}
\lambda_{0}(G)>\left|\lambda_{1}(G)\right| \tag{3.2}
\end{equation*}
$$

where $\lambda_{0}(G)=\sup \sigma\left(P_{G}\right)$ and $\lambda_{1}(G)=\inf \sigma\left(P_{G}\right)$. (Note that in general $\lambda_{0}(G) \geq\left|\lambda_{1}(G)\right|$ by Lemma 2.3.)

Theorem 3.1. Let G be a homogeneous d-regular graph. The assumptions (3.1), (3.2) hold. Then, for any $\alpha \in V(L(G))$, as $n \rightarrow \infty$,

$$
\begin{equation*}
P_{L(G)}^{n}(\alpha, \alpha) \sim \frac{2 C_{G}}{d}\left(\frac{(2 d-2) \lambda_{0}(L(G))}{d \lambda_{0}(G)}\right)^{p} \frac{\lambda_{0}(L(G))^{n}}{n^{p}} . \tag{3.3}
\end{equation*}
$$

Especially, for $\lambda_{0}(G)=1$, as $n \rightarrow \infty$,

$$
\begin{equation*}
P_{L(G)}^{n}(\alpha, \alpha) \sim \frac{2 C_{G}}{d}\left(\frac{2 d-2}{d}\right)^{p} \frac{1}{n^{p}} . \tag{3.4}
\end{equation*}
$$

Proof. The assumption (3.1) says that

$$
\begin{equation*}
\int_{\lambda_{1}(G)}^{\lambda_{0}(G)} \xi^{n} d\left\|E_{G}(\xi) e_{x}\right\|^{2} \sim \frac{C_{G} \lambda_{0}(G)^{n}}{n^{p}} \tag{3.5}
\end{equation*}
$$

where $E_{G}(\xi)$ is the resolution of the identity of P_{G}. Therefore by (3.2) and Lemma 2.6, for the function h in Lemma 2.1 (3), we obtain

$$
\begin{align*}
\left\langle\left(1+P_{G}\right) h\left(P_{G}\right)^{n} e_{x}, e_{x}\right\rangle & =\int_{\lambda_{1}(G)}^{\lambda_{0}(G)}(1+\xi) h(\xi)^{n} d\left\|E_{G}(\xi) e_{x}\right\|^{2} \\
& \sim \frac{C_{G}\left(1+\lambda_{0}(G)\right) h\left(\lambda_{0}(G)\right)^{p}}{\left(\lambda_{0}(G) h^{\prime}\left(\lambda_{0}(G)\right)\right)^{p}} \frac{h\left(\lambda_{0}(G)\right)^{n}}{n^{p}} \\
& =C_{G}\left(1+\lambda_{0}(G)\right)\left(\frac{(2 d-2) \lambda_{0}(L(G))}{d \lambda_{0}(G)}\right)^{p} \frac{\lambda_{0}(L(G))^{n}}{n^{p}} \tag{3.6}
\end{align*}
$$

as $n \rightarrow \infty$. By Lemma 2.4 and Lemma 2.1 (4)', we have

$$
\begin{align*}
(d-1) P_{L(G)}^{n+1}(\alpha, \alpha)+P_{L(G)}^{n}(\alpha, \alpha) & \sim\left((d-1) \lambda_{0}(L(G))+1\right) \cdot P_{L(G)}^{n}(\alpha, \alpha) \\
& =\frac{d}{2}\left(\lambda_{0}(G)+1\right) P_{L(G)}^{n}(\alpha, \alpha) \tag{3.7}
\end{align*}
$$

as $n \rightarrow \infty$. Therefore using Lemma 2.2 we obtain the theorem.
Corollary 3.2. If G is a bipartite homogeneous d-regular graph (and so $\lambda_{0}(G)=$ $\left.\left|\lambda_{1}(G)\right|\right)$, and the assumption (3.1) holds for even $n \rightarrow \infty$, then

$$
\begin{equation*}
P_{L(G)}^{n}(\alpha, \alpha) \sim \frac{C_{G}}{d}\left(\frac{(2 d-2) \lambda_{0}(L(G))}{d \lambda_{0}(G)}\right)^{p} \frac{\lambda_{0}(L(G))^{n}}{n^{p}} \tag{3.8}
\end{equation*}
$$

