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Abstract. The spectra of the quadratic Hamiltonians on the two-

dimensional Euclidean space are determined completely by using the theory of

the metaplectic representation. In some cases, the corresponding heat kernels

are studied in connection with the well-de®nedness of the Wiener integrations.

A proof of the LeÂvy formula for the stochastic area and a relation between the

real and complex Hermite polynomials are given in our framework.

1. Introduction.

Let P�x; x� be a real homogeneous quadratic polynomial in x A R
2 and x A R

2,

and P�D; x� be the corresponding second order di¨erential operator de®ned by the Weyl

correspondence (cf. [5 ] (2.1)), where D � 2p
�������

ÿ1
pÿ �ÿ1

`. It is known that P�D; x� is

essentially self-adjoint on the space S�R2� of the rapidly decreasing functions on R
2.

We call the corresponding self-adjoint operator a quadratic Hamiltonian and denote it by

the same symbol. The purpose of this paper is to determine the spectrum of quadratic

Hamiltonians by using the theory of the metaplectic representation (cf. [5 ], [6 ]) and

HoÈrmander's classi®cation of quadratic forms [9]. We will also discuss the heat kernels

of the semigroups generated by quadratic Hamiltonians whose principal symbols are jxj2.
The metaplectic representation m is a unitary representation of the double cover

of the symplectic group Sp�n;R� and its di¨erential dm is a Lie algebra isomorphism

between the symplectic Lie algebra sp�n;R� and an algebra consisting of the quadratic

Hamiltonians on R
n. By this representation, symplectically equivalent quadratic

forms correspond to unitary equivalent quadratic Hamiltonians. On the other hand,

HoÈrmander [9] has classi®ed all of the quadratic forms on R
2n into several types of

simple forms. Therefore, by determining the spectra of the quadratic Hamiltonians
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corresponding to these simple forms, we can determine the spectra of all quadratic

Hamiltonians. In this paper we will carry out this plan in the two-dimensional case.

As an example of quadratic Hamiltonians, we will study the following SchroÈdinger

operator with a uniform magnetic ®eld:

H � 1

2

�������

ÿ1
p q

qx1
ÿ bx2

� �2

� 1

2

�������

ÿ1
p q

qx2
� bx1

� �2

� c1x
2
1 � c2x

2
2�1:1�

on L2�R2�, where b; c1; c2 are real constants. When both of c1 and c2 are non-negative,

the operators of this type naturally appear in the study of the semi-classical approxima-

tion for the SchroÈdinger operators (cf. [7], [16 ]). In this case the complete description of

the spectral properties of the operator H has been given in [15] and it is systematically

generalized in [16 ] for the operator of the form

H � 1

2

X

n

j�1

�������

ÿ1
p q

qxj
ÿ �Bx�j

� �2

� 1

2
hx;Kxi�1:2�

on R
n, where B is a real skew-symmetric n� n matrix, K is a real symmetric non-

negative n� n matrix and h� ; �i is the usual inner product in R
n. This operator is

unitary equivalent to a direct sum of the harmonic oscillators and the Laplacians and

the spectral property is fairly simple. However, if we remove the assumption on the

nonnegativity of the operators, the problem is complicated. We will describe this

situation in the two-dimensional case and determine the spectrum of the operator H

completely.

Secondly we will study the heat kernel exp�ÿtH��x; y� of the semigroup exp�ÿtH�
generated by the SchroÈdinger operator H when c1 � 0 and c2 � ÿl

2. By the above

considerations, we know that there exists an element S A Sp�2;R� such that

m�S�Hm�S�ÿ1 � H0;�1:3�

where H0 is a quadratic Hamiltonian of a simpler form. For example, when jlj0
���

2
p

jbj, H0 is a direct sum of the harmonic oscillator and a multiplication operator (see

Section 5 below). Then the calculation related to the heat semigroup for H0 can be

accomplished by the Mehler formula. Moreover the operator m�S�, which is originally

de®ned as an isomorphism on S�R2�, extends to an isomorphism on the space S
0�R2�

of Schwartz tempered distributions (cf. [5 ] Proposition (4.27)). In fact m�S� consists

of simple integral transform (see Theorem 2.2 below). Therefore we can consider an

expression

eÿtH�x; y� � fm�S�eÿtH0m�S�ÿ1
dyg�x�:�1:4�
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In general, this holds only in the sense of distributions. However we can show that

this holds as smooth functions in �t; x; y� A �0; t0� � R
2 � R

2 for some t0 > 0 and that t0

is in®nity if jbj is large enough.

This result on the heat kernel is also interesting from a probabilistic point of view.

In fact the heat kernel of exp�ÿtH� is expressed by means of a Wiener integral (see (5.2)

below) and the range where this Wiener integral is absolutely convergent is smaller.

Therefore we may regard this Wiener integral as an example of convergent Wiener

integrals which are not absolutely convergent. Ikeda, Kusuoka and Manabe [10], [11]

has also pointed it out and they have identi®ed t0 with the conjugate point in their

Lagrangian mechanics (see also [4]). The important points in our method are that our

representation (1.4) consists of simple Gaussian integrations and that it is given in terms

of the corresponding usual Hamiltonian mechanics.

As another application of the equality (1.4), we will give the explicit representation

of the heat kernel of exp�ÿtH� when c1 � c2 � 0. This brings us a proof of the LeÂvy

formula for the stochastic area by using the equivalence of the circular motion and the

one-dimensional harmonic oscillator in R
2. Moreover, by studying the eigenfunctions,

we will show that the complex Hermite polynomials are obtained through an integral

transform from the usual Hermite polynomials.

The organization of this paper is as follows. In Section 2 we will review the theory

of the metaplectic representations following Folland [5 ] and prepare some formulae

which will be used in the subsequent sections. In Section 3 we will determine the spectra

of the quadratic Hamiltonians on R
2. In Section 4 we apply the results in Section 3 to

the SchroÈdinger operator with a uniform magnetic ®eld. In Section 5 we will study the

heat kernel exp�ÿtH��x; y� when c1 � 0 and c2 � ÿl
2. In Section 6 we will give a

proof of the explicit representation of the heat kernel exp�ÿtH��x; y� when c1 � c2 � 0

and will show the correspondence between the usual and the complex Hermite

polynomials.

2. The metaplectic representation.

In this section we review the theory of the metaplectic representation and give

some formulae which will be used in the following sections. We follow the convention

in Folland [5]. For example, we denote by f̂ or Ff the Fourier transform of a function

f on R
2 de®ned by

f̂ �x� �
�

R
2
exp�ÿ2p

�������

ÿ1
p

hx; xi� f �x� dx;
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where h� ; �i is the usual inner product in R
2. We will denote by h� ; �i the usual inner

product in any dimensional Euclidean space since there is no fear of confusion.

