J. Math. Soc. Japan
Vol. 52, No. 3, 2000

The method of Frobenius to Fuchsian partial differential equations

By Takeshi MANDAI
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Abstract. To Fuchsian partial differential equations in the sense of M. S.
Baouendi and C. Goulaouic, which is a natural extension of ordinary differ-
ential equations with regular singularity at a point, all the solutions in a complex
domain are constructed along the same line as the method of Frobenius to
ordinary differential equations, without any assumptions on the characteristic
exponents. The same idea can be applied to Fuchsian hyperbolic equations
considered by H. Tahara.

1. Introduction.

Let C be the set of complex numbers, ¢ be a variable in C, and x = (xj,...,X,) be
variables in C". We consider a Fuchsian partial differential operator with weight 0
defined by M. S. Baouendi and C. Goulaouic [I].

(1.1) P=1"D" 4+ Pi(t,x,D)t"'D" ' + ...+ P,(t,x,Dy),

(1.2) P;(t,x; Dy) Za]atxD‘ (1<j<m),
o] <j

(1.3) ordp P;j(0,x;D,) <0 (1 <j<m),

where m is a positive integer, and D, :=0/0t, Dy := (Dy,,...,Dy,), D, = 03/0x;.
Assume that the coefficients a;, (|| < j <m) are holomorphic in a neighborhood of
(¢,x) = (0,0). M. Kashiwara and T. Oshima ([3], Definition 4.2) called such an operator
“an operator which has regular singularity in a weak sense along Xy := {t=0}.” For
such operators, M. S. Baouendi and C. Goulaouic showed fundamental theorems
that are extensions of the Cauchy-Kowalevsky theorem and the Holmgren theorem (see

Theorems 4.1, given later).
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Remark 1.1. (1) M. S. Baouendi and C. Goulaouic considered Fuchsian partial
differential equations with general weights. If P has weight w, however, then “P has
weight 0, and hence the general case can be easily reduced to the case with weight 0 as
for our problem.

(2) As for the spelling of the name of Kowalevskaya, I followed W. Walter [9],
who pointed out that she wrote the paper [4] by the name of ‘Sophie von Kowalevsky’.

We put gj(x) := P;(0,x,Dy), and put
(14)  C(x;2) = F[PI(x; ) i= (D) + a1 (x)(A) g + o+ am(x) = Py,

where (1), :=A(A—1)---(A—k+1). This polynomial in A is called the indicial
polynomial of P. A root of the equation %(x;1) =0 in A is called a characteristic
exponent (or characteristic index) of P at x. We can not necessarily take a characteristic
exponent A(x) as a holomorphic function of x, which is one of the difficulty to in-
vestigate Fuchsian partial differential equations in full generality.

In order to consider solutions in germ sense, put
Br:={xe C":|x| < R},

(p := indlim O(Bg),
R>0

where ((Q) denotes the set of holomorphic functions on €,
Ar={teC:|t|< T} (T >0),
Sow.7:=#(47\{0}) (the universal covering of Ar\{0}),

i €S B0
If the characteristic exponents {4,(0)},2, of P at x = 0 do not differ by integer, that
is, if 4;(0) — 4;(0) ¢ Z := {all the integers} for / # I’, then each characteristic exponent
is simple at x =0, and we can take the characteristic exponents 4;(x) (1 </ <m) as
holomorphic functions in a neighborhood of x=0. In this case, every solution of

Pu=0 in O can be represented as follows (see [6], [8])

m o0

(L.5) u(t,x) = Z 4 Z tuy (1, x),
I=1 =0
r;l

(1.6) u;] tx Zullk logt 1, Ujj k e (O,
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where r;; are positive integers and r; o = 1. Further, we can give u; (¢, x) = u;0,1(x) €
Oy arbitrarily, and then u; j(¢,x) (j > 1) are determined uniquely. Especially, we have a

linear isomorphism
(1.7) (00)™ 3 (ug,0.1(x))", — u(t,x) € Kerg P:={ue 0 : Pu=0}.

If some characteristic exponents differ by integer, then the situation seems far more
complicated. One of the reasons is, of course, that we can not necessarily take holo-
morphic characteristic exponents in general. For example, if €(x;1) = 2* — x, we need
functions like V™ + V¥, (V¥ — V) /\/x, or derivatives of these.

The aim of this article is to construct a linear isomorphism (0p)" — Ker; P like
without any assumption on the characteristic exponents, by essentially the same
method as the method of Frobenius to ordinary differential equations with regular
singularity at a point.

In the next section, we review the method of Frobenius, and modify it. In Section
3, we give the precise statement of our result. The first half of the main theorem is
proved in Section 4. After giving some preliminary results in Sections 5, 6, and 7, we
give a proof of the latter half of the main theorem in Section 8. Last, we give some

variants of our result in Section 9.

NotaTioN. (i) The set of the integers is denoted by Z, and the set of the
nonnegative integers by N.

(ii) If B is not open, ()(B) denotes the set of the functions holomorphic on a
neighborhood of B.

(iii) The closure of a set A is denoted by A.

(iv) The set of the N x N matrices with complex entries is denoted by My (C).

(v) The polynomial algebra in A with the coefficients in a ring X is denoted by X[/].

ACKNOWLEDGEMENT. The author is deeply grateful to Professor Hidetoshi Tahara

(Sophia University) for his various advice and encouragement. Especially, the proof

of [Proposition 7.1 is due to him. The author is also grateful to Professor Seiichiro

Wakabayashi (Tsukuba University) for his valuable advice about divided differences,
and to Professor Masatake Miyake (Nagoya University) for his continual encourage-

ment.

2. Review of the method of Frobenius to ordinary differential equations.

In this section, we consider an ordinary differential equation with regular singularity
at t=0€eC.
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(2.1) P=P(,D)=1"D" +a()i" ' D" + -+ a,(1),
CZJE(Q(AT) (1 S]SH’Z),

where m is a positive integer, 7> 0, D, :=d/dt. This can be considered as the case
n=>0.

The indicial polynomial of P is €(1) = €[P|(4) = (A),, + a1(0)(4),,_; + - + am(0)
= t7P(t*)|,_y, and a characteristic exponent is a root of the equation %(4) = 0.

Note that if we put 9:=¢D,, then we have (9), =t*D*¥ and %(9) = "D +
a1 (0)" D=1 ... + 4, (0). Further if F(1) e C[4], then we have F($)o (t*x) =
(t*x) o F(94 A), where o denotes the composition (product) of two operators, and #* x
is the multiplication operator by #*.

If the characteristic exponents {4;},2, do not differ by integer, that is, if 4, — 4, ¢ Z
for 1 #1', then every solution of Pu=0 in (S, r) is expanded as u(f) = > ", 1" "
S Zourt’, where u;; € C. Further, we can take arbitrary ;o (1 </ <m), and then

j
uj (j=1) are determined uniquely by recursive equations of the form

€A+ j) x uj = [Terms determined by u;0,...,u;;-1].

