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Abstract. To Fuchsian partial di¨erential equations in the sense of M. S.

Baouendi and C. Goulaouic, which is a natural extension of ordinary di¨er-

ential equations with regular singularity at a point, all the solutions in a complex

domain are constructed along the same line as the method of Frobenius to

ordinary di¨erential equations, without any assumptions on the characteristic

exponents. The same idea can be applied to Fuchsian hyperbolic equations

considered by H. Tahara.

1. Introduction.

Let C be the set of complex numbers, t be a variable in C , and x � �x1; . . . ; xn� be

variables in C
n. We consider a Fuchsian partial di¨erential operator with weight 0

de®ned by M. S. Baouendi and C. Goulaouic [1].

P � tmDm
t � P1�t; x;Dx�t

mÿ1Dmÿ1
t � � � � � Pm�t; x;Dx�;�1:1�

Pj�t; x;Dx� �
X

jajUj

aj;a�t; x�D
a

x �1U jUm�;�1:2�

ordDx
Pj�0; x;Dx�U 0 �1U jUm�;�1:3�

where m is a positive integer, and Dt :� q=qt, Dx :� �Dx1 ; . . . ;Dxn�, Dxj :� q=qxj .

Assume that the coe½cients aj;a �jajU jUm� are holomorphic in a neighborhood of

�t; x� � �0; 0�. M. Kashiwara and T. Oshima ([3], De®nition 4.2) called such an operator

``an operator which has regular singularity in a weak sense along S0 :� ft � 0g.'' For

such operators, M. S. Baouendi and C. Goulaouic [1] showed fundamental theorems

that are extensions of the Cauchy-Kowalevsky theorem and the Holmgren theorem (see

Theorems 4.1, 4.2 given later).
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Remark 1.1. (1) M. S. Baouendi and C. Goulaouic considered Fuchsian partial

di¨erential equations with general weights. If P has weight o, however, then toP has

weight 0, and hence the general case can be easily reduced to the case with weight 0 as

for our problem.

(2) As for the spelling of the name of Kowalevskaya, I followed W. Walter [9],

who pointed out that she wrote the paper [4] by the name of `Sophie von Kowalevsky'.

We put aj�x� :� Pj�0; x;Dx�, and put

C�x; l� � C�P��x; l� :� �l�m � a1�x��l�mÿ1 � � � � � am�x� � tÿlP�tl�jt�0;�1:4�

where �l�k :� l�lÿ 1� � � � �lÿ k � 1�. This polynomial in l is called the indicial

polynomial of P. A root of the equation C�x; l� � 0 in l is called a characteristic

exponent (or characteristic index) of P at x. We can not necessarily take a characteristic

exponent l�x� as a holomorphic function of x, which is one of the di½culty to in-

vestigate Fuchsian partial di¨erential equations in full generality.

In order to consider solutions in germ sense, put

BR :� fx A C
n : jxj < Rg;

O0 :� ind lim
R>0

O�BR�;

where O�W� denotes the set of holomorphic functions on W;

DT :� ft A C : jtj < Tg �T > 0�;

Sy;T :� R�DTnf0g� �the universal covering of DTnf0g�;

~O :� ind lim
T>0;R>0

O�Sy;T � BR�:

If the characteristic exponents fll�0�g
m
l�1 of P at x � 0 do not di¨er by integer, that

is, if ll�0� ÿ ll 0�0� B Z :� fall the integersg for l0 l 0, then each characteristic exponent

is simple at x � 0, and we can take the characteristic exponents ll�x� �1U lUm� as

holomorphic functions in a neighborhood of x � 0. In this case, every solution of

Pu � 0 in ~O can be represented as follows (see [6], [8]).

u�t; x� �
Xm

l�1

tll�x�
Xy

j�0

t jul; j�t; x�;�1:5�

ul; j�t; x� �
Xrl; j

k�1

ul; j;k�x��log t�
kÿ1

; ul; j;k A O0;�1:6�
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where rl; j are positive integers and rl;0 � 1. Further, we can give ul;0�t; x� � ul;0;1�x� A
O0 arbitrarily, and then ul; j�t; x� � jV 1� are determined uniquely. Especially, we have a

linear isomorphism

�O0�m C �ul;0;1�x��ml�1 7!
@

u�t; x� A Ker ~O P :� fu A
~O : Pu � 0g:�1:7�

If some characteristic exponents di¨er by integer, then the situation seems far more

complicated. One of the reasons is, of course, that we can not necessarily take holo-

morphic characteristic exponents in general. For example, if C�x; l� � l
2 ÿ x, we need

functions like t
��

x
p

� tÿ
��

x
p

, �t
��

x
p

ÿ tÿ
��

x
p

�= ���

x
p

, or derivatives of these.

The aim of this article is to construct a linear isomorphism �O0�m !@ Ker ~O P like

(1.7) without any assumption on the characteristic exponents, by essentially the same

method as the method of Frobenius to ordinary di¨erential equations with regular

singularity at a point.

In the next section, we review the method of Frobenius, and modify it. In Section

3, we give the precise statement of our result. The ®rst half of the main theorem is

proved in Section 4. After giving some preliminary results in Sections 5, 6, and 7, we

give a proof of the latter half of the main theorem in Section 8. Last, we give some

variants of our result in Section 9.

Notation. (i) The set of the integers is denoted by Z, and the set of the

nonnegative integers by N .

(ii) If B is not open, O�B� denotes the set of the functions holomorphic on a

neighborhood of B.

(iii) The closure of a set A is denoted by A.

(iv) The set of the N �N matrices with complex entries is denoted by MN�C�.
(v) The polynomial algebra in l with the coe½cients in a ring X is denoted by X �l�.

Acknowledgement. The author is deeply grateful to Professor Hidetoshi Tahara

(Sophia University) for his various advice and encouragement. Especially, the proof

of Proposition 7.1 is due to him. The author is also grateful to Professor Seiichiro

Wakabayashi (Tsukuba University) for his valuable advice about divided di¨erences,

and to Professor Masatake Miyake (Nagoya University) for his continual encourage-

ment.

2. Review of the method of Frobenius to ordinary di¨erential equations.

In this section, we consider an ordinary di¨erential equation with regular singularity

at t � 0 A C .
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P � P�t;Dt� � tmDm
t � a1�t�t

mÿ1Dmÿ1
t � � � � � am�t�;�2:1�

aj A O�DT � �1U jUm�;

where m is a positive integer, T > 0, Dt :� d=dt. This can be considered as the case

n � 0.

The indicial polynomial of P is C�l� � C�P��l� :� �l�m � a1�0��l�mÿ1 � � � � � am�0�

� tÿlP�tl�jt�0, and a characteristic exponent is a root of the equation C�l� � 0.

Note that if we put Q :� tDt, then we have �Q�k � tkDk
t and C�Q� � tmDm

t �

a1�0�t
mÿ1Dmÿ1

t � � � � � am�0�. Further if F�l� A C �l�, then we have F �Q� � �tl�� �

�tl�� � F �Q� l�, where � denotes the composition (product) of two operators, and tl �

is the multiplication operator by tl.

If the characteristic exponents fllg
m
l�1 do not di¨er by integer, that is, if ll ÿ ll 0 B Z

for l0 l 0, then every solution of Pu � 0 in O�Sy;T� is expanded as u�t� �
Pm

l�1 t
ll �

Py
j�0 ul; jt

j , where ul; j A C . Further, we can take arbitrary ul;0 �1U lUm�, and then

ul; j � jV 1� are determined uniquely by recursive equations of the form

C�ll � j� � ul; j � �Terms determined by ul;0; . . . ; ul; jÿ1�:

Note that we have C�ll � j�0 0 for jV 1 by the assumption that ll � j � j A Nnf0g�

is not a characteristic exponent. Especially, we have a base of KerO�Sy; T � P :�

fu A O�Sy;T� : Pu � 0g in the form B � ftll �
Py

j�1 ul; jt
ll�jgm

l�1, and hence we have a

linear isomorphism

C
m C �ul;0�

m
l�1 7!

