
J. Math. Soc. Japan
Vol. 52, No. 2, 2000

The group of one-dimensional bimodules arising from

composition of subfactors

By Jeong Hee Hong and Hideki Kosaki

(Received Apr. 30, 1998)

(Revised Aug. 13, 1998)

Abstract. We assume that a factor is equipped with outer actions of two

®nite groups, and consider a factor-subfactor pair consisting of the crossed

product by one group and the ®xed point algebra by the other. For this

inclusion of factors, the group of one-dimensional bimodules appearing at even

levels of the associated graph and that of non-strongly outer automorphisms for

the subfactor (i.e., centrally trivial ones in the strongly amenable case) are

determined.

1. Introduction.

Composition of subfactors is a useful method to construct new subfactors. For

example, let L be a factor equipped with two outer actions a : H ! Aut�L� and b :

K ! Aut�L� of ®nite groups H and K respectively. Then, the crossed product by the

H-action and the ®xed point algebra by the K-action give rise to the inclusion

M � Lca HKN � L
�b;K�

of factors. It is easy to see that the Jones index ([27 ]) here is �M;N� � ]H � ]K and

that the irreducibility of the inclusion is equivalent to aH V bK � f1g in the quotient

group Out�L� � Aut�L�=Int�L�. We remark that inclusions of index 4 with the

Coxeter-Dynkin graphs D
�1�
n (see [25], [53] for example) are known to arise in this way

(with H � K � Z2).

Two actions aH and bK generate an in®nite group in Out�L� if and only if MKN

is of in®nite depth. Therefore, as long as two actions are ``unrelated'', the inclusion is of

in®nite depth, and in this way an abundance of inclusions of factors with various

delicate growth conditions (of graphs) were constructed in [2]. On the other hand, when
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aH and bK form a product group in Out�L�, the above inclusion is of depth 2 and

hence a Hopf algebra (more precisely a Kac algebra, [28 ]) of dimension ]H � ]K

naturally appears thanks to Ocneanu's theorem ([6], [21], [47], [60], see also [58 ] for

discussion based on the pentagon equation ([1])). A somewhat simple-minded but still

quite important example is as follows: An outer action of the product group H � K on

L is ®xed and a; b are simply the restrictions to the subgroups H and K. In this case

one actually obtains a bicrossed product of Majid-type ([48], [61], see also [7], [57 ] for

an operator algebra theoretic treatment) as the resulting Hopf algebra. However, a

situation is more subtle in the general depth 2 case. In fact, there are many unitaries

around corresponding to inner perturbation, and those are sources for various cocycles.

In this way we get ``cocycle-twisted'' Majid-type Hopf algebras, and it was the subject

matter of the recent articles [18], [26 ].

In the Ocneanu approach ([49], [50]) on subfactor analysis, vertices of graphs arising

from inclusions are regarded as irreducible bimodules. Hence, one can talk about the

irreducible decomposition of the relative tensor product ([59]) of two bimodules (i.e.,

fusion rule), and hence one obtains a ®ner invariant for the subfactor in question. For

example, bimodules at even levels in the dual principal graph are irreducible M-M

bimodules appearing in ML
2�Mk�M; k � 0; 1; 2; . . . (where fMkgk�0;1;2; ... is the Jones

tower, [27 ]). Note that in the sector approach for subfactors ([19], [20], [45 ]) these

correspond to descendant sectors in the sense of [19]. One-dimensional bimodules (or

equivalently sectors) among them are automorphisms of M (more precisely elements in

Out�M�). Importance of these automorphisms in general subfactor analysis was ®rst

pointed out by M. Izumi ([19]), and then they were characterized as non-strongly outer

(or non-properly outer, [55 ]) automorphisms in [3], [35], [36 ] (see [22], [24], [32], [38], [41]

for related topics). These automorphisms are known to play important roles in con-

struction of orbifold subfactors ([9], [12], [31]) and in Goldman's type theorems ([20], [23],

see also [16], [17 ] in a slightly di¨erent approach).

For the inclusion M � Lca HKN � L
�b;K� (which is not necessarily of depth

2), in principle one should be able to write down all the relevant irreducible bimodules

and their fusion rules. Indeed, what we need here is a cocycle-twisted version of the

computation carried out in [29], [40], [42] (although it could be quite complicated). The

purpose of the present article is to describe completely the group of one-dimensional

bimodules described in the previous paragraph and that of the centrally trivial auto-

morphisms (in the strongly amenable case) for the subfactor (see [30], [54], [55 ]). These

groups are determined in §5 and §6 respectively after discussions in §3, §4 on descendant

sectors (i.e., bimodules). Note that in the depth 2 case the two groups coincide. It is
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exactly the intrinsic group of the associated Hopf algebra, i.e., the group of all the

group-like elements, and related results in a di¨erent method can be found in [65 ]. As

an application of our analysis, in §7 Kawahigashi's relative w group ([30]) of the

inclusion with the Coxeter-Dynkin graph D
�1�
2n is determined. Three appendices will be

given. The ®rst and third ones have nothing to do with the special inclusions considered

here, and could be of independent interest.

The authors thank the referee for careful reading of the manuscript (and indeed

simplifying proofs of Lemmas 2 and 9), and are grateful to JSPS for the support which

made this joint work possible. Main results here were announced in [37 ]. It should be

pointed out that closely related subjects are also studied in [64] based on tensor

categories.

2. Preliminaries.

The Doplicher-Haag-Roberts theory ([8], see also [56 ]) on sectors originally oc-

curred in QFT, and it was noticed by R. Longo that it is extremely useful to deal with

subfactors. Here, we summarize basic facts on sectors ([19], [45], [46 ]) and relationship

to bimodules needed for our later purpose. Details on bimodules can be found in [4],

[49], [50], [52], [59], [62], [63]. Also quite a complete list of references on the index

theory and related topics can be found in the recent book [10].

2.1. Sectors and bimodules. Let M;N be type III factors, and End�M;N� be the

(unital normal) endomorphisms from M into N. An M-N bimodule X �� MXN� is a

Hilbert space equipped with commuting normal representations of M and the opposite

algebra N
� (i.e., an M-N correspondence in the sense of A. Connes, see Chap. V,

Appendix B, [4 ]). For a given r A End�M;N�, let Hr be the standard Hilbert space

L2�N� equipped with the M-N action m � x � n � r�m�JNn�JNx, where JN is the

modular conjugation. In this way, r A End�M;N� naturally gives rise to the M-N

bimodule Hr. For a given M-N bimodule X the left N-action on X and that on

L2�N� (i.e., n A N ! JNn�JN) are spatially implemented, since N is a type III factor.

From this one easily proves that X is always of the form Hr (up to unitary equivalence)

for some r A End�M;N�. Two M-N bimodules Hr1 ;Hr2 are unitarily equivalent if and

only if r1; r2 are inner conjugate (i.e., r1�m� � ur2�m�u�;m A M, for some unitary

u A N). We set Sect�M;N� � End�M;N�=Int�M;N� (and Sect�M;M� � Sect�M� for

simplicity), the M-N sectors. We will denote the class �r� simply by r to ease the

notation. The discussions so far show that Sect�M;N� is the same as the M-N

bimodules (up to unitary equivalence). However, we point out that one of advantages of
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the sector theory is that the relative tensor product for bimodules ([59]) corresponds to

the ordinary composition of sectors

Hh nM2
Hz � Hzh �as M1-M3 bimodules�

for h A Sect�M1;M2� and z A Sect�M2;M3�.

Note that the algebra of self-intertwiners is the relative commutant

Hom�Hr;Hr� � fT A B�Hr�;T�m � x � n� � m � Tx � ng

� NV r�M� 0:

In particular, Hr is irreducible if and only if NK r�M� is irreducible as an inclusion

(i.e., NV r�M� 0 � C1). When NK r�M� is of ®nite index, then the relative com-

mutant NV r�M� 0 is ®nite dimensional so that (as in the representation theory) one can

perform the irreducible decomposition

r � r1 l r2 l r3 l � � � l rn:

More precisely, let fpigi�1;2;...;n be minimal projections in NV r�M� 0 summing up to 1,

and we choose and ®x isometries vi in N satisfying viv
�
i � pi �i � 1; 2; . . . ; n�. We set

ri � v�i r���vi A Sect�M;N�, and its irreducibility follows from the minimality of pi A NV

r�M� 0. The intertwining property viri��� � r���vi shows

X

n

i�1

viri�m�v�i �
X

n

i�1

r�m�viv
�
i � r�m�:

Actually this is the meaning of the above direct sum.

The square root of the minimal index ([14], [15], [45 ]) of the inclusion NK r�M� is

called the statistical dimension

dr �
������������������������

�N; r�M��0

q

A 2 cos
p

n

� �

; n � 3; 4; . . .

� �

U �2;�y�

� �

;

which is by de®nition the dimension dimHr of the bimodule Hr. As was shown in [33],

[39], [46 ], the statistical dimension is additive and multiplicative:

d�r1 l r2� � dr1 � dr2; d�r1r2� � dr1dr2:

Let

g �� gNKr�M�� � Ad�Jr�M�JN� : N ! r�M�

be the canonical endomorphism ([44 ]). We set r � rÿ1 � g (whose class in Sect�N;M�
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depends only on that of r), the conjugate sector of r. As another consequence of being

type III, we see that an endomorphism r always admits an implementation. In fact, we

choose and ®x a faithful normal state f on M, and set c � f � rÿ1
A r�M��� . Let c �

ox1 (resp. f � ox2 ) with a cyclic and separating vector x1 A L2�N� for r�M� (resp. with

a cyclic and separating vector x2 A L2�M� for M). Then, the map mx2 A Mx2 !

r�m�x1 A r�M�x1 gives rise to the surjective isometry U from L2�M� onto L2�N� (due

to c � r � f), and it is an easy exercise to see

r�m� � UmU ��m A M�; r � Ad�U �Jr�M�JN�; and Jr�M�U � UJM:

In the bimodule picture, passing from r to r corresponds to considering the

contragradient bimodule. Namely, the N-M bimodule Hr associated with r A

Sect�N;M� is unitarily equivalent to the opposite Hilbert space Hr �� L2�N��

equipped with the N-M action

n � x �m � m� � x � n� � r�m��JNnJNx:

In fact, Hr is the Hilbert space L2�M� together with the following N-M action:

r�n�JMm�JMx � U �Jr�M�JNnJNJr�M�UJMm�JMx

� JMU �JNnJNUm�JMx

� JMU �JNnJNr�m��UJMx:

The operators r�m�� A r�M��JN� and JNnJN in the last part commute so that the

surjective isometry x A Hr ! UJMx A Hr gives rise to the desired unitary equivalence.

A very useful fact that will be repeatedly used is the Frobenius reciprocity

dimHom�zh; r� � dimHom�z; rh�;

where h A Sect�M1;M2�; z A Sect�M2;M3�; r A Sect�M1;M3� are sectors of ®nite statis-

tical dimension. Note that we also have

dimHom�zh; r� � dimHom�zh; r� � dimHom�hz; r�

� dimHom�h; rz� � dimHom�h; rz� � dimHom�h; zr�

thanks to zh � hz, z � z, etc.

2.2. Inclusions of factors. We now assume that MKN is an inclusion of factors

of ®nite index. We further assume N � r0�M� with r0 A End�M� � End�M;M� (which

means that M and N should be isomorphic). Note that we have r0 �
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rÿ1
0 � g A Sect�M� with g �� g

MKr0�M�� � Ad�JNJM� : M ! N and dr0 �
�������������������

�M ;N�0
p

.

In the subfactor picture, considering r0 corresponds to passing to the basic extension

M1 � JMN
0
JM �� hM; eNi 00�KM

(see the second paragraph in 2.4).

