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Abstract. The class of self-similar additive processes is an important subclass

of stochastically continuous processes with independent increments which are

not assumed to be time-homogeneous. It is shown that this process is transient

if it is proper and the dimension is three or more. Furthermore su½cient

conditions for transience are given in one- or two-dimensional cases.

1. Introduction and results.

In this paper an additive process means a stochastically continuous process with

independent increments, which is not assumed to be time-homogeneous. In general it is

an unexplored ®eld to investigate transience and recurrence for time-inhomogeneous

Markov processes. They form too large a class to be analyzed. So we want to ®nd a

large enough subclass containing important additive processes. One of such subclasses is

the class of self-similar additive processes. In fact it contains all strictly stable processes.

The class was ®rst studied by Sato [8], [9]. He made its characterization by the

correspondence with the class of selfdecomposable distributions. After Sato's paper, the

class was studied by Watanabe [12] and Sato and Yamamuro [10]. There are a lot of

studies on self-similar processes (for example [4], [5], and [11]). But almost all of them

deal with the case with not independent but stationary increments, so that no preceding

results are useful.

Criteria for transience and recurrence of LeÂvy processes are well-known, where LeÂvy

process means a time-homogeneous additive process. LeÂvy processes are transient if the

dimension of the space is three or more. If the dimension is one or two, the Brownian

motion is recurrent, and there are both recurrent case and transient case in general LeÂvy

processes. Transience and recurrence are characterized by an integrability condition near

the origin of the characteristic function of the distribution at time 1. This fact is based

on the expression of transience and recurrence by ®niteness and in®niteness of the

expected occupation times on compact sets.
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In [10] we showed that a self-similar additive process is either transient or recurrent,

and, furthermore, we made comparison in transience and recurrence of the LeÂvy process

and the self-similar additive process associated with a common selfdecomposable

distribution. In this paper, as the sequel to the problem, we consider the following

problems for self-similar additive processes:

(1) Are all self-similar additive processes transient if the dimension is three or

more?

(2) Can we decide transience or recurrence, in terms of the characteristic functions,

if the dimension is one or two?

The problem (1) is answered in the a½rmative. Concerning the problem (2), we

give some su½cient conditions for transience in dimension one or two in Section 2 and

some su½cient conditions for recurrence in dimension one in Section 5. We note that,

unlike LeÂvy processes, the expected occupation times on compact sets cannot determine

transience and recurrence (see [10]).

The de®nition of a self-similar additive process is as follows.

Definition. A stochastic process fXt : tV 0g on R
d , which is de®ned on a prob-

ability space �W;F;P�, is called a self-similar additive process, or a process of class L,

with exponent H > 0 if it satis®es the following conditions:

(i) fXctg and fcHXtg have the same ®nite-dimensional distributions for every c > 0,

(ii) Xt1 ÿ Xt0 , Xt2 ÿ Xt1 ; . . . ;Xtn ÿ Xtnÿ1
are independent for any n and any choice of

0U t0 < t1 < t2 < � � � < tn,

(iii) almost surely Xt is right-continuous in tV 0 and has left limits in t > 0.

Let fXtg be a self-similar additive process on R
d with exponent H. Then, by its

de®nition, fXtg is stochastically continuous and X0 � 0 almost surely. The distribution

at any ®xed time is self-decomposable (see [8], [9]). Here, the distribution m is said to be

self-decomposable if for any c A �0; 1�, there exists an in®nitely divisible distribution rc

such that m̂�z� � m̂�cz�r̂c�z�, z A R
d , where m̂ and r̂c are characteristic functions of m and

rc, respectively. It is known that the characteristic function of its distribution at time t is

given by the following: Let hx; yi be the usual inner product and jxj �
�������������

hx; xi
p

. Let

S � fx A R
d
: jxj � 1g and D � fx A R

d
: jxjU 1g. Then

Ee ihz;Xti � Ee iht
Hz;X1i

� exp ÿ2ÿ1t2Hhz;Azi�

�

R
d

�e it
Hhz;xi ÿ 1ÿ itHhz; xi1D�x��r�dx� � itHhg; zi

� �

for z A R
d , where
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r�EB� �

�

B

s�dx�

�

E

kx�u�u
ÿ1 du

for E A B��0;y��, B A B�S�. Here g A R
d , A (called Gaussian variance matrix) is a

symmetric and nonnegative-de®nite matrix, and r (called LeÂvy measure) is a measure on

R
d such that r�f0g� � 0, and s is a probability measure on S, and kx�u� is nonnegative,

nonincreasing right continuous in u and Borel measurable in x, and

�

S

s�dx�

�y

0

kx�u�u�1� u2�ÿ1
du < y:

We de®ne transience and recurrence as follows.

Definition. The process fXtg is called transient if

P lim
t!y

jXtj � y
� �

� 1:

The process fXtg is called recurrent if

P lim inf
t!y

jXt ÿ Xsj � 0
� �

� 1 for every sV 0:

In order to formulate our main theorems, we prepare some terminology. A measure

on R
d is said to be full if it is not concentrated on any �d ÿ 1�-dimensional hyperplane.

The process fXtg is said to be proper if the distribution of Xt is full for each t > 0. For

any random variable Z we denote by PZ the distribution of Z, and by P̂Z�z� the

characteristic function of PZ. The following are our main results.