Especially, for $\lambda_{0}(G)=1$, as $n \rightarrow \infty$,

$$
\begin{equation*}
P_{L(G)}^{n}(\alpha, \alpha) \sim \frac{C_{G}}{d}\left(\frac{2 d-2}{d}\right)^{p} \frac{1}{n^{p}} . \tag{3.9}
\end{equation*}
$$

Proof. It is sufficient to note that if a graph G is bipartite then P_{G} and $-P_{G}$ are unitarily equivalent, which implies that (3.1) is equivalent to

$$
\begin{equation*}
\int_{0}^{\lambda_{0}(G)} \xi^{n} d\left\|E_{G}(\xi) e_{x}\right\|^{2} \sim \frac{C_{G} \lambda_{0}(G)^{n}}{2 n^{p}} \tag{3.10}
\end{equation*}
$$

as $n \rightarrow \infty$.
Remark 3.3. The assumption (3.2) should be replaced with G being non-bipartite. We conjecture that if G is homogeneous and the spectrum is symmetric (in the sense that $\left.\lambda_{0}(G)=\left|\lambda_{1}(G)\right|\right)$ then G is bipartite. In general, if G is not homogeneous, the conjecture above is not true. For example, let $\boldsymbol{Z}^{1}=\left(V\left(\boldsymbol{Z}^{1}\right), E\left(\boldsymbol{Z}^{1}\right)\right)$ be the ordinary onedimensional lattice and $G=(V(G), E(G))$ the graph such that $V(G)=V\left(\boldsymbol{Z}^{1}\right) \cup\{a\}$ and $E(G)=E\left(\boldsymbol{Z}^{1}\right) \cup\{(0, a),(1, a)\}$. Since the compact perturbation does not change the essential spectrum we obtain $\sigma\left(P_{G}\right)=\sigma\left(P_{\boldsymbol{Z}^{1}}\right)=[-1,1]$ and so the spectrum of G is symmetric. However, G has a cycle of length 3 and so G is not bipartite. So far we have shown that if G is homogeneous and non-bipartite, and $\lambda_{0}(G)=1$ then $\left|\lambda_{1}(G)\right|$ is strictly less than 1 , in other words, the spectrum is not symmetric [3].

References

[1] F. R. K. Chung, Spectral Graph Theory, Conference, Board of the Mathematical Sciences Num. 92, American Mathematical Society.
[2] J. Dodziuk and L. Karp, Spectral and function theory for combinatorial Laplacians, A.M.S. Contemporary Mathematics 73 (1988), 25-40.
[3] Y. Higuchi, private communication.
[4] M. Kotani, T. Shirai and T. Sunada, Asymptotic behavior of the transition probability of a random walk on an infinite graph, J. Funct. Anal. 159 (1998), 664-689.
[5] M. Reed and B. Simon, Methods of Modern Mathematical Physics vol. I, Academic Press, New York, 1980.
[6] T. Shiga, private communication.
[7] T. Shirai, The spectrum of infinite regular line graphs, Trans. Amer. Math. Soc. 352 (2000), 115-132.
[8] F. Spitzer, Principles of Random Walk, D. Van. Nostrand, Princeton, 1964.

Tomoyuki Shirai

Research Institute for Mathematical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan

Current address:
Department of Mathematics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan

[^0]: 1991 Mathematics Subject Classification. Primary 58G25; Secondary 05C50.
 Key words and phrases. Line graph, simple random walk, transition probability, discrete Laplacian, spectrum.

 Supported by J.S.P.S. Research Fellowships for Young Scientists.