Note that we have %(4; + j) # 0 for j > 1 by the assumption that 4, + j (j € N\{0})
is not a characteristic exponent. Especially, we have a base of Kergs, ,)P:=
{ue O(S,, 1) : Pu=0} in the form # = {r + 3" u 1"}, and hence we have a

linear isomorphism
C"> (ul70>1’11 — u(l) € KGI‘@(S%‘T) P.

If some characteristic exponents do differ by integer, then there may appear some
solutions with logarithmic terms in general. Namely, let u;,...,x,; be the distinct
characteristic exponents, and let r; be the multiplicity of & (/=1,2,...,d) as a root
of #(A) =0. Then every solution of Pu=0 in O(S,, r) is expanded as u = Z,d:l -
S Loy (01, ur (1) = 320wy j i (log 0!, where uj;eC, r;eN, and rio=r.

The method of Frobenius, which is reviewed below, is a method to construct such
solutions without being bothered by the tedious process to seek u;;x (not unique in

general). Also in this case, we have a linear isomorphism

Cm = (ulvofk)lﬁlﬁd;lﬁkﬁr/ ’:) u(t) € Kercﬂ(sw,T) P

Let 4 = y; be a characteristic exponent with multiplicity » = r;. From now on, we
fix / and often omit the subscript I

Let 0 =ko < k1 <--- <k, (q=qi) be the nonnegative integers k for which x4+ k is
also a characteristic exponent. Let s5 = ;5 be the multiplicity of u+ks (6 =0,1,...,¢)
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and put R=R;:=) 7 s5. Note that so =r. Also note that if the characteristic
exponents do not differ by integer, then r, =1, ¢, =0, and R; =1 for every L

Take an integer N > k,. If ¢ > 1, then we can not solve, in general, the equation
Pu=0 in the form u= "3 " ujt/, since we have recursive equations %(u+ j)u; =
[Terms determined by up—u;_;], and there holds € (u+ j) =0 for j=ks (1 <J<q).

Considering A € C as a parameter moving near u, we solve the equation

N
(2.2) P(U) = (H C(+ v)) th = A(A)t*

v=0
for U. Note that u is a zero of A(A) of order R. We can obtain a formal solution U in
the form
(2.3) U=U(k1)=1"0050) =" U,

=0

(2.4) U; is holomorphic in a j-independent neighborhood of f,
(2.5) w18 a zero of Uy of order R —r,

and we can show that U (A; 1) converges in D x Ar for a neighborhood D of u.

Since u 1s a zero of 4 of order R, and since UéR_r)(,u) # 0, we can easily show
that {(0;U)(u;t) : R—r <v < R—1} are independent solutions of Pu=0. By con-
structing these solutions for each characteristic exponent x4 = g, we can construct a base
of Kergs, ;) P. This is the classical method of Frobenius (See, for example, [2] for a
detail).

If we try to apply this method straightly to Fuchsian partial differential equations,
we meet the following difficulties.

(A) Some characteristic exponents z,;(x) may not be holomorphic in x, while we
want solutions holomorphic in x.

(B) Even if 4(x) is holomorphic, the commutativity of two operators (0;+-)|,_
and P is no longer valid in general.

Of course, the proof of the fact that the solution map (0o)" — Ker; P is an
isomorphism would become far more difficult, while in the case of ordinary differential
equations, it follows easily from the independence of the constructed solutions, since the
solution space is finite dimensional.

Thus, we need to modify the classical method. The idea is very simple, once we

notice it. We used a solution U(4;¢) of
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(22 P(U) = (ﬁ CO+ v)) th = At
v=0

which is holomorphic at 1 = u, and obtained a solution u = (0;U)(p;t) (R—r<v<
R —1) of Pu=0. This solution u is represented by Cauchy integral as

) N U(4;1)
(2.6) (@10) (s ) = W 2mJ G

where I" = I is a sufficiently small simple closed curve enclosing u. If we consider a
function

U(4;t)
(A—pw"

this is a solution of P(V) =w(A(%)/(A — u)""")t*, where the right hand side is also a
polynomial in A. Note that V(/;7) has a pole at 1 =y unlike U.

(2.7) V(A t) :== !

This consideration leads us to the following, where we write /.

PrOPOSITION 2.1. (1) For every F e C[J], there exists a unique V[F] e (9((Ufl:1 I7) x
A7) such that V = V[F)(2;1) .= t*V[F)(2;1) is a solution of the equation P(V) = t*F(}).
Further, for every 1 =1,...,d, the function

(2.8) ull, F|(¢) := LJ VIF|(A;t)dAde O(Sy 1)
I

2mi
is a solution of Pu = 0.
(2) For 1 <l<dand1<p<m, put F; (1) = (4 — )" and put upp = ull, Fp ).
Then, # :={uy,:1<1<d;1 <p<r} is a base of Kerys, ,)P. Namely, we have a
linear isomorphism

d
C" 3 (9 ) 1<1<a — u(t) = ZZ(/)H, up,p(t) € Kergs, ;) P.
I<p<n A —

p=1

This modified version of the method of Frobenius can be applied to Fuchsian

partial differential equations rather straightly, as seen in the next section.

3. The method of Frobenius to Fuchsian partial differential equations.

Consider a Fuchsian partial differential operator P of the form [T.T}-{1.3]. Assume
that the coefficients a;, are holomorphic in a neighborhood of A7 x By (T >0,
R>0). Let 4y (I=1,...,d) be the distinct characteristic exponents of P at x =0, and
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let r; be the multiplicity of x,. By a technical reason, we take ¢ > 0 such that Rey;, — ¢ ¢
Z holds for all /. Take L; € Z such that L; + ¢ < Rey; < L;+ ¢+ 1. Then, we have the

following lemma.

LemMmA 3.1. For each | =1,...,d, we can take a domain D; in C enclosed by a
simple closed curve I}, such that the following holds.
(a) weD (1<l<d),
(b) DINDy =@ if 1 #1,
(c) %(0;A+j)#0 for every Le U;IZIUTI\{,U[}) and every jeN.
(d Djc{ieC:L+e<Rei< L +e+1} for every L

ProorF. We have only to take a sufficiently small D;. Note that (c) is equivalent to
(3.1) DiN{u, —jeC:1<l'<d,jeN}={y} for every [

and that {g, —jeC:1<!'"<d,je N} is a discrete set in C. O
We also have the following lemma.

Lemma 3.2, For each | =1,...d, take D; and I; as in Lemma 3.1. There exists
Ry > 0 and monic polynomials Ei(x;A) € O(Bg,)[A] (1 <1 <d) such that the following
holds.

(e) €(x;4) = sz:1 Ei(x;4) and E;(0;4) = (A— )" (1 <1<d).

(f) For every I, if E/(x;1) =0 and x € Bg,, then 1€ Dj.