Theorem 1.1. Suppose that fXtg is a proper self-similar additive process and that

�

S

s�dx�kx�0�� < y:

Let X1 have a distribution such that

P̂X1
�z� � exp

�

S

s�dx�

�y

0

�e ihz;uxi ÿ 1�
kx�u�

u
du� ihz; g0i

� �

:

If d � 2, or if d � 1 and g0 � 0, then fXtg is transient.

Theorem 1.2. Suppose that fXtg is a proper self-similar additive process. If dV 3,

then the process fXtg is transient.

Theorem 1.3. Let d � 1. Suppose that r��0;y�� � 0. A self-similar additive process

fXtg is recurrent if it satis®es one of the following conditions:
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(i) A0 0,

(ii) A � 0 and
�
�ÿ1;0� jxjr�dx� � y,

(iii) A � 0,
�
�ÿ1;0� jxjr�dx� < y, r��ÿy; 0�� > 0, and ÿ

�
�ÿ1;0� xr�dx� � g > 0.

The dual su½cient conditions for recurrence are obtained in case r��ÿy; 0�� � 0. It is

the case where fÿXtg satis®es one of the conditions in Theorem 1.3.

When we consider the case d � 1, transience and recurrence of many self-similar

additive processes are left undecided by Theorems 1.1 and 1.3. But, our results show

distinct di¨erence from the case of LeÂvy processes on R
1. For example, if m is a stable

distribution of index a A �1; 2� with non-zero mean and one-sided LeÂvy measure or if m

is a stable distribution of index 1 with one-sided LeÂvy measure, then the self-similar

additive process with distribution m at time 1 is recurrent but the LeÂvy process with

distribution m at time 1 is transient. Let fBtg be a one-dimensional Brownian motion

and let g0 0. It is shown in [10] that fBt � t1=2gg, which is a self-similar additive

process with exponent 2ÿ1, is recurrent. Theorem 1.3 is a generalization of this fact. We

know, on the other hand, that the LeÂvy process fBt � tgg is transient.

2. Transience conditions.

In this section we shall obtain some conditions important to our discussion.

Namely we shall show that if a certain integral with respect to the distribution PX1
,

which is irrelevant to the expected occupation time directly, is ®nite, then the process

fXtg is transient. At ®rst we prepare a lemma for the proof. Let r be a positive real

number. Let pr�s; x; t;G� be the transition function of fXt rg for 0U sU t, x A R
d , and

G A B�Rd�. Now we de®ne a time-homogeneous transition function pr�h; y;B� by

pr�h; y;B� � pr�t; x; t� h;G�

for hV 0, y � �t; x� A �0;y� � R
d , and B A B��0;y� � R

d�, where G � fz A R
d
:

�t� h; z� A Bg (see [3] p. 87). We denote by fY r
h g the time-homogeneous Markov

process with this transition probability pr�h; y;B�. Let P
r

h be the transition operator of

fY r
h g.

Lemma 2.1. The process fY r
h g is a Hunt process.

Proof. Denote by C0 the real Banach space of continuous functions on �0;y� � R
d

vanishing at in®nity with the norm of uniform convergence. For any f A C0 and

y � �t; x� A �0;y� � R
d , we have

P r
h f �y� �

�
W

P�do� f �t� h;X�t�h� r�o� ÿ Xt r�o� � x�:
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For each t, almost surely the limit of Xs as s # t is equal to the limit as s " t, so we

have P r
h f A C0. By virtue of Theorem 9.4 in [2] p. 46, the process fY r

h g is a Hunt

process. r

Consider the following three conditions on PX1
.

�1�

�

R
d

1

jxj2
PX1

�dx� < y:

�2�

�

R
d

1

jxj
PX1

�dx� < y:

�3�

�

R
d

1

jxja
PX1

�dx� < y for some a with 0 < a < 1:

Theorem 2.2. If (1) holds, then fXtg is transient.

Theorem 2.3. Let X1 have a distribution such that

P̂X1
�z� � exp

�

S

s�dx�

�y

0

�e ihz;uxi ÿ 1�
kx�u�

u
du� ihg0; zi

� �

;

where
�

S
s�dx�kx�0�� < y. If (2) holds, then the process fXtg is transient. If g0 � 0 and

(3) holds, then the process fXtg is transient.

Proof of Theorems 2.2 and 2.3. From now on without loss of generality we

assume that H � 1, because the exponent H of fXtg can be changed to any number by

the nonrandom time change fXt rg and the transience property is invariant under the

nonrandom time change.

For a > 0 let

fa�x� �
Y

d

j�1

��aÿ jxjj�4 0�:

For any positive integer n we denote by f na �x� the n times convolution of fa�x� with

itself. Then the Fourier transform of f na is as follows:

f̂ n
a �z� �

�

R
d

e ihz;xi f na �x� dx �
Y

d

j�1

sin 2ÿ1azj

2ÿ1zj

� �2n

:

First step. Let r be a positive integer multiple of 2ÿ1 and suppose that
�

R
d 1=jxj

1=r
PX1

�dx� < y. Let K be an arbitrary compact set in R
d . We ®rst suppose

prove that, if we choose a su½ciently small, then
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inf
tV0
w AK

E

�

y

0

f̂ 4ra �X�t�s� r ÿ Xt r � w� ds

� �

> 0:�2:1�

Then we can show transience of fXtg as follows. Let TK � inffs > 0 : Y r
s A�0;y� � Kg.

