Convergence of the normalized solution of the Maurer-Cartan equation in the Barannikov-Kontsevich construction

By Yuya Itagaki

(Received Apr. 28, 1999)
(Revised Sept. 18, 2000)

Abstract

We give a detailed proof of convergence of a normalized solution of the Maurer-Cartan equation in the Barannikov-Kontsevich construction.

1. Introduction.

The purpose of this paper is to show that the potential of the formal Frobenius manifold constructed by Barannikov and Kontsevich in [1], converges. Now we recall the definition of Frobenius manifolds, which were introduced and investigated by B. Dubrovin: cf. [3].

According to [3] and [8], a Frobenius manifold is a quadruple $\left(M, \mathscr{T}_{M}^{f}, g, A\right)$. Here M is a supermanifold in one of the standard categories $\left(C^{\infty}\right.$, analytic, algebraic, formal, etc.), \mathscr{T}_{M}^{f} is the sheaf of flat vector fields tangent to an affine structure, g is a flat Riemannian metric (non-degenerate even symmetric quadratic tensor) such that \mathscr{T}_{M}^{f} consists of g-flat tangent fields. Finally, A is an even symmetric tensor $A: S^{3}\left(\mathscr{T}_{M}\right) \rightarrow \mathcal{O}_{M}$, where \mathcal{O}_{M} is the sheaf of germs of functions on M in the sense of supermanifold. All the data must satisfy the following conditions:
(a) Potentiality of A. Everywhere locally there exists a function Φ such that $A(X, Y, Z)=X Y Z \Phi$ for any flat vector fields X, Y, and $Z . \quad \Phi$ is called potential.
(b) Associativity. A and g together define a unique symmetric multiplication $\circ: S^{2}\left(\mathscr{T}_{M}\right) \rightarrow \mathscr{T}_{M}$ such that $A(X, Y, Z)=g(X \circ Y, Z)=g(X, Y \circ Z)$. Then this multiplication must be associative.

Thus given $\left(M, \mathscr{T}_{M}^{f}, g\right)$, Frobenius manifold structure on it is determined by a potential satisfying the associativity condition. In a formal Frobenius manifold, the potential Φ is a formal power series. If Φ converges, then we can consider that the Frobenius manifold is in the holomorphic category.

The Barannikov-Kontsevich construction is one of large classes of formal Frobenius manifolds. We explain it in $\S 2$. On the other hand, quantum co-

[^0]homology which was discoverd by physicists is also a large class of formal Frobenius manifolds (cf. [6]). Its potential is called Gromov-Witten potential. In general, it is difficult to prove the convergence of Gromov-Witten potential.

In this paper, we give a detailed proof of convergence of the normalized solution of the Maurer-Cartan equation and the potential in the BarannikovKontsevich construction. Consequently, the Barannikov-Kontsevich construction gives a large class of holomorphic Frobenius manifolds. We state the precise statement in §3, Theorem 3.1 and Corollary 3.2. We remark that Cao-Zhou [2] mentioned the convergence of the Barannikov-Kontsevich construction without proof.

2. Barannikov-Kontsevich constructions.

In this section, we briefly recall the construction of Barannikov-Kontsevich [1]. We use the notation in Manin [7].

Let M be a compact connected Kähler manifold of dimension n whose canonical bundle K_{M} is holomorphically trivial. It follows from the condition $K_{M}=0$ that there exists a nowhere vanishing holomorphic volume form $\Omega \in$ $H^{0}\left(M, \Omega_{M}^{n}\right)$. It is defined up to a multiplication by a constant. Let us fix a choice of Ω.

Put

$$
\begin{aligned}
\mathbf{t}^{p, q} & :=\Gamma\left(M, \bigwedge^{p} \bar{T}_{M}^{*} \otimes \bigwedge^{q} T_{M}\right) \\
\mathbf{t}^{n} & :=\bigoplus_{p+q=n} \mathbf{t}^{p, q}, \quad \mathbf{t}:=\bigoplus_{n} \mathbf{t}^{n}
\end{aligned}
$$

We define \boldsymbol{Z} - and \boldsymbol{Z}_{2}-grading on \mathbf{t}, as follows:

$$
\begin{align*}
& \boldsymbol{Z} \text {-grading: }|\gamma|:=p+q \tag{1}\\
& \boldsymbol{Z}_{2} \text {-grading: } \tilde{\gamma}:=p+q \bmod 2 \quad \text { for } \gamma \in \mathbf{t}^{p, q} .
\end{align*}
$$

\mathbf{t} is endowed with differential $\bar{\partial}$ and wedge product \wedge. Then $(\mathbf{t}, \wedge, \bar{\partial})$ is a supercommutative differential graded algebra with respect to the grading above.