(&) (x;A+j)#0 for all xeBg, all 2e|)l, I, and all jeN.

Proor. By (c) in [Lemma 3.1, (g) holds for x = 0. Hence, if we take a sufficiently
small Ry > 0, then (g) holds. This condition (g) implies that the number of the roots in
D; of €(x; 1) =0 is constant r; for every x € Bg,. Let 4;(x) (1 < j <) be the roots of
%(x;A) =0 in D;. Then, we have

L 1 [ 0,6(x;2)
. k - GLO\A) ok
‘E_ Aj(x) 27?iJr A 25 di e O(Bg,).
j=1 !

Since the fundamental symmetric forms of (/;(x));L; are polynomials of 77, /lj(x)k
(1 <k <) with the constant coefficients, the polynomial £(x; 1) := [[;(4 — 4i(x))
has the coefficients in (/(Bg,). Thus, we have (e).

Finally, (f) follows easily from (e) and (g) for j=0. O

From now on in this article, we fix I;, Bg, and others given in these two lemmata.
The following is the main result, which we call the method of Frobenius to Fuchsian

partial differential equations.
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THEOREM 3.3. (1) For every R' € (0, Ry) and for every F € O(Bg:)[A], there exists a
unique V[F] e O({t =0} x Bg x (Uzi1 1)) such that V = V[F|(t,x; ) == t*V[F](t, x; })

is a solution of the equation
(3.2) P(V) = t"F(x; A).

For every 1 =1,...,d, the function

Tl

(3.3) ull, F(1,x) := %JT VIFI(t,x: 7) dj

is a solution of Pu=20. Further, for every R" € (0,R’), there exists T" >0 such that
ull, F] € O(Se, 77 X Bgr).

(2) For1<l<dand 1< p<ry, put Fj ,(x; %) := Si(x; 1)V E(x; 1), where Sy(x; 1) :
=%(x;1)/Ei(x;4) € O(Bg,)[Al. For ¢e Uy, we put u,lp|(t,x):=ull,p-F,lt x).

Then, we have a linear isomorphism

d
(3.4) (Op)™ ((ﬂz,p)% .= > wplp,) € Kerg P.

ReEMARK 3.4. (1) If the characteristic exponents do not differ by integer, then our

solution map is just the same as [1.7).

(2) As a matter of fact, we shall prove a little stronger result than (2) of the
theorem. For € (0,0], T" >0, and R’ > 0, put

(3.5) So.r={te Sy, 1 :|argt| < 0},

(36> (9/;—1;/ = ﬂ U (Q(SQTN X BRN)
O0<R"<R' T">0

(3.7) = {¢: for every R" € (0,R’), there exists 7" > 0
such that ¢ € O(Sy r» x Bgrr)}.

By this notation, the last part of Theorem 3.3-(1) says that u[l, F] € 0, . We shall
show that for every R’ € (0, Ry) and every 0 € (0, o], our solution map induces a

linear isomorphism
(3.8) (O(Br )™ — Ker@;\;/ P.

As a result of this, Ker@;;, P do not depend on 6 € (0, o], which implies that if 6 > 0,
T'e(0,T), R"€(0,Ry), and if u € O(Sy r x Bg/) satisfies Pu= 0, then for every R" €
(0,R’), there exists 7”7 > 0 such that u can be extended to O(S. 7 X Bgr).
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We end this section by giving an asymptotic expansion of the solution u; ,[¢].
Since V[F] € O({t = 0} x Bg x (Uld:lfl)), we can expand this function with respect

to t as

(3.9) 1(¢,x; ) i F)(x; 1), I@[F]e(p<BR,x<On>>.

We can also expand the operator P as

(310) P = %(x; ‘9) +itth(X§ 3, Dx)7
h=1

where Qy(x, 4, &) € O(Bg)[4,¢]. Hence, from P(t*V[F]) = t*F(x; ), we have a system of
equations

(3.11) (x: 2) To[F)(x; 1) = F(x: ),

J

(312) B+ )VIFI(x0) == On(x;ii+j—hD)ViulFl(x2) (j=1).
h=1

Hence, we have

(3.13) VolF] = 7.

(3.14) VilF) e — X O(Br)[4],

for some m;, e N.

According to the expansion of V[(p«F[J,], we have an asymptotic expansion of

uj plg] (2, x) as

(315 o)1) = 3t gl )0
=0
316 wplol(t0) =5 [ Vil Byl dhe S % B

Hence, for every fixed x = xo, the solution u; ,[¢](?,x9) has the form of
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for some v, j x = vy vk € C, some r, ; € N\{0}, and some y; , € D;. Especially,

_”1,”,
since

1 J O Ei(x: )

A
Ej(x; 4) rdd,

i polp)(t.3) =5 -

and since d/ =1 and w , =, at x =0, we can expand u at x=0 as
| Hpp = 1y p L%

( o0 Ip

(3.17) u;,p[go](t, 0) = (/)(0) (pr_l)l) ['”/ logt —I—Z ZU} k[:”H-] log l‘) 17

for some v, ;1 € C.

REMARK 3.5. If the indicial polynomial %(x; A) of P is independent of x, then even

if some characteristic exponents do differ by integer, we have an expansion of the form

oo Tipj

alpl(13) = 3 a0 I0D € o

as in the case of ordinary differential equations, though r; , ; may diverge to c as j —

o0, while r;, ; <m in the case of ordinary differential equations.

4. Proof of Theorem 3.3-(1).

In this section, we prove [Theorem 3.3-(1). Let P be a Fuchsian partial differential
operator considered in Section 3. Namely, P is an operator of the form [T.T}-{1.3), and
the coefficients are holomorphic in a neighborhood of A7 x B (T >0, R > 0).

First, we give two fundamental results of M. S. Baouendi and C. Goulaouic [1] in
a form of later convenience. The first one is the unique solvability of the equation in
the category of holomorphic functions, which correspond to the Cauchy-Kowalevsky

theorem.
THEOREM 4.1. Assume the condition
%(0;7) #0 for every jeN.

Then, there exist T' >0 and R’ > 0 such that for every f € O(Ar x Bg), there exists a
unique u € O(Ar» x Br) such that Pu= f.

The second one is the uniqueness of solutions in a wider class, which correspond

to the Holmgren theorem. We consider solutions in real domain.
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THEOREM 4.2. There exists L e N such that if ue C*([0,T'] x U), where T’ >0
and U is an open neighborhood of x =0 in R", ifD,ju\t:O =00<j<L-1), and if
Pu=0 on (0,7') x U, then there exists T" > 0 and an open neighborhood U’ of x =0
such that u=0 in [0,T"] x U’.

Now, we can prove [Theorem 3.3-(1) by using [Theorem 4.1. ([Theorem 4.2 is used in
Section 8.)