In the index theory the Jones tower

NJM � M0 JM1 JM2 JM3 J � � �

of successive basic extensions is of fundamental importance ([27 ]). Note that M1 also

acts standardly on L2�M� and JM1
� JMJN 0JM � JMJNJM. Hence, the M-M bimodule

ML2�M1�M can be realized as the Hilbert space L2�M� equipped with the M-M action

m1JM1
m

�
2JM1

� m1JMJNJMm
�
2JMJNJM:

On the other hand, the M-M bimodule corresponding to r0r0 A Sect�M� is the same

Hilbert space L2�M� equipped with the M-M action

r0r0�m1�JMm
�
2JM � JNJMm1JMJNJMm

�
2JM

thanks to r0r0 � g � Ad�JNJM�. Notice that the two bimodules are unitarily equivalent

via the unitary JMJN, that is, ML2�M1�M � Hr0r0
. In this way (with a little bit more

work) we see that the decomposition rule for

1 ! r0 ! r0r0 ! r0r0r0 ! r0r0r0r0 ! r0r0r0r0r0 ! � � �

1 ! r0 ! r0r0 ! r0r0r0 ! r0r0r0r0 ! r0r0r0r0r0 ! � � �

is described by the Bratteli diagrams for the towers fMk VM
0g

k�0;1;2; ...;

fMk VN
0g

k�0;1;2; ... respectively, i.e., the dual principal graph and the principal graph

respectively.

Vertices in the Bratteli diagrams are simply minimal projections, however in the

sector (or bimodule) picture they are actually irreducible sectors (or bimodules). These

M (i.e., M-M) sectors were called descendant ones in [19]. When z1 � �r0r0�
n and

z2 � �r0r0�
m, we have z1z2 � �r0r0�

n�m. Therefore, tk�r0r0�
k is closed under the

product (i.e., the relative tensor product in the bimodule picture) and one can talk about

the irreducible decomposition of z1z2 (i.e., the fusion rule).

2.3. One-dimensional sectors (automorphisms). Let MKN � r0�M� (with some

r0 A Sect�M�) be as in 2.2. A sector a �A Sect�M�� satis®es da � 1 if and only if a is an

automorphism of M (or more precisely an element in Out�M� � Aut�M�=Int�M�).

Notice that automorphisms (i.e., the one-dimensional sectors) in tk�r0r0�
k form a
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group. This is the group of non-strongly outer automorphisms in the sense of [3], [35],

[36 ]. It is obviously a conjugacy invariant for a subfactor and plays important roles in

recent study of subfactors as mentioned in §1. The condition a � �r0r0�
n (for some n)

with da � 1 does not necessarily guarantee that a can be adjusted (after inner per-

turbation) to an automorphism leaving N invariant, i.e., Ad u � a�N� � N for some

unitary u A M. (See 7.2 and p. 284 of [40] for typical non-adjustable ones). We denote

the group of ``adjustable'' non-strongly outer automorphisms by G � G�M;N�. An

automorphism a �A Aut�M�� is adjustable (relative to N � r0�M�) if and only if there

exists an automorphism b (i.e., db � 1) satisfying ar0 � r0b in Sect�M�. Furthermore,

when r0 is irreducible, a � �r0r0�
n if and only if b � �r0r0�

n (see [35], [36 ]). We point

out that the automorphisms in G are the centrally trivial automorphisms (for a sub-

factor) in the sense of [30] (see also [53]) when an inclusion is strongly amenable ([54 ]).

A criterion for the strong amenability (for special subfactors treated in this article) was

worked out in [2].

Let AKB be a ®nite index inclusion of (AFD II1) factors with ®nite depth.

Kawahigashi's relative w group w�A;B� ([30]) is de®ned by

w�A;B� �
Ct�A;B�V Int�A;B�

Int�A;B�
;

where Ct�A;B� means the group of centrally trivial automorphisms and Int�A;B� �

fAd u A Aut�A;B�; u is a unitary in Bg. The closure Int�A;B� is characterized as the

group of automorphisms (in Aut�A;B�) with trivial Loi invariant (see [43]). On the

other hand, as mentioned above, the sector technique enables us to determine what

Ct�A;B� is. In 7.1 we will determine the relative w group for inclusions AKB of index

4 with Coxeter-Dynkin graphs D
�1�
2n .

In the above we assumed that MKN are isomorphic type III factors. However,

thanks to the standard tensoring trick in [46] this assumption is completely irrelevant.

In the rest of the article we will use both sectors and bimodules almost synonymously (as

explained in 2.1).

2.4. Composition of subfactors. Let L be a factor equipped with outer actions a; b

of ®nite groups H and K respectively. We assume aH V bK � f1g in Out�L� �

Aut�L�=Int�L� so that

N � L
�b;K�

JM � Lca H

is an irreducible inclusion of factors of index ]H � ]K , and this is the inclusion in-

vestigated in the article.
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Let L
�a;H� � r1�L� and L

�b;K� �� N� � r2�L� with r
i
A Sect�L�. Since r1 �

rÿ1
1 �Ad Jr1�L�JL, we have rÿ1

1 � Ad JLJr1�L� � r1. (As was seen in 2.1, we have r �

AdU and hence rÿ1 � AdU �. Note that in this way rG1
1 ; rG1

1 and so on are all de®ned

on the whole B�L2�L��.) Therefore, we compute

rÿ1
1 �L� � JLJr1�L�r1�L�Jr1�L�JL � JLr1�L� 0JL:

This is the basic extension of LK r1�L�, and it is Lca H in our present setting.

Therefore, we have seen r1�Lca H� � L. However, remark that this r1 is no longer

an element in Sect�L� and it is indeed an endomorphism from Lca H onto L.

Notations. To avoid possible confusion, r1 considered as an element in

Sect�Lca H;L� will be denoted by %1 throughout the article. Since %1�Lca H� � L

as an Lca H-L sector, the dimension of %1 is 1 and the conjugate of %1 is %
ÿ1
1 A

Sect�L;Lca H�. Similarly, r2 considered as an element in Sect�Lcb K ;L� will

be denoted by %2. We have %2�Lcb K� � L and the conjugate of %2 is %
ÿ1
2 A

Sect�L;Lcb K�.

Via the ``identi®cation map'' %1, we have the conjugacy

Lca HKLKL
�b;K�

GLK %1�L�K %1�L
�b;K��:

But, %1 � r1 on L, and hence %1�L
�b;K�� � r1�L

�b;K�� � r1r2�L�.

Discussions so far suggest the following de®nition:

Definition. We set

r0 � %
ÿ1
1 r1r2%1 A Sect�Lca H�

with %
ÿ1
1 A Sect�L;Lca H�; r1; r2 A Sect�L� and %1 A Sect�Lca H;L�.

We have r0�Lca H� � L
�b;K� so that r0 is our basic sector from which relevant

irreducible components (descendant sectors), higher relative commutants, fusion rules,

and so on can be computed (see 2.2).

3. Alternating products.

In the present paper we investigate the inclusion

N � L
�b;K�

JM � Lca H

of factors explained in 2.4, and we set r0 � %
ÿ1
1 r1r2%1 A Sect�Lca H� as in 2.4 (so that

r0�Lca H� � L
�b;K�). In this section we will compute higher relative commutants of
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the inclusion MKN based on sector technique. (Related analysis can be found in [2],

[29], [42].)

We compute

r0r0 � %
ÿ1
1 r1r2%1%

ÿ1
1 r2r1%1 � %

ÿ1
1 r1r2r2r1%1

since %1%
ÿ1
1 A Sect�L� is id. We carefully look at the products %

ÿ1
1 r1 A

Sect�L;Lca H� and r1%1 A Sect�Lca H;L�. At ®rst, we obviously have %
ÿ1
1 r1 �

iL,!Lca H A Sect�L;Lca H�, the inclusion map. On the other hand, r1%1 is the

conjugate of %
ÿ1
1 r1 and r1%1 � Ad�Jr1�L�JL� A Sect�Lca H;L�. Since Lca H �

JLr1�L� 0JL, the basic extension, we have JLca H � JLJr1�L� 0JL � JLJr1�L�JL, and

r1%1 � Ad�JLJLca H� � iL,!Lca H A Sect�Lca H;L�:

Therefore, we have

r0r0 � iL,!Lca H � r2r2 � iL,!Lca H �
X

k AK

liL,!Lca H � bk � iL,!Lca H :

From this expression, we also have

�r0r0�
2 �
X

k1;k2;h1

liL,!Lca H � bk1ah1bk2 � iL,!Lca H ;

�r0r0�
3 �

X

k1;k2;k3;h1;h2

liL,!Lca H � bk1ah1bk2ah2bk3 � iL,!Lca H ;

and so on, where ki's run over K and hj 's run over H. In fact, we just notice

iL,!Lca H � iL,!Lca H � r1%1%
ÿ1
1 r1 � r1r1 �

X

h AH

lah:

On the other hand, we have

r0r0r0 � iL,!Lca H � r2r2 � iL,!Lca H � %ÿ1
1 r1r2%1:

Since

iL,!Lca H � %ÿ1
1 r1 � iL,!Lca H � iL,!Lca H � r1r1 A Sect�L�;

we have

r0r0r0 � iL,!Lca H � r2r2 � r1r1 � r2%1:

The last product can be rewritten as

r2%1 � r2%2%
ÿ1
2 %1 � iL,!Lcb K � %ÿ1

2 %1:
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Therefore, we conclude

r0r0r0 � iL,!Lca H � r2r2 � r1r1 � iL,!Lcb K � %ÿ1
2 %1:

The decomposition of this sector is the same as that of

iL,!Lca H � r2r2 � r1r1 � iL,!Lcb K A Sect�Lcb K ;Lca H�;

(and %
ÿ1
2 %1 just speci®es an identi®cation map between Lca H and Lcb K). It is also

easy to see

�r0r0�
2
r0 � iL,!Lca H � r2r2 � r1r1 � r2r2 � r1r1 � iL,!Lcb K � %ÿ1

2 %1

�
X

k1;k2;h1;h2

liL,!Lca H � bk1ah1bk2ah2 � iL,!Lcb K � %ÿ1
2 %1;

�r0r0�
3
r0 �

X

k1;k2;k3;h1;h2;h3

liL,!Lca H � bk1ah1bk2ah2bk3ah3 � iL,!Lcb K � %ÿ1
2 %1;

and so on.

Lemma 1. Let y � bk1ah1bk2 � � � bkn ; y
0 � bk 0

1
ah 0

1
bk 0

2
� � � bk 0

m
be alternating products.

Then, Lca H-Lca H sectors iL,!Lca H � y � iL,!Lca H and iL,!Lca H � y 0 � iL,!Lca H

are not disjoint if and only if aHyaH � aHy
0aH in Out�L�.

Proof. The two sectors in question are not disjoint if and only if

dimHom�iL,!Lca H � y � iL,!Lca H ; iL,!Lca H � y 0 � iL,!Lca H�0 0:

But this dimension is equal to

dimHom�y � iL,!Lca H � iL,!Lca H ; iL,!Lca H � iL,!Lca H � y 0�

�
X

h1;h2 AH

dimHom��yah1 �; �ah2y
0 ��

thanks to the Frobenius reciprocity (see 2.1). Therefore, the condition is satis®ed if and

only if �yah1 � � �ah2y
0 � as sectors (i.e., they are the same in Out�L�) for some h1; h2 A H.