Moreover \mathbf{t} is endowed with the standard Schouten-Nijenhuis bracket. Explicitly, for $X=X_{1} \wedge \cdots \wedge X_{p}, Y=Y_{1} \wedge \cdots \wedge Y_{q}$ (where $X_{i}, \quad Y_{j}$ are vector fields of type $(1,0))$ and $f \in C^{\infty}(M)$, define

$$
\left\{\begin{array}{l}
{[X \bullet Y]=(-1)^{p} \sum_{s, t}(-1)^{s+t} \widehat{X}_{s} \wedge\left[X_{s}, Y_{t}\right] \wedge \widehat{Y}_{t}} \tag{2}\\
{[X \bullet f]=(-1)^{p} \sum_{s=1}^{p}(-1)^{s} X_{s}(f) \widehat{X}_{s}}
\end{array}\right.
$$

where $\widehat{X}_{s}:=X_{1} \wedge \cdots \wedge X_{s-1} \wedge X_{s+1} \wedge \cdots \wedge X_{p}$. For $\varphi=d \bar{z}_{I} \otimes X, \psi=d \bar{z}_{J} \otimes$ Y, define

$$
[\varphi \bullet \psi]=(-1)^{j(p+1)} d \bar{z}_{I} \wedge d \bar{z}_{J} \otimes[X \bullet Y] .
$$

Then one can see that this bracket satisfies the following formulas:

$$
\left\{\begin{array}{l}
{[a \bullet b]=-(-1)^{(\tilde{a}+1)(\tilde{b}+1)}[b \bullet a]} \tag{3}\\
{[a \bullet[b \bullet c]]=[[a \bullet b] \bullet c]+(-1)^{(\tilde{a}+1)(\tilde{b}+1)}[b \bullet[a \bullet c]]} \\
{[a \bullet b c]=[a \bullet b] c+(-1)^{(\tilde{a}+1) \tilde{b}} b[a \bullet c],}
\end{array}\right.
$$

and $\bar{\partial}$ is the derivation with respect to both \wedge and $[\bullet]$.
Now using Ω, we define another differential Δ on \mathbf{t}. Let $A^{p, q}(M):=$ $\{$ smooth (p, q)-forms on $M\}$. We consider

$$
I: \mathbf{t}^{p, q} \rightarrow A^{n-q, p}(M)
$$

defined by

$$
\begin{cases}I\left(d \bar{z}_{I} \otimes X_{1} \wedge \cdots \wedge X_{p}\right):=d \bar{z}_{I} \wedge i_{X_{1}} \cdots i_{X_{p}} \Omega & \text { for } X_{i}: \text { vector fields } \tag{4}\\ I\left(d \bar{z}_{I} \otimes f\right):=d \bar{z}_{I} \wedge f \Omega & \text { for } f: \text { functions },\end{cases}
$$

where i_{X} denotes interior product. Clearly,

$$
\begin{equation*}
\bar{\partial} I=I \bar{\partial} . \tag{5}
\end{equation*}
$$

Now define another differential $\Delta: \mathbf{t}^{p, q} \rightarrow \mathbf{t}^{p, q-1}$ by the formula:

$$
\begin{equation*}
\Delta I=I \partial . \tag{6}
\end{equation*}
$$

The operators $\bar{\partial}$ and Δ satisfy the following properties:

$$
\left\{\begin{array}{l}
\bar{\partial}^{2}=\bar{\partial} \Delta+\Delta \bar{\partial}=\Delta^{2} \tag{7}\\
\Delta(1)=0 \\
{[\alpha \bullet \beta]=(-1)^{\tilde{\alpha}}\left\{\Delta(\alpha \wedge \beta)-(\Delta \alpha) \wedge \beta-(-1)^{\tilde{\alpha}} \alpha \wedge(\Delta \beta)\right\} .}
\end{array}\right.
$$

The last formula in (7) is known as the Tian-Todorov lemma. A supercommutative algebra satisfying the properties (3) and (7) is called differential Gerstenhaber-Batalin-Vilkovisky algebra (see Manin [7], §5).