@

u�t� A KerO�Sy;T � P:

If some characteristic exponents do di¨er by integer, then there may appear some

solutions with logarithmic terms in general. Namely, let m1; . . . ; md be the distinct

characteristic exponents, and let rl be the multiplicity of ml �l � 1; 2; . . . ; d� as a root

of C�l� � 0. Then every solution of Pu � 0 in O�Sy;T � is expanded as u �
Pd

l�1 t
ml �

Py
j�0 ul; j�t�t

j, ul; j�t� �
Prl; j

k�1 ul; j;k�log t�
kÿ1, where ul; j;k A C , rl; j A N , and rl;0 � rl .

The method of Frobenius, which is reviewed below, is a method to construct such

solutions without being bothered by the tedious process to seek ul; j;k (not unique in

general). Also in this case, we have a linear isomorphism

C
m C �ul;0;k�1UlUd;1UkUrl

7!
@

u�t� A KerO�Sy; T � P:

Let m � ml be a characteristic exponent with multiplicity r � rl . From now on, we

®x l and often omit the subscript l.

Let 0 � k0 < k1 < � � � < kq �q � ql� be the nonnegative integers k for which m� k is

also a characteristic exponent. Let sd � sl; d be the multiplicity of m� kd �d � 0; 1; . . . ; q�
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and put R � Rl :�
Pq

d�0 sd. Note that s0 � r. Also note that if the characteristic

exponents do not di¨er by integer, then rl � 1, ql � 0, and Rl � 1 for every l.

Take an integer NV kq. If qV 1, then we can not solve, in general, the equation

Pu � 0 in the form u � tm
P

y

j�0 ujt
j, since we have recursive equations C�m� j�uj �

�Terms determined by u0Ðujÿ1�, and there holds C�m� j� � 0 for j � kd �1U dU q�.

Considering l A C as a parameter moving near m, we solve the equation

P�U� �
Y

N

n�0

C�l� n�

 !

tl �: A�l�tl�2:2�

for U. Note that m is a zero of A�l� of order R. We can obtain a formal solution U in

the form

U � U�l; t� � tl ~U�l; t� � tl
X

y

j�0

Uj�l�t
j
;�2:3�

Uj is holomorphic in a j-independent neighborhood of m;�2:4�

m is a zero of U0 of order Rÿ r;�2:5�

and we can show that ~U�l; t� converges in D� DT for a neighborhood D of m.

Since m is a zero of A of order R, and since U
�Rÿr�
0 �m�0 0, we can easily show

that f�qn
lU��m; t� : Rÿ rU nURÿ 1g are independent solutions of Pu � 0. By con-

structing these solutions for each characteristic exponent m � ml , we can construct a base

of KerO�Sy;T � P. This is the classical method of Frobenius (See, for example, [2] for a

detail).

If we try to apply this method straightly to Fuchsian partial di¨erential equations,

we meet the following di½culties.

(A) Some characteristic exponents ml�x� may not be holomorphic in x, while we

want solutions holomorphic in x.

(B) Even if ml�x� is holomorphic, the commutativity of two operators �ql � � ��jl�m�x�

and P is no longer valid in general.

Of course, the proof of the fact that the solution map �O0�
m ! Ker ~O P is an

isomorphism would become far more di½cult, while in the case of ordinary di¨erential

equations, it follows easily from the independence of the constructed solutions, since the

solution space is ®nite dimensional.

Thus, we need to modify the classical method. The idea is very simple, once we

notice it. We used a solution U�l; t� of
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P�U� �
Y

N

n�0

C�l� n�

 !

tl �: A�l�tl;�2:2�

which is holomorphic at l � m, and obtained a solution u � �qn
lU��m; t� �Rÿ rU nU

Rÿ 1� of Pu � 0. This solution u is represented by Cauchy integral as

�qn
lU��m; t� � n!

1

2pi

�

G

U�l; t�

�lÿ m�n�1
dl;�2:6�

where G � Gl is a su½ciently small simple closed curve enclosing m. If we consider a

function

V�l; t� :� n!
U�l; t�

�lÿ m�n�1
;�2:7�

this is a solution of P�V� � n!�A�l�=�lÿ m�n�1�tl, where the right hand side is also a

polynomial in l. Note that V�l; t� has a pole at l � m unlike U.

This consideration leads us to the following, where we write l.

Proposition 2.1. (1) For every F A C �l�, there exists a unique ~V �F � A O��6d

l�1
Gl� �

DT� such that V � V �F ��l; t� :� tl ~V �F ��l; t� is a solution of the equation P�V� � tlF�l�.

Further, for every l � 1; . . . ; d, the function

u�l;F ��t� :�
1

2pi

�

Gl

V �F ��l; t� dl A O�Sy;T ��2:8�

is a solution of Pu � 0.

(2) For 1U lU d and 1U pU rl , put Fl;p�l� :� �lÿ ml�
pÿ1

and put ul;p :� u�l;Fl;p�.

Then, B :� ful;p : 1U lU d; 1U pU rlg is a base of KerO�Sy;T � P. Namely, we have a

linear isomorphism

C
m
C �jl;p� 1UlUd

1UpUrl

7!
@

u�t� �
X

d

l�1

X

rl

p�1

jl;p � ul;p�t� A KerO�Sy;T � P:

This modi®ed version of the method of Frobenius can be applied to Fuchsian

partial di¨erential equations rather straightly, as seen in the next section.

3. The method of Frobenius to Fuchsian partial di¨erential equations.

Consider a Fuchsian partial di¨erential operator P of the form (1.1)±(1.3). Assume

that the coe½cients aj;a are holomorphic in a neighborhood of DT � BR �T > 0,

R > 0�. Let ml �l � 1; . . . ; d� be the distinct characteristic exponents of P at x � 0, and
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let rl be the multiplicity of ml . By a technical reason, we take eV 0 such that Re ml ÿ e B

Z holds for all l. Take Ll A Z such that Ll � e < Re ml < Ll � e� 1. Then, we have the

following lemma.

Lemma 3.1. For each l � 1; . . . ; d, we can take a domain Dl in C enclosed by a

simple closed curve Gl , such that the following holds.

(a) ml A Dl �1U lU d�,

(b) Dl VDl 0 � q if l0 l 0,

(c) C�0; l� j�0 0 for every l A 6d

l�1
�Dlnfmlg� and every j A N .

(d) Dl H fl A C : Ll � e < Re l < Ll � e� 1g for every l.

Proof. We have only to take a su½ciently small Dl . Note that (c) is equivalent to

Dl V fml 0 ÿ j A C : 1U l 0 U d; j A Ng � fmlg for every l�3:1�

and that fml 0 ÿ j A C : 1U l 0 U d; j A Ng is a discrete set in C . r

We also have the following lemma.

Lemma 3.2. For each l � 1; . . . d, take Dl and Gl as in Lemma 3.1. There exists

R0 > 0 and monic polynomials El�x; l� A O�BR0
��l� �1U lU d� such that the following

holds.

(e) C�x; l� �
Qd

l�1 El�x; l� and El�0; l� � �lÿ ml�
rl �1U lU d�.

(f ) For every l, if El�x; l� � 0 and x A BR0
, then l A Dl .

(g) C�x; l� j�0 0 for all x A BR0
, all l A 6d

l�1
Gl , and all j A N .

Proof. By (c) in Lemma 3.1, (g) holds for x � 0. Hence, if we take a su½ciently

small R0 > 0, then (g) holds. This condition (g) implies that the number of the roots in

Dl of C�x; l� � 0 is constant rl for every x A BR0
. Let lj�x� �1U jU rl� be the roots of

C�x; l� � 0 in Dl . Then, we have

Xrl
j�1

lj�x�
k �

1

2pi

�
Gl

qlC�x; l�

C�x; l�
lk dl A O�BR0

�:

Since the fundamental symmetric forms of �lj�x��
rl
j�1 are polynomials of

Prl
j�1 lj�x�

k

�1U kU rl� with the constant coe½cients, the polynomial El�x; l� :�
Qrl

j�1�lÿ lj�x��

has the coe½cients in O�BR0
�. Thus, we have (e).