This condition is obviously equivalent to aHyaH � aHy
0aH in Out�L�. r

Lemma 2. If aHyaH � aHy
0aH in Out�L�, then we have

iL,!Lca H � y � iL,!Lca H � iL,!Lca H � y 0 � iL,!Lca H :

Proof. Since y 0 � ahyah 0 in Out�L� for some h; h 0 A H, the dimension in the proof

of the previous lemma is equal to
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X

h1;h2 AH

dimHom��ah1 �; �y
ÿ1ah2y

0 �� �
X

h1;h2 AH

dimHom��ah1 �; �y
ÿ1ah2ahyah 0 ��

�
X

h1;h2 AH

dimHom��a
h1h 0ÿ1 �; �yÿ1ah2hy�� �

X

h1;h2 AH

dimHom��ah1 �; �y
ÿ1ah2y��

� ]�aH V yÿ1aHy� �
�]H�2

]�aHyaH �
:

From this computation, it is clear that the dimensions of the spaces of self-intertwiners

of iL,!Lca H � y � iL,!Lca H and iL,!Lca H � y 0 � iL,!Lca H are also identical to

the above cardinality. Since the above two Lca H-Lca H sectors have the same

dimension ��
�������

]H
p

� 1�
�������

]H
p

� ]H�, we get the lemma from the result in Appendix

A. r

The referee kindly pointed out the following alternative (and simpler) proof:

Notice Ad lh � iL,!Lca H � iL,!Lca H � ah�h A H� as endomorphisms with the canoni-

cal implementing unitary lh in Lca H. This means that we have iL,!Lca H �

iL,!Lca H � ah and iL,!Lca H � ah � iL,!Lca H as sectors. Therefore, y 0 � ahyah 0 (in

Out�L�) clearly implies the conclusion iL,!Lca H � y 0 � iL,!Lca H � iL,!Lca H � y �

iL,!Lca H .

Definition. We set y@ y 0 if aHyaH � aHy
0aH in Out�L�.

We just consider the alternating products y � bk1ah1bk2 � � � bkn of length 2nÿ 1.

Dividing those alternating products into the classes (the above de®nition), we choose

representatives fyigi�1;2;...;l, and for each i let ni be the number of y's (of length 2nÿ 1)

equivalent to yi. The discussions so far obviously mean

Proposition 3. We have the following decomposition:

�r0r0�
n �

X

l

i�1

lni�iL,!Lca H � yi � iL,!Lca H�:

Of course the decomposition of �r0r0�
n
r0 can be described in an analogous fashion.

4. Self-intertwiners of iL,!Lca H � y � iL,!Lca H .

A sector of the form iL,!Lca H � y � iL,!Lca H A Sect�Lca H� appearing in

Proposition 3 is not irreducible. Its irreducible decomposition is known if the algebra of

self-intertwines is determined. In this section this will be carried out by writing down
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explicitly the Lca H-Lca H bimodule corresponding to iL,!Lca H
� y � iL,!Lca H

.

(See also [2] for computation of the principal and dual principal graphs.)

The sector iL,!Lca H
� y � iL,!Lca H

A Sect�Lca H� corresponds to the following

Lca H-Lca H bimodule:

Lca HL
2�Lca H�

L
nL

y

L
L

2�L�
L
nL LL

2�Lca H�
Lca H

(see 2.1). Here, L-L bimodule y

L
L2�L�

L
means the standard Hilbert space L2�L�

equipped with the (mutually commuting) L-L action y�l1�JLl
�
2JL�l1; l2 A L�. Note

that LL2�L�y
L

can be de®ned analogously and that y
L
L2�L�

L
and LL2�L�y

ÿ1

L
are the

same (more precisely unitarily equivalent) bimodule via AdUy. Here and throughout

the article, Uy denotes the canonical implementation of y. At ®rst we notice

Lca H
L

2�Lca H�
L
nL

y

L
L

2�L�
L

� Lca H
L

2�Lca H�
L
nL LL

2�L�y
ÿ1

L

� Lca H
L

2�Lca H�y
ÿ1

L
:

Here, the notation Lca HL
2�Lca H�y

ÿ1

L
is self-explanatory. Namely, this is a Hilbert

space L2�L�n l
2�H�, which is the standard Hilbert space of Lca H, equipped with

the left Lca H-action

X

h 0 AH

ah 0 ÿ1�l�n eh 0;h 0

1n l�h�

(the ordinary generators of Lca H) and the right L-action

JLy
ÿ1�l��JL n 1

(a part of the ordinary generators of the commutant of Lca H twisted by y
ÿ1). Here

and in what follows, eh;h 0 A B�l2�H�� will denote the obvious matrix unit. Via

Ad�Uy n 1� these operators are transformed to

X

h 0 AH

yah 0ÿ1�l�n eh 0;h 0 ;�1�

1n l�h�;�2�

JLl
�
JL n 1:�3�

Hence, the bimodule Lca H
L2�Lca H�y

ÿ1

L
can be also thought of L2�L�n l

2�H�

equipped with the left Lca H-action (1), (2) and the right L-action (3). In what

follows, we will use this realization.
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On the other hand, the bimodule LL2�Lca H�
Lca H

is L2�L�n l
2�H� equipped

with the left L-action

ln 1�4�

and the right Lca H-action

X

h 00 AH

Ua
h 00ÿ1

JLl
�JLUah 00

n eh 00
;h 00�5�

1n l�h�:�6�

Note that the ``ampli®cation picture'' of the crossed product Lca H is used here, and

the reason of doing so will become clear shortly.

We now consider

Lca HL
2�Lca H�

L
nL

y
L
L2�L�

L
nL LL2�Lca H�

Lca H

� Lca HL
2�Lca H�y

ÿ1

L
nL LL2�Lca H�

Lca H

(based on the realizations discussed so far). The actions (3), (4) together with the

obvious fact L2�L�
L
nL LL2�L� � L2�L� show that the above relative tensor product

is the Hilbert space L2�L�n l
2�H�n l

2�H� with the left (resp. right) Lca H-action

naturally induced by (1), (2) (resp. (5), (6)). Or more precisely, the left Lca H-action is

X

h 0 AH

yah 0ÿ1�l�n 1n eh 0
;h 0�7�

1n 1n l�h��8�

while the right Lca H-action is

X

h 00 AH

Ua
h00ÿ1

JLl
�JLUah 00 n eh 00

;h 00 n 1�9�

1n l�h�n 1:�10�

The intertwiners of the right actions (9), (10) are obviously in �Lca H�n

B�l2�H��. Here, we should note that Lca H is acting on the ®rst two tensor product

L2�L�n l
2�H� and that it is in the ampli®cation picture, i.e., generated by ln 1 and

Uah n r�h�, (r��� being the right regular representation).

We next require compatibility between the left action described by (7), (8). So let us

take x �
P

h1;h2 AH
x�h1; h2�n eh1;h2 from the intertwiners of the right actions, i.e.,

x�h1; h2� �
X

h AH

�xh n 1��Uah n r�h��:�11�
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(Of course xh also depends on h1; h2.) Notice l�h� �
P

h 0 AH ehh 0
;h 0 and r�h� �

P

h 0 AH eh 0
;h 0h.

Lemma 4. (i) The above operator x commutes with the operators de®ned by (8) if and

only if we have the following invariance:

x�h 0h1; h
0h2� � x�h1; h2� for each h1; h2; h

0 A H:

(ii) The operator x commutes with the operators de®ned by (7) if and only if for each

h1; h2 A H the coe½cients xh �A L� in (11) satisfy

yahÿ1
1
�l�xh � xhahyahÿ1

2
�l� for each l A L:

It is elementary to get (i) from the above matrix expression of l�h� while (ii) comes

from the fact that the commutativity between x and (7) means

x�h1; h2��yahÿ1
1
�l�n 1� � �yahÿ1

2
�l�n 1�x�h1; h2�:

Remark. Assume that ~G is a discrete group with an outer action a0 on the factor

L and H;KJ ~G with a � a0jH and b � a0jK . In this special case, since y � a0g with

g � k1h1k2 � � � kn A ~G, the condition in Lemma 4, (ii) means

a0
ghÿ1

1
�l�xh � xha

0
hghÿ1

2
�l� for each l A L:

Hence, xh can be non-zero only when h � ghÿ1
1 h2g

ÿ1, and in this case xh must be a

scalar because a0 is outer. Notice that x�h1; h2� is either zero or contains at most one

Uah n r�h� (with a scalar coe½cient). The latter case cannot happen unless h A H V

gHgÿ1. We start from h A H V gHgÿ1. Then, ~h � gÿ1hg A H and h1 � e; h2 � ~h cer-

tainly satisfy the above condition (and corresponding to Uah n rh n ee;gÿ1hg). The in-

variance in Lemma 4, (i) means that

�Uah�n r�h�n
X

h 0

eh 0
;h 0gÿ1hg

 !

� Uah n r�h�n r�gÿ1hg�

is an intertwiner (for the Lca H-Lca H action). Therefore, the algebra of inter-

twiners in question is obviously

X

h AH V gHgÿ1

C�Uah n r�h�n r�gÿ1hg��;

which is of course isomorphic to the group ring C�H V gHgÿ1�.
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From the discussions in the above remark, it is clear that the relevant group we

should look at in the general setting is �aH V yaHy
ÿ1� in Out�L�. In fact, the condition

in Lemma 4, (ii) means that xh can be non-zero if and only if ah � yahÿ1
1

h2
yÿ1 in

Out�L�. In particular, this means �ah� A �aH V yaHy
ÿ1�. Also, introduction of certain

cocycles is now unavoidable for more detailed analysis.

Definition. For �ah� A �aH V yaHy
ÿ1�, ah � ya~hy

ÿ1 in Out�L� with a unique ~h A H.

This ~h will be denoted by hy. Let v�h; y� be a unitary in L such that

ah � Ad v�h; y�yahyy
ÿ1
:

We may and do assume v�e; y� � 1 in what follows. Note also that �h1h2�
y � hy1h

y
2 and

�hy
0

�y � h�y
0y�. With these unitaries the identical reasoning as in the above remark

obviously shows that the algebra of self-intertwiners of the Lca H-Lca H sector

iL,!Lca H � y � iL,!Lca H is

X

h A �aH V yaHy
ÿ1�

C�v�h; y��Uah n r�h�n r�hy��:

Here, the sum actually means all h's in H such that �ah� A �aH V yaHy
ÿ1�, i.e., h A H and

�ah� are identi®ed, and this convention will be used throughout.

To write down explicitly the algebra structure of the above intertwiners, we should

investigate the cocycle naturally attached to the above unitaries v�h; y��h A �aH V

yaHy
ÿ1��. From the de®nition of v��; ��'s we compute

Ad v�h1h2; y�ya�h1h2�yy
ÿ1 � ah1h2 � ah1ah2

� Ad v�h1; y�yahy
1
yÿ1Ad v�h2; y�yahy

2
yÿ1

� Ad�v�h1; y�yahy
1
yÿ1�v�h2; y���yahy

1
hy
2
yÿ1

:

Lemma 5. For each h1; h2 A �aH V yaHy
ÿ1� we have

v�h1h2; y� � xy�h1; h2�v�h1; y�yahy
1
yÿ1�v�h2; y��

� xy�h1; h2�ah1�v�h2; y��v�h1; y�

for some scalar xy�h1; h2� A T.

To determine the algebra structure of the intertwiners, we compute the product of

two generators. (But notice that h ! r�h� and h ! r�hy� are homomorphisms.) For
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h1; h2 A �aH V yaHy
ÿ1� we compute

�v�h1; y�
�
Uah1

��v�h2; y�
�
Uah2

� � v�h1; y�
�
ah1�v�h2; y�

��Uah1h2

� xy�h1; h2�v�h1h2; y�
�
Uah1h2

thanks to the above lemma.

Summarizing the arguments so far, we have

Theorem 6. The algebra of self-intertwiners of the Lca H sector iL,!Lca H � y �

iL,!Lca H , or equivalently, the one for the Lca H bimodule Lca HL
2�Lca H�

L
nL

y
L
L2�L�

L
nL LL2�Lca H�

Lca H
is the twisted group ring Cxy��aH V yaHy

ÿ1��.

Remark. Note the associativity of the algebra means that xy��; �� is a (T-valued) 2-

cocycle on �aH V yaHy
ÿ1� (which can be of course shown directly). In later sections, we

will deal with y normalizing aH in Out�L� so that xy is a 2-cocycle on H in that case.