Let Sp�2;R� be the symplectic group, that is, the group of 4� 4 real matrices which

preserves the symplectic form

�w1;w2� � hw1;Iw2i; I �
0 I

ÿI 0

� �

;

where I is the 2� 2 identity matrix. That is, A A Sp�2;R� if and only if A�
IA � I

holds, where A
� is the transpose of A. We will often write 4� 4 matrix in block form

by using 2� 2 matrices. Then A �
A B

C D

� �

A Sp�2;R� if and only if A�C � C �A,

B�D � D�B and A�Dÿ C �B � I .

Let sp�2;R� be the symplectic Lie algebra. A �
A B

C D

� �

A sp�2;R� if and only if

IA�A
�
I � 0 or, in block form, D � ÿA�, B � B� and C � C �. A A sp�2;R�

corresponds to the quadratic polynomial PA on R
2 by

PA�w� � ÿ
1

2
hw;AIwi

or

PA�x; x� �
1

2
hx;Bxiÿ hx;Axiÿ

1

2
hx;Cxi; w �

x

x

� �

; x; x A R
2
:

We denote by Q the totality of the real homogeneous quadratic polynomials on R
4.

If we regard Q as a Lie algebra by considering the Poisson bracket, the above cor-

respondence gives rise a Lie algebra isomorphism from sp�2;R� to Q. It should be

noted that, if we consider PA�x; x� as a classical Hamiltonian and consider the classical

mechanics, the corresponding Hamilton equation is

d

dt

x

x

� �

�
A� C

B ÿA

� �

x

x

� �

and A itself does not appear. If we consider the correspondence between sp�2;R� and

Q given by

~PA�w� �
1

2
hw;IAwi;�2:1�

A itself determines the Hamilton equation. Although we can construct the theory of
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metaplectic representation based on (2.1), we will follow the convention in [5] in order to

apply directly the results therein.

The metaplectic representation m of Sp�2;R� is de®ned as follows. Let H2 be the

real 5-dimensional Heisenberg group, which is R
5 endowed with the group law

�p; q; t�� p 0; q 0; t 0� � �p� p 0; q� q 0; t� t 0 � �h p; q 0iÿ hq; p 0i�=2�

for p � �p1; p2�, q � �q1; q2� A R
2 and t A R. For �p; q; t� A H2, we let r�p; q; t� be the

unitary operator on L2�R2� de®ned by

r�p; q; t� f �x� � exp
ÿ

2p
�������

ÿ1
p

t� 2p
�������

ÿ1
p

hq; xi� p

�������

ÿ1
p

hp; qi
�

f �x� p�; f A L2�R2�:

Then r is an irreducible unitary representation of H2 on the Hilbert space L2�R2�, which
is called the SchroÈdinger representation. The Stone-von Neumann theorem says that

any irreducible unitary representation n of H2 on a Hilbert space such that n�0; 0; t� �
exp

ÿ

2p
�������

ÿ1
p

t
�

is unitary equivalent to r.

Now let A A Sp�2;R�. Then A de®nes an automorphism TA of H2 by

TA�p; q; t� � �p 0; q 0; t�; p 0

q 0

� �

� A
p

q

� �

;

and r � TA is another irreducible unitary representation of H2 satisfying �r � TA��0; 0; t�
� exp

ÿ

2p
�������

ÿ1
p

t
�

. Therefore, by the Stone-von Neumann theorem, there exists a unitary

operator m�A� on L2�R2� which satis®es

r � TA � m�A� � r � m�A�ÿ1:

In [5], it has been shown that m�A� is determined up to factors G1 and m is a

double-valued unitary representation of Sp�2;R�. Therefore m is a homomorphism from

Sp�2;R� into the group of unitary operators on L2�R2� modulo fGI g and is called the

metaplectic representation. We will sometimes neglect the sign in the following. In

some special cases we will discuss later, m�A� can be written down explicitly as an

integral operator and the problem of the sign appears as an ambiguity in that of a

square root.

The metaplectic representation m gives us the representation dm of sp�2;R� by

�dm��A� � d

dt
m�e tA�jt�0; A A sp�2;R�;

where the sign of m�e tA� is determined so that m�e tA� is continuous in t and is equal to I

at t � 0. Then the following is known:
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Theorem 2.1 (Theorem (4.45) in [5 ]). For any f in the space S�R2� of the rapidly

decreasing functions on R
2, it holds that

dm�A� f � 2p
�������

ÿ1
p

PA�D; x� f ;

where D �
ÿ

2p
�������

ÿ1
p �ÿ1

`.

We proceed to the explicit expression of m�A� in some special case. Sp�2;R� is

generated by the elements of the form A
�1��A� � I 0

A I

� �

, A�2��B� � B 0

0 B�ÿ1

� �

and

I, where A is symmetric and B A GL�2;R�. The metaplectic representation takes the

following simple forms for these elements:

m�A�1��A�� f �x� � exp
ÿ

ÿp
�������

ÿ1
p

hx;Axi
�

f �x�;

m�A�2��B�� f �x� � �detB�ÿ1=2
f �Bÿ1x�;

m�I� �
�������

ÿ1
p

F
ÿ1:

By combining these simple formulae, we can show the following:

Theorem 2.2 (Theorems (4.51), (4.53) in [5 ]). Let A � A B

C D

� �

A Sp�2;R�.

(i) If detA0 0, it holds that

m�A� f �x� � �detA�ÿ1=2

�

R
2
exp

ÿ

2p
�������

ÿ1
p

S�x; x�
�

f̂ �x� dx

S�x; x� � ÿ 1

2
hx;CAÿ1xi� hx;Aÿ1xi� 1

2
hx;Aÿ1Bxi:

(ii) If detB0 0, it holds that

m�A� f �x� �
�������

ÿ1
p

�detB�ÿ1=2

�

R
2
exp�2p

�������

ÿ1
p

S 0�x; y�� f �y� dy;

S 0�x; y� � ÿ 1

2
hx;DBÿ1xi� hy;Bÿ1xiÿ 1

2
hy;Bÿ1Ayi:

3. Spectra of quadratic Hamiltonians.

In this section we determine the spectra of the quadratic Hamiltonians on R
2. The

main result is Theorem 3.5 below.