Finally, (f ) follows easily from (e) and (g) for j � 0. r

From now on in this article, we ®x Gl , BR0
and others given in these two lemmata.

The following is the main result, which we call the method of Frobenius to Fuchsian

partial di¨erential equations.
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Theorem 3.3. (1) For every R 0
A �0;R0� and for every F A O�BR 0��l�, there exists a

unique ~V �F � A O�ft � 0g � BR 0 � �6d

l�1
Gl�� such that V � V �F ��t; x; l� :� tl ~V �F ��t; x; l�

is a solution of the equation

P�V� � tlF�x; l�:�3:2�

For every l � 1; . . . ; d, the function

u�l;F ��t; x� :�
1

2pi

�

Gl

V �F ��t; x; l� dl�3:3�

is a solution of Pu � 0. Further, for every R 00
A �0;R 0�, there exists T 00 > 0 such that

u�l;F � A O�Sy;T 00 � BR 00�.

(2) For 1U lU d and 1U pU rl , put Fl;p�x; l� :� Sl�x; l�q
p
lEl�x; l�, where Sl�x; l� :

� C�x; l�=El�x; l� A O�BR0
��l�. For j A O0, we put ul;p�j��t; x� :� u�l; j � Fl;p��t; x�.

Then, we have a linear isomorphism

�O0�
m
C �jl;p�1UlUd;

1UpUrl

7!
@ Xd

l�1

Xrl

p�1

ul;p�jl;p� A Ker ~O P:�3:4�

Remark 3.4. (1) If the characteristic exponents do not di¨er by integer, then our

solution map (3.4) is just the same as (1.7).

(2) As a matter of fact, we shall prove a little stronger result than (2) of the

theorem. For y A �0;y�, T 0 > 0, and R 0 > 0, put

Sy;T 0 :� ft A Sy;T 0 : jarg tj < yg;�3:5�

gOy;R 0 :� 7
0<R 00<R 0

6
T 00>0

O�Sy;T 00 � BR 00��3:6�

� ff : for every R 00
A �0;R 0�; there exists T 00 > 0�3:7�

such that f A O�Sy;T 00 � BR 00�g:

By this notation, the last part of Theorem 3.3-(1) says that u�l;F � A gOy;R 0 . We shall

show that for every R 0
A �0;R0� and every y A �0;y�, our solution map (3.4) induces a

linear isomorphism

�O�BR 0��m !
@

Ker
Oy;R 0f P:�3:8�

As a result of this, Ker
Oy;R 0f P do not depend on y A �0;y�, which implies that if y > 0,

T 0
A �0;T�, R 0

A �0;R0�, and if u A O�Sy;T 0 � BR 0� satis®es Pu � 0, then for every R 00
A

�0;R 0�, there exists T 00 > 0 such that u can be extended to O�Sy;T 00 � BR 00�.
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We end this section by giving an asymptotic expansion of the solution ul;p�j�.

Since ~V �F � A O�ft � 0g � BR 0 � �6d

l�1
Gl��, we can expand this function with respect

to t as

~V �F ��t; x; l� �
X

y

j�0

t j ~Vj�F ��x; l�; ~Vj �F � A O BR 0 � 6
d

l�1

Gl

 ! !

:�3:9�

We can also expand the operator P as

P � C�x; Q� �
X

y

h�1

thQh�x; Q;Dx�;�3:10�

where Qh�x; l; x� A O�BR��l; x�. Hence, from P�tl ~V �F �� � tlF �x; l�, we have a system of

equations

C�x; l� ~V0�F ��x; l� � F�x; l�;�3:11�

C�x; l� j� ~Vj�F ��x; l� � ÿ
X

j

h�1

Qh�x; l� j ÿ h;Dx� ~Vjÿh�F ��x; l� � jV 1�:�3:12�

Hence, we have

~V0�F � �
F

C
;�3:13�

~Vj�F � A
1

Q j
n�0 C�x; l� n�mj; n

� O�BR 0��l�;�3:14�

for some mj; n A N .

According to the expansion of ~V �j � Fl;p�, we have an asymptotic expansion of

uj;p�j��t; x� as

ul;p�j��t; x� �
X

y

j�0

ul;p; j �j��t; x�t
j
;�3:15�

ul;p; j�j��t; x� �
1

2pi

�

Gl

~Vj �j � Fl;p��x; l�t
l dl A O�Sy;y � BR 0�:�3:16�

Hence, for every ®xed x � x0, the solution ul;p�j��t; x0� has the form of

X

d 0
l

n�1

X

y

j�0

X

r 0
n; j

k�1

vn; j;kt
m 0
l; n
�j�log t�kÿ1

Method of Frobenius to Fuchsian PDE 653



for some vn; j;k � vl;p; n; j;k A C , some r 0n; j � r 0l;p; n; j A Nnf0g, and some m 0
l; n A Dl . Especially,

since

ul;p;0�j��t; x� �
1

2pi

�
Gl

j�x�
q
p
lEl�x; l�

El�x; l�
tl dl;

and since d 0
l � 1 and m 0

l;1 � ml at x � 0, we can expand ul;p�j� at x � 0 as

ul;p�j��t; 0� � j�0�
�rl�p

�pÿ 1�!
tml �log t�pÿ1 �

Xy
j�1

Xr 0l; p; j
k�1

vl;p; j;kt
ml�j�log t�kÿ1

;�3:17�

for some vl;p; j;k A C .

Remark 3.5. If the indicial polynomial C�x; l� of P is independent of x, then even

if some characteristic exponents do di¨er by integer, we have an expansion of the form

ul;p�j��t; x� �
Xy
j�0

Xrl; p; j
k�1

ul;p; j;k�x�t
ml�j�log t�kÿ1

; ul;p; j;k A O0

as in the case of ordinary di¨erential equations, though rl;p; j may diverge to y as j !

y, while rl;p; j Um in the case of ordinary di¨erential equations.

4. Proof of Theorem 3.3-(1).

In this section, we prove Theorem 3.3-(1). Let P be a Fuchsian partial di¨erential

operator considered in Section 3. Namely, P is an operator of the form (1.1)±(1.3), and

the coe½cients are holomorphic in a neighborhood of DT � BR �T > 0, R > 0�.

First, we give two fundamental results of M. S. Baouendi and C. Goulaouic [1] in

a form of later convenience. The ®rst one is the unique solvability of the equation in

the category of holomorphic functions, which correspond to the Cauchy-Kowalevsky

theorem.

Theorem 4.1. Assume the condition

C�0; j�0 0 for every j A N :

Then, there exist T 0 > 0 and R 0 > 0 such that for every f A O�DT � BR�, there exists a

unique u A O�DT 0 � BR 0� such that Pu � f .

The second one is the uniqueness of solutions in a wider class, which correspond

to the Holmgren theorem. We consider solutions in real domain.
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Theorem 4.2. There exists L A N such that if u A CL��0;T 0� �U�, where T 0 > 0

and U is an open neighborhood of x � 0 in R
n, if D

j
t ujt�0 � 0 �0U jULÿ 1�, and if

Pu � 0 on �0;T 0� �U , then there exists T 00 > 0 and an open neighborhood U 0 of x � 0

such that u � 0 in �0;T 00� �U 0.

Now, we can prove Theorem 3.3-(1) by using Theorem 4.1. (Theorem 4.2 is used in

Section 8.)

Proof of Theorem 3.3-(1). Suppose that 0 < R 0 < R0 and F A O�BR 0��z�. First,

note that P can be written as

P � P�t; x; Q;Dx�;

where P�t; x; l; x� is a polynomial in �l; x� with the coe½cients in O�DT � BR�. The

equation P�tz ~V�t; x; z�� � tzF�x; z� is equivalent to P�t; x; Q� z;Dx� ~V � F �x; z�, and the

operator Q :� P�t; x; Q� z;Dx� is also a Fuchsian partial di¨erential operator of the

variables �t; x; z�. The indicial polynomial of Q is C�Q��x; z; l� � C�P��x; l� z�.