Let ga�t; x� � f̂ 4ra �x� for each �t; x� A �0;y� � R
d . The process fY r

t g is expressed by

a system of probability measures f ~Py
r : y A �0;y� � R

dg on the space of paths on

�0;y� � R
d . The expectation with respect to ~Py

r is denoted by ~E y
r . Now from Lemma

2.1 fY r
t g is a Hunt process. So, using the strong Markov property, we have

~E y
r

�

y

0

ga�Y
r
s � ds

� �

V ~E y
r

~E
Y r

TK
r

�

y

0

ga�Y
r
s � ds

� �

;TK < y

� �

�2:2�

V ~Py
r �TK < y� inf

w AK; tV0

~E�t;w�
r

�

y

0

ga�Y
r
s � ds

� �

� ~Py
r �TK < y� inf

w AK ; tV 0
E

�

y

0

f̂ 4ra �X�t�s� r ÿ Xt r � w� ds

� �

:

From (2.2) we have, for any a > 0,

P�inffu > 0 : X�u�a� r A Kg < y��2:3�

� ~P�0;0�
r �inffu > 0 : Y r

u�a
A �0;y� � Kg < y�

�

�

�0;y��R
d

pr�a; �0; 0�; dy� ~P
y
r �TK < y�

U
1

c

�

�0;y��R
d

pr�a; �0; 0�; dy� ~E
y
r

�

y

0

ga�Y
r
s � ds

� �

�
1

c
~E�0;0�
r

�

y

a

ga�Y
r
s � ds

� �

;

where c is a positive constant independent of a. Since r is a positive integer multiple of

2ÿ1, the change of variable u � jxkjs
r gives the following:

�

y

0

f̂ 4ra �srx� dsU
a8r�dÿ1�

rjxkj
1=r

�

y

0

u�1=r�ÿ1 sin �auxk=2jxkj�

uxk=2jxkj

�

�

�

�

�

�

�

�

8r

duU const:�
1

jxkj
1=r

for 1U kU d. Hence we have

�

y

0

f̂ 4ra �srx� dsU const:�
1

Pd
k�1 jxkj

1=r
U const:�

1

jxj1=r
:

Then we have
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~E�0;0�
r

�y

a

ga�Y r
s � ds

� �

�
�

R
d

PX1
�dx�

�y

a

f̂ 4ra �srx� ds�2:4�

U const:�
�

R
d

1

jxj1=r
PX1

�dx� < y:

It follows from (2.4) that the last member of (2.3) converges to 0 as a ! y. This shows

that the process fXtg is transient. Then it is enough to show (2.1) for proving transience

of the process. Now we have, for e > 0,

inf
tV0;w AK

E

�y

0

f̂ 4ra �X�t�s� r ÿ Xt r � w� ds
� �

�2:5�

V inf
tV0;w AK

� e

0

ds

�

R
d

f 4r
a �z�

P̂X�t�s� r �z�
P̂Xt r

�z�
e ihw; zi dz

� inf
tV0;w AK

� e

0

ds

�

jzjU4ra
��

d
p f 4r

a �z� cosFt�s; z� expGt�s; z� dz � Q; �say�:

Here Ft�s; z� and Gt�s; z� are, respectively, the imaginary and the real part of Ct�s; z�
de®ned by

Ct�s; z� � ihz;wiÿ 2ÿ1��t� s�2r ÿ t2r�hAz; zi� i��t� s�r ÿ tr�hz; gi

�
�

S

s�dx�
�
�y

0

e ihz;uxi ÿ 1ÿ ihz; uxi1D
ux

�t� s�r
� �� �

kx�u=�t� s�r�
u

du

ÿ
�y

0

e ihz;uxi ÿ 1ÿ ihz; uxi1D
ux

tr

� �� �

kx�u=tr�
u

du

�

:

Second step. We shall prove Theorem 2.2 by showing Q > 0 in (2.5). Note that the

assumption of the ®rst step holds, namely,
�

R
d 1=jxj1=rPX1

�dx� < y with r � 2ÿ1. Now

we estimate the last term of Ct�s; z�. We will repeatedly use nonincrease of kx�u� in u.

We have

�

S

s�dx�
�

��

t
p

0

�e ihz;uxi ÿ 1ÿ ihz; uxi� kx�u=
����������

t� s
p

� ÿ kx�u=
��

t
p

�
u

du

�

�

�

�

�

�

�

�

�

�

�2:6�

U

�

S

s�dx�
�

��

t
p

0

jzj2
2

u kx
u
����������

t� s
p
� �

ÿ kx
u
��

t
p
� �� �

du

U
jzj2
2

�

S

s�dx�
�

�����������

t=�t�s�
p

0

�t� s�ukx�u� duÿ
�1

0

tukx�u� du
 !

U
sjzj2
2

�

S

s�dx�
�1

0

ukx�u� du:
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Let MV
����������

t� s
p

. And we have

�

�

�

�

�

S

s�dx�
�
�M

��

t
p e ihz;uxi ÿ 1ÿ ihz; uxi1D

ux
����������

s� t
p

� �� �

kx�u=
����������

t� s
p

�
u

du�2:7�

ÿ
�M

��

t
p �e ihz;uxi ÿ 1� kx�u=

��

t
p

�
u

du

��

�

�

�

U

�

S

s�dx�
�
�M

��

t
p je ihz;uxi ÿ 1ÿ ihz; uxij kx�u=

����������

t� s
p

� ÿ kx�u=
��

t
p

�
u

du

�
�M

�����

t�s
p jhz; uxij kx�u=

����������

t� s
p

�
u

du�
�M

��

t
p jhz; uxij kx�u=

��

t
p

�
u

du

�

U

�

S

s�dx�
�
�M

��

t
p

jzj2
2

ukx
u
����������

t� s
p

� �

du

� jzj�M ÿ
����������

t� s
p

�kx�1� � jzj�M ÿ
��

t
p

�kx�1�
�

� I ; �say�

and

�

�

�

�

�

S

s�dx�
�y

M

�e ihz;uxi ÿ 1� kx�u=�t� s�r� ÿ kx�u=tr�
u

du

�

�

�

�

�2:8�

U 2

�

S

s�dx�
�y

M=�t�s� r
kx�u�
u

duÿ
�y

M=t r

kx�u�
u

du

( )