Any quadratic Hamiltonian is expressed in the form PA�D; x� by some A A sp�2;R�.
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HoÈrmander [9] has classi®ed symplectically all of the elements in sp�2;R� into several

types of simple forms in the following manner:

Proposition 3.1 (cf. [9]). Any A A sp�2;R� corresponds to one of the following:

(i) If the Jordan decomposition of A includes a 1� 1 block for a real or purely

imaginary eigenvalue or a 2� 2 block for 0 eigenvalue, then there exists an S A Sp�2;R�
such that Sÿ1

AS � AlA 0 for some A, A 0 A sp�1;R�. If A has a non-zero real eigen-

value a, then there exists a T A Sp�1;R� such that

Tÿ1AT � A1 1
0 1

a2 0

� �

:

If A has a pure imaginary non-zero eigenvalue
�������

ÿ1
p

a, then there exists a T A Sp�1;R�
such that Tÿ1AT � eA2, where

A2 �
0 1

ÿa2 0

� �

;

e � 1 if the quadratic form PA�x1; x1�, x1; x1 A R; is positive de®nite and e � ÿ1 if it is

negative de®nite. If A has a zero eigenvalue, then A � 0 or there exists a T A Sp�1;R�
such that Tÿ1AT � eA3, where

A3 �
0 0

ÿ1 0

� �

;

e � 1 if the quadratic form PA�x1; x1� is non-negative de®nite and e � ÿ1 if that is non-

positive de®nite. The same statements hold for A 0.

(ii) If one of GaG
�������

ÿ1
p

b is an eigenvalue of A for some a; b > 0, then there exists

an S A Sp�2;R� such that

Sÿ1
AS � A4 1

A4 0

0 D4

� �

; A4 �
a b

ÿb a

� �

; D4 �
ÿa b

ÿb ÿa

� �

:

(iii) If the Jordan decomposition of A includes a 2� 2 block for an eigenvalue a or

ÿa for some a > 0, then there exists an S A Sp�2;R� such that

Sÿ1
AS � A5 1

A5 0

C5 ÿA5

� �

; A5 �
0 a

a 0

� �

; C5 �
ÿ1 0

0 1

� �

:

(iv) When the Jordan decomposition of A includes a 2� 2 block for an eigenvalue
�������

ÿ1
p

a or ÿ
�������

ÿ1
p

a for some a > 0, we let w1;w2 A C
4 be solutions of

ÿ

A�
�������

ÿ1
p

a
�

w1 � 0,
ÿ

A�
�������

ÿ1
p

a
�

w2 � w1, and w2 be the vector whose elements are given by the complex
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conjugate of the corresponding ones of w2. Then there exists an S A Sp�2;R� such that

Sÿ1
AS � eA6, where

A6 �
A6 I

0 A6

� �

; A6 �
0 ÿa

a 0

� �

;

e � 1 if hw1;Iw2i > 0 and e � ÿ1 if hw1;Iw2i < 0.

(v) If A
4 � 0 and A

3 0 0, then there exists an S A Sp�2;R� such that Sÿ1
AS �

eA7, where

A7 �
0 B7

C7 0

� �

; B7 �
1 0

0 0

� �

; C7 �
0 1

1 0

� �

;

and e � 1 or ÿ1 corresponding to whether the signature of the quadratic form PA�x; x� is

�2; 1� or �1; 2�.

Although the matrices Aj , j � 1; 2; 3 and Ak, k � 4; 5; 6; 7, are di¨erent from the

corresponding ones in HoÈrmander [9], we can easily see the equivalence. The corres-

ponding operators are given by the following:

Lemma 3.2. Let Aj, j � 1; 2; 3 and Ak, k � 4; 5; 6; 7, be the matrices which appeared

in Proposition 3.1. Then the corresponding quadratic operators are given by

PA1
�D1; x1� �

1

�2p�2
ÿ 1

2

d 2

dx2
1

ÿ 2p2a2x2
1

� �

;

PA2
�D1; x1� �

1

�2p�2
ÿ 1

2

d 2

dx2
1

� 2p2a2x2
1

� �

;

PA3
�D1; x1� �

1

2
x2
1

on L2�R�, where D1 �
ÿ

2p
�������

ÿ1
p

�ÿ1
d=dx1, and

PA4
�D; x� � ÿa

2p
�������

ÿ1
p x1

q

qx1
� x2

q

qx2
� 1

� �

� b

2p
�������

ÿ1
p x1

q

qx2
ÿ x2

q

qx1

� �

;

PA5
�D; x� �

�������

ÿ1
p

a

2p
x2

q

qx1
� x1

q

qx2

� �

� 1

2
�x2

1 ÿ x2
2�;

PA6
�D; x� � 1

�2p�2
1

2

�������

ÿ1
p q

qx1
ÿ 2pax2

� �2

� 1

2

�������

ÿ1
p q

qx2
� 2pax1

� �2

ÿ 2p2a2jxj2
( )

;

PA7
�D; x� � 1

�2p�2
ÿ 1

2

q2

qx2
1

ÿ 4p2x1x2

 !

on L2�R2�.
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Now we obtain the spectrum of PA�D; x� by determining the spectra of PAj
�D1; x1�

for j � 1; 2; 3 and those of PAj
�D; x� for j � 4; 5; 6; 7.

Proposition 3.3. (i) The spectrum of the operator PA2
�D1; x1� consists of the simple

eigenvalues given by �n� 1=2�a=�2p�; n A Z�.

(ii) The spectrum of the operator PA3
�D1; x1� is �0;y� and is absolutely continuous.

(iii) The spectrum of PA1
�D1; x1� and those of PAj

�D; x� for j � 4; 5; 6; 7 are R and

are absolutely continuous.

Proof. PA2
�D1; x1� is a harmonic oscillator and (i) is well known. (ii) is obvious.

The proof for j � 1 and 7 is easy.