When the unitary v�h; y� is changed to ~v�h; y� � c�h; y�v�h; y� (with c�h; y� A T), the new

~xy becomes

~xy�h1; h2� � xy�h1; h2� �
c�h1h2; y�

c�h1; y�c�h2; y�

(see Lemma 5). Therefore, the 2-cocycle xy is changed by just a coboundary.

The above theorem and Proposition 3 imply

Theorem 7. With the notations right before Proposition 3 we have

M2n VM 0 �
Xl

i�1

lMni�C�nCxyi
��aH V yiaHy

ÿ1
i ��:

Even in the depth 2 case the algebra structure of M2n VM 0 can be easily deformed

due to the presence of xyi 's as was seen in [26 ]. However, if H is a cyclic group for

example, then so are subgroups and hence xyi 's are all coboundaries. Therefore, de-

formation does not occur in this case (although fusion rule might be deformed as will be

seen in 7.1).

5. One-dimensional bimodules.

In this section we will determine the group of automorphisms (i.e., sectors with

statistical dimension 1) appearing in tn�r0r0�
n (see 2.3) for our inclusion Lca HK

L
� b;K�. Thanks to Proposition 3, to get complete information on those automorphisms,
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it su½ces to study one-dimensional sectors appearing in the irreducible decomposition of

iL,!Lca H � y � iL,!Lca H A Sect�Lca H�.

Recall that the corresponding Lca H-Lca H bimodule is A � L2�L�n

l
2�H�n l

2�H� equipped with the action described by (7), (8), (9), (10). Let p be a

minimal projection in the twisted group ring Cxy��aH V yaHy
ÿ1�� (see Theorem 6), and

Ap � p�L2�L�n l
2�H�n l

2�H�� be the corresponding irreducible component. As

explained in 2.1, dimAp is the square root of the minimal index of the reduced system

(by p) of the inclusion

the algebra generated by the operators �7�; �8�

J the commutant of the algebra generated by the operators �9�; �10�:

As was seen in the previous section (discussions before Lemma 4), this inclusion is

actually

�yn 1n 1��Lca H�J �Lca H�nB�l2�H��:

Here, the left Lca H is generated by

X

h 0 AH

ah 0ÿ1�l�n 1n eh 0;h 0 ; 1n 1n l�h�

while the right Lca H is in the ampli®cation picture and acts on the ®rst and second

Hilbert spaces. The minimal index of this inclusion is �]H�2 since the statistical di-

mension of iL,!Lca H � y � iL,!Lca H is ]H. Therefore, by the local index formula, we

have

dimAp �

������������

�]H�2
q

� tr�p� � �]H� � tr�p�:

We remark that the trace (on the relative commutant, i.e., the twisted group ring) here is

the restriction of the minimal conditional expectation.

Lemma 8. The trace on the twisted group ring is computed by

tr

 

X

h A �aH V yaHy
ÿ1�

ch�v�h; y�
�
Uah n r�h�n r�hy��

!

� ce �with ch A C�:

Proof. The above inclusion can be regarded as the following two step inclusions:

�yn 1n 1��Lca H�JLnC1nB�l2�H��J �Lca H�nB�l2�H��:

The ®rst inclusion is conjugate to Lca HJLnB�l2�H�� and irreducible. (This is
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actually the one coming from the dual coaction of H, but this fact is not necessary here.)

On the other hand, the second inclusion is also irreducible and we have the natural (and

unique) conditional expectation, i.e., the usual one from Lca H in the ampli®cation

picture onto LnC1 tensored with the identity map of B�l2�H��. Note that this

expectation behaves like

X

h A �aH V yaHyÿ1�

ch�v�h; y�
�
Uah n r�h�n r�hy�� ! ce�1n 1n 1�

since v�h; y��Uah n r�h� �h0 e� is killed. The value here is already a scalar, and

hence the conditional expectation of the ®rst inclusion acts trivially and the result is

proved. r

Lemma 9. When an Lca H-Lca H sector iL,!Lca H � y � iL,!Lca H contains a

one-dimensional component, y normalizes aH in Out�L�. Furthermore, in this case the 2-

cocyle xy on �aH V yaHy
ÿ1� � �aH �GH is a coboundary.

Proof. Assume that the Lca H-Lca H sector iL,!Lca H � y � iL,!Lca H contains

an automorphism ~y A Aut�Lca H�. Then, the Frobenius reciprocity implies

1 � dimHom�iL,!Lca H � y � iL,!Lca H ;
~y�

� dimHom�iL,!Lca H � y; ~y � iL,!Lca H�:

Notice

�Lca H�V �iL,!Lca H � y�L�� 0 � �Lca H�V y�L� 0 � �Lca H�VL
0 � C1;

�Lca H�V �~y � iL,!Lca H�L�� 0 � �Lca H�V ~y�L� 0 � ~y��Lca H�VL
0� � C1;

showing the irreducibility of the two L-Lca H sectors iL,!Lca H � y; ~y � iL,!Lca H .

Therefore, the above computation on the dimension of intertwiners guarantees

iL,!Lca H � y � ~y � iL,!Lca H :

By taking the conjugate, we then see

yÿ1 � iL,!Lca H � iL,!Lca H � y � iL,!Lca H � ~yÿ1 � ~y � iL,!Lca H

� iL,!Lca H � iL,!Lca H ;

which means

J. H. Hong and H. Kosaki310



yÿ1
X

h AH

lah

 !

y �
X

h AH

lah �as L-L sectors�:

This of course means that y normalizes aH in Out�L�.

Since ~y appears in iL,!Lca H � y � iL,!Lca H with multiplicity one, the algebra

Cxy��aH V yaHy
ÿ1� � H� of self-intertwiners of iL,!Lca H � y � iL,!Lca H contains a one-

dimensional summand. The projection p is the one corresponding to this summand.

Hence, if we set xp � w�x�p, then x ! w�x� gives rise to a one-dimensional repre-

sentation of the twisted group ring Cxy�H�. By taking the trace values of the both sides

and recalling tr�p� � 1=]H, we get w�x� � �]H� � tr�xp�. Therefore, the map

x ! tr 0�xp� � �]H� tr�xp�

is multiplicative. Let p �
P

h AH �ch=]H��v�h; y��Uah n r�h�n r�hy��, and hence

�v�h1; y�
�
Uah1

n r�h1�n r�hy1��p

�
X

h AH

ch

]H
xy�h1; h��v�h1h; y�

�
Uah1h

n r�h1h�n r��h1h�
y��:

The coe½cient at the unit e is chÿ1
1
=]H (note that xy�h1; h

ÿ1
1 � � 1 can be assumed as

usual) so that Lemma 8 implies

tr 0��v�h1; y�
�
Uah1

n r�h1�n r�hy1��p� � chÿ1
1
:

Thus, the multiplicativity of tr 0 shows chÿ1
1
chÿ1

2
� xy�h1; h2�c�h1h2�ÿ1 , that is, xy is a

coboundary. r

We now assume that a one-dimensional sector Ap appears in iL,!Lca H � y �

iL,!Lca H . Lemma 9 shows that y � bk1ah1bk2 � � � bkn normalizes aH in Out�L� and

xy A Z2��aH V yaHy
ÿ1�;T� � Z2�H;T� is a coboundary. We can of course further as-

sume that unitaries v�� ; �� have been chosen in such a way that xy�h1; h2� � 1 for

h1; h2 A H. The argument in the above proof shows that p corresponds to a character

(i.e., one-dimensional representation) w on H, that is, p is of the form

pw �
1

]H

X

h 00 AH

w�h 00��v�h 00; y��Uah 00
n r�h 00�n r��h 00�y��:

In the rest of the section, we will explicitly write down one-dimensional sectors

Apw�w A Hom�H;T��, i.e., automorphisms of Lca H, and determine their product

rule.
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Lemma 10. A vector y �
P

h1;h2 AH
y�h1; h2�n dh1 n dh2 in L2�L�n l

2�H�n l
2�H�

is in the range of the projection pw if and only if

y�h1h; h2h
y� � w�h�v�hÿ1; y��Ua

hÿ1
y�h1; h2�

� � w�h�Ua
hÿ1

v�h; y�y�h1; h2��

for each h A H.

Proof. Let x �
P

h1;h2 A H x�h1; h2�n dh1 n dh2 , and we set y � pwx. We then

compute

y �
1

]H

X

h1;h2;h 00 AH

w�h 00�v�h 00; y��Uah 00
x�h1; h2�n dh1�h 00ÿ1� n d

h2�h 00ÿ1�y

�
1

]H

X

h1;h2;h 00 AH

w�h 00�v�h 00; y��Uah 00
x�h1h

00; h2�h
00�y�n dh1 n dh2 :

Therefore, the �h1; h2�-component of y is

y�h1; h2� �
1

]H

X

h 00 AH

w�h 00�v�h 00; y��Uah 00
x�h1h

00; h2�h
00�y�;

and we compute

y�h1h; h2h
y� �

1

]H

X

h 00 AH

w�h 00�v�h 00; y��Uah 00
x�h1hh

00; h2�hh
00�y�

�
1

]H

X

h 00 AH

w�hÿ1h 00�v�hÿ1h 00; y��Ua
hÿ1h 00

x�h1h
00; h2�h

00�y�

�
w�h�

]H

X

h 00 AH

w�h 00�v�hÿ1; y��ahÿ1�v�h 00; y���Ua
hÿ1

Uah 00
x�h1h

00; h2�h
00�y�

�by the second expression of Lemma 5�

�
w�h�

]H

X

h 00 AH

w�h 00�v�hÿ1; y��Ua
hÿ1

v�h 00; y��Uah 00
x�h1h

00; h2�h
00�y�

� w�h�v�hÿ1; y��Ua
hÿ1

x�h1; h2�:

Note that by the second expression in Lemma 5 and v�e; y� � 1 the last quantity is also

equal to

w�h�Ua
hÿ1

ah�v�h
ÿ1; y���y�h1; h2� � w�h�Ua

hÿ1
v�h; y�y�h1; h2�:
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Conversely, when y�h1; h2�'s satisfy this invariance condition, it is straight-forward

to see pw y � y (use the second expression of the invariance). r

Thanks to the above lemma, pw�L
2�L�n l

2�H�n l
2�H�� consists of vectors y �

P
h1;h2 AH

y�h1; h2�n dh1 n dh2 satisfying the invariance condition in the lemma. By

taking one ``row'' of this vector, we de®ne the surjective isometry

y A pw�L
2�L�n l

2�H�n l
2�H�� ! �]H�

X

h 0 AH

y�h 0; e�n dh 0 A H � L2�L�n l
2�H�:

(Note that thanks to the invariance y�h1; h2�'s can be recovered from y�h 0; e�'s.) To get

the one dimensional bimodule corresponding to pw, we have to see how the operators

(7), (8), (9), (10) look like on Apw � pw�L
2�L�n l

2�H�n l
2�H��, i.e., on H via the

above isometry. Let us denote the operators (7), (8), (9), (10) by A;B;C;D respectively.