Formulas (4), (5) and (6) imply that I induces isomorphisms: $H(\mathbf{t}, \bar{\delta}) \cong$ $H_{\bar{\partial}}^{*}(M)$ and $H(\mathbf{t}, \Delta) \cong H_{\partial}^{*}(M)$. Consequently, $\mathbf{H}:=H(\mathbf{t}, \Delta)$ is finite dimensional. Introduce a linear functional on \mathbf{t} by

$$
\begin{equation*}
\int \gamma:=\int_{M} I(\gamma) \wedge \Omega \quad \text { for } \gamma \in \mathbf{t} . \tag{8}
\end{equation*}
$$

Then \int satisfies the following identities:

$$
\begin{align*}
\forall \omega, \eta \in \mathbf{t}, & \int(\bar{\partial} \omega) \wedge \eta=(-1)^{\tilde{\omega}+1} \int \omega \wedge(\bar{\partial} \eta) \\
& \int(\Delta \omega) \wedge \eta=(-1)^{\tilde{\omega}} \int \omega \wedge(\Delta \eta) \tag{9}
\end{align*}
$$

We define a symmetric pairing g on \mathbf{H} by

$$
g([\omega],[\eta]):=\int \omega \wedge \eta
$$

Then g is well-defined and nondegenerate.
Choose a homogeneous basis $\left\{\left[\gamma_{a}\right]\right\}_{a}\left(\gamma_{a} \in \operatorname{ker} \Delta\right)$ of \mathbf{H}. The $\partial \bar{\partial}$-lemma on Kähler manifolds (cf. Griffiths-Harris [4]) implies that we can choose γ_{a} in ker $\Delta \cap \operatorname{ker} \bar{\partial}$. We assume that γ_{0} equals 1. Let $\left\{t^{a}\right\}$ be the dual basis of $\left\{\left[\gamma_{a}\right]\right\}$. Define

$$
\begin{equation*}
\left|t^{a}\right|:=2-\left|\gamma_{a}\right| \tag{10}
\end{equation*}
$$

Then $\boldsymbol{C}\left[\left[t_{\mathbf{H}}\right]\right] \hat{\otimes} \mathbf{t}$ inherits a natural grading. Here $\boldsymbol{C}\left[\left[t_{\mathbf{H}}\right]\right]$ is a formal power series ring in the superalgebra sense. See (13).

In [1], Barannikov and Kontsevich showed the following:
Theorem 2.1 (Barannikov-Kontsevich [1]). There exists a solution to the Maurer-Cartan equation

$$
\begin{equation*}
\bar{\partial} \Gamma(t)+\frac{1}{2}[\Gamma(t) \bullet \Gamma(t)]=0 \tag{11}
\end{equation*}
$$

in formal power series with value in \mathbf{t}

$$
\Gamma(t)=\sum_{a} \gamma_{a} t^{a}+\sum_{\substack{a_{1}<\cdots<a_{k} \\ k \geq 2}} \gamma_{a_{1} \cdots a_{k}} t^{a_{1}} \cdots t^{a_{k}} \in\left(\boldsymbol{C}\left[\left[t_{\mathbf{H}}\right]\right] \hat{\otimes} \mathbf{t}\right)^{2}
$$

such that
(i) γ_{a} are chosen as above,
(ii) $\gamma_{a_{1} \cdots a_{k}} \in \operatorname{Im} \Delta$ for $k \geq 2$,
(iii) $\partial_{0} \Gamma(t)=1$, where ∂_{0} is the coordinate vecter field corresponding to $[1] \in \mathbf{H}$.

We call such a solution $\Gamma(t)$ normalized, and denote $\Gamma(t)=\Gamma_{1}(t)+\Delta B(t)$, where $\Gamma_{1}(t):=\sum_{a} \gamma_{a} t^{a}$.