For j � 4 and 6, we use the fact that �2p�2PAj
�D; x� is unitary equivalent to the

SchroÈdinger operator with the magnetic ®eld de®ned by

H � 1

2

�������

ÿ1
p q

qx1
ÿ 2plx2

� �2

� 1

2

�������

ÿ1
p q

qx2
� 2plx1

� �2

ÿ 2p2k2jxj2;�3:1�

where l and k are positive constants such that lU k. In fact, for j � 6, we have

�2p�2PA6
�D; x� � H with l � k � a. For j � 4, we note that H � �2p�2PA 0

4
�D; x�, where

A
0
4 � A 0

4 I

C 0
4 A 0

4

� �

; A 0
4 �

0 ÿl

l 0

� �

; C 0
4 �

ÿl2 � k2 0

0 ÿl2 � k2

� �

:

The eigenvalues of A
0
4 are Ga�k; l�G

�������

ÿ1
p

b�k; l�, where

a�k; l� �
��������������������������������������������������������������������������������������

k2=2ÿ l2 �
��������������������������������������������������������

�l2 ÿ k2=2�2 � l2�l2 ÿ k2�
q

r

;

b�k; l� �
��������������������������������������������������������������������������������������

l2 ÿ k2=2�
��������������������������������������������������������

�l2 ÿ k2=2�2 � l2�l2 ÿ k2�
q

r

:

By setting l � b and k �
����������������

a2 � b2
q

, we have a�k; l� � a and b�k; l� � b. Then

�2p�2PA4
�D; x� and H are unitary equivalent by Theorem 3.1 (ii).

The spectral property of the operator H de®ned by (3.1) has been studied in Arai-

Yamada [1] by using the invariance under the rotation in R
2. They have shown that the

spectrum of H is continuous and equal to R. Moreover, letting A be the generator of

the dilation given by

A �
X

2

j�1

1

2
�������

ÿ1
p xj

q

qxj
� q

qxj
xj

� �

;

we get
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�

H;
�������

ÿ1
p

A
�

� �ÿD� c2jxj2�=2;

where D is the Laplacian on R
2. Therefore, by the Mourre estimate, we can show that

H has no singular continuous spectrum (cf. [3]).

The proof for j � 5 is given separately in the next proposition. r

Proposition 3.4. Let H0 be the self-adjoint operator on L2�R2� de®ned by

H0 �
�������

ÿ1
p

c

2p
x2

q

qx1
� x1

q

qx2

� �

� x2
1 ÿ x2

2 ;

where 00 c A R. Then H0 is unitary equivalent to the direct sum

LlLl �ÿL�l �ÿL�;

where L � r2 � ch is the self-adjoint operator on L2��0;y�; rdr�nL2�R; dh�.

Proof. Let Dj, 1Y jY 4; be the domains in R
2 given by

D1 � f�x1; x2� A R
2

: x1 > jx2jg; D2 � f�x1; x2� A R
2

: x2 > jx1jg;

D3 � f�x1; x2� A R
2

: x1 < ÿjx2jg; D4 � f�x1; x2� A R
2

: x2 < ÿjx1jg;

and let Hj be the Friedrichs extension of the symmetric operator H0|C
y
0 �Dj �, respec-

tively. Then H0 is regarded as the direct sum 04

j�1
Hj (cf. [18] Proposition 3 in Section

XIII.15).

On D1, we introduce the coordinate �r; y�; r > 0, y A R, de®ned by

r �
����������������

x2
1 ÿ x2

2

q

and y � tanhÿ1 x2

x1
:

This is the coordinate such that x1 � r cosh y and x2 � r sinh y. Then we get

H1 � r2 �
�������

ÿ1
p

c

2p

q

qy

on the space L2��0;y�; rdr�nL2�R; dy�. We can show that this operator is unitary

equivalent to L by considering the inverse Fourier transform in the variable y. Note

that L is essentially self-adjoint on the space S��0;y� � R� of the rapidly decreasing

functions. We can show that H3 is unitary equivalent to L in the same way.

On D2 and D4, we introduce the coordinate �r; y�, r > 0, y A R, de®ned by

r �
����������������

x2
2 ÿ x2

1

q

and y � tanhÿ1 x1

x2
;
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and use the Fourier transform in the variable y. Then we can show that H2 and H4 are

unitary equivalent to ÿL. r

The complete description of the spectrum of PA�D; x� is the following:

Theorem 3.5. For any 00A A sp�2;R�, the spectrum of the operator PA�D; x� is

determined as follows:

(i) If the Jordan decomposition of A consists of four 1� 1 blocks of the eigenvalues

G
�������

ÿ1
p

aj, j � 1; 2, for some aj > 0, then the spectrum of the operator PA�D; x� consists of
the eigenvalues given by fe1�n1 � 1=2�a1 � e2�n2 � 1=2�a2g=�2p�, n1; n2 A Z�, including

the multiplicity, where ej � 1 if haj;Ibji > 0 and ej � ÿ1 if haj;Ibji < 0 for the eigen-

vectors aj �
�������

ÿ1
p

bj of A corresponding to the eigenvalues
�������

ÿ1
p

aj, j � 1; 2, respectively.

In particular, e1�e2�1 if the quadratic form PA�x; x� is positive de®nite and e1�e2�ÿ1

if it is negative de®nite. When e1 � e2 � ÿ1, this spectral set is a dense subset in R if

a1=a2 B Q and is a discrete subset if a1=a2 A Q.

(ii) If the Jordan decomposition of A consists of two 1� 1 blocks of the eigenvalues

G
�������

ÿ1
p

a for some a > 0 and two 1� 1 blocks of the eigenvalue 0, then the spectrum of

PA�D; x� consists only of the eigenvalues with in®nite multiplicity and is given by

e�n� 1=2�a=�2p�, n A Z�, where e � 1 if PA�x; x� is non-negative de®nite and e � ÿ1 if

it is non-positive de®nite.

(iii) If the Jordan decomposition of A consists of two 1� 1 blocks of the eigenvalues

G
�������

ÿ1
p

a for some a > 0 and one 2� 2 block of the eigenvalue 0 and PA�x; x� is non-

negative (resp. non-positive) de®nite, then the spectrum of PA�D; x� is �a=�4p�;y� (resp.

�ÿy;ÿa=�4p��) and is absolutely continuous.

(iv) If A2 � 0, A0 0 and PA�x; x� is non-negative (resp. non-positive) de®nite, then

the spectrum of PA�D; x� is �0;y� (resp. �ÿy; 0�) and is absolutely continuous.

(v) For the other nonzero A, the spectrum of PA�D; x� is R and is absolutely

continuous.

Remark. In (i), if a1 � a2, the eigenvectors aj �
�������

ÿ1
p

bj should be taken so that a1,

a2, b1, b2 are linearly independent.