� 2

�

S

s�dx�
�M=t r

M=�t�s� r
kx�u�
u

du � J; �say�:

Here we consider two cases. If t > 1, then, choosing M �
����������

t� s
p

, we have

I U

�

S

s�dx� jzj2
2

kx

����������

t

t� s

r
� �

�

�����

t�s
p

��

t
p udu� jzj

��

s
p

kx�1�
( )

U

�

S

s�dx� sjzj2
4

kx
1
�����������

1� s
p

� �

� jzj
��

s
p

kx�1�
( )

and

JU 2

�

S

s�dx�
�

������

1�s
p

1

kx�u�
u

du:

Let 0 < e < 1. If tU 1, then, choosing M � eÿ1
�����������

1� s
p

, we have
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I U

�

S

s�dx� jzj2
2

� eÿ1
������

1�s
p

0

ukx
u
�����������

1� s
p

� �

du� 2jzjeÿ1
�����������

1� s
p

kx�1�
( )

and

JU 2

�

S

s�dx�
�y

1=e

kx�u�
u

du:

Hence the three inequalities (2.6), (2.7), and (2.8) give the following estimate: for small

enough a and e,

jCt�s; z�jU p=4 for 0 < s < e; jzjU 4ra
���

d
p

; and w A K ;

and hence cosFt�s; z�V 1=
���

2
p

and expGt�s; z�V eÿp=4. Therefore

QV
eeÿp=4

���

2
p

�

jzjU4ra
��

d
p f 4r

a �z� dz > 0;

completing the proof of Theorem 2.2.

Third step. Next we shall prove Theorem 2.3. Let r � m, where m is a positive

integer. From the assumption of the theorem, Ct�s; z� is represented by

Ct�s; z� � ihz;wi� i��s� t�m ÿ tm�hg0; zi

�
�

S

s�dx�
�y

0

�e ihz;uxi ÿ 1� kx�u=�s� t�m� ÿ kx�u=tm�
u

du:

We have

�

S

s�dx�
� eÿ1

0

�e ihz;uxi ÿ 1� kx�u=�s� t�m� ÿ kx�u=tm�
u

du

�

�

�

�

�

�

�

�

�

�

U eÿ1jzj
�

S

s�dx�kx�0��;

and, let M � eÿ1, then J in (2.8) has the following estimate: for t > 1,

JU 2m log�1� s�
�

S

s�dx�kx�0��;

and, for tU 1,

JU 2

�

S

s�dx�
�y

1=e�1�s�m
kx�u�
u

du:

It su½ces to show (2.1) that Q > 0 in (2.5), if g0 � 0 and (3) holds in the case that m

is an arbitrary positive integer and if (2) holds in the case that m � 1. In the same

way as in the second step, we can show it in the respective cases. This completes the

proof. r
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3. Lemmas.

In this section, in order to prove Theorems 1.1 and 1.2, we prepare some lemmas.

We denote by HA the range of the linear transformation de®ned by the matrix A. We

denote by PA the orthogonal projector from R
d to HA. In general denote by Supp�m�

the support of a measure m. Let G be the smallest linear subspace containing HA

and Supp�r�. Let S�G� � fx A G : jxj � 1g. For y A S�G� and e > 0, let b�y; e� �
�

jhx;yijVe
s�dx�kx�0�� if jPAyj < e, and let b�y; e� � y if jPAyjV e. Let

b � sup
e>0

inf
y AS�G�

b�y; e�:

This quantity b depends only on the matrix A and the LeÂvy measure r. But, making G

explicit, we call b the concentration order of the pair �A; r�G. Sato [6] de®ned a similar

quantity b, but our b is di¨erent from Sato's b, since Sato de®ned b with infy AS�Rd � in

place of infy AS�G�. We have the following lemma.

Lemma 3.1. The process fXtg is proper if and only if G � R
d .

Proof. The process fXtg is proper if and only if PX1
is full. By a general theory of

in®nitely divisible distributions, PX1
is full if and only if G � R

d (see [7]). r

We need more lemmas. Here recall that a distribution PX1
is self-decomposable.

Keeping Lemma 3.1 in mind, we introduce the following terminology. Let V be a

linear subspace of R
d . We say that a self-similar additive process fXtg is V-proper if

P�Xt A V� � 1 and G � V , where G is the linear subspace de®ned at the beginning of

this section. For any measure m and any Borel set B, denote by mjB the restriction of m

to B.

Lemma 3.2. Let V be a linear subspace of Rd . Denote by T the orthogonal projector

from R
d to V. Then we have the following.

(a) The process fTXtg is a self-similar additive process with exponent H, and its

characteristic function is as follows:

Ee ihz;TXti � Ee iht
Hz;TX1i � exp

�

ÿ2ÿ1t2HhTATz; zi

�

�

R
d

�e it
Hhz;xi ÿ 1ÿ itHhz; xi1D�x��rT

ÿ1jVnf0g�dx� � itHhz;Tgi

�

:

Here rTÿ1�B� � r�Tÿ1�B�� for any Borel set B.