Theorem 2.2 (Barannikov-Kontsevich [1]). Put

$$
\begin{equation*}
\Phi(t)=\int\left(\frac{1}{6} \Gamma(t)^{3}-\frac{1}{2} \bar{\partial} B(t) \wedge \Delta B(t)\right) \tag{12}
\end{equation*}
$$

Then Φ determines a formal Frobenius manifold structure on (\mathbf{H}, g).
Using Γ, we can define another differential $\bar{\partial}_{\Gamma}$ on $\boldsymbol{C}\left[\left[t_{\mathbf{H}}\right]\right] \hat{\otimes} \mathbf{t}$ by $\bar{\partial}_{\Gamma} \varphi(t):=$ $\bar{\partial} \varphi(t)+[\Gamma(t) \bullet \varphi(t)]$. Then we can easily show that inclusions induce the following isomorphisms (see Manin [7], §5):

$$
H\left(\boldsymbol{C}\left[\left[t_{\mathbf{H}}\right]\right] \hat{\otimes} \mathbf{t}, \bar{\partial}_{\Gamma}\right) \cong \frac{\operatorname{ker} \Delta \cap \operatorname{ker} \bar{\partial}_{\Gamma}}{\operatorname{Im} \Delta \bar{\partial}_{\Gamma}} \cong H\left(\boldsymbol{C}\left[\left[t_{\mathbf{H}}\right]\right] \hat{\otimes} \mathbf{t}, \Delta\right) \cong \boldsymbol{C}\left[\left[t_{\mathbf{H}}\right]\right] \otimes \mathbf{H}
$$

We note that the homology $H\left(\bar{\partial}_{\Gamma}\right)$ inherits a natural multiplication from $\boldsymbol{C}\left[\left[t_{\mathbf{H}}\right]\right] \hat{\otimes} \mathbf{t}$, because $\bar{\partial}_{\Gamma}$ is a derivation with respect to the wedge product.

We identify $\boldsymbol{C}\left[\left[t_{\mathbf{H}}\right]\right] \otimes \mathbf{H}$ with the space of vector fields on \mathbf{H} by the formula $\left[\gamma_{a}\right]=\partial / \partial t^{a}$. This space acts on $\boldsymbol{C}\left[\left[t_{\mathbf{H}}\right]\right] \hat{\otimes} \mathbf{t}$ as derivation. Define a $\operatorname{map} \psi: \boldsymbol{C}\left[\left[t_{\mathbf{H}}\right]\right] \otimes \mathbf{H} \rightarrow H\left(\bar{\partial}_{\Gamma}\right)$ by $\psi(X):=X \Gamma \bmod \operatorname{Im} \bar{\partial}_{\Gamma}$. Then ψ is algebra isomorphism, if we define a multiplication on $C\left[\left[t_{\mathbf{H}}\right]\right] \otimes \mathbf{H}$ by the potential Φ in Theorem 2.1. Namely, for $X, Y \in \boldsymbol{C}\left[\left[t_{\mathbf{H}}\right]\right] \otimes \mathbf{H}$, their product $X \circ Y$ is a unique element satisfying $(X \circ Y) \Gamma \equiv X \Gamma \wedge Y \Gamma \bmod \operatorname{Im} \bar{\partial}_{\Gamma}$.

3. Convergence of $\Gamma(t)$ in $C^{k+\theta}$.

In this section, we keep the same notation as in the previous section. $\left\{\left[\gamma_{a}\right]\right\}_{a=1}^{N}$ is a basis of \mathbf{H}. We assume that γ_{a} is even for $1 \leq a \leq m$, and odd for $m+1 \leq a \leq N . \quad\left\{t^{a}\right\}$ is the dual basis. In order to distingish the odd basis from the even one, we denote t^{m+i} by τ^{i} for $1 \leq i \leq l(=N-m)$. Then

$$
\begin{equation*}
\boldsymbol{C}\left[\left[t_{\mathbf{H}}\right]\right]=\boldsymbol{C}\left[\left[t^{1}, \ldots, t^{m}\right]\right] \otimes \bigwedge\left(\tau^{1}, \ldots, \tau^{l}\right) \tag{13}
\end{equation*}
$$

by definition. Later, when we need to distinguish even and odd, we use $\left(\tau^{i}\right)$, when not, $\left(t^{m+i}\right)$.

Let $\Gamma \in \boldsymbol{C}\left[\left[t_{\mathbf{H}}\right]\right] \hat{\otimes} \mathbf{t} . \quad$ We can represent it as $\Gamma=\sum_{\alpha} \Gamma_{\alpha}(t) \tau^{\alpha}$ where $\Gamma_{\alpha}(t) \in$ $\boldsymbol{C}\left[\left[t^{1}, \ldots, t^{m}\right]\right] \hat{\otimes} \mathbf{t}$, and τ^{α} denotes $\tau^{\alpha_{1}} \cdots \tau^{\alpha_{l}}$. Then it makes sense to ask whether Γ_{α} is smooth in the coordinate $\left(z^{1}, \ldots, z^{n}, t^{1}, \ldots, t^{m}\right)$. Here $\left(z^{1}, \ldots, z^{n}\right)$ is a local coordinate of M. We split \mathbf{H} into even and odd parts: $\mathbf{H}=\mathbf{H}^{e v} \oplus \mathbf{H}^{\text {odd }}$. Let U be an open set in $\mathbf{H}^{e v}$. We say that Γ is smooth on U if Γ_{α} is smooth on $U \times M$ for each α. Our goal is the following.