If we ®x �x; z� � �x0; z0� A BR 0 � �6d

l�1
Gl�, then C�Q��x0; z0; j�0 0 for every j A N ,

by (g) of Lemma 3.2. Hence, we can use Theorem 4.1 for Q and �x0; z0� instead of

P and 0, and hence there exist T 0 > 0, R 00 > 0 and a unique ~V�t; x; z� A O�DT 0 �

BR 00�x0; z0�� such that Q� ~V� � F�x; z�, where BR 00�x0; z0� is the open ball in C
n�1

centered at �x0; z0� with the radius R 00. Since �x0; z0� is an arbitrary point of BR 0 �

�6d

l�1
Gl�, and since ~V is unique, there exists an open neighborhood W of ft � 0g�

BR 0 � �6d

l�1
Gl� in C � C

n � C such that ~V A O�W�. This means that for every R 00 A

�0;R 0�, there exists T 00 > 0 such that ~V A O�DT 00 � BR 00 � �6d

l�1
Gl��. From this, it is

almost trivial that u�l;F � A gOy;R 0 .

Since
�
Gl
F �x; z�tz dz � 0, it is also trivial that u�l;F � is a solution of Pu � 0.

r

5. Function spaces measuring the order of functions.

In this section, we introduce some function spaces, which ``measure'' the order of

functions as t ! 0.

Definition 5.1. For y A �0;y�, T > 0, and R > 0, put

W�y;T ;R� :� ff A O�Sy;T � BR� : for every y 0
A �0; y��5:1�

and every R 0
A �0;R�; there holds

sup
jxjUR 0

jf�t; x�j ! 0 �as t ! 0 in Sy 0
;T�g;
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where Sy;T is de®ned by (3.5), and put

~W�y;R� :� ff A gOy;R : for every R 0
A �0;R�;�5:2�

there exists T 0 > 0 such that f A W�y;T 0;R 0�g:

Further, for a A R, put

W �a��y;T ;R� :� ta �W�y;T ;R�;�5:3�

~W �a��y;R� :� ta � ~W�y;R�:�5:4�

We have the following fundamental properties of these function spaces.

Lemma 5.2. (1) Q l�W�y;T ;R��HW�y;T ;R� for all l A N . Namely, if f A

W�y;T ;R�, then Q lf A W�y;T ;R� for all l A N .

(2) Dxj �W�y;T ;R��HW�y;T ;R� �1U jU n�.

(3) ~W �a��y;R� � ff : for every R 0
A �0;R�, there exists T 0 > 0 such that f A

W �a��y;T 0;R 0�g.

(4) If a 0 < a, then W �a��y;T ;R�HW �a 0��y;T ;R� and ~W �a��y;R�H ~W �a 0��y;R�.

(5) t�W �a��y;T ;R�HW �a�1��y;T ;R�, t� ~W �a��y;R�H ~W �a�1��y;R�.

(6) qt�W
�a��y;T ;R��HW �aÿ1��y;T ;R�, qt� ~W �a��y;R��H ~W �aÿ1��y;R�.

(7) If B�t; x;Dx� is a di¨erential operator of x with the coe½cients in O�DT � BR�,

then

B�t; x;Dx��W
�a��y;T ;R��HW �a��y;T ;R�;�5:5�

B�t; x;Dx�� ~W �a��y;R��H ~W �a��y;R�:�5:6�

Proof. We show only (1) and (2). The rest is straightforward and easy after these

two are proved.

(1) We have only to show the case l � 1. Suppose that f A W�y;T ;R� and y 0
A

�0; y�. We take y 00
A �y 0; y�. Then, there exists d > 0 such that if t A Sy 0;y, r A C , and

jrjU djtj, then t� r A Sy 00;y. Take the circle G t centered at t with the radius djtj. We

can write

Dtf�t; x� �
1

2pi

�

G t

f�t; x�

�tÿ t�2
dt;

for t A Sy 0;T=�1�d�. From this, we have

jQf�t; x�jU
1

d
sup

jtjU�1�d�jtj; jarg tjUy 00

jf�t; x�j

for t A Sy 0;T=�1�d� and x A BR. Thus, Qf A W�y;T ;R�.
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(2) Suppose that f A W�y;T ;R� and that R 0 A �0;R�. Take R 00 A �R 0;R�. Similarly

to the proof of (1), we can show

sup
jxjUR 0

jDxjf�t; x�jU
1

R 00 ÿ R 0
sup

jzjUR 00

jf�t; z�j

for t A Sy;T . r

Proposition 5.3. For a simple closed curve G in C and a function ~V�t; x; l� A

O�DT 0 � BR 0 � G�, put

u�t; x� :�

�
G

~V�t; x; l�tl dl A O�Sy;T 0 � BR 0�:

If a < minfRe l : l A Gg, then we have

u A W �a��y;T 0
;R 0�:

If ~V A O�ft � 0g � BR 0 � G� instead, then we have u A ~W �a��y;R 0�.

Proof. Suppose that ~V A O�DT 0 � BR 0 � G�. Since

tÿau�t; x� �

�
G

~V�t; x; l�tlÿa dl;

we can easily show that tÿau A W�y;T 0;R 0�, that is, u A W �a��y;T 0;R 0�. The last part

is now easy. r

6. Euler equations with holomorphic parameters.

In order to prove the main theorem, we need some results on the equation

El�x; Q�u � f �t; x� and C�x; Q�u � f �t; x�. These are ordinary di¨erential equations of

special type, so-called Euler equations, with holomorphic parameter x. In this section,

we study about equations of this type.

First, we consider a ``good'' base of the solution space of the homogeneous equa-

tion E�x; Q�u � 0, where E�x; l� A O�BR��l� �R > 0� is a monic polynomial of degree r.

Definition 6.1. For p � 1; 2; . . . ; r, put

wp�t; x� :�
1

2pi

�
G

q
p
lE�x; l�

E�x; l�
tl dl A O�Sy;y � BR�;�6:1�

where G � Gx is a simple closed curve (or a sum of disjoint simple closed curves) in C

enclosing all the roots l of E�x; l� � 0. Note that wp is independent of the choice of

such G.
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Example 6.2. If E�x; l� � l2 ÿ x, then

w1 �
1

2pi

�

G

2l

l2 ÿ x
tl dl � t

��

x
p

� tÿ
��

x
p

;

w2 �
1

2pi

�

G

2

l2 ÿ x
tl dl � t

��

x
p

ÿ tÿ
��

x
p

���

x
p ;

where G encloses G
���

x
p

. In general, wp is a ``symmetrization of (higher) divided dif-

ferences'' of ftlj�x�gr
j�1, where flj�x�gr

j�1 are the roots of E�x; l� � 0. S. Wakabayashi

told the author that divided di¨erences are represented in a simple way by Cauchy

integrals, which was a great advice for the author. In this article, we do not use any

higher divided di¨erences explicitly, and hence we omit the detail.

Let T > 0 and y A �0;y�.

Proposition 6.3. (1) For every ®xed x A BR, the set of functions B :�
fwp�� ; x�g1UpUr is a base of

KerO�Sy;T � E�x; Q� :� fu A O�Sy;T � : E�x; Q�u � 0g:

(2) If u A O�Sy;T � BR� satis®es E�x; Q�u � 0, then there exists unique jp A O�BR� �1U
pU r� such that u�t; x� �

Pr
p�1 jp�x�wp�t; x�.

To prove this proposition, we use the following lemma, whose proof is easy and

omitted.

Lemma 6.4. Let F A C �l� be a monic polynomial of degree r A Nnf0g. If G is a

simple closed curve enclosing all the roots of F �l� � 0, then

�

G

ln

F �l� dl � 0 �0U n < rÿ 1; n A N�;

�

G

lrÿ1

F �l� dl � 2pi:

Proof of Proposition 6.3. (1) We ®x x A BR. Since E�x; Q�tl � E�x; l�tl, u �
wp�� ; x� is a solution of E�x; Q�u � 0.