Proor oF THEOREM 3.3-(1). Suppose that 0 < R’ < Ry and F € (O(Bg/)[{]. First,

note that P can be written as
P=2(tx;9,D,),

where 2(t,x;2,¢) is a polynomial in (4,¢) with the coefficients in ((47 x Bg). The
equation P(1*V (t,x;()) = t°F(x;{) is equivalent to 2(t,x; 8+ {, D)V = F(x;{), and the
operator Q := #(t,x; 9+ (,Dy) is also a Fuchsian partial differential operator of the
variables (z,x,{). The indicial polynomial of Q is %[Q](x,{; 1) = €[P](x; 1+ ().

If we fix (x,{) = (x0,{o) € Br' X (U,ilf;), then €[Q](xo, {o; j) # 0 for every je N,
by (g) of [Lemma 3.2. Hence, we can use for Q and (x¢,{y) instead of
P and 0, and hence there exist 7/ >0, R” >0 and a unique V(z,x;() € O(dp x
Bri(x0,8y)) such that Q(V) = F(x;{), where Bgs(xo,(y) is the open ball in C"!
centered at (xo,{y) with the radius R”. Since (x¢,{y) is an arbitrary point of Bg/ X
(Uld:ll“;), and since V is unique, there exists an open neighborhood @ of {¢=0} x
Br % (Uldzll}) in C x C" x C such that V e 0(Q). This means that for every R” e
(0,R’), there exists T" >0 such that ¥V e ¢(dr» x Bgr x (Uld:lF;)). From this, it is
almost trivial that u[l, F] € O, g

Since [, F(x; Ot*dl =0, it is also trivial that u[/,F] is a solution of Pu = 0.

O

5. Function spaces measuring the order of functions.

In this section, we introduce some function spaces, which “measure” the order of

functions as ¢t — 0.
DEeriNITION 5.1, For 0 e (0,00], T >0, and R > 0, put
(5.1) W(0,T,R):={¢e 0(Syr x Bgr) : for every 0" € (0,0)
and every R’ e (0,R), there holds

sup [¢(1,x)| =0 (as 1 — 0 in Sy 1)},

x| <R
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where Sy 7 is defined by [3.5), and put
(5.2) W(0,R) :={¢ € Oy g : for every R e (0,R),
there exists 77 > 0 such that ¢ € W(0,T',R")}.
Further, for a € R, put
(5.3) w0, T,R) :=t*x W(0,T,R),
(5.4) W96, R) := 1t x W(0,R).
We have the following fundamental properties of these function spaces.

Lemma 5.2. (1) & (W(0,T,R)) c W(O,T,R) for all 1eN. Namely, if ¢e
W(0,T,R), then 3'¢ e W(0,T,R) for all | € N.

(2) Dy (W(0,T,R)) = W(0,T,R) (1<j<n).

(3) WY(O,R)={¢: for every R'e(0,R), there exists T' >0 such that ¢e
W@, T, R}

@) If a’ <a, then W90, T,R) = W) (0, T,R) and W' (0,R) = W) (6,R).
(5) tx W@, T,R) « Weth(0,T,R), t x W9 (O, R) c WD (0, R).
©) (WO, T,R) « W0, T, R), 0,(W9(0,R)) < W (0, R).
(7) If B(t,x; D) is a differential operator of x with the coefficients in O(Ar X Bg),
then
(5.5) B(t,x; D)(W“ (0, T, R)) = W“(0,T,R),
(56) B(t,x; D) (W(0, R)) = W0, R).

ProOF. We show only (1) and (2). The rest is straightforward and easy after these
two are proved.

(1) We have only to show the case / = 1. Suppose that ¢ € W(0,T,R) and 0’ e
(0,0). We take 0" € (¢',0). Then, there exists 0 > 0 such that if re Sy ., pe C, and
lp| <4lt|, then t+pe Sy . Take the circle I', centered at ¢ with the radius J[7]. We

can write
L[ ¢(nx)
Dg(t,x) = — d
t¢( ,X) 27Zl.th (T . l)z Ty
for 1€ Sy 7/(145. From this, we have
1
L IEr N S L

7| < (1+9)|t]; |arg 7| < 0"

for 1€ Sy 1/115 and x € Bg. Thus, 94 e W(0,T,R).
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(2) Suppose that ¢ € W (0, T, R) and that R’ € (0, R). Take R" € (R’, R). Similarly

to the proof of (1), we can show

1
sup |Dyg(t,x)] < ——— sup |§(2,¢
S 1Dy 09] < g sup (1)

for te Sy r. ]

PROPOSITION 5.3. For a simple closed curve I' in C and a function V(t,x;)) e
O(A7p x Bpr x I'), put

u(t, x) = J 7(t,x: )i di. € O(S.y. 1 % Br).
I

If a<min{Rel: eI}, then we have
ue W9, T", R').
If VeO{t=0}x Bg x I') instead, then we have ue W9 (o0, R’).

PrOOF. Suppose that V e (47 x Br: x I'). Since

u(t,x) = J V(t,x; )t d2,
r
we can easily show that r“ue W (oo, T', R'), that is, ue W@ (oo, T', R"). The last part

1S now easy. ]

6. Euler equations with holomorphic parameters.

In order to prove the main theorem, we need some results on the equation
Ei(x;3)u= f(t,x) and € (x;3)u= f(t,x). These are ordinary differential equations of
special type, so-called Euler equations, with holomorphic parameter x. In this section,
we study about equations of this type.

First, we consider a “good” base of the solution space of the homogeneous equa-

tion E(x;$)u =0, where E(x; ) € O(Bg)[A] (R > 0) is a monic polynomial of degree r.
DErINITION 6.1, For p=1,2,...,r, put

1 [ VE(x; )
1 = =0 w00 X BR),
(6.1) wy(t, x) 27Tin E(e ) t"dl e 0(Sy o X BRr)

where I" = I, is a simple closed curve (or a sum of disjoint simple closed curves) in C
enclosing all the roots 4 of E(x;A) =0. Note that w, is independent of the choice of
such I
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EXAMPLE 6.2. If E(x;A) = A% — x, then

IJ 2 thdi =tV 4+ V¥,

WIZ% rit—x
1 2 VX _ VX
Wy J ="
2mi ) )% — x VX

where I encloses ++/x. In general, w, is a “symmetrization of (higher) divided dif-

ferences” of {tif(x)}jr:l, where {/;(x)},_, are the roots of E(x;1) =0. S. Wakabayashi

told the author that divided differences are represented in a simple way by Cauchy
integrals, which was a great advice for the author. In this article, we do not use any

higher divided differences explicitly, and hence we omit the detail.
Let 7 >0 and 6 € (0, 0.

ProposITION 6.3. (1) For every fixed xe€ Br, the set of functions % .=

{wp(-sxX)}<p<, is a base of
Kergs, ) E(x;9) := {ue O(Sy, ) : E(x; $)u = 0}.