Theorem 3.1. There exists a normalized solution of the Maurer-Cartan equation (11)

$$
\Gamma=\Gamma_{1}+\Delta B \in\left(\boldsymbol{C}\left[\left[t_{\mathbf{H}}\right]\right] \hat{\otimes} \mathbf{t}\right)^{2}
$$

such that Γ and B are smooth on a sufficiently small neighbourhood of the origin in $\mathbf{H}^{e v}$.

Let \mathcal{O}_{U} be the sheaf of the germs of holomorphic functions on U. Put $\mathcal{O}:=\mathcal{O}_{U} \otimes \bigwedge\left(\tau^{1}, \ldots, \tau^{l}\right)$. We remark that if $\Gamma(t)$ is smooth, then we can consider $\bar{\partial}_{\Gamma}$ in the smooth category, and obtain an algebra homomorphism $\mathbf{H} \otimes$ $\mathcal{O} \rightarrow H\left(\bar{\partial}_{\Gamma}\right): X \mapsto X \Gamma$.

For $X=[a], Y=[b] \in \mathbf{H}$, define $g(X, Y):=\int a b$. When we regard (U, \mathcal{O}) as a supermanifold, its tangent sheaf is identified with $\mathcal{O} \otimes \mathbf{H}$. Then we can regard g as a Riemannian metric on U. From (8), (12) and the result above, we obtain the following immediately.

Corollary 3.2. Let Γ be as in Theorem 3.1, and Φ be the potential which takes the form of (12). Then Φ is holomorphic on U. Consequently, $(U, \mathcal{O}, g, \Phi)$ is a Frobenius manifold in the sense of Manin [8].

This is straightforward.
We will prove Theorem 3.1 by modifying the arguments in the KodairaSpencer deformation theory (cf. Kodaira [5]). The proof is divided into two parts: Proposition 1 and Proposition 2. In the first part, we shall prove the $C^{k+\theta}$-convergence, and in the second part, the regularity of the resulting solution.

We introduce the Hölder norms on the space \mathbf{t}. Let U be an open set in a Euclidean space \boldsymbol{R}^{n}, k be a nonnegative integer, and $0<\theta<1$. For $f \in C^{k}(U)$, define

$$
|f|_{k+\theta}^{U}:=\sum_{|\alpha| \leq k} \sup _{x \in U}\left|D^{\alpha} f(x)\right|+\sum_{|\alpha|=k} \sup _{\substack{x, y \in U \\|x-y| \leq 1}} \frac{\left|D^{\alpha} f(x)-D^{\alpha} f(y)\right|}{|x-y|^{\theta}}
$$

where α is multi-index. Next, we fix a finite covering $\left\{V_{j}\right\}_{j \in I}$ of M such that $\left(z_{j}\right)$ are coordinate on V_{j}. For $\gamma \in \mathbf{t}$,

$$
\gamma=\sum_{p, q=0}^{n} \sum_{\substack{\alpha_{1}<\cdots<\alpha_{p} \\ \beta_{1}<\cdots<\beta_{q}}} \gamma_{j \bar{\alpha}_{1} \cdots \bar{\alpha}_{p}}^{\beta_{1} \cdots \beta_{q}}\left(z_{j}\right) d \bar{z}_{j}^{\alpha_{1}} \wedge \cdots \wedge d \bar{z}_{j}^{\alpha_{p}} \otimes \frac{\partial}{\partial z_{j}^{\beta_{1}}} \wedge \cdots \wedge \frac{\partial}{\partial z_{j}^{\beta_{q}}}
$$

the Hölder norm $|\gamma|_{k+\theta}$ is defined as follows:

$$
|\gamma|_{k+\theta}:=\sup \left|\gamma_{j \bar{\alpha}_{1} \cdots \bar{\alpha}_{p}}^{\beta_{1} \cdots \beta_{q}}\left(z_{j}\right)\right|_{k+\theta}^{V_{j}},
$$

where the sup is over all $j \in I ; p, q=1, \ldots, n ; \alpha_{1}<\cdots<\alpha_{p} ; \beta_{1}<\cdots<\beta_{q}$. We also introduce the Hölder norms on $A^{*, *}(M)$, that is, the space of all the (p, q) forms on M.