(b) If the process fTXtg is transient, then fXtg is transient.

(c) If fXtg is proper, then fTXtg is V-proper.

K. Yamamuro352



Proof. We immediately see the ®rst assertion of (a) and (b) from the de®nitions of

a self-similar additive process and transience, respectively. Since T equals the transposed

matrix of T, by virtue of Proposition 2.4.11 in [7] p. 60 the second assertion of

(a) holds. The proof of (c) is as follows. Let V? be the orthogonal complement

of V. If P�TX1 A H� � 1 for some (dimV ÿ 1)-dimensional hyperplane H in V, then

P�X1 A H � V?� � 1, contrary to that fXtg is proper. Hence fTXtg is V-proper. r

Lemma 3.3 (Sato [6]). Suppose that PX1
is not a delta measure. Let b be the

concentration order of �A; r�G. Then b > 0 and, for any b 0 satisfying 0 < b 0
< b, there is

a constant M such that

jP̂X1
�z�jUMjzjÿb 0

for z0 0 and z A G:

We use the following terminology. Let V be a linear subspace of R
d and let

S�V� � fx A V : jxj � 1g. Suppose that a measure L on V satis®es L�f0g� � 0 and has a

decomposition

L�EB� �

�
B

l�dx�

�
E

tx�u�

u
du

for E A B��0;y�� and B A B�S�V��. We say that the decomposition satis®es the

condition (A) if l is a probability measure on S�V�, and tx�u� is nonnegative, non-

increasing right continuous in u and Borel measurable in x, and

�
S�V�

l�dx�

�
y

0

tx�u�u�1� u2�ÿ1
du < y:

Lemma 3.4. Let V be a linear subspace of Rd . Denote by T the orthogonal projector

from R
d to V. Then the LeÂvy measure rTÿ1jVnf0g of fTXtg is decomposed into

rTÿ1jVnf0g�EB� �

�
B

~s�dx�

�
E

~kx�u�

u
du

for B A B�S�V�� and E A B��0;y��, where this decomposition satis®es the condition (A).

Furthermore, we have

�
S�V�

~s�dx�~kx�0�� �

�
SnV?

s�dx�kx�0��:

Here V? is the orthogonal complement of V.

Proof. The ®rst assertion is a consequence of the fact that fTXtg is also a self-

similar additive process. We have, for a > 0,
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�y

a

du

u

�

S�V�

~s�dx�~kx�u� �

�y

0

du

u

�

uTx A �a;y�S�V�

s�dx�kx�u�

�

�

��Tx�=jTxj� AS�V�;Tx00

s�dx�

�y

a=jTxj

du

u
kx�u�

�

�y

a

du

u

�

Tx00

s�dx�kx
u

jTxj

� �

:

Hence, from the right continuity of ~kx�u� and kx�u� in u, we conclude the lemma. r

Lemma 3.5. Let d � 3. Suppose that fXtg is proper. Assume that the characteristic

function of X1 is decomposed as

P̂X1
�z� � m̂1�z�m̂2�z�;

where m1 and m2 are self-decomposable distributions. For k � 1; 2 let Ak and rk be

the Gaussian variance matrix and the LeÂvy measure of mk, respectively. Let Vk be the

smallest linear subspace containing HAk
and Supp�rk�. Suppose that V1 is two- or three-

dimensional. If the concentration order of �A1; r1�V1
is in®nite, then we have

�

jzj>1

jP̂X1
�z�j

jzj
dz < y:

Proof. At ®rst suppose that V1 is three-dimensional. Then from Lemma 3.3 we

have, for any a with a > 2,

�

jzj>1

jP̂X1
�z�j

jzj
dzU const:�

�

jzj>1

1

jzj1�a
dz < y:

Next suppose that V1 is two-dimensional. Denote by T1 and T2 the orthogonal

projectors from R
3 to V1 and V2, respectively. Choose a vector e such that e A V2,

jej � 1, and e B V1. Such a vector e exists because fXtg is proper. From Lemma 3.3 we

have, for any a > 0 and some 0 < b 0 < 1,

�

jzj>1

jP̂X1
�z�j

jzj
dz �

�

jzj>1

jm̂1�z�j jm̂2�z�j

jzj
dz

U const:�

�

jzj>1

dz

jzj
�

1

jT1zj
a �

1

jhz; eijb
0 � J; �say�;

since jT2zjV jhz; eij. Let the vectors e1; e2; e3 be the orthonormal basis of R3 such that

V1 is generated by the vectors e1; e2. Let e � c1e1 � c2e2 � c3e3, where c1; c2; c3 A R and
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c3 0 0. Write the integral using the coordinates in the basis e1; e2; e3. Then we have

J � const:�

�

jzj>1

dz

jzj
�

1

�z21 � z22�
a=2

�
1

jc1z1 � c2z2 � c3z3j
b 0 :

Here we introduce a new norm k � k. Let kzk � �z21 � z22�
1=2 � jc1z1 � c2z2 � c3z3j for

any z A R
3. Note that there are positive constants a and b such that akzkU jzjU bkzk.