4. SchroÈdinger operators with magnetic ®elds.

In this section, we apply the results in the last section to the SchroÈdinger operator

with a uniform magnetic ®eld de®ned by

H � 1

2

�������

ÿ1
p q

qx1
ÿ bpx2

� �2

� 1

2

�������

ÿ1
p q

qx2
� bpx1

� �2

� 2p2�c1x2
1 � c2x

2
2�;�4:1�
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where 00 b A R, c1; c2 A R. We will see that this class of operators correspond to

all types of the fundamental operators discussed in the last section. This operator is

expressed as H � �2p�2PA�D; x�, where A is an element in sp�2;R� given by

A � A I

C A

� �

; A � 0 ÿb=2

b=2 0

� �

and C � ÿb2=4ÿ c1 0

0 ÿb2=4ÿ c2

� �

:�4:2�

4.1. The case where c1; c2 V 0. We set c1 � k2, c2 � l
2 with k; lV 0. Then the

signature of the quadratic form PA�x; x� is �4; 0� if k; l > 0, �3; 0� if k > 0 and l � 0,

�2; 0� if k � l � 0. The roots of the characteristic equation for A are given by the

following:

G
�������

ÿ1
p

a�; G
�������

ÿ1
p

aÿ; if k; l > 0;

G
�������

ÿ1
p ����������������

b2 � k2
p

; 0 �with multiplicity 2�; if kV 0 and l � 0;

where

aG �
��������������������������������������������������������������������������������������

b2 � k2 � l
2
G

��������������������������������������������������

�b2 � k2 � l
2�2 ÿ 4k2l

2

q

r ,

2:�4:3�

Therefore the matrix A is transformed as follows:

Proposition 4.1. (i) If k; l > 0, then there exists an S1 A Sp�2;R� such that

Sÿ1
1 AS1 � A1, where

A1 �
0 I

C1 0

� �

; C1 �
ÿa2� 0

0 ÿa2ÿ

� �

and aG are the constants given by (4.3).

(ii) If k > 0 and l � 0, then there exists an S2 A Sp�2;R� such that Sÿ1
2 AS2 � A2,

where

A2 �
0 B2

C2 0

� �

; B2 �
1 0

0 0

� �

; C2 �
ÿ�b2 � k2� 0

0 ÿ1

� �

:

(iii) If k � l � 0, then there exists an S3 A Sp�2;R� such that Sÿ1
3 AS3 � A3, where

A3 �
0 B3

C3 0

� �

; B3 �
1 0

0 0

� �

C3 �
ÿb2 0

0 0

� �

:

This proposition has been proved in [16 ]. By Proposition 4.1, we obtain the

following:
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Theorem 4.2. (i) If k; l > 0, then H is unitary equivalent to the operator H1 de®ned

by

H1 � ÿ 1

2

q2

qx2
1

� 2p2a2�x
2
1

 !

� ÿ 1

2

q2

qx2
2

� 2p2a2ÿx
2
2

 !

and the spectrum consists of the eigenvalues given by 2pf�n1 � 1=2�a� � �n2 � 1=2�aÿg,
n1, n2 A Z�, including the multiplicity, where aG are the constants given by (4.3).

(ii) If k > 0 and l � 0, then H is unitary equivalent to the operator H2 de®ned by

H2 � ÿ 1

2

q2

qx2
1

� 2p2�b2 � k2�x2
1

 !

� 2p2x2
2

and the spectrum of is
�

p
����������������

b2 � k2
p

;y
�

and is absolutely continuous.

(iii) If k � l � 0, then H is unitary equivalent to the operator H3 de®ned by

H3 � ÿ 1

2

q2

qx2
1

� 2p2b2x2
1�4:4�

on L2�R2� and the spectrum consists only of the eigenvalues 2p�n� 1=2�jbj, n A Z�; with

in®nite multiplicities.

(iii) of this proposition has been shown by Avron-Herbst-Simon [2] by a di¨erent

method. This result is given in [15 ] by a more direct method and is extended to general

dimensional case in [16 ].

4.2 The case where c1 V 0, c2 < 0. We set c1 � k2, c2 � ÿl
2 with kV 0, l > 0.

Then the signature of the quadratic form PA�x; x� is �2; 1� if k � 0, �3; 1� if k > 0. The

roots of the characteristic equation for A are given by the following:

G
�������

ÿ1
p ���������������

b2 ÿ l
2

p

; 0 �with multiplicity 2�; if k � 0 and jbj > l;

0 �with multiplicity 2�; G
���������������

l
2 ÿ b2

p

; if k � 0 and jbj < l;

0 �with multiplicity 4�; if k � 0 and jbj � l;

G
�������

ÿ1
p

a; Gb; if k0 0;

where

a �
��������������������������������������������������������������������������������������������������������

�b2 � k2 ÿ l
2� �

��������������������������������������������������

�b2 � k2 ÿ l
2�2 � 4k2l

2

q

� ��

2

s

�4:5�
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and

b �

������������������������������������������������������������������������������������������������������������

ÿ�b2 � k2 ÿ l
2� �

��������������������������������������������������

�b2 � k2 ÿ l
2�2 � 4k2l

2

q

� ��

2

s

:�4:6�

Therefore the matrix A is transformed as follows:

Proposition 4.3. (i) If k � 0 and jbj > l, then there exists an S1 A Sp�2;R� such

that Sÿ1
1 AS1 � A1, where

A1 �
0 B1

C1 0

� �

; B1 �
1 0

0 0

� �

; C1 �
ÿ�b2 ÿ l

2� 0

0 1

� �

:

(ii) If k � 0 and jbj < l, then there exists an S2 A Sp�2;R� such that Sÿ1
2 AS2 � A2,

where

A2 �
0 B2

C2 0

� �

; B2 �
1 0

0 0

� �

; C2 �
l
2 ÿ b2 0

0 ÿ1

� �

:

(iii) If k � 0 and jbj � l, then there exists an S3 A Sp�2;R� such that Sÿ1
3 AS3 � A3,

where

A3 �
0 B3

C3 0

� �

; B3 �
1 0

0 0

� �

C3 �
0 1

1 0

� �

:

(iv) If k0 0, then there exists an S4 A Sp�2;R� such that Sÿ1
4 AS4 � A4, where

A4 �
0 I

C4 0

� �

; C4 �
ÿa2 0

0 b2

� �

and a, b are the constants given by (4.5) and (4.6).

By Proposition 4.3, we obtain the following:

Theorem 4.4. (i) If k � 0 and jbj > l, then H is unitary equivalent to the operator

H1 de®ned by

H1 � ÿ
1

2

q2

qx2
1

� 2p2�b2 ÿ l
2�x2

1

 !

ÿ 2p2x2
2 :

(ii) If k � 0 and jbj < l, then H is unitary equivalent to the operator H2 de®ned by

H2 � ÿ
1

2

q2

qx2
1

ÿ 2p2�l2 ÿ b2�x2
1

 !