We compute

Ay �
X

h1;h2;h 00 AH

yah 00ÿ1�l�y�h1; h2�n dh1 n eh 00;h 00dh2

�
X

h1;h2 AH

yahÿ1
2
�l�y�h1; h2�n dh1 n dh2 ;

By �
X

h1;h2 AH

y�h1; h2�n dh1 n dhh2

�
X

h1;h2 AH

y�h1; h
ÿ1h2�n dh1 n dh2 ;

Cy �
X

h1;h2;h 00 AH

Ua
h 00ÿ1

JLl
�JLUah 00

y�h1; h2�n eh 00;h 00dh1 n dh2

�
X

h1;h2 AH

Ua
hÿ1
1

JLl
�JLUah1

y�h1; h2�n dh1 n dh2 ;

Dy �
X

h1;h2 AH

y�h1; h2�n dhh1 n dh2

�
X

h1;h2 AH

y�hÿ1h1; h2�n dh1 n dh2 :

Setting h1 � h 0; h2 � e, we have the following �h 0; e�-components:

�Ay��h 0; e� � y�l�y�h 0; e�; �By��h 0; e� � y�h 0; hÿ1�;

�Cy��h 0; e� � Ua
h 0ÿ1

JLl
�JLUah 0

y�h 0; e�; �Dy��h 0; e� � y�hÿ1h 0; e�:
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By Lemma 10 (the ®rst expression) we have

�By��h 0
; e� � w�h�y

ÿ1��v�h�y
ÿ1�

; y��Ua
h�y

ÿ1�
y�h 0h�y

ÿ1�
; e�:

Therefore, at the level of H � L2�L�n l
2�H�, the left Lca H-action is

A � y�l�n 1

B � w�h�y
ÿ1��v�h�y

ÿ1�
; y��Ua

h�y
ÿ1�

n r�h�y
ÿ1��

while the right Lca H-action is

C �
X

h 0 AH

Ua
h 0ÿ1

JLl
�JLUah 0 n eh 0

;h 0

D � 1n l�h�:

Note that this right action is the commutant of Lca H in the ampli®cation picture.

Therefore, the one dimensional bimodule we have constructed so far is the one attached

to the following automorphism:

ln 1 ! y�l�n 1;

Uah n r�h� ! w�h�y
ÿ1���v�h�y

ÿ1�
; y�� n 1��Ua

h�y
ÿ1�

n r�h�y
ÿ1���:

Going back to the usual picture of the crossed product Lca H generated by

pa�l�G l and l�h�, we set

Definition. For a character w A Hom�H;T�, we de®ne P � Pw;y A Aut�Lca H�

by

P�l� � y�l� �l A L�;

P�l�h�� � w�h�y
ÿ1��v�h�y

ÿ1�
; y��l�h�y

ÿ1�� �h A H�:

Since we have seen Apw �
PL2�Lca H�, this P is an automorphism appearing in

tn�r0r0�
n. (More precisely it appears in �r0r0�

n if y � bk1ah1bk2 � � � bkn is of length

2nÿ 1.) Thanks to the cocycle equation one can check that the above formula indeed

gives rise to an automorphism, which is left to the reader as an exercise.

We now determine the product rule. So let us start from two automorphisms

Pw;y;Pw 0
;y 0 . At ®rst

Pw 0
;y 0Pw;y�l� � y 0y�l�

J. H. Hong and H. Kosaki314



is obvious. We then compute

Pw 0
;y 0Pw;y�l�h�� � w�h�y

ÿ1��Pw 0
;y 0�v�h�y

ÿ1�
; y��l�h�y

ÿ1���

� w�h�y
ÿ1��w 0��h�y

ÿ1���y
0ÿ1��y 0�v�h�y

ÿ1�
; y���

� v��h�y
ÿ1���y

0ÿ1�
; y 0��l��h�y

ÿ1���y
0ÿ1��

� w�h�y
ÿ1��w 0�h��y

0y�ÿ1��y 0�v�h�y
ÿ1�

; y���v�h��y
0y�ÿ1�

; y 0��l�h��y
0y�ÿ1��

because of �h�y
ÿ1���y

0ÿ1� � h��y
ÿ1��y 0ÿ1�� � h��y

0y�ÿ1�. Notice that the product of the two v's

in the last quantity can be rewritten as

v�h��y
0y�ÿ1�

; y 0y�� � fv�h��y
0y�ÿ1�

; y 0y�y 0�v�h�y
ÿ1�

; y���v�h��y
0y�ÿ1�

; y 0��g:

To deal with the above product of three v's in the parenthesis, we note

Ad�v�h�y
ÿ1�

; y���a
h�y

ÿ1� � yahy
ÿ1
;

and compute

Ad�v�h��y
0y�ÿ1�

; y 0y���a
h��y

0y�ÿ1� � �y 0y�ah�y
0y�ÿ1 � y 0�yahy

ÿ1�y 0ÿ1

� y 0�Ad�v�h�y
ÿ1�

; y���a
h�y

ÿ1��y
0ÿ1

� Ad�y 0�v�h�y
ÿ1�

; y����y 0a
h�y

ÿ1�y
0ÿ1

� Ad�y 0�v�h�y
ÿ1�

; y���v�h��y
0y�ÿ1�

; y 0���a
h��y

0y�ÿ1�

because of �h�y
ÿ1���y

0ÿ1� � h��y
0y�ÿ1�. Therefore, we have

v�h��y
0y�ÿ1�

; y 0y�� � ŵy 0
;y�h�y

0�v�h�y
ÿ1�

; y���v�h��y
0y�ÿ1�

; y 0��

for some scalar ŵy 0
;y�h� A T.

Definition. The scalar ŵy 0
;y�h� A T is de®ned by

ŵy 0
;y�h� � y 0�v�h�y

ÿ1�
; y���v�h��y

0y�ÿ1�
; y 0��v�h��y

0y�ÿ1�
; y 0y�

� v�h��y
0y�ÿ1�

; y 0y�y 0�v�h�y
ÿ1�

; y���v�h��y
0y�ÿ1�

; y 0��:

The above second expression is exactly the product of three v's in the previous

paragraph. Therefore, by going back to the product of two automorphisms, we have
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Pw 0
;y 0Pw;y�l�h�� � w�h�y

ÿ1��w 0�h��y
0y�ÿ1��ŵy 0

;y�h�v�h
��y 0y�ÿ1�

; y 0y��l�h��y
0y�ÿ1��:

Notice w�h�y
ÿ1�� � w��h��y

0y�ÿ1��y
0

�. Since the composition Pw 0
;y 0Pw;y is an automorphism

of Lca H, we know h ! ŵy 0
;y�h� is a character (see also Appendix B) and we conclude

Lemma 11. The following product rule holds:

Pw 0
;y 0Pw;y � Pw 0w��y

0
�ŵy 0 ; y; �y

0y�:

The associativity of composition shows that �y 0
; y� ! ŵy 0

;y��� A Hom�H;T� is a 2-

cocycle (which can be also shown directly).

Remark. Assume that unitaries v�h; y� are changed to new unitaries ~v�h; y� �

c�h; y�v�h; y� (see the remark after Theorem 6). Since the corresponding ~xy is also

assumed to be identity, c��; y� is a character on H (and c��; 1� � 1 after v�h; 1� �

~v�h; 1� � 1 is assumed). From the de®nition, we easily observe that ŵy 0
;y will be changed

to

ŵy 0
;y�h� �

c�h��y
0y�ÿ1�

; y 0y�

c�h�y
ÿ1�

; y�c�h��y
0y�ÿ1�

; y 0�
:

Thus, the group structure obtained in Lemma 11 and that determined by the above new

cocycle are isomorphic via �w; y� ! �wc���y
ÿ1�

; y�; y�.

Definition. We collect all alternating products y � bk1ah1bk2 � � � bkn of arbitrary

(odd) length such that (i) y normalizes aH in Out�L�, and (ii) xy is a coboundary on H.

(By adjusting v��; y�'s, we do assume xy � 1.) These y's form a group (see Appendix B).

Recall that we de®ned y@ y 0 by �aHyaH � � �aHy
0aH � for general y; y 0 (the de®nition

before Proposition 3). However, thanks to the normalizing condition (i), in the present

setting we have y@ y 0 if and only if �yaH � � �y 0aH � (``coset'' condition). The quotient is

a group in the obvious way (the product is well-de®ned by the normalizing property

again), and this group will be denoted by G0. (We point out here that when y@ y 0 xy is

a coboundary if and only if so is xy 0 as will be seen shortly.)

When y1 @ y, then y1 � yah1 in Out�L� for some h1 A H. Notice �ah� �

�y1ahy1 y
ÿ1
1 � � �yah1hy1hÿ1

1
yÿ1� so that hy � h1h

y1hÿ1
1 , or equivalently,

hy1 � hÿ1
1 hyh1 and �h1hh

ÿ1
1 ��y

ÿ1� � h�y
ÿ1
1 � �i:e:; h

�yÿ1�
1 h�y

ÿ1� � h�y
ÿ1
1 �h

�yÿ1�
1 �:

In particular, for a character w A Hom�H;T�, w�hy� and w�h�y
ÿ1�� depend only on the

class of y. (For example, w�hy1� � w�h1�w�h
y�w�h1� � w�hy�.) In this way, the quotient

group G0 acts on Hom�H;T�.
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Let us more precisely assume y1 � Ad uyyah1 . We compute

ah � Ad v�h; y1�y1ahy1y
ÿ1
1 � Ad�v�h; y1�uy�yah1hy1hÿ1

1
yÿ1Ad u�

y

� Ad�v�h; y1�uy�yahyy
ÿ1Ad u�

y � Ad�v�h; y1�uyv�h; y�
��ahAd u�

y

� Ad�v�h; y1�uyv�h; y�
�
ah�u

�
y ��ah:

This means

v�h; y1� � n�h; y1; y�ah�uy�v�h; y�u
�
y�12�

with a scalar n�h; y1; y� A T. (Note that even if we change uy to cuy �c A T� the above

n�h; y1; y� is not e¨ected.) From the second expression of Lemma 5 (for v��; y1�) we see

n�h1h2; y1; y�ah1h2�uy�v�h1h2; y�u
�
y � v�h1h2; y1�

� xy1�h1; h2�ah1�v�h2; y1��v�h1; y1�

� xy1�h1; h2�n�h2; y1; y�n�h1; y1; y�

� ah1�ah2�uy�v�h2; y�u
�
y � � ah1�uy�v�h1; y�u

�
y :

By canceling uy; ah1h2�uy� from outside and ah1�uy� inside and once again using the

cocycle equation for v��; y�, we conclude

xy�h1; h2� � xy1�h1; h2� �
n�h1; y1; y�n�h2; y1; y�

n�h1h2; y1; y�
:

Firstly, the property that xy is a coboundary depends on just the class of y as was

pointed out above. Secondly, when xy1 � xy � 1 is assumed (as was done), then h A H

! n�h; y1; y� A T is a character.

When y1; y are not equivalent, then Pw1;y1
0Pw;y in Out�Lca H� thanks to

Lemma 1. We generally cannot choose representatives for the quotient group G0 in such

a way that they form a group. Therefore, the following criterion is necessary:

Lemma 12. Assume y1; y are equivalent, and y1 � Ad uyyah1 as above. Then,

Pw1;y1 � Pw;y in Out�Lca H� if and only if w1 � w� n�� ; y1; y�.