(2) If ue O(Sp,r x Br) satisfies E(x;3)u =0, then there exists unique ¢, € O(Bgr) (1 <
p <) such that u(t,x) =3 _; ¢,(x)w,(t,x).
To prove this proposition, we use the following lemma, whose proof is easy and

omitted.

LemMA 6.4. Let F € C[A] be a monic polynomial of degree r € N\{0}. If I' is a

simple closed curve enclosing all the roots of F(1) =0, then

iv
di=0 (0<v<r-—1,veN),
FO) ( )
/lr—l
———dA = 2ni.
JrF(4)

PrOOF OF ProPOSITION 6.3. (1) We fix x € Bg. Since E(x;3)t* = E(x;\)t*, u=
wy(-,x) is a solution of E(x;)u = 0.
First, we consider w,(-,x) as elements of ((Sp ). By [Lemma 6.4 we have

(6.2) (3"wp)(1,x) =0 (0<v<p—1) and (9 'w,)(1,x) =(r), #0.

Using these, we can easily show that # is linearly independent in €(Sy ), and hence in
O(Sp,r). Since dimKergs, ,) E(x;3) =r, the set # is a base.

So, 1



Method of Frobenius to Fuchsian PDE 659

(2) By (1), ¢,(x) is uniquely determined for each x. The problem is the hol-
omorphy in x. By the standard theory of ordinary differential equations, u can be
extended to ((Sp ., x Br) (as a matter of fact, to (S, » x Br)). By (6.2), we have

(Fu) (1, x) = (), 1001 (3 +Z(ﬂp p)(Lx) (0<v<r)

From this, we can easily show that ¢, € O(Bg) for p=1,2,...,r. ]
Next, we consider non-homogeneous equations.
LeMMA 6.5. Suppose that g € O(Sy r) satisfies the condition
(B) g(t) =0 ast—0 in Syr.

(1) Fix Ty e(0,T). If ReA> 0, then

igl) = | < gty de
Ty
is a solution of (8 — A)v = ¢g(t), and v[A; g|(t) is holomorphic in (A,t) on Cy x Sy 1, where
Cy :={AeC: +Rel > 0}. Further, v[4;g|(t) satisfies the following estimate for every
0' € (0,0) and every M > 0.

(6.3) sup  [v[4;4](1))|

|t <p;largs| <0’
C Re 4/2
< Reill” sup  [g(o)l+  sup g(7)] ¢,
c |o| < Ty; fargz| <0 7| </p; largT| <0
or every pe (0,T)) and every Ae C N By,
yp y

where C = Cy 1, ) Iis independent of p, i and g.
(2) If ReA <0, then

1

T g(t)dr = J o ylat)do
0

t

gl = |

0

is a solution of (8 — A)v=g(t), and v[i;g|(t) is holomorphic in (A, t) on C_ x Sy 7.
Further, v[; g)(t) satisfies the following estimate for every 0' € (0,0), every p € (0,T), and
every e C_.

(6.4) sup |o[4; ](7)

|t <p;largt| <0’

sup  [g(7)]-

< 1
~ Re’l € A o) <p: arg | <0’
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Note that v[4;g9] — 0 as t — 0 in Sy 7 in both cases. Also note that v[4;g] depends

on the choice of 7; in the case (1).

ProOOF. We show only the estimate in (1). The rest is easy.

We may assume that p < min{l, 7?}. By putting o := arg?, we have
\/I[“eix

() dr + t* J T g(1)dr

Tiei

Tleiat

ol (1) = ﬂj

T

|t|eio< )
+t)v,[\/_ ‘L'_A_lg(‘[)df =hL+bL+ 6L,
|[|£,io<

and we have for || <p < T},

)<l sup g(o),

[7|=T1; [arg 7| <0’

T, )
|12| < C|I|Re/1J\/ﬂa—Re}.—l|g(Geza)|dG
t

7| < Ty;largt| <0’

Ty
< CliRe* ( sup |g(r)|> J | laReil do
t

1 Reip
S G
Re |t| < Ti;largz| <0’

1
Gl < Co—  sup l9(7)],
REA | < /I argrl <0
where C denotes constants that may be different in each appearance, but independent of
p, A with |A] < M, and g. The estimate follows easily from these estimates. []

LEMMA 6.6. Suppose that g € O(Sy, ) satisfies the condition (B) in Lemma 6.5. Let
v[A; g] be the solution given in Lemma 6.5. Let Ay,..., ., € C satisfy that all Re 4, (1 <

v <) has the same sign. Put

1 1
VA1, .y A g)(2) ::%Jr =) (C—A)

v[§;g](2) dC e O(So, 1),

where I’ is a simple closed curve in C enclosing all 1, and being disjoint with the
imaginary axis. Then, v="v[Ay,...,A;¢| is a solution of the equation
(9 =21) - (3= Ao =g(1).

Further, v[i,...,A:9)(t) = 0 as t — 0 in Sy .
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Proor. Since (9 — 4,)v[C;9](t) = ({ — 4,)v[C 9](¢) + g(¢), if r =2, then we have

(9= 2)v[Ay .. A gl(t) = v[A1, ..o At 9)(2),

by Cemma 6.4. Hence, by the induction on r, v[y, ..., 4,;g] is a solution of the equation
(9 —21) - (93— 24,)v=g(t). From the estimate of v[(;g|(¢) given in [Lemma 6.5, we can
easily show that v[4,...,4,;9](t) = 0 as t — 0 in Sy 7. O

PROPOSITION 6.7. Let F(x; ) € O(BR)[A] be a monic polynomial, and suppose that
all the roots 1 of F(x;A) =0 (x € Br) has the real parts with the same sign.
If ge W(0,T,R), then we can define

1 1
0Pl 1= 5o | s eliial 0
where I = Iy is a simple closed curve in C enclosing all the roots of F(x;A) =0 (x € Bg)
and being disjoint with the imaginary axis. (The function v[F;g| is independent of the
choice of such I.) Further, we have v[F;gle W(0,T,R) and F(x;93)(v[F;g](t,x)) =
g(t,x).

Proor. For every fixed x e Bg, ¢g(-,x) satisfies the condition (B), and hence
v[4;9(-,x)](t) € O(Cy x Bg x Sy, 1), where o = + is the sign of the roots of F(x;4) = 0.
Thus, we can define v[F;g] € O(Sy,r x Bg). By [Lemma 6.6, we have F(x;3)(v[F;g](t, x))
= ¢(t,x). By the estimate of v[4;¢] in Lemma 6.3, we can easily show that v[F;g] €
W, T,R). O

PROPOSITION 6.8. Let E € O(Bg)[A] be a monic polynomial. Assume that there exist
Lyoe Z and ¢ >0 such that

if xeBr and E(x;1) =0, then Loy+e<Rel< Ly+e+ 1.

For every Le Z, e (0, ], T' € (0,T), R' € (0,R), and for every f e W+)(0, T' R,
there exists ue W\ (0, T’ R') such that E(x;u= f.