� 2p2x2
2 :
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(iii) If k � 0 and jbj � l, then H is unitary equivalent to the operator H3 de®ned by

H3 � ÿ 1

2

q2

qx2
1

ÿ 4p2x1x2:

(iv) If k0 0, then H is unitary equivalent to the operator H4 de®ned by

H4 � ÿ 1

2

q2

qx2
1

� 2p2a2x2
1

 !

� ÿ 1

2

q2

qx2
2

ÿ 2p2b2x2
2

 !

;

where a and b are the constants given by (4.5) and (4.6).

(v) When c1Z 0 and c2 < 0, then the spectrum of H is R and is absolutely con-

tinuous.

4.3 The case where c1; c2 < 0. We set c1 � ÿk2, c2 � ÿl
2 with k; l > 0. Then

the signature of the quadratic form PA�x; x� is �2; 2�. The roots of the characteristic

equation for A are given by the following:

G
�������

ÿ1
p

a�; G
�������

ÿ1
p

aÿ; if jbj > k � l;

Gb�; Gbÿ; if jbj < jk ÿ lj;

G
���������

ÿkl
p

�with multiplicity 2�; if jbj � k � l;

G
������

kl
p

�with multiplicity 2�; if jbj � jk ÿ lj;

GgG
�������

ÿ1
p

d; if jk ÿ lj < jbj < k � l;

where

aG �
�����������������������������������������������������������������������������������������������������

b2 ÿ k2 ÿ l
2
G

��������������������������������������������������

�b2 ÿ k2 ÿ l
2�2 ÿ 4k2l

2

q

� ��

2

s

;�4:7�

bG �
�����������������������������������������������������������������������������������������������������

k2 � l
2 ÿ b2 G

��������������������������������������������������

�k2 � l
2 ÿ b2�2 ÿ 4k2l

2

q

� ��

2

s

�4:8�

g �
����������������������������

�k � l�2 ÿ b2
q

.

2�4:9�

and

d �
����������������������������

b2 ÿ �k ÿ l�2
q

.

2:�4:10�
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When jbj � k � l or jk ÿ lj, the dimension of the eigenspace corresponding to each

eigenvalue is 1. Moreover, when jbj > k � l, we have ha;Ibi > 0 for an eigenvector

a�
�������

ÿ1
p

b of A corresponding to the eigenvalue
�������

ÿ1
p

a�. When jbj � k � l, we have

hw1;Iw2i > 0 for w1;w2 A C
4 such that

ÿ

A�
���������

ÿkl
p

�

w1 � 0,
ÿ

A�
���������

ÿkl
p

�

w2 � w1.

Therefore the matrix A is transformed as follows:

Proposition 4.5. (i) If jbj > k � l, then there exists an S1 A Sp�2;R� such that

Sÿ1
1 AS1 � A1, where

A1 �
0 B1

C1 0

� �

; B1 �
1 0

0 ÿ1

� �

; C1 �
ÿa2� 0

0 a2ÿ

� �

and aG are the constants given by (4.7).

(ii) If jbj < jk ÿ lj, then there exists an S2 A Sp�2;R� such that Sÿ1
2 AS2 � A2, where

A2 �
0 I

C2 0

� �

; C2 �
b2
� 0

0 b2
ÿ

 !

and bG are the constants given by (4.8).

(iii) If jbj � k � l, then there exists an S3 A Sp�2;R� such that Sÿ1
3 AS3 � A3, where

A3 �
A3 I

0 A3

� �

; A3 �
0 ÿ

������

kl
p

������

kl
p

0

� �

:

(iv) If jbj � jk ÿ lj, then there exists an S4 A Sp�2;R� such that Sÿ1
4 AS4 � A4, where

A4 �
A4 0

C4 ÿA4

� �

; A4 �
0

������

kl
p

������

kl
p

0

� �

; C4 �
ÿ1 0

0 1

� �

:

(v) If jk ÿ lj < jbj < k � l, then there exists an S5 A Sp�2;R� such that Sÿ1
5 AS5 �

A5, where

A5 �
A5 0

0 D5

� �

; A5 �
g d

ÿd g

� �

; D5 �
ÿg d

ÿd ÿg

� �

and g; d are the constants given by (4.9), (4.10), respectively.

By Proposition 4.5, we obtain the following:

Proposition 4.6. (i) If jbj > k � l, then H is unitary equivalent to the operator H1

de®ned by

H. Matsumoto and N. Ueki284



H1 � ÿ 1

2

q2

qx2
1

� 2p2a2�x
2
1

 !

ÿ ÿ 1

2

q2

qx2
2

� 2p2a2ÿx
2
2

 !

;

where aG are the constants given by (4.7).

(ii) If jbj < jk ÿ lj, then H is unitary equivalent to the operator H2 de®ned by

H2 � ÿ 1

2

q2

qx2
1

ÿ 2p2b2
�x

2
1

 !

� ÿ 1

2

q2

qx2
2

ÿ 2p2b2
ÿx

2
2

 !

;

where bG are the constants given by (4.8).

(iii) If jbj � k � l, then H is unitary equivalent to the operator H3 de®ned by

H3 �
1

2

�������

ÿ1
p q

qx1
ÿ 2

������

kl
p

px2

� �2

� 1

2

�������

ÿ1
p q

qx2
� 2

������

kl
p

px1

� �2

ÿ2p2kljxj2:

(iv) If jbj � jk ÿ lj, then H is unitary equivalent to the operator H4 de®ned by

H4 � 2p
�������

ÿ1
p ������

kl
p

x2
q

qx1
� x1

q

qx2

� �

� 2p2�x2
1 ÿ x2

2�:

(v) If jk ÿ lj < jbj < k � l, then H is unitary equivalent to the operator H5 de®ned by

H5 �
1

2

�������

ÿ1
p q

qx1
ÿ bpx2

� �2

� 1

2

�������

ÿ1
p q

qx2
� bpx1

� �2

ÿ 2p2kljxj2;

where b �
����������������������������

b2 ÿ �k ÿ l�2
q

.

H5 in Theorem 4.6 is the operator we used in the proof of Theorem 3.3. The

spectrum of H is given as follows:

Theorem 4.7. (i) If jbj > k � l, then the spectrum of the operator H consists of

the eigenvalues given by 2pf�n1 � 1=2�a� ÿ �n2 � 1=2�aÿg, n1; n2 A Z�, where aG are the

constants given by (4.7). This spectral set is a dense subset in R if a�=aÿ B Q and is a

discrete subset if a�=aÿ A Q.

(ii) If jbjU k � l, then the spectrum of H is R and is absolutely continuous.