Proof. It is elementary to see

P
ÿ1
w;y�l� � yÿ1�l� and P

ÿ1
w;y�l�h�� � w�h�yÿ1�v�h; y��l�hy�:

Therefore, the composition P � Pw1;y1
�Pÿ1

w;y satis®es
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P�l� � y1y
ÿ1�l� � Ad uyyah1y

ÿ1�l� � Ad�uyv�h
�yÿ1�
1 ; y���a

h
�yÿ1�

1

�l�;

and hence

Ad�v�h
�yÿ1�
1 ; y�u�

y � �P �Ad l�h
�yÿ1�
1 ���l� � l:

Since �Lca H�VL
0 � C1, it is easy to see that the above composition is inner if and

only if it is the identity, or equivalently,

Ad�v�h
�yÿ1�
1 ; y�u�

y � �Pw1;y1
� Ad l�h

�yÿ1�
1 � �Pw;y:

The left side applied to l�h� is

w1�h
�yÿ1

1 ��v�h
�yÿ1�
1 ; y�u�

yv�h
�yÿ1

1 �
; y1�

�
l�h�y

ÿ1
1 ��uyv�h

�yÿ1�
1 ; y��

while the right side applied to l�h� is

w�h�y
ÿ1��a

h
�yÿ1�

1

�v�h�y
ÿ1�

; y��l�hy
ÿ1

��

� w�h�y
ÿ1��a

h
�yÿ1�

1

�v�h�y
ÿ1�

; y���l��h1hh
ÿ1
1 �y

ÿ1

�

� w�h�y
ÿ1��a

h
�yÿ1�

1

�v�h�y
ÿ1�

; y���l�h�y
ÿ1
1 ��

(because of �h1hh
ÿ1
1 ��y

ÿ1� � h
�yÿ1

1 �). Therefore, P is inner if and only if

w1�h
�yÿ1

1 ��v�h
�yÿ1�
1 ; y�u�

yv�h
�yÿ1

1 �
; y1�

�
a
h
�yÿ1
1

��uyv�h
�yÿ1�
1 ; y���

� w�h�y
ÿ1��a

h
�yÿ1�

1

�v�h�y
ÿ1�

; y���

for each h A H. (Note that we hit l�h�y
ÿ1
1 ��� from the right.) By using (12) (to eliminate

v��; y1�) and canceling uy; a
h
�yÿ1
1

��uy�, we see that this is the same as

w1�h
�yÿ1

1 ��n�h�y
ÿ1
1 �; y1; y�v�h

�yÿ1�
1 ; y�v�h�y

ÿ1
1 �

; y��a
h
�yÿ1
1

��v�h
�yÿ1�
1 ; y���

� w�h�y
ÿ1��a

h
�yÿ1�

1

�v�h�y
ÿ1�

; y���:

By the cocycle property (Lemma 5) the product of the last two unitaries in the above

left side is v�h�y
ÿ1
1 �

h
�yÿ1�
1 ; y�� while v�h

�yÿ1�
1 ; y� (the ®rst unitary in the left side) multiplied

by a
h
�yÿ1�

1

�v�h�y
ÿ1�

; y�� (the unitary in the right side) from the left is v�h
�yÿ1�
1 h

�yÿ1�
; y�.

Since h
�yÿ1

1 �
h
�yÿ1�
1 � h

�yÿ1�
1 h

�yÿ1�, the above equality is equivalent to w1�h
�yÿ1

1 �� � w�h�y
ÿ1�� �
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n�h�y
ÿ1
1 �; y1; y�. Since h�y

ÿ1� and h�y
ÿ1
1 � give rise to identical characters as remarked before,

we are done. r

Corollary 13. (i) If y 0
1 @ y 0 and y1 @ y (so that y 0

1y1 @ y 0y), then we have

ŵy 0
1;y1

� ŵy 0;y �
n��; y 0

1y1; y
0y�

n��; y 0
1; y

0�n��y
0
; y1; y�

:

(ii) When y2 @ y1 @ y, we have

n��; y2; y1�n��; y1; y� � n��; y2; y�:

Proof. By Lemma 11 and the above lemma, we compute (in Out�Lca H�)

Pw 0w��y
0
�ŵy 0 ; y;y

0y � Pw 0;y 0Pw;y � Pw 0n��;y 0
1;y

0�;y 0
1
Pwn��;y1;y�;y1

� Pw 0w��y
0
�n��;y 0

1;y
0�n��y

0
;y1;y�ŵy 0

1
; y1

;y 0
1y1

� P
w 0w��y

0
�n��;y 0

1;y
0�n��y

0
;y1;y�n��;y

0
1y1;y

0y�ŵy 0
1
; y1

;y 0y
:

The map ~w A Hom�H;T� ! �P~w;y 0y� A Out�Lca H� being injective from the construc-

tion, we obtain (i). Obviously, (ii) can be shown similarly from Lemma 12. r

Let us ®x representatives fyigi�1;2;...;l for the quotient group G0 (with y1 � 1) (the

de®nition after Lemma 11).

Definition. When �yiyj� � �yk�, we set

ŵ�yi �; �yj � � ŵyi ;yj � n��; yk; yiyj�:

When we have di¨erent representatives fy 0
ig, from the above corollary we easily have

ŵy 0
i ;y

0
j
� n��; y 0

k; y
0
iy

0
j � � ŵyi ;yj � n��; yk; yiyj� � n��; y 0

k; yk�=n��; y
0
i ; yi�n��

yi ; y 0
j ; yj�. Therefore,

the class �ŵ� A H 2�G0;Hom�H;T�� is well-de®ned independent of the choice of repre-

sentatives for G0.

Lemma 1, Lemma 2, and the discussions so far in the present section imply

Theorem 14. The group G of all one-dimensional bimodules in tn�r0r0�
n (with

L
� b;K� � r0�Lca H�, r0 A Sect�Lca H�� is the extension

1 ! Hom�H;T� ! G ! G0 ! 1

corresponding to the cohomology class � ŵ� A H 2�G0;Hom�H;T��.
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Notice that when y � bk (of length 1, bkaHbkÿ1 � aH in Out�L� and xbk is a

coboundary) the corresponding automorphism Pw;bk is in r0r0, i.e., in the Galois group

(see [29] and also [40]) for M � Lca HKN � L
�b;K�. Also notice when H is abelian

fPw;1gw A Ĥ is nothing but the dual action of �a;H�.

6. Non-strongly outer automorphisms for a subfactor.

We will determine the group G � G�Lca H;L
�b;K�� of ``adjustable'' one-

dimensional bimodules in tn�r0r0�
n (recall the discussion in 2.3). Let Pw;y be the

automorphism in �r0r0�
n constructed in the previous section, and we assume that y is an

alternating product of length 2nÿ 1. Then, this Pw;y belongs to G if and only if

Pw;yr0 � r0F �as an Lca H-Lca H sector��13�

for some automorphism F appearing in �r0r0�
n (thanks to the general criterion in 2.3).

Therefore, we need to investigate what this condition means in the present setting.

Let %1 A Sect�Lca H;L�, %2 A Sect�Lcb K ;L�, and ri A Sect�L� be as in §3.

As in §3 one can easily show

r0r0 � %
ÿ1
1 %2 � iL,!Lcb K

� r1r1 � iL,!Lcb K
� %ÿ1

2 %1;

�r0r0�
2 � %

ÿ1
1 %2 � iL,!Lcb K

� r1r1r2r2r1r1 � iL,!Lcb K
� %ÿ1

2 %1;

and so on.

In fact, at ®rst we have

r0r0 � %
ÿ1
1 r2r1r1r2%1:

We notice

%
ÿ1
1 r2 � %

ÿ1
1 %2%

ÿ1
2 r2 � %

ÿ1
1 %2 � iL,!Lcb K

;

and the last product r2%1 A Sect�Lca H;L� in r0r0 is the conjugate of %
ÿ1
1 r2.

Therefore, we should have F � %
ÿ1
1 %2 �F

0 � %ÿ1
2 %1 with an automorphism F

0 appearing

in the following product

iL,!Lcb K
� r1r1r2r2r1r1 � � � r1r1 � iL,!Lcb K

:

This means that to express F
0 the roles of �H; a� and �K ; b� should be exchanged.

Thus, we should have an alternating product c � ah 0
1
bk 0

1
ah 0

2
� � � ah 0

n
(of length 2nÿ 1 but in

the di¨erent order) such that (i) c normalizes bK in Out�L�, and (ii) the cocycle x 0
c

(de®ned similarly to xy) on K is a coboundary. (bk � cbkcc
ÿ1 in Out�L�, bk �
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Ad�v 0�k;c��cbkcc
ÿ1, and v 0�k1k2;c� � x 0

c�k1; k2�v
0�k1;c�cbkc

1

cÿ1�v 0�k2;c�� as before.)

For each p A Hom�K;T�, we have the automorphism F
0 � F

0
p;c of Lcb K as in §5 (but

the roles of �a;H� and �b;K� are switched) and F � %
ÿ1
1 %2 �F

0
p;c � %ÿ1

2 %1.

The left side of (13) is

Pw;y%
ÿ1
1 r1r2%1 � Pw;y � iL,!Lca H � r2%1:

It is also elementary to see that the right side of (13) is equal to

%
ÿ1
1 r1r2%1 � %

ÿ1
1 %2 �F

0
p;c � %ÿ1

2 %1 � iL,!Lca H � iL,!Lcb K �F 0
p;c � %ÿ1

2 %1

by the usual calculation. Noticing that the both sides of (13) are irreducible Lca H-

Lca H sectors, we see that (13) is equivalent to

1 � dimHom�Pw;y � iL,!Lca H � r2%1; iL,!Lca H � iL,!Lcb K �F 0
p;c � %ÿ1

2 %1�

� dimHom�Pw;y � iL,!Lca H � r2; iL,!Lca H � iL,!Lcb K �F 0
p;c � %ÿ1

2 �

since the conjugate of the last %1 A Sect�Lca H;L� is %
ÿ1
1 A Sect�L;Lca H� and

%1%
ÿ1
1 � id A Sect�L�. Then, since %

ÿ1
2 A Sect�L;Lcb K� composed with r2 A Sect�L�

is iL,!Lcb K A Sect�L;Lcb K�, the above dimension is equal to

dimHom�Pw;y � iL,!Lca H ; iL,!Lca H � iL,!Lcb K �F 0
p;c � iL,!Lcb K�

� dimHom�iL,!Lca H �Pw;y � iL,!Lca H ; iL,!Lcb K �F 0
p;c � iL,!Lcb K�:

Notice that Pw;y A Aut�Lca H� leaves L invariant and its restriction to L is y from

the construction. Therefore, we see

iL,!Lca H �Pw;y � iL,!Lca H � iL,!Lca H � iL,!Lca H � y �
X

h AH

l�ahy�:

Exactly in the same way we also have

iL,!Lcb K �F 0
p;c � iL,!Lcb K �

X

k AK

l�bkc�:

Thus, the condition (13) is equivalent to ahy � bkc in Out�L� for some h A H; k A K .

Summarizing the arguments so far, we have proved

Lemma 15. We can adjust Pw;y to an automorphism in Aut�Lca H;L
�b;K�� after

inner perturbation if and only if one can ®nd k A K and h A H such that (i) bkahy �

ah 0
1
bk 0

1
ah 0

2
� � � ah 0

n
�� c� in Out�L� for some h 0

1; k
0
1; h

0
2; . . . ; h

0
n, (ii) c � bkahy (or equiv-

Composition of subfactors 321



alently, ahy� normalizes bK in Out�L�, and (iii) the 2-cocycle x 0
c on K attached to c is a

coboundary.

Let us point out here that the above condition (i) is actually irrelevant. Assume

that the condition (ii) is satis®ed with y � bk1ah1bk2 � � � bkn . Then, since y normalizes aH

in Out�L�, we observe ahy � yyÿ1ahy � ya~h (in Out�L�) for some ~h A H. Therefore, by

choosing k � kÿ1
1 A K , we see that

bkahy � ah1bk2 � � � bkna~h �in Out�L��

and it is indeed of the form described in (i).

We also remark that the triviality of the cocycle (on K ) attached to ahy and that

attached to c � bkahy are equivalent. To prove this, (by switching the roles of �b;K�

and �a;H�) it su½ces to show the following: When y normalizes aH in Out�L�, xy and

x�ah 0y� (both 2-cocycles on H ) are equivalent, i.e., the same up to a coboundary.

However, we have already known this fact. (See the relation between xy and xy1 right

before Lemma 12.)

The above discussions together with Lemma 15 show

Theorem 16. Let Pw;y be the automorphism of Lca H de®ned in the previous

section. Then, �Pw;y� belongs to G�Lca H;L
�b;K�� if and only if one can ®nd h A H such

that (i) j � ahy normalizes bK in Out�L�, and (ii) the 2-cocycle x 0
j on K is a coboundary.

Note that the above j also normalizes aH in Out�L� and y@ j. Thus, the above

requirement can be also rephrased in the following symmetric fashion: one can ®nd j

equivalent to y satisfying (i) j normalizes bK in Out�L� (and normalizes aH in Out�L�

from the beginning) and (ii) the attached cocycle x 0
j on K is a coboundary (and so is xj

on H from the beginning since y@ j and xy A B2�H;T�).