First, we consider wp�� ; x� as elements of O�Sy;y�. By Lemma 6.4 we have

�Qnwp��1; x� � 0 �0U n < pÿ 1� and �Qpÿ1wp��1; x� � �r�p 0 0:�6:2�

Using these, we can easily show that B is linearly independent in O�Sy;y�, and hence in

O�Sy;T�. Since dimKerO�Sy; T � E�x; Q� � r, the set B is a base.
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(2) By (1), jp�x� is uniquely determined for each x. The problem is the hol-

omorphy in x. By the standard theory of ordinary di¨erential equations, u can be

extended to O�Sy;y � BR� (as a matter of fact, to O�Sy;y � BR��. By (6.2), we have

�Qnu��1; x� � �r�n�1jn�1�x� �
X

n

p�1

jp�x��Qnwp��1; x� �0U n < r�:

From this, we can easily show that jp A O�BR� for p � 1; 2; . . . ; r. r

Next, we consider non-homogeneous equations.

Lemma 6.5. Suppose that g A O�Sy;T� satis®es the condition

�B� g�t� ! 0 as t ! 0 in Sy;T :

(1) Fix T1 A �0;T�. If Re l > 0, then

v�l; g��t� � tl
� t

T1

tÿlÿ1g�t� dt

is a solution of �Qÿ l�v � g�t�, and v�l; g��t� is holomorphic in �l; t� on C� � Sy;T , where

CG :� fl A C : GRe l > 0g. Further, v�l; g��t� satis®es the following estimate for every

y 0
A �0; y� and every M > 0.

sup
jtjUr; jarg tjUy 0

jv�l; g��t�j�6:3�

U
C

Re l
rRe l=2 sup

jtjUT1; jarg tjUy 0
jg�t�j � sup

jtjU ��

r
p

; jarg tjUy 0
jg�t�j

( )

;

for every r A �0;T1� and every l A C� VBM ;

where C � Cy 0;T1;M is independent of r, l and g.

(2) If Re l < 0, then

v�l; g��t� � tl
� t

0

tÿlÿ1g�t� dt �
�1

0

sÿlÿ1g�s t� ds

is a solution of �Qÿ l�v � g�t�, and v�l; g��t� is holomorphic in �l; t� on Cÿ � Sy;T .

Further, v�l; g��t� satis®es the following estimate for every y 0
A �0; y�, every r A �0;T�, and

every l A Cÿ.

sup
jtjUr; jarg tjUy 0

jv�l; g��t�jU 1

jRe lj sup
jtjUr; jarg tjUy 0

jg�t�j:�6:4�
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Note that v�l; g� ! 0 as t ! 0 in Sy;T in both cases. Also note that v�l; g� depends
on the choice of T1 in the case (1).

Proof. We show only the estimate in (1). The rest is easy.

We may assume that rUminf1;T 2
1 g. By putting a :� arg t, we have

v�l; g��t� � tl
�T1e

ia

T1

tÿlÿ1g�t� dt� tl
�

���

jtj
p

e ia

T1e ia
tÿlÿ1g�t� dt

� tl
�jtje ia

���

jtj
p

e ia
tÿlÿ1g�t� dt �: I1 � I2 � I3;

and we have for jtjU rUT1,

jI1jUCjtjRe l sup
jtj�T1; jarg tjUy 0

jg�t�j;

jI2jUCjtjRe l

�T1

���

jtj
p sÿRe lÿ1jg�se ia�j ds

UCjtjRe l sup
jtjUT1; jarg tjUy 0

jg�t�j
 !

�T1

���

jtj
p sÿRe lÿ1 ds

UC
1

Re l
jtjRe l=2 sup

jtjUT1; jarg tjUy 0
jg�t�j;

jI3jUC
1

Re l
sup

jtjU
���

jtj
p

; jarg tjUy 0
jg�t�j;

where C denotes constants that may be di¨erent in each appearance, but independent of

r, l with jljUM, and g. The estimate (6.3) follows easily from these estimates. r

Lemma 6.6. Suppose that g A O�Sy;T� satis®es the condition (B) in Lemma 6.5. Let

v�l; g� be the solution given in Lemma 6.5. Let l1; . . . ; lr A C satisfy that all Re ln �1U
nU r� has the same sign. Put

v�l1; . . . ; lr; g��t� :�
1

2pi

�

G

1

�zÿ l1� � � � �zÿ lr�
v�z; g��t� dz A O�Sy;T �;

where G is a simple closed curve in C enclosing all ln and being disjoint with the

imaginary axis. Then, v � v�l1; . . . ; lr; g� is a solution of the equation

�Qÿ l1� � � � �Qÿ lr�v � g�t�:

Further, v�l1; . . . ; lr; g��t� ! 0 as t ! 0 in Sy;T .
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Proof. Since �Qÿ lr�v�z; g��t� � �zÿ lr�v�z; g��t� � g�t�, if rV 2, then we have

�Qÿ lr�v�l1; . . . ; lr; g��t� � v�l1; . . . ; lrÿ1; g��t�;

by Lemma 6.4. Hence, by the induction on r, v�l1; . . . ; lr; g� is a solution of the equation

�Qÿ l1� � � � �Qÿ lr�v � g�t�. From the estimate of v�z; g��t� given in Lemma 6.5, we can

easily show that v�l1; . . . ; lr; g��t� ! 0 as t ! 0 in Sy;T . r

Proposition 6.7. Let F�x; l� A O�BR��l� be a monic polynomial, and suppose that

all the roots l of F�x; l� � 0 �x A BR� has the real parts with the same sign.

If g A W�y;T ;R�, then we can de®ne

v�F ; g��t; x� :�
1

2pi

�
G

1

F�x; z�
v�z; g�� ; x���t� dz;

where G � Gx is a simple closed curve in C enclosing all the roots of F �x; l� � 0 �x A BR�

and being disjoint with the imaginary axis. (The function v�F ; g� is independent of the

choice of such G.) Further, we have v�F ; g� A W�y;T ;R� and F�x; Q��v�F ; g��t; x�� �

g�t; x�.

Proof. For every ®xed x A BR, g�� ; x� satis®es the condition (B), and hence

v�l; g�� ; x���t� A O�Cs � BR � Sy;T�, where s � G is the sign of the roots of F�x; l� � 0.

Thus, we can de®ne v�F ; g� A O�Sy;T � BR�. By Lemma 6.6, we have F �x; Q��v�F ; g��t; x��

� g�t; x�. By the estimate of v�l; g� in Lemma 6.5, we can easily show that v�F ; g� A

W�y;T ;R�. r

Proposition 6.8. Let E A O�BR��l� be a monic polynomial. Assume that there exist

L0 A Z and eV 0 such that

if x A BR and E�x; l� � 0; then L0 � e < Re l < L0 � e� 1:

For every L A Z, y A �0;y�, T 0 A �0;T�, R 0 A �0;R�, and for every f A W �L�e��y;T 0;R 0�,

there exists u A W �L�e��y;T 0;R 0� such that E�x; Q�u � f .

Proof. By putting f � tL�eg and u � tL�ev, the equation E�x; Q�u � f is equi-

valent to E�x; Q�L�e�v � g. Since g A W�y;T 0;R 0� and since F�x; l� :� E�x; l�L�e�

satis®es the assumption of Proposition 6.7, we get v � v�F ; g� A W�y;T 0;R 0� satisfying

E�x; Q� L� e�v � g. r

Last in this section, we consider the operator C�x; Q�, where C is the indicial

polynomial of a Fuchsian partial di¨erential operator P considered in Section 3. We

take Gl , BR0
, El in Lemmata 3.1 and 3.2. Note that C�x; Q� �

Qd
l�1 El�x; Q�. Put
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wl;p�t; x� :�
1

2pi

�

Gl

q
p
lEl�x; l�

El�x; l�
tl dl A O�Sy;y � BR0

�;�6:5�

which correspond to wp in (6.1) for each El .

Let y A �0;y� and T 0 A �0;T�.