Hence we have

JU const:�

�

kzk>1=b

dz

kzk
�

1

�z21 � z22�
a=2

�
1

jc1z1 � c2z2 � c3z3j
b 0

� const:�

�

R
2

dz1dz2

�z21 � z22�
a=2

�

�z2
1
�z2

2
�1=2�jsj>1=b

ds

��z21 � z22�
1=2 � jsj�jsjb

0

� const:�

�y

0

ds

sb
0

�

r�s>1=b
r>0

r1ÿa

r� s
dr

� const:�

�1=b

0

ds

sa�b 0ÿ1

�

s�u�1�>1=b
u>0

u1ÿa

1� u
du�

�y

1=b

ds

sa�b 0ÿ1

�

s�u�1�>1=b
u>0

u1ÿa

1� u
du

( )

:

Choose a with a� b 0 > 2 and 1 < a < 2. Then

�y

1=b

ds

sa�b 0ÿ1

�

s�1�u�>1=b
u>0

u1ÿa

1� u
duU

�y

1=b

ds

sa�b 0ÿ1

� 1

0

u1ÿa du�

�y

1

du

ua

� �

< y:

Furthermore, we have

� 1=b

0

ds

sa�b 0ÿ1

�

s�1�u�>1=b
u>0

u1ÿa

1� u
duU

�1=b

0

ds

sa�b 0ÿ1

�

u>�1=bs�ÿ1

du

ua

�
baÿ1

aÿ 1

�1=b

0

ds

sb
0
�1ÿ bs�aÿ1

< y:

Hence we have J < y. This completes the proof of the lemma. r

Lemma 3.6. Let B be a subset of Rd such that if x A B, then ax A B for any a > 0.

Let W be a linear subspace of Rd , and let U be the smallest linear subspace that contains

Supp�rjBVW �. Denote by a the concentration order of �0; rjBVW �U . If a < y and

�

BVW VS

s�dx�kx�0�� � y;

then there is a point z0 A S VU such that
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�

�BVW VS�nS0

s�dx�kx�0�� < y;�3:1�

�

BVW VS0

s�dx�kx�0�� � y;�3:2�

where S0 � fx A S VW : hx; z0i � 0g.

Proof. From the de®nition of the concentration order, there is a sequence z en which

converges to some z e0 A S VU and which satis®es that

a � lim
e#0

lim
n!y

�

jhx; z enijVe

x ABVW VS

s�dx�kx�0��:

By Fatou's lemma, we have

aV lim inf
e#0

�

jhx; z e0ijV2e
x ABVW VS

s�dx�kx�0�� � lim
e j#0

�

jhx; z ej
0
ijV2ej

x ABVW VS

s�dx�kx�0��:

Choosing a sequence ej # 0 such that z0 � limj!y z
ej
0 exists, we have, again by Fatou's

lemma,

aV

�

jhx; z0ij>0
x ABVW VS

s�dx�kx�0��:

The lemma has been proved. r

Lemma 3.7. Set

Ia �
�

fz AR d
:jzj>1g

jP̂X1
�z�j

jzjdÿa
dz�3:3�

for 0 < a < d. Then fXtg is transient if it satis®es one of the following:

(a) dV 3 and I2 < y.

(b) dV 2, I1 < y, and fXtg satis®es the assumption in Theorem 2.3.

(c) dV 1, Ia < y with some 0 < a < 1, fXtg satis®es the assumption in Theorem

2.3, and g0 � 0.

Proof. Let u�z� � Pd
j�1��1ÿ jzjj�4 0�, then its Fourier transform is given by

v�x� � Pd
j�1��sin xj=2�=�xj=2��

2. Then we have, for r > 0,

PX1
�jxjU r�U c

�

R
d

v�rÿ1x�PX1
�dx� � c

�

R
d

u�z�P̂X1
�rÿ1z� dz�3:4�

� crd
�

R
d

P̂X1
�z�u�rz� dzU crd

�

jzjU�
��

d
p

=r�
jP̂X1

�z�j dz;
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where c is a positive constant not depending on r. By using (3.4), we have

�

R
d

1

jxja PX1
�dx� � a

�

y

0

PX1
�jxj < r� dr

r1�a

U const:�
�

��

d
p

0

dr

r1�a
rd

�

jzjU�
��

d
p

=r�
jP̂X1

�z�j dz� a

�

y

��

d
p

dr

r1�a
:

Furthermore we have

�

��

d
p

0

dr

r1�a
rd

�

jzjU�
��

d
p

=r�
P̂X1

�z�
�

�

�

� dz � d�dÿa�=2

d ÿ a

�

jzj>1

jP̂X1
�z�j

jzjdÿa
dz

�
�

jzjU1

jP̂X1
�z�j dz

�

��

d
p

0

drrdÿ1ÿa

U
d�dÿa�=2

d ÿ a

�

jzj>1

jP̂X1
�z�j

jzjdÿa
dz� d�dÿa�=2

d ÿ a

�

jzjU
��

d
p dz:

Hence, by virtue of Theorems 2.2 and 2.3, the process fXtg is transient. r

4. Proofs of Theorems 1.1 and 1.2.

At ®rst, by using lemmas in Section 3, we shall prove our ®rst main theorem.

Proof of Theorem 1.1. It su½ces to prove transience of fXtg in the case that d � 1

and g0 � 0. For, in the case that d � 2, choose a rotation matrix R such that the ®rst

coordinate of Rg0 is 0 and let T be the orthogonal projector from R
2 to the ®rst

coordinate. Then, from Lemma 3.4 fTRXtg satis®es the assumption of the theorem for

d � 1, and transience of fTRXtg implies that of fXtg by Lemma 3.2(b).