We shall come back to a certain consequence of this symmetric characterization

later. But before this, to see the meaning of the conditions in the above theorem, we

at ®rst go back to the situation in the remark after Lemma 4. In this case, the

automorphism P � Pw;y is

P

�

X

h AH

xhl�h�
�

�
X

h AH

w�ghgÿ1�a0g�xh�l�ghg
ÿ1�

with g � k1h1k2 � � � kn. Therefore, when x A L
K , we have P�x� � a0g�x�. The condition

(i) in the theorem ((ii) is automatic) means that g 0 � hg normalizes K for some h A H.

Then, with the inner perturbation Ad l�h�, we get Ad l�h� �P�x� � l�h�a0g�x�l�h�
� �

a0g 0�x�. For each k A K , we have a0k�a
0
g 0�x�� � a0kg 0�x� � a0

g 0�g 0ÿ1kg 0�
�x� � a0g 0�x� because of
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g 0ÿ1kg 0
A K and x A L

K , and hence Ad l�h� �P belongs to Aut�LcH;L
K�. (Note

that Ad l�h� is not necessary if j instead of y is used from the beginning.)

Let us next consider the meaning in the general setting (and in fact the following

gives us an alternative proof for the one direction of Theorem 16). Since j � ahy

normalizes bK in Out�L�, we have bk � Ad�v 0�k; j��jbk jjÿ1. By the coboundary

condition, (after changing phases of v 0��; ��'s) we may and do assume the cocycle

property

v 0�k1k2; j� � v 0�k1; j�jbk j

1
jÿ1�v 0�k2; j���14�

(Lemma 5 with the roles of �a;H� and �b;K� switched). Since k ! jbk jjÿ1 �

Ad�v 0�k; j���bk is an outer action, by the result of Connes-Takesaki ([5 ]) there exists

a unitary w in L such that v 0�k; j� � wjbk jjÿ1�w��, and hence we have

bk � Ad�wjbk jjÿ1�w���jbk jjÿ1 � Adw � jbk jjÿ1 �Adw�
:

Therefore, the perturbed automorphism Ad�wl�h�� �P sends l A L to

Ad�wl�h��y�l� � Adw � ah � y�l� � wj�l�w�
:

Thus, when l belongs to L
�b;K� furthermore, with the above expression of bk in mind

we compute

bk�wj�l�w
�� � Adw � jbkj�l� � wj�l�w� �for each k A K�;

which shows that L�b;K� is left invariant under Ad�wl�h�� �P (although the unitary w

above is not so explicit).

Generally the dual principal graph of Lca HKL
�b;K� and that of Lcb KK

L
�a;H� (i.e., the principal graph of the former inclusion) are completely di¨erent. In

fact, even when K � feg (so that the depth of the inclusion is 2), we have quite di¨erent

groups G�Lca H;L� � Hom�H;T� and G�L;L
�a;H�� � H. Hence, it appears that

G�Lca H;L
�b;K�� and G�Lcb K ;L

�a;H�� could be totally unrelated. However, we

will point out that these two groups are somewhat related.

We introduce the following three groups in Out�L�:

(i) G0 consists of all elements �j� generated by �aH � and �bK � such that �j� nor-

malizes both of �aH � and �bK �, xj A B2�H;T�, and x 0
j A B2�K ;T�.

(ii) H0 consists of all �ah�'s such that �ah� normalizes �bK � and x 0
ah
A B2�K ;T�.

(iii) K0 consists of all �bk�'s such that �bk� normalizes �aH � and xbk A B2�H;T�.

A few remarks are in order. Firstly, the properties xj A B2�H;T� and x 0
j A B2�K ;T�

depend on just the class �j� of j (as was seen in the previous section). Therefore, the
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above de®nition of G0 is legitimate. Secondly, since a; b are actions, we can take

v�h 0; ah� � v 0�k 0; bk� � 1 so that xah � 1 and x 0
bk

� 1 are automatic. We also remark that

H0 and K0 are normal in G0.

Let Gal�Lca H;L�b;K�� be the Galois group. It is obviously a normal subgroup

in G�Lca H;L�b;K�� and was described in the paragraph after Theorem 14. On the

other hand, it is an easy exercise to see that H0K0 � K0H0 is a normal subgroup in G0

(thanks to Appendix B again). From Theorem 16 (actually the paragraph after the

theorem) we get the next result, and details are left to the reader.

Theorem 17. The quotient group G�Lca H;L�b;K��=Gal�Lca H;L�b;K�� is

isomorphic to G0=H0K0.

The roles of H0 and K0 are completely symmetric here. Hence, the quotient group

G�Lcb K ;L�a;H��=Gal�Lcb K ;L�a;H�� is also isomorphic to G0=K0H0 �� G0=H0K0�

so that G�Lca H;L�b;K��=Gal�Lca H;L�b;K�� and G�Lcb K ;L�a;H��=

Gal�Lcb K ;L�a;H�� are isomorphic. A completely general result will be obtained in

Appendix C.

7. Examples.

In this section we will compute the relative w group for inclusions of index 4 with

the Coxeter-Dynkin graphs D
�1�
2n and also present typical examples of non-adjustable

automorphisms appearing in tk�r0r0�
k (see 2.3).

7.1. Let a; b be period 2 automorphisms of L, and we assume that the outer period

of ab is 2n. Therefore, �ab�2n � Ad u with ab�u� � ou and o, the Connes obstruction,

satis®es o2n � 1. Let H � K � Z2 � f0; 1g and a1 � a and b1 � b (details of this case is

studied in [25 ]). It is straight-forward to see G0 � Z2 consisting of id and

y � �ba�nÿ1
b � b1a1b1 � � � b1 �� yÿ1�:

Note yayÿ1 � �ba�n�ba�nÿ1
b � �ba�2nÿ1

b. Since �ba�2n � b �Ad u � b � Ad�b�u��, we

have �ba�2nÿ1
b � Ad�b�u�� � a and yayÿ1 � Ad�b�u�� � a. (Of course j � ay also nor-

malizes aH in Out�L�, but jÿ1
0 j and with this choice we will have to worry about the

character n��; id; �j�2� in Lemma 12.) This means 1y � 1 and we can take v�1; y� �

b�u�� (and v�0; y� � 1). From Lemma 5 we have

1 � v�0; y� � xy�1; 1�a�b�u
���b�u�� � oxy�1; 1�u

�b�u��

so that xy�1; 1� � ob�u�u. We know that b�u�u is a scalar (which can be also seen
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directly from

Ad�b�u�u� � b �Ad u � bÿ1 �Ad u � b � �ab�n � bÿ1 � �ab�n � �ba�n � �ab�n � id�:

We may and do assume b�u�u � o by changing u to a suitable e ix0u so that we have

b�u� � ou� and xy � 1. We then compute

ŵy;y�1� � y�v�1; y���v�1; y�� � �ba�nÿ1
b�b�u�� � b�u� � �ba�nÿ1�u� � b�u�

� �o�nÿ1
ub�u� �since ba�u� � ou�

� �o�n:

The group G of all one-dimensional bimodules in this case is the extension

1 ! Hom�Z2;T�GZ2 ! G ! G0GZ2 ! 1

corresponding to the above ŵ (Theorem 14). Note that the case on � ÿ1 corresponds

to the non-trivial cocycle ŵ A H 2�G0;Hom�H;T�� � H 2�Z2;Z2� � Z2. Therefore, we

conclude

G �
Z2 � Z2 when on � 1,

Z4 when on � ÿ1.

�

This result shows that the group structure (fusion rule) depends upon the Connes

obstruction although the shapes of the graphs do not. Note that this happens because

H 2�Z2;Z2� � Z2 and H 2�Z2;T� � 0 (see the paragraph after Theorem 7).

In the rest we assume that L is the AFD II1 factor and determine the relative w

group w�Lca H;L
�b;K�� explained in 2.3. At ®rst notice that j � ay � �ab�n possesses

the normalization property (for K )

jbjÿ1 � �ab�nb�ba�n � �ab�2nÿ1
a � Ad u � b �� b �in Out�L���:

It follows from Theorem 16 that all of the four automorphisms can be assumed to be in

Aut�Lca H;L
�b;K�� after suitable inner perturbation, which can be of course also seen

from the (well-known) principal and dual principal graphs.

To be more explicit, we now repeat the discussions right after Theorem 16. The

above computation means v 0�1; j� � u� (and 1j � 1 for 1 A K � Z2), and the attached

cocycle x 0
j on K is computed by

1 � x 0
j�1; 1�u

�jb1jjÿ1�u�� � x 0
j�1; 1�u

�ub�u��u� � x 0
j�1; 1�b�u

��u� � x 0
j�1; 1�o:

Thus, by changing u to e ix0u�e2ix0 � o�, the new implementing unitary v 0�1; j� � eÿix0u�
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(giving rise to x 0
j � 1) satis®es the cocycle equation (14) (for the automorphism

jb1jjÿ1 � Ad u � b). Therefore, as remarked before we can ®nd a unitary w A L such

that

e
ÿix0u

� � wub�w��u�
; i:e:; b�w� � e

ix0wu:�15�

We take P � Pw;y and set P 0 � Ad�wl�1�� �P, where l�1� means the canonical self-

adjoint unitary corresponding to a in the crossed product Lca H � LcaZ2. Then,

we have P 0
A Aut�Lca H;L

�b;K�� as was seen before. We also note

P
0�l� � wl�1�y�l�l�1��w� � wa � y�l�w� � wj�l�w� �l A L�

P
0�l�1�� � wl�1��w�1�v�1; y��l�1��l�1��w� � wl�1��w�1�b�u�l�1��l�1��w�

� w�1�wab�u�l�1�w� � ow�1� � wul�1�w�

because of a � y � j; v�1; y�� � b�u� and ab�u� � ou.

Since the inclusion LKL
�b;K� is of index 2 and the Goldman theorem ([11])

can be used, we can ®nd a unitary v A L satisfying vL
�b;K�

v� � L
�b;K� (hence

Ad v A Aut�Lca H;L
�b;K��) and b�v� � ÿv. Notice P 0 �Ad v � Ad�P 0�v�� �P 0 and

the unitary P
0�v� (in L) normalizes L

� b;K� because of P 0�L�b;K�� � L
�b;K�. We

now claim b�P 0�v�� � ÿP 0�v�. At ®rst we have P 0�v� � wj�v�w� as was seen above.

Then, by (15) we compute

b�wj�v�w�� � b�w��b � j�v��b�w�� � wu�b � j�v��u�
w

� � wu�b�ab�n�v��u�
w

�
:

Since the inside of Adw in the last expression can be computed as

u�b�ab�n�v��u� � �ab�2n � b�ab�n�v� � �ab�n�b�v�� � ÿ�ab�n�v� � ÿj�v�;

we have b�P 0�v�� � ÿP 0�v� as desired.

The Weyl group of LKL
�b;K� is Z2 (see [51]), and from b�v� � ÿv and

b�P 0�v�� � ÿP 0�v� we conclude that P 0�v� and v are identical modulo U�L�b;K��,

the unitary group. Therefore, we see that Ad v and P
0 indeed commute up to

Int�Lca H;L
� b;K�� (as was expected since the relative w group is always commuta-

tive). On the other hand, Pw;1 (the dual action for Lca HKL) obviously commutes

with Ad v.

In the present case, the principal and dual principal graphs are quite simple (both

the Coxeter-Dynkin graph D
�1�
2n ) and G is abelian. Hence, it is plain to observe that

none of the above automorphisms admits a non-trivial Loi invariant (see [13]).

Therefore, all of our automorphisms fall into Int�Lca H;L
�b;K��. Also, notice that
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v A �LJ�Lca H is the only non-trivial normalizer for L
�b;K� (up to U�L�b;K��) as

long as nV 2 (otherwise the depth is 2� 1 � 2).