Proposition 6.9. (1) wl;p A W �Ll�e��y;y;R0�, where Ll A Z are taken at the

beginning of Section 3.

(2) For every ®xed x A BR0
, the set of functions

B :� fwl;p�� ; x� : 1U lU d; l A N ; 1U pU rl ; p A Ng

is a base of KerO�Sy; T 0 � C�x; Q�.

(3) Let 0 < R 0 < R0. If u A gOy;R 0 satis®es C�x; Q�u � 0, then there exist unique jl;p A

O�BR 0� �1U lU d; 1U pU rl� such that

u�t; x� �
Xd

l�1

Xrl

p�1

jl;p�x�wl;p�t; x�:

As a result, u AW �Lmin�e��y;y;R 0�HO�Sy;y�BR 0�, where Lmin :� minfLl : 1U lU dg.

Further, if L A Z and if u A ~W �L�e��y;R 0� in addition, then jl;p � 0 for every l such that

Ll < L.

To prove this proposition, we use the following lemma. Recall that we have put

Sl � C=El �
Q

l 0 0 l El 0 , and that if l0 l 0, then the two equations El�x; l� � 0 and

El 0�x; l� � 0 have no common root.

Lemma 6.10. There exist unique Al A O�BR0
��l� �1U lU d� such that degl Al U

degl El ÿ 1 � rl ÿ 1 �1U lU d� and

Xd

l�1

Al�x; l�Sl�x; l� � 1 for all x A BR0
and all l A C :

Proof. If we ®x x, this is well-known. The problem is the holomorphy of the

coe½cients of Al in x. The simplest way to show this would be to use the formula

Al�x; l� �
1

2pi

�

Gl

1

C�x; z�
�
El�x; l� ÿ El�x; z�

lÿ z
dz;�6:6�

whose proof is given later (Lemma 6.12). Note that �El�x; l� ÿ El�x; z��=�lÿ z� is a

polynomial of �l; z� with the coe½cients in O�BR0
�. r

Proof of Proposition 6.9. (1) follows from Proposition 5.3.
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(2) We have only to show the independence of B. Suppose that kl;p A C

�1U lU d; 1U pU rl� and
P

l;p kl;pwl;p � 0 in O�Sy;T�. We ®x l � l0 arbitrarily. By

operating Al0�x; Q�Sl0�x; Q� to this equality, we have
P

p kl0;pAl0�x; Q�Sl0�x; Q�wl0;p � 0,

since Sl0 is divisible by El �l0 l0� and since El�x; Q�wl;p � 0. Since

Al0�x; l�Sl0�x; l� � 1ÿ Fl0�x; l�El0�x; l�

for some Fl0 A O�BR0
��l�, we have Al0�x; Q�Sl0�x; Q�wl0;p�t; x� � wl0;p�t; x�. Thus, by

Proposition 6.3-(1), we have kl0;p � 0 for every p.

(3) By (2), jl;p�x� is uniquely determined for each x A BR 0 . The problem is the

holomorphy in x. Similarly to (1), we have that

Al0�x; Q�Sl0�x; Q�u�t; x� �
Xrl0

p�1

jl0;p�x�wl0;p�t; x�:

Hence, by Proposition 6.3-(2), we have jl0;p A O�BR 0� �1U pU rl0�.

Suppose that L A Z and that u A ~W �L�e��y;R 0�. We divide the sum representing u

into two parts.

u�t; x� �
X

1UlUd;LlVL

Xrl

p�1

jl;p�x�wl;p�t; x� �
X

1UlUd;Ll�1UL

Xrl

p�1

jl;p�x�wl;p�t; x�

�: S1 � S2:

Since u, S1 A
~W �L�e��y;R 0�, we have S2 A

~W �L�e��y;R 0�.

Now, ®x x0 A BR 0 and consider v�t� :� S2�t; x0�. Using v�t� � o�tL�e�, we shall

show v�t�1 0, from which the result follows by (2).

Let El�x0; l� �
Qhl

n�1�lÿ bl; n�
sl; n , where fbl; ngn are distinct. By the well-known fact

about partial fractions, we can write

q
p
lEl�x0; l�

El�x0; l�
�

Xhl

n�1

Xsl; n

r�1

al;p; n;r

�lÿ bl; n�
r for some al;p; n;r A C :

Hence, we can write wl;p�t; x0� �
Phl

n�1

Psl; n
r�1�1=�rÿ 1�!�al;p; n;rt

bl; n�log t�rÿ1, and hence

v�t� �
P

1UlUd;Ll�1UL

Phl
n�1

Psl; n
r�1 bl; n;rt

bl; n�log t�rÿ1 for some bl; n;r A C . Since bl; n A Dl

by Lemma 3.2-(f ), we have Re bl; n < Ll � 1� eUL� e, and hence it is now easy to

lead bl; n;r � 0 from v�t� � o�tL�e�, and hence we have v�t�1 0. r

By a repeated use of Proposition 6.8, we have the following.
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Proposition 6.11. For every L A Z, y A �0;y�, T 0
A �0;T�, R 0

A �0;R0�, and for

every f A W �L�e��y;T 0;R 0�, there exists u A W �L�e��y;T 0;R 0� such that C�x; Q�u � f .

The author believes that the formula (6.6) is not new, though he found this formula

by himself and could not ®nd any references. We give a proof of this formula for the

convenience of readers.

Lemma 6.12. Let E1�l�; . . . ;Ed�l� A C �l� be monic polynomials. Suppose that if

l0 l 0, then El�l� � 0 and El 0�l� � 0 have no common root. Then, for every g�l� A C �l�

with deg gU
Pd

l�1 degEl ÿ 1, there exist unique Al�l� A C �l� �1U lU d� such that

g�l� �
X

d

l�1

Al�l�Sl�l� and degAl U degEl ÿ 1 �1U lU d�;

where Sl�l� :�
Q

1Ul 0Ud; l 00l El 0�l�. Further, if Gl is a sum of disjoint simple closed curves

in C , if all the roots of El�l� � 0 lie inside Gl , and if all the roots of El 0�l� � 0 �l 0 0 l� lie

outside Gl , then we have

Al�l� �
1

2pi

�

Gl

g�z�

E1�z� � � �Ed�z�
�
El�z� ÿ El�l�

zÿ l
dz:�6:7�

Note that �El�z� ÿ El�l��=�zÿ l� is a polynomial of �z; l�.

Proof. The ®rst half is well-known, and we have only to show (6.7). Fix l � l0

arbitrarily, and let El0�l� �
Qp

n�1�lÿ an�
sn , where fang

p
n�1 are distinct. Since

g�l�

Sl0�l�
� Al0�l� � El0�l�

X

1UlUd; l0l0

Al�l�

El�l�
;

we have

A
� j�
l0
�an� �

d j

dl j

g�l�

Sl0�l�

� ��

�

�

�

l�an

�1U nU p; 0U j < sn�:�6:8�

On the other hand, if we put the right hand side of (6.7) as ~Al�l� , then this is a

polynomial of l and deg ~Al U degEl ÿ 1. Further, if l lies inside Gl0 , then we have

~Al0�l� �
1

2pi

�

G l0

g�z�

Sl0�z�

1

zÿ l
dzÿ

1

2pi

�

G l0

g�z�

El0�z�Sl0�z�

1

zÿ l
dz � El0�l��6:9�

�
g�l�

Sl0�l�
ÿ hl0�l�El0�l�;�6:10�
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for some hl0�l� holomophic inside G l0 . Hence, we have

~A
� j�
l0

�an� �
d j

dl j

g�l�

Sl0�l�

� ��

�

�

�

l�an

�1U nU p; 0U j < sn�:�6:11�

By (6.8), (6.11), and by degAU
Pp

n�1 sn ÿ 1, deg ~AU
Pp

n�1 sn ÿ 1, we have A � ~A.

r

7. Temperedness of solutions.

Let P be a Fuchsian partial di¨erential operator considered in Section 3. In this

section, we give the temperedness of all the solutions of Pu � 0, that is, the following

proposition.