ProOF. By putting f = t¥™g and u = t*™v, the equation E(x;%)u = f is equi-
valent to E(x;94+L+¢)v=g. Since g€ W(0,T’,R") and since F(x;4):= E(x;A+L+e¢)
satisfies the assumption of [Proposition 6.7, we get v = v[F;g] e W(0,T’,R") satisfying
E(x; 3+ L+ev=g. 0

Last in this section, we consider the operator %(x;%), where % is the indicial
polynomial of a Fuchsian partial differential operator P considered in Section 3. We
take 7, Bg,, E; in Lemmata 3.1 and 3.2. Note that %(x;3) = H,d:l Ei(x;9). Put
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(6.5) Wi (1, X) 1=

1 [ 7E/(x; 2
J G >t)' di € O(Sy, 0 X Br,),

2ni ) Ei(x; 2)

which correspond to w, in for each Ej.
Let 0 e (0,00] and T' € (0, 7).

ProposITION 6.9. (1) w;, € Wt (o0, 00, Ry), where Lj€ Z are taken at the
beginning of Section 3.
(2) For every fixed x € Bg,, the set of functions

B={w,p(,x):1<1<dleN;1<p<r,peN}

is a base of Kergs, ) €(x;9).
(3) Let 0< R' < Ry. Ifue (0/0;/ satisfies € (x; 3)u = 0, then there exist unique ¢, , €
O(Br) (1 <1<d;l <p<r) such that

¥

d
:Z @1 p(X)wip(2, X).

=1 p=1

As a result, ue W \Lmint) (oo, 00,R") € O(Sy, o X Brr), where Ly, :=min{L; : 1 <[ < d}.
Further, if L€ Z and if ue W9 (0, R") in addition, then 91, =0 for every I such that
L; < L.

To prove this proposition, we use the following lemma. Recall that we have put
=%/E; =1, .,Er, and that if /# /', then the two equations Ej(x;4) =0 and

E;(x;A) =0 have no common root.
LemMA 6.10. There exist unique A;€ O(Bg,)[A] (1 <1<d) such that deg; A; <
degiEl—lzrl—l(ISlSd) and

d
Z ASi(x;7) =1 for all xe By, and all )€ C.

Proor. If we fix x, this is well-known. The problem is the holomorphy of the

coefficients of A4; in x. The simplest way to show this would be to use the formula
1 J I E(xd) - E(xd)
2ni ), 6(x;{) A—C

whose proof is given later (Lemma 6.12). Note that (Ej(x;4) — Ei(x;{))/(A—{) is a
polynomial of (4,{) with the coefficients in ((Bg,). O

(6.6) Ai(x; 4) = dg,

PrROOF OF ProposiTION 6.9. (1) follows from [Proposition 5.3.
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(2) We have only to show the independence of %. Suppose that k;,eC
(I<li<dil<p<r)and ) kipw,=0in O(Spr). We fix /=1 arbitrarily. By
operating A;,(x; 9)S,(x;9) to this equality, we have »_ ki, pA;,(x;3)S;, (x; $)wy, p = 0,
since Sy, is divisible by E; (I # lp) and since Ej(x;3)w;, =0. Since

A5 Sy (x5 2) = 1 = Fy (o 2)Ey ()

for some Fj, € O(Bg,)[4], we have A (x;8)Sy,(x; $)wy, p(¢,x) = wy, »(¢,x). Thus, by
IProposition 6.3-(1), we have k;, , =0 for every p.

(3) By (2), ¢, ,(x) is uniquely determined for each x € Br.. The problem is the
holomorphy in x. Similarly to (1), we have that

I]O

Alo(x ‘9>Slo X3 ‘9 Z¢/0 P Wlop l x)

Hence, by [Proposition 6.3-(2), we have ¢, , € O(Br) (1 <p <ry).
Suppose that L € Z and that ue W (0, R’). We divide the sum representing u

into two parts.

Since u, S} € W90, R'), we have S, e W+ (9, R).

Now, fix xg € Bgr and consider v(z) := S»(t,x9). Using v(¢) = o(¢5*%), we shall
show v(z) =0, from which the result follows by (2).

Let Ej(xo;4) = Hf’ (A—p;,)"", where {f, }, are distinct. By the well-known fact

about partial fractions, we can write

5 E[ Xo il aj.
A E g ——00P — for some a ., , € C.
El X(), V=1 p= 1 ﬁlv

Hence, we can write wy (1, x0) = S, S,/ (p = Day . p27(log 7)”~!, and hence
OED SPTTVRIIND S S b,,w,lﬁ"(logt)’)*1 for some by, ,eC. Since ;€ Dy
by Lemma 3.2H(f), we have Ref;, < L;+1+&< L+¢, and hence it is now easy to
lead b;,, =0 from v(z) = o(¢5¥), and hence we have v(f) = 0. ]

By a repeated use of [Proposition 6.8, we have the following.
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ProposITION 6.11.  For every Le Z, 0 (0,], T'e€(0,T), R €(0,Ry), and for
every f e W\H(0, T' R"), there exists ue WU (0, T', R") such that €(x;)u = f.

The author believes that the formula is not new, though he found this formula
by himself and could not find any references. We give a proof of this formula for the

convenience of readers.

LEmmA 6.12. Let Ei(4),...,E4(A) € C[1] be monic polynomials. Suppose that if
[ #1', then E)(2) =0 and E; (1) =0 have no common root. Then, for every g(1) € C[A]
with degg < Z,d:l deg E; — 1, there exist unique A;(A) € C[A] (1 <1 <d) such that

d
g(2) =) _Ai(2)S(7) and degA; <degE—1 (1<[<d),
=1
where Si(2) = [ <pr<g.rr 4 Er(2). Further, if I} is a sum of disjoint simple closed curves
in C, if all the roots of Ej(1) = 0 lie inside I, and if all the roots of E;(1) =0 (I" #1) lie

outside I, then we have

L.

B 99 Ei(§) — Ei(4)
(6.7) Ai(2) = %sz EO) - E0) : {— /11 d

Note that (E;({) — E;(A))/({ —2) is a polynomial of ({,2).

Proor. The first half is well-known, and we have only to show [6.7). Fix /=1,

arbitrarily, and let Ej (1) = [[/_,(A —o,)™, where {o,}’_, are distinct. Since

g(4) Ai(A)

= Alo (’1) + Elo (i)

Siy(4) V<1571, E1(4) ,
we have
(6.8) A(j)(oc):d—j(g(i)) (1<v<p;0<j<sy).
l v i Slo (i) e =V =/AhVYV=>= v

On the other hand, if we put the right hand side of as A;(2) , then this is a
polynomial of A and degA; < degE; — 1. Further, if 2 lies inside Ij,, then we have

(6.9) A}O(z):LJ 90 1 g L g 1

2mi I, Slo(C) C — A 2ri ‘[FIO EIU (C)Slo (C) 4/_ idi . Elo(jv)

(610) - g(i) _hlo(;t)Elo(l%
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for some /;,(4) holomophic inside /';,. Hence, we have

(6.11) Ay (o) = % (ng(?i)))

(1<v<p;0<j<sy).