5. Heat kernels.

In this section we apply the metaplectic representation to the study on the heat

kernel of the semigroup exp�ÿtH� generated by the operator H de®ned by
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H � 1

2

�������

ÿ1
p q

qx1
ÿ bpx2

� �2

� 1

2

�������

ÿ1
p q

qx2
� bpx1

� �2

ÿ 2p2
l
2x2

2 ;�5:1�

where b0 0, l > 0.

The heat kernel has the following representation:

eÿtH�x; y� � E

�

exp

�

ÿ bp
�������

ÿ1
p � t

0

f�x1 � w1�s�� dw2�s� ÿ �x2 � w2�s�� dw1�s�g�5:2�

� 2p2
l
2

� t

0

�x2 � w2�s��2 ds
��

�

�

�

x� w�t� � y

�

1

2pt
exp ÿ jxÿ yj2

2t

 !

;

where E��j�� is the conditional expectation with respect to the 2-dimensional Wiener

process w�s� � �w1�s�;w2�s�� satisfying w�0� � 0. For details, we refer to [12] and [19].

Note that the expectation of the right hand side converges absolutely for 0 < t <

1=�2l� (cf. [13] Section 5.13). On the other hand, in Section 4, we showed that H is

unitary equivalent to the operators Hj, j � 1; 2; 3, in Theorem 4.4. The heat kernels

exp�ÿtHj��x; y� of the corresponding semigroups are explicitly written in the following

way:

eÿtH1�x; y� � p�a �t; x1; y1� exp�2p2tx2
2�dy2�x2�;�5:3�

eÿtH2�x; y� � pÿb �t; x1; y1� exp�ÿ2p2tx2
2�dy2�x2�;�5:4�

and

eÿtH3�x; y� � 1
�������

2pt
p exp 2p2�x1 � y1�x2t�

2p4x2
2 t

3

3
ÿ �x1 ÿ y1�2

2t

 !

dy2�x2�;�5:5�

where a �
����������������

b2 ÿ l
2

p

, b �
����������������

l
2 ÿ b2

p

, dy is the Dirac delta function concentrated at the

point y with respect to the Lebesgue measure and pGg �t; x1; y1�, g > 0; are the heat

kernels of the semigroups generated by the operators de®ned by ÿd 2=2dx2
1 G 2p2g2x2

1 ,

respectively, which are given by

p�g �t; x1; y1� �
������������������

g

sinh 2pgt

r

expfÿgp coth 2pgt�x2
1 ÿ 2x1 y1 sech 2pgt� y21�g;�5:6�

pÿg �t; x1; y1� �
����������������

g

sin 2pgt

r

expfÿgp cot 2pgt�x2
1 ÿ 2x1 y1 sec 2pgt� y21�g:�5:7�

(5.4) and (5.7) hold for 0 < t < 1=�2b� and the others hold for all t > 0. We have
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1=�2b� > 1=�2l�. Therefore, if the relation

eÿtH�x; y� � fm�Sj�eÿtHjm�Sj�ÿ1
dyg�x��5:8�

is established for some Sj A Sp�2;R� as smooth functions, the heat kernel exp�ÿtH��x; y�
is well de®ned also for tZ 1=�2l�.

In fact we show the following:

Theorem 5.1. (i) If jbj > l, there exists an S1 A Sp�2;R� such that the equation (5.8)

with j � 1 holds as a smooth function in �t; x; y� A �0;y� � R
2 � R

2.

(ii) If jbj < l, there exists an S2 A Sp�2;R� such that the equation (5.8) with j � 2

holds as a smooth function in �t; x; y� A �0; 1=�2b�� � R
2 � R

2 where b �
����������������

l
2 ÿ b2

p

.

(iii) If jbj � l, there exists an S3 A Sp�2;R� such that the equation (5.8) with j � 3

holds as a smooth function in �t; x; y� A
ÿ

0;
���

3
p

=�pjbj�
�

� R
2 � R

2.

Remark 5.1. t � 1=�2b� and t �
���

3
p

=�pjbj� in the theorem are the conjugate points

of the corresponding classical mechanics in the sense of Ikeda, Kusuoka and Manabe

[10], [11].

Proof. We denote vectors in R
4 by ai and bi in the following arguments.

(i) Set a 0 �
����������������

b2 ÿ l
2

p

. Then the matrix S1 � �a1a2a3a4� satis®es Sÿ1
1 AS1 � A1 if

the vectors a1 �
�������

ÿ1
p

a 0
a3 and a4 are eigenvectors corresponding to the eigenvalues

�������

ÿ1
p

a 0 and 0, respectively, and the vector a2 is a generalized eigenvector satisfying

Aa2 � a4. We automatically obtain

hg1a1 � g3a3;I�g2a2 � g4a4�i � 0�5:9�

for any gj A C (see [8], Lemma 21.5.2). Thus S1 belongs to Sp�2;R� if we can

choose ai's so that ha1;Ia3i � ha2;Ia4i � 1 holds. For example, if we set a1 �
�b=a 0; 0; 0; a 0ÿb2=�2a 0���, a2��0; b=�a 0

l�; b2=�2a 0
l�ÿl=a 0; 0��, a3��0;ÿ1=a 0; b=�2a 0�; 0��

and a4 � �ÿl=a 0; 0; 0; �bl�=�2a 0���, these conditions are satis®ed. Moreover, by this

choice, we can show the smoothness of the right hand side of (5.8).

(ii) Let b1 and b3 be eigenvectors corresponding to the eigenvalues b 0 �
����������������

l
2 ÿ b2

p

and ÿb 0, respectively. We can show hb1;Ib3i0 0 by straightforward calculations and,

choosing b1 and b3 so that hb1;Ib3i � b 0=2, we set a1 � b1 ÿ b3, a3 � �b1 � b3�=b 0.

Moreover let a4 be an eigenvector corresponding to the eigenvalue 0 and a2 be a

generalized eigenvector satisfying Aa2 � ÿa4. Then the matrix S2 � �a1a2a3a4� satis®es

Sÿ1
2 AS2 � A2 and ai's satisfy (5.9). S2 belongs to Sp�2;R� if ha2;Ia4i � 1. There

are some choices and, for example, we have only to set a2 � �0;ÿb=�lb 0�,
l=b 0 ÿ b2=�2lb 0�; 0�� and a4 � �ÿl=b 0; 0; 0; lb=�2b 0���. To prove the smoothness of
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the right hand side of (5.8), we take a1��0; 1;ÿb=2; 0�� and a3 � �ÿb=b2; 0; 0,

l
2=b2 ÿ b2=�2b2��� and replace a2 by a2 � �b=l�a4 in order to apply Theorem 2.2 in

a simple way.