Summing up the discussions so far, we conclude

w�LcaZ2;L
�b;Z2�� �

Z2 � Z2 � Z2 when on � 1,

Z4 � Z2 when on � ÿ1

�

(when the outer period is 2n with nV 2). Note that when n � 1 (i.e., �ab�2 is inner) we

are in the crossed product situation by the abelian group G obtained before. Therefore,

the relative w group is G � G. On the other hand, when the outer period of ab is 2n� 1

(or �y), just the Galois group (� Z2) appears in tk�r0r0�
k so that the relative w group

is simply Z2 � Z2.

7.2. Let A4 � �Z2 � Z2�cZ3 be the alternating group, where the generator e A

Z3 � K � fe; e; e2g permutes the three non-trivial elements �1; 0�; �0; 1�; �1; 1� A Z2 � Z2.

We ®x an outer action a0 of A4 on L. Let H � f�0; 0�; �1; 0�gGZ2 and a; b be just

the restrictions of a0 to H and K respectively (so that the index is 6). In this case it

is easy to see that G0 GZ2 and we can take representatives �0; 0� and �0; 1� (more

precisely, id and a0�0;1�). Since Hom�H;T�GZ2 and no cocycle is around, we have G �

Z2 � Z2 (Theorem 14). Notice that �0; 1� � e�1; 0�eÿ1 A KHK normalizes H since

Z2 � Z2 is abelian (and �0; 1�; �1; 1� � �1; 0��0; 1� are equivalent). Therefore, the two

automorphisms Pw;a0
�0; 1�

�w A Hom�H;T�GZ2� appear in �r0r0�
2 (the depth of the in-

clusion is actually 4 since KHK exhausts the total group A4). These automorphisms

cannot be adjusted to ones in Aut�M;N�. In fact, none of �0; 1� and �1; 1� in Z2 � Z2

�JA4� normalizes K (Theorem 16).

Notice that the same reasoning as above works (for L
K
JLcH) as long as a

group admits two subgroups ~H and K with for example the following properties: (i)

~H VK � feg, (ii) for each a0 e A ~H we have aKaÿ1 0K, and (iii) we can choose a

subgroup H in ~H in such a way that some element in ~HnH is generated by H;K and

normalizes H.

Appendix A. Cauchy-Schwarz inequality.

Let A;B; . . . be bimodules (or sectors) of ®nite dimension throughout.

Lemma 18. We have

�dimHom�A;B��2 U dimHom�A;A� � dimHom�B;B�:

Furthermore, the equality holds if and only if one of A;B is a multiple of the other.
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Proof. Let

A � n1X1 l n2X2 l � � � l nkXk l nk�1Yk�1 l � � � l nl1Yl1
;

B � m1X1 lm2X2 l � � � lmkXk lmk�1Zk�1 l � � � lml2
Zl2

be the irreducible decomposition, and here we can obviously assume that all X 's, Y's,

and Z's are mutually distinct. We compute

�dimHom�A;B��2 �
X

k

i�1

nimi

 !2

U

X

k

i�1

n2i

 !

�
X

k

i�1

m2
i

 !

U

X

l1

i�1

n2i

 !

�
X

l2

i�1

m2
i

 !

� dimHom�A;A� � dimHom�B;B�

thanks to the Cauchy-Schwarz inequality.

On the other hand, if we have the equality, then at ®rst we have l1 � l2 � k from

the second inequality, that is, Y's and Z's are absent. The rest follows from the well-

known equality condition for the Cauchy-Schwarz inequality. r

Corollary 19. Assume that bimodules A;B have the same dimension. Then,

A � B if and only if

�dimHom�A;B��2 � dimHom�A;A� � dimHom�B;B�:

Appendix B. Identity for cocycles.

We assume that y 0
; y normalize aH in Out�L� (as in §5). Recall

ŵy 0
;y�h1h2� � v��h1h2�

��y 0y�ÿ1�
; y 0y�y 0�v��h1h2�

�yÿ1�
; y���v��h1h2�

��y 0y�ÿ1�
; y 0��:

By making use of the second expression in Lemma 5 for the ®rst two v's here, we see

that the above product of the three v's is equal to

xy 0y�h
��y 0y�ÿ1�
1 ; h

��y 0y�ÿ1�
2 �a

h
��y 0y�ÿ1�

1

�v�h
��y 0y�ÿ1�
2 ; y 0y��v�h

��y 0y�ÿ1�
1 ; y 0y�

� y 0�xy�h
�yÿ1�
1 ; h

�yÿ1�
2 �v�h

�yÿ1�
1 ; y��a

h
�yÿ1�

1

�v�h
�yÿ1�
2 ; y����

� v��h1h2�
��y 0y�ÿ1�

; y 0��:

By regrouping terms, we thus have
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ŵy 0
;y�h1h2� � xy 0y�h

��y 0y�ÿ1�
1 ; h

��y 0y�ÿ1�
2 �xy�h

�yÿ1�
1 ; h

�yÿ1�
2 �a

h
��y 0y�ÿ1�

1

�v�h
��y 0y�ÿ1�
2 ; y 0y��

� v�h
��y 0y�ÿ1�
1 ; y 0y�y 0�v�h

�yÿ1�
1 ; y���

� y 0a
h
�yÿ1�

1

�v�h
�yÿ1�
2 ; y���v��h1h2�

��y 0y�ÿ1�
; y 0��:

The product of the middle two v's here is ŵy 0
;y�h1�v�h

��y 0y�ÿ1�
1 ; y 0�, and hence we have

ŵy 0
;y�h1h2� � xy 0y�h

��y 0y�ÿ1�
1 ; h

��y 0y�ÿ1�
2 �xy�h

�yÿ1�
1 ; h

�yÿ1�
2 �ŵy 0

;y�h1�

� a
h
��y 0y�ÿ1�

1

�v�h
��y 0y�ÿ1�
2 ; y 0y��v�h

��y 0y�ÿ1�
1 ; y 0�

� y 0a
h
�yÿ1�

1

�v�h
�yÿ1�
2 ; y���v��h1h2�

��y 0y�ÿ1�
; y 0��:

Notice that

Ad�v�h
��y 0y�ÿ1�
1 ; y 0��y 0a

h
�yÿ1�

1

y 0ÿ1 � a
h
��y 0y�ÿ1�

1

because of �h
��y 0y�ÿ1�
1 �y

0

� h
�yÿ1�
1 , and hence

v�h
��y 0y�ÿ1�
1 ; y 0�y 0a

h
�yÿ1�

1

�v�h
�yÿ1�
2 ; y��� � a

h
��y 0y�ÿ1�

1

�y 0�v�h
�yÿ1�
2 ; y����v�h

��y 0y�ÿ1�
1 ; y 0�:

We substitute this expression to the right side consisting of four v's (and three scalars).

By combining two a
h
��y 0y�ÿ1�

1

factors (and by ignoring the three scalars at the front for a

moment) the product of four v's can be rewritten as

a
h
��y 0y�ÿ1�

1

�v�h
��y 0y�ÿ1�
2 ; y 0y�y 0�v�h

�yÿ1�
2 ; y���� � v�h

��y 0y�ÿ1�
1 ; y 0�v��h1h2�

��y 0y�ÿ1�
; y 0��:

The inside of a
h
��y 0y�ÿ1�

1

here is ŵy 0
;y�h2�v�h

��y 0y�ÿ1�
2 ; y 0� so that by lemma 5 we have shown

ŵy 0
;y�h1h2� � xy 0y�h

��y 0y�ÿ1�
1 ; h

��y 0y�ÿ1�
2 �xy�h

�yÿ1�
1 ; h

�yÿ1�
2 �ŵy 0

;y�h1��

ŵy 0
;y�h2�ah��y

0y�ÿ1�

1

�v�h
��y 0y�ÿ1�
2 ; y 0��v�h

��y 0y�ÿ1�
1 ; y 0�v��h1h2�

��y 0y�ÿ1�
; y 0��

(by recalling the three relevant scalars). Notice that the product of the three v's in the

right side is xy 0�h
��y 0y�ÿ1�
1 ; h

��y 0y�ÿ1�
2 �, and hence we have shown
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Lemma 20. When y 0; y normalize aH in Out�L�, we have

ŵy 0;y�h1�ŵy 0;y�h2�

ŵy 0;y�h1h2�
�

xy 0�h
��y 0y�ÿ1�
1 ; h

��y 0y�ÿ1�
2 �xy�h

�yÿ1�
1 ; h

�yÿ1�
2 �

xy 0y�h
��y 0y�ÿ1�
1 ; h

��y 0y�ÿ1�
2 �

:

Compare this with relations in [18], [26 ]. From this identity, the following corollary

is immediate:

Corollary 21. Assume in addition that xy 0 , xy are coboundaries (on H ). (i) Then,

xy 0y is also a coboundary. (ii) When v��; ��'s are chosen in such a way that xy 0 � xy �

xy 0y � 1, h A H ! ŵy 0;y�h� A T is a character.

Appendix C. The group G�M;N�=Gal�M;N�.

The two quotient groups G�M;N�=Gal�M;N� and G�M1;M�=Gal�M1;M� are

isomorphic for the inclusion M � Lca HKN � L
�b;K� dealt in the present article

(thanks to Theorem 17). Let us examine another typical inclusion. Namely, let a be an

outer action on a factor L of a ®nite group G, and we set

M � Lca GKN � Lca H

with a subgroup H. Then, (as was shown in [40]) we have

G�M;N�=Gal�M;N� � Hom�G;T�=Hom0�G;T�;

G�M1;M�=Gal�M1;M� � Hom0�H;T�:

Here, Hom0�G;T� is the set of characters on G vanishing on H while Hom0�H;T� is

the set of all extendable (to G ) characters on H. The surjective homomorphism w A

Hom�G;T� ! wjH A Hom0�H;T� induces the isomorphism between Hom�G;T�=

Hom0�G;T� and Hom0�H;T�, and hence once again the quotient groups G�M;N�=

Gal�M;N� and G�M1;M�=Gal�M1;M� are isomorphic.

In this appendix we show that this is a completely general phenomenon. So let

MKN � r0�M� be an irreducible inclusion of ®nite index with r0 A Sect�M� (after the

tensoring tick in [46 ]), and a A Aut�M� be an automorphism. We can ®nd a unitary

u A M such that Ad u � a A Aut�M;N� if and only if there is an automorphism b A

Aut�M� such that r0b � ar0 (as a sector). Furthermore, we have a � �r0r0�
n if and

only if b � �r0r0�
n (see 2.3).

We start from a � �r0r0�
n (for some n) satisfying r0b � ar0 for some automorphism

b (i.e., a A G�M;N�). Then, b � �r0r0�
n and bÿ1r0 � r0a

ÿ1. The second fact here
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implies that bÿ1 (and hence b) can be assumed bÿ1
A Aut�M; r0�M�� after inner

perturbation. Assume ar0 � r0b � r0b
0 with another automorphism b 0. Then, b 0bÿ1

r0

� r0, and hence after inner perturbation we could assume b 0bÿ1�r0�m�� � r0�m�;m A M,

i.e., b 0bÿ1
A Gal�M; r0�M��. We thus get the well-de®ned map a A G�M;N� ! �b� A

G�M; r0�M��=Gal�M; r0�M�� speci®ed by ar0 � r0b. This map is obviously a ho-

momorphism with the kernel Gal�M;N� (by the same reason). Therefore, G�M;N�=

Gal�M;N� and G�M; r0�M��=Gal�M; r0�M�� are isomorphic. Since MK r0�M� and

M1 KM are conjugate, we have shown

Theorem 22. For an irreducible inclusion MKN of ®nite index, the two quotient

groups G�M;N�=Gal�M;N� and G�M1;M�=Gal�M1;M� are isomorphic.
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