Now suppose d � 1 and g0 � 0. Let b be the concentration order of �A; r�
R

1 , where

A � 0. We know that b > 0 (see Lemma 3.3). Let 0 < a < minfb; 1g. By virtue of

Lemma 3.3, for any b 0 satisfying a < b 0 < b, we have

�

jzj>1

jP̂X1
�z�j

jzj1ÿa
dzU const:�

�

jzj>1

1

jzj1ÿa�b 0 dz < y:

Hence, from Lemma 3.7(c), we obtain that fXtg is transient. r

To prove Theorem 1.2 we need the following lemma.

Lemma 4.1. Let d � 3. Let V be a two-dimensional linear subspace of R3, and let T

be the orthogonal projector from R
3 to V. Suppose that the Gaussian variance matrix of
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TX1 vanishes, namely, TAT � 0. Let V? be the orthogonal complement of V. If we have

J �

�

SnV?

s�dx�kx�0�� < y;�4:1�

then fXtg is transient.

Proof. As fTXtg satis®es the assumption of Theorem 1.1 by (4.1) combined with

Lemma 3.4, fTXtg is transient. Hence, by Lemma 3.2(b), fXtg is transient. r

We shall prove our second main theorem by using Lemmas 3.7 and 4.1.

Proof of Theorem 1.2. By Lemma 3.2 (b) and (c), it su½ces to prove transience of

fXtg in the case that d � 3. From Lemma 3.7 and Lemma 4.1, it su½ces to show that

Ia in (3.3) is ®nite or that J in (4.1) is ®nite under the assumption of Lemma 4.1. Let l

be the dimension of HA, where HA is the linear subspace de®ned at the beginning of

Section 3. If l � 3, then I2 < y from Lemma 3.3, because the concentration order of

�A; r�
R

3 is in®nite. From now on suppose that lU 2.

Let B be a subset of R3 such that if x A B, then ax A B for any a > 0. Now we have

P̂X1
�z� � m̂1�z�m̂2�z�;�4:2�

where

m̂1�z� � exp ÿ2ÿ1hAz; zi�

�

B

�e ihz;xi ÿ 1ÿ ihz; xi1D�x��r�dx� � ihz; gi

� �

;

m̂2�z� � exp

�

B c

�e ihz;xi ÿ 1ÿ ihz; xi1D�x��r�dx�

� �

:

Here Bc � R
3nB.

Suppose that l � 2 and B � HA above. Then the concentration order of �A; rjHA
�HA

is in®nite. So from Lemma 3.5 we have I2 < y. From now on we shall consider the

case l � 1 and the case A � 0 together. Here, if l � 1, let H � HA, and if A � 0, let H

be a one-dimensional linear subspace such that

�

S VH

s�dx�kx�0�� < y:�4:3�

From now on, in the case A � 0, suppose that such a linear subspace H exists, because

if it does not exist, then the concentration order b of �0; r�
R

3 is in®nite from the

de®nition, and I2 < y by Lemma 3.5.

Denote by U the smallest linear subspace containing Supp�rjH c�. Notice that U is

two- or three-dimensional. Now we divide this case into two cases.
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Case 1. Suppose that
�
H c VS

s�dx�kx�0�� < y. Denote by H? the orthogonal

complement of H, and by T the orthogonal projector from R
3 to H?. Then we have

TAT � 0 and J < y.

Case 2. Suppose that
�
H c VS

s�dx�kx�0�� � y. Let b2 be the concentration order

of �0; rjH c�U . Here we divide this case into two cases: b2 � y and b2 < y.

Case 2-1. Suppose that b2 � y. Let B � H in (4.2). Apply Lemma 3.5 to PX1
.

Since U is two- or three-dimensional, we have I2 < y.

Case 2-2. Suppose that b2 < y. By the assumption
�
H c VS

s�dx�kx�0�� � y, then

from Lemma 3.6 there is a point z0 A S VU such that

�
�H c VS�nS0

s�dx�kx�0�� < y;�4:4�

�
H c VS0

s�dx�kx�0�� � y;�4:5�

where S0 � fx A S : hx; z0i � 0g. Let W0 � fx A R
3
: hx; z0i � 0g. Let b3 be the con-

centration order of �0; rjW0 VH c�W 0
0
, where W 0

0 is the smallest linear subspace con-

taining Supp�rjW0 VH c�. Furthermore we divide this case into two cases: b3 < y and

b3 � y.

Case 2-2-1. Suppose that b3 < y. From (4.5), using Lemma 3.6 again, we can

decompose S0, namely, there is a point z1 A W 0
0 VS such that

�
�H c VS0�nS1

s�dx�kx�0�� < y;�4:6�

�
H c VS1

s�dx�kx�0�� � y;�4:7�

where S1 � fx A S0 : hx; z1i � 0g. Hence combining this with (4.4), we have

�
�H c VS�nS1

s�dx�kx�0�� < y;�4:8�

�
H c VS1

s�dx�kx�0�� � y:�4:9�

Here we divide this case into two cases.