(iii) The matrix S3 � �a1a2a3a4� satis®es Sÿ1
3 AS3 � A3 if a4 is an eigenvector

corresponding to the eigenvalue 0 and aj , j � 1; 2; 3; are the generalized eigenvectors

satisfying Aa1 � a4, Aa2 � a3 and Aa3 � a1. Moreover S3 belongs to Sp�2;R� if

ha1;Ia3i � ha2;Ia4i � 1 and (5.9) hold. For example, if we set a1 � �1; 1;ÿb=2,

ÿb=2��, a2 � �0; 1=b2; 1=�2b�;ÿ1=b��, a3 � �0;ÿ1=b; 1=2; 1�� and a4 � �ÿb; 0; 0; b2=2��,
these conditions are satis®ed. Moreover, by this choice, we can show the smoothness of

the right hand side of (5.8). r

6. The LeÂvy formula and Hermite Polynomials.

In this section we consider the SchroÈdinger operator

H � 1

2

�������

ÿ1
p q

qx1
ÿ bpx2

� �2

� 1

2

�������

ÿ1
p q

qx2
� bpx1

� �2

with a uniform magnetic ®eld on R
2. We assume b > 0 for simplicity. We apply the

theory of the metaplectic representation to show that the eigenfunctions and the heat

kernel for H are obtained from those for the harmonic oscillator through some integral

transform. This means that the complex Hermite polynomials and the LeÂvy formula are

obtained from the usual, real Hermite polynomials and the Mehler formula through the

integral transform.

It is well known that the spectrum of H is f2pb�m� 1=2�; m � 0; 1; . . . ; g consisting

only of the eigenvalues with in®nite multiplicities and the normalized eigenfunctions

corresponding to the eigenvalue 2pb�m� 1=2� are given by

fm;n�z; z� �
�����������������������������

b

m!n!

2

bp

� �m�n
s

Hm;n�
���

2
p

z;
���

2
p

z� exp�ÿpbjzj2=2�; n � 0; 1; . . . ;

where we identify R
2 with C in the usual manner and fHm;n�z; z�gym;n�0 are the complex

Hermite polynomials de®ned by

Hm;n�z; z� � �ÿ1�m�n exp�pbjzj2=2� qm�n

qzmqzn
exp�ÿbpjzj2=2�:

It is also well known that the explicit form of the heat kernel of exp�ÿtH� is given by

eÿtH�x; y� � b

2 sinh bpt
exp bp

�������

ÿ1
p

�y1x2 ÿ x1 y2� ÿ
1

2
bp coth bpt � jyÿ xj2

� �

:�6:1�
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This is equivalent to the following LeÂvy formula

E
�

exp
ÿ

2bp
�������

ÿ1
p

St

�

jw�t� � yÿ x
�

� bpt

sinh bpt
exp �1ÿ bpt coth bpt� jyÿ xj2

2t

 !

;�6:2�

where St is LeÂvy's stochastic area given by

St �
1

2

� t

0

fw1�s� � dw2�s� ÿ w2�s� � dw1�s�g:

On the other hand, as is discussed in Section 4, H is expressed as �2p�2PA�D; x�,
where A is an element in sp�2;R� given by

A � A I

C A

� �

; A � 0 ÿb=2

b=2 0

� �

and C � ÿb2=4 0

0 ÿb2=4

� �

:

Let H3 be the operator de®ned by (4.4). Then there exists an S A Sp�2;R� such that

H � m�S�H3m�S�ÿ1 by Proposition 4.1 and Theorem 4.2. It should be noted that the

choice of S is not unique. We set

S � I B

C I=2

� �

; B � 0 ÿ1=b

ÿ1=b 0

� �

; C � 0 b=2

b=2 0

� �

:�6:3�

Then it is easy to show that S is a desired matrix and we can compute m�S� easily as will

be seen in (6.4) below.

Letting fhm�x1�gym�0 be the Hermite polynomials de®ned by

hm�x1� � �ÿ1�m exp�bpx2
1�

dm

dxm
1

exp�ÿbpx2
1�;

we set

j0�x1� � �2b�1=4 exp�ÿbpx2
1�; jm�x1� � hm

ÿ
���

2
p

x1
�

j0�x1�
.

��������������������

m!�2bp�m
q

�mZ 1�

and

�jm n jn��x1; x2� � jm�x1�jn�x2�:

fjm n jngym;n�0 forms a complete orthonormal system in L2�R2� consisting of the

normalized eigenfunctions for H0.

Then we show the following:

Proposition 6.1. Let S be the element in Sp�2;R� given by (6.3) and m be the

metaplectic representation. Then the following hold:
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(i) m�S� is explicitly given by

m�S� f �x� �
�

R
2
exp 2p

�������

ÿ1
p

hx; xiÿ bx1x2

2
ÿ x1x2

b

� �� �

f̂ �x� dx�6:4�

for f A S
0�R2�.

(ii) It holds that

m�S��jm n jn� � �ÿ1�m
�������

ÿ1
p n

fm;n:�6:5�

Proof. (6.4) is an easy consequence of Theorem 2.2.

For the proof of (6.5), we consider the generating function:

C t�x1� �
X

y

m�0

tm

m!
hm

ÿ
���

2
p

x1
�

j0�x1�

and

F�t;s��z; z� �
X

y

m;n�0

tmsn

m!n!
Hm;n

ÿ
���

2
p

z;
���

2
p

z
�

exp�ÿbpjzj2=2�

for t A R, t; s A C . Then we have

C t�x1� � �2b�1=4 exp
ÿ

ÿbpt2 � 2
���

2
p

bptx1 ÿ bpx2
1

�

and

F�t;s��z; z� � exp
ÿ

ÿbpts=2� bpsz=
���

2
p

� bptz=
���

2
p

ÿ bpzz=2
�

(cf. [20], [21]). Now we apply (6.4). Then, after some straightforward calculations, we

get

m�S��C t nC s� �
���

b
p

F�ÿ2t;ÿ2
�����

ÿ1
p

s�

and (6.5). r

For the heat kernel, we use (6.4) and the Mehler formula

eÿtH0�x; y� � p�b �t; x1; y1�dy2�x2�;

where p�b �t; x1; y1� is the function given by (5.6). Then we can show the following:

Proposition 6.2. �m�S� exp�ÿtH0�m�S�ÿ1
dy��x� coincides with the right hand side of

(6.1).
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