Proposition 7.1. Let y A �0;y�. There exists a A R such that if u A O�Sy;T � BR�

satis®es Pu � 0, then u A W �a��y;T ;R�.

This follows from a more general result by S. OÅ uchi [5]. H. Tahara, however, told

the author a simpler proof before OÅ uchi's result. We give a sketch of his proof.

Proof. By a change of the variable t 7! t l �l A Nnf0g�, we may assume that P has

the following form, without loss of generality.

P � Q
m �

X

j�jajUm; j<m

bj;a�t; x�Q
j�tDx�

a
; bj;a A O�DT � BR�:�7:1�

By putting uj;a :� Q
j�tDx�

a
u � j � jajUmÿ 1�, the single equation Pu � 0 is re-

duced to a system of equations

Q~u � A�x�~u� t B�t; x� �
X

n

j�1

Cj�t; x�Dxj

 !

~u;�7:2�

where

~u � �uj;a�j�jajUmÿ1 A C
N ;

and A�x� (resp. B�t; x�, Cj�t; x�� is an N �N matrix whose entries belong to O�BR�

(resp. O�DT � BR�). Here, N is the number of � j; a� with j � jajUmÿ 1.

We show that there exists a > 0 depending only on A�x� for which if ~u A

O�Sy;T � BR;C
N� satis®es (7.2), then for every R 0, R 00 with 0 < R 00 < R 0 < R, there

exists C0 > 0 and T0 > 0 such that the following holds.
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sup
jxjUR 00

j~u�t; x�jUC0

T0

jtj

� �a

sup
jxjUR 0

j~u��T0=jtj�t; x�j; for 0 < jtjUT0 with jarg tj < y:

It is clear that this estimate implies the proposition. By rotating t, we may assume that

t A R, though we must be careful that C0 do not depend on arg t.

We show the estimate by solving the Cauchy problem

�E�
Q~u � A�x�u� t�B�t; x� �

Pn
j�1 Cj�t; x�Dxj �~u;

~ujt�T0
�~j�x�;

�

for su½ciently small T0 > 0 by the method of ``a scale of Banach spaces''. We may

assume that RU 1.

We use the following norms.

k~uk :�
X

N

i�1

juij; for ~u � t�u1; . . . ; uN� A C
N ;�7:3�

kAk :� sup
~u AC N

;k~uk�1

kA~uk; for A A MN�C�;�7:4�

k~uks :� sup
jxjUs

k~u�x�k; for ~u A O�Bs;C
N�;�7:5�

kAks :� sup
jxjUs

kA�x�k; for A A O�Bs;MN�C��:�7:6�

Put

a :� kAkR;

b :� sup
jtjUT

kB�t; ��kR;

g :�
X

n

j�1

sup
jtjUT

kCj�t; ��kR;

M0 :� k~jkR 0 :

Note that ~j is holomorphic in BR. We solve �E� by the following iterations.

�E�0
�Qÿ A�x��~u0 � 0;

~u0jt�T0
�~j�x�;

(

�E�p
�Qÿ A�x��~up � t�B�t; x� �

Pn
j�1 Cj�t; x�Dxj �~upÿ1;

~upjt�T0
� 0;

(

�pV 1�:
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�E�0 can be solved as

~u0�t; x� �
t

T0

� �A�x�

~j�x�; �0U tUT0�;

where zA :� expf�log z�Ag. Since we are considering t A �0;T0�, we have

k~u0�t; ��ks U
T0

t

� �kAks

k~jks U
T0

t

� �a

M0 �0 < sUR 0�:

If we put M :� T a
0 M0, then we have

kta~u0�t; ��ks UM for 0 < sUR 0:

From this, we have

kDxj t
a~u0�t; ��ks U sup

jxjUs

1

2pi

�

Gxj

ta~u0�t; x1; . . . ; z
4

j

; . . . ; xn�

�zÿ xj�
2

dz

�

�

�

�

�

�

�

�

�

�

�

�

�

�

U
1

2p

M

�R 0 ÿ s�2
2p�R 0 ÿ s� �

M

R 0 ÿ s
�0 < s < R 0�;

where Gxj is the circle centered at xj with the radius R 0 ÿ s.

Hence, if we put ~f1�t; x� :� t�B�t; x� �
Pn

j�1 Cj�t; x�Dxj �~u0, then we have

kta ~f1�t; ��ks U t B�t; x� �
X

n

j�1

Cj�t; x�Dxj

 !

ta~u0�t; ��































s

U t b �
g

R 0 ÿ s

� �

MU t�b � g�
M

R 0 ÿ s

U t�b � g�
eM

R 0 ÿ s
� tK

eM

R 0 ÿ s
for 0 < s < R 0;

where K :� b � g.

�E�1 is solved as

~u1�t; x� � ÿ

�T0

t

t

t

� �ÿA�x�

~f1�t; x�
1

t
dt:

Hence, we have

k~u1�t; ��ks U

�T0

t

t

t

� �a

k~f1�t; ��ks
1

t
dt for 0 < tUT0:
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Thus, we have

kta~u1�t; ��ks U

�T0

t

kta ~f1�t; ��ks
1

t
dt

U

�T0

t

tK
eM

R 0 ÿ s

1

t
dt

U
MKe

R 0 ÿ s
�T0 ÿ t� for 0 < s < R 0:

Now, we show

kta~up�t; ��ks UM
Ke

�R 0 ÿ s�
�T0 ÿ t�

� �p

for 0 < s < R 0;�7:7�

by induction on p. If this estimate is valid for p �pV 1�, then we can show that

kDxj t
a~up�t; ��ks UM

Ke

R 0 ÿ �s� �R 0 ÿ s�=�p� 1��
�T0 ÿ t�

� �p
p� 1

R 0 ÿ s
�7:8�

UM
Ke

R 0 ÿ s
�T0 ÿ t�

� �p �p� 1�e

R 0 ÿ s
�7:9�

by a similar argument to the one above, replacing Gxj by the circle with the radius

�R 0 ÿ s�=�p� 1�, and using �1� �1=p��p < e. (This is a standard technique. See, for

example, [1], Section 2.2-b.) Hence, we have

kta~fp�1�t; ��ks U tM
�p� 1�K p�1ep�1

�R 0 ÿ s�p�1
�T0 ÿ t�p;

where ~fp�1�t; x� :� t�B�t; x� �
Pn

j�1 Cj�t; x�Dxj �~up�t; x�. From this, we can show that

kta~up�1�t; ��ks UM
K p�1ep�1

�R 0 ÿ s�p�1
�T0 ÿ t�p�1;

by estimating

~up�1�t; x� � ÿ

�T0

t

t

t

� �ÿA�x�

~fp�1�t; x�
1

t
dt

as above.

Thus, by (7.7), we have

X

y

p�0

k~up�t; ��ks U tÿa
X

y

p�0

kta~up�t; ��ks U tÿaM
X

y

p�0

KeT0

R 0 ÿ s

� �p

T. Mandai668



for 0 < s < R 0 and 0 < tUT0. Hence, if we take 0 < T0 < �R 0 ÿ s�=�Ke�, then ~u�t; x� :�
Py

p�0~up�t; x� converges on �0;T0� � Bs, and satis®es

k~u�t; ��ks U
T0

t

� �a 1

1ÿ �KeT0�=�R 0 ÿ s�
M0 �0 < tUT0�: r

8. Proof of Theorem 3.3-(2).

In this section, we prove Theorem 3.3-(2). First, we prove the injectivity of the

solution map (3.4). This also gives the injectivity of (3.8).

We use the following lemma.

Lemma 8.1. If j A O�BR 0� �R 0 > 0�, then we can write

ul;p�j��t; x� � j�x�wl;p�t; x� � t � rl;p�j��t; x�;

where rl;p�j� A ~W �Ll�e��y;R 0�. Especially, ul;p A ~W �Ll�e��y;R 0�.