A=,

By [6.8), [6.11), and by degd < 327 5,1, degd < 37 |5, — 1, we have 4 = 4.
L]

7. Temperedness of solutions.

Let P be a Fuchsian partial differential operator considered in Section 3. In this
section, we give the temperedness of all the solutions of Pu = 0, that is, the following

proposition.

PrOPOSITION 7.1.  Let 0 € (0, 0]. There exists a € R such that if ue O(Sy,r X Bgr)
satisfies Pu=0, then ue W9 (0,T,R).

This follows from a more general result by S. Ouchi [5] H. Tahara, however, told

the author a simpler proof before Ouchi’s result. We give a sketch of his proof.

PrOOF. By a change of the variable 7 — ¢/ (Il € N\{0}), we may assume that P has

the following form, without loss of generality.

(7.1) P=9"+ Y b, (t,x)¥(tDy)%, by, € O(dr x Bg).

JH|o| <m;j<m

By putting u;, := % (tDy)*u (j+ || <m — 1), the single equation Pu=0 is re-

duced to a system of equations

(7.2) i = A(x)u + t<B(z, x) + z": C;(t, x)ij) i,

where
o N
u= (”j,oc)j+|oc\3m—1 eC”,

and A(x) (resp. B(t,x), Ci(t,x)) is an N x N matrix whose entries belong to ((Bg)
(resp. O(4A7 x Bg)). Here, N is the number of (j,a) with j+ |o| <m — 1.

We show that there exists o >0 depending only on A(x) for which if ie
O(Sp, T x Bg; C") satisfies (7.2), then for every R’, R” with 0 < R” < R’ < R, there
exists Cp > 0 and Ty > 0 such that the following holds.
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o\ )
sup |i(t, x)| < Cy (—0> sup |i((To/|t])t,x)|, for 0 < |t < Ty with |arg?| < 0.
x| <R 111) x<r
It is clear that this estimate implies the proposition. By rotating ¢z, we may assume that
t € R, though we must be careful that Cy do not depend on argt.

We show the estimate by solving the Cauchy problem

(E) { Sii = A(x)u+ t(B(t,x) + >/, Ci(t,x) Dy, )i,

ﬁ|t:TO = @(‘x)7

for sufficiently small 7 > 0 by the method of “a scale of Banach spaces”. We may
assume that R < 1.

We use the following norms.
N
(7.3) il == |w], for ii ="(uy,...,uy) e C",
i=1

(7.4) 4] == sup |4, for A e My(C),

e CN; |lii]|=1

(7.5) |l = sup [|@(x)||, for iie O(BsCY),
x| <s
(7.6) [ Al] := sup [A(x)|l, for 4 e O(By; My(C)).
X|<s
Put
o= ||l g;

p = sup [|B(z,-)]|x,
lt|<T

yi=) sup |Gt ),

j=1 =T

Mo = |6llg-

Note that ¢ is holomorphic in Bg. We solve (E) by the following iterations.

~~

E), { (3 = (X)) = (B(t,x) + 2jy Gi(t,X) Dy )ilp-, (p=1).

ﬁp’t:To =0,
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(E), can be solved as

/ A(x)_)
Uo(t,x) = (T()) p(x), (0<t<Ty),

where z4 := exp{(logz)A4}. Since we are considering ¢ € (0, Tp], we have
. To\MIs T\
el < () el < () M 0<s< R0,

If we put M := T;M,, then we have
%50 (2, )], < M for 0 <s< R

From this, we have

j
\2

. 1 t*uo(t, x1,...,¢, ...,

| Dy, 1"t (2, -) || < sup —J to (1, X1 ¢ Xn) dc
x| <s 2mi Ly )

1 M M
< ——52n(R' —s) = (0<s< R,
2n (R/—S) S

where Iy, is the circle centered at x; with the radius R —s.
Hence, if we put f;(z,x) := t(B(t, x) +>.im1 Gi(t,X) Dy, )il then we have

[ ()l <t

(B(z, x) + zn: C(1, X)Dx,) "o (2, )

=1

N

14
R — s

sz<ﬁ+ )MSt(ﬂ+y)

R — s

for 0 <s< R/,

e eM
<t =tK
B (ﬁ+y)R’—s R —s

where K :=f+ 9.

(E), is solved as

Hence, we have

667
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Thus, we have

I (s, < J T ACIRTE
t

To M 1
_J e —dt
¢ R —5s1
MKe
< R/_S(To—t) for 0 <s< R
Now, we show
o= Ke ! /
(7.7) lt*i,(t, )|, < M (R/—s)(TO_Z) for 0 <s <R,

by induction on p. If this estimate is valid for p (p > 1), then we can show that

e P
(7.8) 1Dyt (1)l < M { R—(s+ (R{<_ 9Dy ’)} Izils
(7.9) SM{R (T - )} U;f_lie

by a similar argument to the one above, replacing I'y, by the circle with the radius
(R"—35)/(p+1), and using (1 + (1/p))’ <e. (This is a standard technique. See, for
example, [1], Section 2.2-5.) Hence, we have

RS Gy
(R —s)"*! o=t

12 Fia ()]l <

where ﬁ,H(z, x) == t(B(t,x) + > Ci(t,x)Dy,)iy(t,x). From this, we can show that

Kp+lep+1

p+1
® =y Y

[%4y 1 (2, )]s < M

by estimating

. To /7 —Ax) 1
u]”rl(ta x) = _J (;) ];-FI(T?x);dT

as above.
Thus, by (7.7), we have

=~ [ KeTy\’
SLICTIET SRR B((ey
=0
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for 0 < s < R and 0 <t < Ty. Hence, if we take 0 < T < (R’ —s5)/(Ke), then ii(t, x) :=

> o lip(t,x) converges on (0, Tp] x B, and satisfies

(2, -)ly < (?) - (KeTol)/(R, 3 My (0<t<Tp). O

8. Proof of Theorem 3.3-(2).

In this section, we prove [Theorem 3.3-(2). First, we prove the injectivity of the
solution map [3.4]. This also gives the injectivity of (3.8).

We use the following lemma.

LemmA 8.1. If ¢ € O(Bg)) (R' > 0), then we can write

up pl@)(1, x) = 9w p (1) + 1 - 11, [9] (2, %),
where 1y ,[p] € WH9 (0, R').  Especially, u;, € W+ (o0, R').