Case 2-2-1-1. Suppose that A � 0. Denote by W1 the linear subspace spanned by

S1. Let �W1�
? be the orthogonal complement of W1, and let T be the orthogonal

projector from R
3 to �W1�

?. From (4.3) and (4.8) we have

J �

�
SnS1

s�dx�kx�0��U

�
S VH

s�dx�kx�0�� �

�
�S VH c�nS1

s�dx�kx�0�� < y:
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Case 2-2-1-2. Suppose that l � 1. From (4.9) the set H c VS1 is non-empty. Then,

W1 is one-dimensional and H c VS1 � S1 consists of two points. Hence we have

H VW1 � f0g. Now let W be the linear subspace spanned by H and W1. Denote by P

the orthogonal projector from W to H. Then we obtain that the concentration order of

�A; rj
W
�
W

is in®nite. In fact, since S1 consists of two points and H0S1, we have

lim
e!0

inf
jPAzj<e
z AW VS

�
jhx; zijVe
x AW VS

s�dx�kx�0��V lim
e!0

inf
jPAzj<e
z AW VS

�
jhx; zijVe

x AS1

s�dx�kx�0���4:10�

�

�
S1

s�dx�kx�0�� � y

by (4.9). Here PA is the orthogonal projector de®ned at the beginning of Section 3. Let

B � W in (4.2). Then from Lemma 3.5 we have I2 < y.

Case 2-2-2. Suppose that b3 � y. Notice that W 0
0 0 f0g by (4.5). At ®rst suppose

that W 0
0 is two-dimensional. In (4.2) choose Bc � W0 VH c. Then, by Lemma 3.5, we

have I2 < y. Next suppose that W 0
0 is one-dimensional. Here we divide this case into

two cases: l � 1 and A � 0.

Case 2-2-2-1. Suppose that l � 1. Let W be the linear subspace spanned by H and

W 0
0. Then, W is two-dimensional. Similary to (4.10), considering (4.5) in place of (4.9),

we conclude that the concentration order of �A; rj
W0 VH c�W is in®nite. Hence from

Lemma 3.5 we have I2 < y.

Case 2-2-2-2. Suppose that A � 0. Let �W 0
0�

? be the orthogonal complement of

W 0
0, and let T be the orthogonal projector from R

3 to �W 0
0�

?. Then we have, since

W0 VH c
IW 0

0,

J �

�
SnW 0

0

s�dx�kx�0��

�

�
Sn�S0 VH c�

s�dx�kx�0�� �

�
�S0 VH c�nW 0

0

s�dx�kx�0��

�

�
Sn�S0 VH c�

s�dx�kx�0��

�

�
�S VH c�n�S0 VH c�

s�dx�kx�0�� �

�
�S VH�n�S0 VH c�

s�dx�kx�0��

U

�
�SnS0�VH c

s�dx�kx�0�� �

�
S VH

s�dx�kx�0�� < y

by (4.3) and (4.4). The proof is now complete. r
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5. Proof of Theorem 1.3.

Proof of Theorem 1.3. Without loss of generality we assume that the exponent

H � 1 for fXtg. Let a > 1. We have

1V
Xy

n�1

P�Xa n < 0;Xa n�k > 0 for all positive integer k��5:1�

V

Xy

n�1

P�Xa n < 0 < Xa n�1 ;Xa n�k�1 ÿ Xa n�1 V 0 for all positive integer k�

�
Xy

n�1

P�Xa n < 0 < Xan�1�P�Xa n�k�1 ÿ Xa n�1 V 0 for all positive integer k�

�
Xy

n�1

P�X1 < 0 < Xa�P�Xak ÿ X1 V 0 for all positive integer k�:

In case (i) and (ii) both PX1
and PXaÿX1

have supports R by Proposition 4.1 of

Sato [9]. Let g0 � gÿ
�
�ÿ1;0� xr�dx�. In case (iii) we have Supp�PX1

� � �ÿy; g0� and

�aÿ 1�g0 A Supp�PXaÿX1
�H �ÿy; �aÿ 1�g0�. These follow from the LeÂvy measures

of X1 and Xa ÿ X1 are, respectively, s�fÿ1g�kÿ1�ÿx�1�ÿy;0��x�=jxj dx and

s�fÿ1g��kÿ1�ÿx=a� ÿ kÿ1�ÿx��1�ÿy;0��x�=jxj dx on �ÿy; 0�. Since we have that

P�X1 < 0 < Xa�VP�ÿh < X1 < 0�P�Xa ÿ X1 > h�

for any h > 0, in all cases we have P�X1 < 0 < Xa� > 0 by choosing h appropriately.

From this and (5.1) we have

P�Xak ÿ X1 V 0 for all positive integer k� � 0:�5:2�

In the same way we have

1V
Xy

n�1

P�X1 > 0 > Xa�P�Xak ÿ X1 U 0 for all positive integer k�:

Further,

P�X1 > 0 > Xa�VP�h > X1 > 0�P�Xa ÿ X1 < ÿh� > 0

for any h > 0, since Supp�PXaÿX1
� is unbounded below. Hence

P�Xak ÿ X1 U 0 for all positive integer k� � 0:�5:3�

Since a can be arbitrarily large in (5.2) and (5.3), we have
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P 7
y

l�1

6
y

k�l

fXak ÿ X1 > 0g

 !

VP 7
y

l�1

6
y

k 0�1

fX
a lk 0 ÿ X1 > 0g

 !

� 1

P 7
y

l�1

6
y

k�l

fXak ÿ X1 < 0g

 !

VP 7
y

l�1

6
y

k 0�1

fX
a lk 0 ÿ X1 < 0g

 !

� 1:

Hence the sample path of Xt ÿ X1 crosses the origin after arbitrarily large time. By

using LeÂvy-ItoÃ decomposition theorem, we see from r��0;y�� � 0 that the process fXtg

has no upward jump. Hence Xt ÿ X1 visits the origin after arbitrarily large time. This

shows that fXtg is not transient, so fXtg is recurrent. This completes the proof of

Theorem 1.3. r
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