Proof. We can expand as ~V �j � Fl;p��t; x; l� � j�x��qp
lEl�x; l��=El�x; l� �

t � Rl;p�j��t; x; l�, where Rl;p�j� A O�ft � 0g � BR 0 � �6d

l�1
Gl��. The ®rst term of this

expansion produces j�x�wl;p�t; x�, Hence, the lemma follows from Propositions 5.3 and

6.9-(1). r

Proof of Injectivity of (3.4). Suppose that jl;p A O�BR 0� �R 0 A �0;R0�; 1U lU d;

1U pU rl� and that
Pd

l�1

Prl
p�1 ul;p�jl;p� � 0. Further, suppose that there exists �l; p�

such that jl;p 0 0, from which we shall lead a contradiction. We can take l0 as Ll0 �

minfLl : jl;p 0 0 for some pg. There exists p such that jl0;p�x�2 0.

Take Al in Lemma 6.10. Recall that Sl0�x; Q�wl;p�t; x� � 0 if l0 l0 and that

Al0�x; Q�Sl0�x; Q�wl0;p�t; x� � wl0;p�t; x�. Thus, we have

0 �
X

d

l�1

X

rl

p�1

Al0�x; Q�Sl0�x; Q�ul;p�jl;p��t; x��8:1�

�
X

rl0

p�1

jl0;p�x�wl0;p�t; x��8:2�

�
X

d

l�1

X

rl

p�1

Al0�x; Q�Sl0�x; Q�ft � rl;p�jl;p��t; x�g;�8:3�

where rl;p�j� is given in Lemma 8.1. The second sum belongs to ~W �Ll0
�1�e��y;R 0� by

Lemma 8.1, and hence we have
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Xrl0

p�1

jl0;p�x�wl0;p�t; x� A ~W �Ll0
�1�e��y;R 0�:

By the last part of Lemma 6.9-(3), we have jl0;p � 0 for all p, which contradicts to the

de®nition of l0. r

Next, we prove the surjectivity of (3.8).

Proof of Surjectivity of (3.8). Suppose that u A gOy;R 0 �y A �0;y�;R 0 A �0;R0��

and that Pu � 0. Take an arbitrary R 00 A �0;R 0�. Then, there exists T 00 > 0 such

that u A O�Sy;T 00 � BR 00�. By Proposition 7.1, there exists L A Z such that u A

W �L�e��y;T 00;R 00�. We can write P � C�x; Q� � tQ�t; x; Q;Dx�, where Q�t; x; l; x� A

O�DT � BR��l; x�, and we have C�x; Q�u � ÿtQ�t; x; Q;Dx�u A W �L�1�e��y;T 00;R 00� by

Lemma 5.2.

By Proposition 6.11, there exists v A W �L�1�e��y;T 00;R 00� such that C�x; Q�v �

C�x; Q�u and hence uÿ v A KerO�Sy; T 00�BR 00 �C�x; Q�. Since uÿ v A W �L�e��y;T 00;R 00�, there

exists jl;p�0� A O�BR 00� �1U lU d;Ll VL; 1U pU rl� such that

uÿ v �
X

1UlUd;LlVL;1UpUrl

jl;p�0�wl;p;

by Proposition 6.9-(3).

Put u�1� :� uÿ
P

1UlUd;LlVL;1UpUrl
ul;p�jl;p�0�� A gOy;R 00 . Then, we have P�u�1�� � 0.

Further, by Lemma 8.1, we have

u�1� ÿ v � u�1� ÿ u� uÿ v

� ÿ
X

l;LlVL

Xrl

p�1

ful;p�jl;p�0�� ÿ jl;p�0�wl;pg A ~W �L�1�e��y;R 00�:

Hence, we have u�1� A ~W �L�1�e��y;R 00�.

Take an arbitrary R 000 A �0;R 00�. Since P�u�1�� � 0, we have C�x; Q�u�1� �

ÿtQ�t; x; Q;Dx�u�1� A ~W �L�2�e��y;R 00�, and hence if we take R1 A �R 000;R 00�, then there

exists T1 > 0 such that u�1� A W �L�1�e��y;T1;R1� and C�x; Q�u�1� A W �L�2�e��y;T1;R1�.

By Proposition 6.11, there exists v�1� A W �L�2�e��y;T1;R1� such that C�x; Q�v�1� �

C�x; Q�u�1� and hence u�1� ÿ v�1� A KerO�Sy;T1
�BR1

� C�x; Q�. Since u�1� ÿ v�1� A

W �L�1�e��y;T1;R1�, there exists jl;p�1� A O�BR1
� �1U lU d;Ll VL� 1; 1U pU rl� such

that

u�1� ÿ v�1� �
X

1UlUd;LlVL�1;1UpUrl

jl;p�1�wl;p;

by Proposition 6.9-(3).
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Put u�2� :� u�1�ÿ
P

1UlUd;LlVL�1;1UpUrl
ul;p�jl;p�1�� A gOy;R1

. Then, we have P�u�2�� �

0. Further, in the same way as above by Lemma 8.1, we have u�2� A ~W �L�2�e��y;R1�.

By repeating this argument, for every N � 1; 2; 3; . . . ; we get R 000 < RN <

RNÿ1 < � � � < R1 < R 00 and u�N� A ~W �L�N�e��y;RNÿ1� that satis®es P�u�N�� � 0 and that

can be written as u�N� � uÿ
P

l;p ul;p�jl;p� for some jl;p A O�BRNÿ1
�. By Theorem 4.2,

we get u�N� � 0 for a su½ciently large N, and hence u can be written as u �
P

l;p ul;p�jl;p� for some jl;p A O�BR 000�.

Since R 00 and R 000 are arbitrary as long as 0 < R 000 < R 00 < R 0, and by the injectivity

of (3.4), that is, by the uniqueness of jl;p, we get jl;p A O�BR 0�. r

9. Some variants of the result.

We can apply the idea developed above to many problems similar to our problem.

In this section, we give two variants of the main theorem.

One is so-called Nagumo-type version. M. S. Baouendi and C. Goulaouic [1]

considered not only Fuchsian partial di¨erential operators with holomorphic coe½cients,

but also those with the coe½cients in Cy��0;T �;O�BR��, and showed theorems cor-

responding to Theorems 4.1 and 4.2. We can also give a variant of our result for such

operators.

Put

gCyO :� ind lim
T>0;R>0

Cy��0;T �;O�BR��;

then we can give a linear isomorphism

�O0�
m !

@

Ker
CyOf P;

by the same idea as the main theorem.

In the proof of this version, we must modify the function spaces as

W�y;T ;R� :� ff A C0��0;T �;O�BR�� : Q
l�f� A C0��0;T �;O�BR�� for all l A Ng;�9:1�

and so on. We also need ``a priori'' regularity similar to Proposition 1 in [1].

The other is the result to Fuchsian hyperbolic operators considered by H. Tahara

([6 ], [7], [8], and so on). In [7], he showed the Cy well-posedness of the characteristic

Cauchy problems for such operators. In [8], he gave a global linear isomorphism

fCy�Rn�gm !
@

KerCy��0;T��R
n� P;�9:2�

under the assumption that the characteristic exponents do not di¨er by integer.
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Without this assumption, by the same idea as our main theorem, we can give a

local linear isomorphism

�Cy

0 �m !
@

Ker
Cy

�0; 0�
f

P;

where Cy

0 :� ind limR>0 Cy�DR� �DR :� fx A R
n
: jxj < Rg� and gCy

�0;0� :�

ind limT>0;R>0 C
y��0;T� �DR�. Though the argument in the proof of Theorem 3.3-(1)

does not work straightly, we can show the existence of ~V �F � by using Tahara's result [7,

Theorem 3.1] instead of Theorem 4.1, and we can also show the holomorphy of ~V �F � in

l by the energy inequality.

Of course, we also need some modi®cations to the proof of (2). However, many of

Tahara's preliminary results in [8] are valid without any assumptions on the charac-

teristic exponents, which give necessary tools to us for the modi®cation.

The author believes that we can give a global isomorphism (9.2) also without any

assumption on the characteristic exponents, though he has not succeeded yet.
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