ProOF. We can expand as Vip-F,)(t,x; 1) = o(x)(O)Ei(x; 1))/ Ei(x; 2) +
t- Ry ,p](t,x;A), where R;,[p]e O({t=0} x Bp X (Uldzlfl)). The first term of this
expansion produces ¢(x)wy ,(¢,x), Hence, the lemma follows from Propositions and
6.9-(1). O

PROOF OF INJECTIVITY OF [3.4). Suppose that ¢; , € O(Br/) (R' € (0,Ro);1 <[ <d;
1 < p<r) and that szz1 > -1 U1 ple; ;] = 0. Further, suppose that there exists (/, p)
such that ¢, , # 0, from which we shall lead a contradiction. We can take ly as L;, =
min{L; : ¢, , # 0 for some p}. There exists p such that ¢, ,(x) # 0.

Take A4; in Lemma 6.10. Recall that S (x;$)ws,(t,x) =0 if /#1I and that
Ay (x3.9)S), (3 S)wy, (2, X) = wy, »(¢,x). Thus, we have

'l

d
0=> "> Ai(x; 9)Si,(x; Dur ploy ) (1, %)

(8.1) _
=1 p=I
8.2) =S gy (5w (1)
p=1
d "
(8.3) 303 Ay 88, (e -l (60}

=1 p=1

where r,,[p] is given in Cemma 8.1. The second sum belongs to W'+ (0, R") by
Lemma 8.1, and hence we have
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I”/O

Z i p (X)W, p (1, X) € Wttt (00, R').
p=1

By the last part of Lemma 6.9-(3), we have ¢, , =0 for all p, which contradicts to the
definition of /. L]

Next, we prove the surjectivity of (3.8).

PROOF OF SURIECTIVITY OF (3.8). Suppose that u e (9/9\,;/ (0 € (0,00],R" €(0,Ry))
and that Pu=0. Take an arbitrary R” € (0,R’). Then, there exists 7" > 0 such
that ue O(Sy r» x Brr). By [Proposition 7.1, there exists LeZ such that wue
w9, T" R"). We can write P=%(x;9) +1tQ(t,x; %, D,), where Q(t,x;,&) e
O(Ar x BR)[4,&], and we have %(x;u= —tQ(t,x; 3, D )ue WL+ T" R") by
Lemma 5.2

By [Proposition 6.11], there exists ve WH49(0 T” R") such that %(x;%)v =
%(x; $)u and hence u — v € Kergs, ,,xp,)6(X; ). Since u—ve WL+ (0, T", R"), there
exists ¢, ,[0] € O(Bgrr) (1 <1<d, Ll > L;1 < p <r) such that

u—v= > 91,5 (01w p,

I<i<d,Li=L;1<p<r

by [Proposition 6.9(3).
Put u[l] :=u— Zlglgd,L,zL;lgpgr, u;,p[gohp[O]] € Oy gr. Then, we have P(u[l]) = 0.
Further, by [Lemma 8.1, we have

ulll] —v=u[l] —u4+u—v

4

=— > > {uploy (01 — g1, 00w, } € W (o0, RY).
LL>L p=I

Hence, we have u[l] € W49, R").

Take an arbitrary R"” € (0,R”). Since P(u[l]) =0, we have &(x;I)ull]=
—tQ(t,x; 9, D, )u[l] € WE2+9 (9, R"), and hence if we take R; € (R"”,R"), then there
exists 77 > 0 such that u[l] e WU (9 Ty, Ry) and %(x; Nu[l] € WL+ (0, Ty, Ry).
By [Proposition 6.11, there exists o[l] € WU+ Ty, R;) such that %(x;3)v[l] =
€(x;$)ul] and  hence  u[l] —uv[l] € Kergs, ,, xpy) €¢(x;9).  Since  ull] —v[l] e
WL+ (), T\, Ry), there exists 91,11 €0(Br,) (1<1<d,L;2L+1;1<p<r) such
that

ull] —ofl] = > 91,p[1IWip,

1<i<d,Li=L+1;1<p<n

by |[Proposition 6.9(3).
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Put ul2] :=u[l]=3") /oy 151011 <p<n Y plor p[1]] € (Oio\,/Rl. Then, we have P(u[2]) =
0. Further, in the same way as above by Lemma 8.1, we have u2] e W) (9, R)).

By repeating this argument, for every N =1,2,3,..., we get R” <Ry <
Ry_i <--- < Ry < R" and u[N] e WEN+9)(9, Ry_;) that satisfies P(u[N]) = 0 and that
can be written as u[N]=u— 3", u ,lp,,] for some ¢, , € O(Br, ). By Theorem 4.2,
we get u[N|=0 for a sufficiently large N, and hence u can be written as u =
> ples,) for some ¢, € O(Bgn).

Since R” and R" are arbitrary as long as 0 < R"” < R” < R’, and by the injectivity
of [3.4), that is, by the uniqueness of 91> We get ¢, , € O(Br). O]

9. Some variants of the result.

We can apply the idea developed above to many problems similar to our problem.
In this section, we give two variants of the main theorem.

One is so-called Nagumo-type version. M. S. Baouendi and C. Goulaouic
considered not only Fuchsian partial differential operators with holomorphic coefficients,
but also those with the coefficients in C* ([0, T]; O(Bg)), and showed theorems cor-
responding to Theorems 4.1 and 4.2. We can also give a variant of our result for such
operators.

Put

C*0O .= ;1;%1711%% C*([0, T]; O(Br)),

then we can give a linear isomorphism
(0o)™ = Ker =, P

CoO )

by the same idea as the main theorem.

In the proof of this version, we must modify the function spaces as
(9.1) W(O,T,R) :={¢e C°0,T); 0O(Br)) : $(¢) € C°([0, T]; O(BR)) for all 1€ N},

and so on. We also need “a priori” regularity similar to Proposition 1 in [T].
The other is the result to Fuchsian hyperbolic operators considered by H. Tahara
[6]. [7]. [8], and so on). In [7], he showed the C* well-posedness of the characteristic

Cauchy problems for such operators. In [8], he gave a global linear isomorphism
(92) {C*(R")}" = Kercw (0, 1yxrm P,

under the assumption that the characteristic exponents do not differ by integer.
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Without this assumption, by the same idea as our main theorem, we can give a
local linear isomorphism
(Cy)™ = Ker o~ P,

(0,0)

—

where Cy :=indlimg.g C*(Dr) (Dr:={xeR":|x| <R}) and Coo
indlim7-¢ g=0 C*((0, T) x Dg). Though the argument in the proof of [Theorem 3.3-(1)
does not work straightly, we can show the existence of ¥[F] by using Tahara’s result [7,
Theorem 3.1] instead of Theorem 4.1, and we can also show the holomorphy of V[F] in

A by the energy inequality.

Of course, we also need some modifications to the proof of (2). However, many of
Tahara’s preliminary results in are valid without any assumptions on the charac-
teristic exponents, which give necessary tools to us for the modification.

The author believes that we can give a global isomorphism also without any

assumption on the characteristic exponents, though he has not succeeded yet.
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