Let $\Gamma(t)=\sum \gamma_{\alpha} t^{\alpha} \in \boldsymbol{C}\left[\left[t_{\mathbf{H}}\right]\right] \hat{\otimes} \mathbf{t}, \quad \gamma_{\alpha} \in \mathbf{t} . \quad$ Here $\alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right)$ is a multiindex, and t^{α} denotes $\left(t^{1}\right)^{\alpha_{1}} \cdots\left(t^{N}\right)^{\alpha_{N}}$. Then we define

$$
\begin{equation*}
|\Gamma|_{k+\theta}(t):=\sum_{\alpha}\left|\gamma_{\alpha}\right|_{k+\theta} t^{\alpha} \in \boldsymbol{C}\left[\left[t^{1}, \ldots, t^{N}\right]\right] . \tag{14}
\end{equation*}
$$

In (14), we forget the grading of $\left(t^{i}\right)$. So, $t^{i} t^{j}=t^{j} t^{i}$ for all i, j in $\boldsymbol{C}\left[\left[t^{1}, \ldots, t^{N}\right]\right]$, though $\boldsymbol{C}\left[\left[t_{\mathbf{H}}\right]\right]$ is graded commutative.

Clearly, if $|\Gamma|_{k+\theta}(t)$ converges on a domain U, then $\Gamma(t)$ is $C^{k+\theta}$ class on U. Indeed,

$$
\left|\Gamma_{\alpha}\right|_{k+\theta}(t)=\left.\frac{\partial^{|\alpha|}}{\left(\partial t^{m+1}\right)^{\alpha_{1}} \cdots\left(\partial t^{m+l}\right)^{\alpha_{l}}}\right|_{t^{m+1}=\cdots=t^{m+l}=0}|\Gamma|_{k+\theta}(t)
$$

converges. So we shall prove the convergence of $|\Gamma|_{k+\theta}(t)$ for a certain specific choice of $\Gamma(t)$.

Fix a Kähler metric on M. Let ω be its Kähler form; $\bar{\partial}$ be $\bar{\partial}$-operator acting on differential forms on $M ; \bar{\partial}^{*}$ be the adjoint of $\bar{\partial}$ with respect to the L^{2}-inner product induced by the Kähler metric on $M ; \Delta_{\bar{\partial}}=\bar{\partial}^{*} \bar{\partial}+\bar{\partial} \bar{\partial}^{*}$ be the Laplacian; $G_{\bar{\partial}}$ be its Green operator. Similarly, we consider $\partial^{*}, \Delta_{\hat{\partial}}$, and G_{∂}. Let

$$
L: A^{*, *}(M) \rightarrow A^{*, *}(M)
$$

be the map defined by $L(\eta):=\eta \wedge \omega$, and Λ be its adjoint. Then the following is well-known (cf. Griffiths-Harris [4]):

$$
\begin{gather*}
\Delta_{\bar{\partial}}=\Delta_{\partial} \quad G_{\bar{\partial}}=G_{\partial} \\
{[\Lambda, \partial]=\sqrt{-1} \bar{\partial}^{*} \quad[\Lambda, \bar{\partial}]=-\sqrt{-1} \partial^{*} .} \tag{15}
\end{gather*}
$$

We choose $\Gamma(t)$ as follows. Let $\left\{\left[\gamma_{a}\right]\right\}$ be a basis of \mathbf{H}. We can assume that $I \gamma_{a}$ are harmonic forms, that is,

$$
\begin{equation*}
\Delta_{\bar{\partial}}\left(I \gamma_{a}\right)=0 . \tag{16}
\end{equation*}
$$

Then the condition $\bar{\partial} \gamma_{a}=\Delta \gamma_{a}=0$ is satisfied. Define

$$
\Gamma_{0}:=0, \quad \Gamma_{1}:=\sum_{a} \gamma_{a} t^{a}
$$

For $n \geq 2$, we define Γ_{n} inductively, as follows:

$$
\begin{aligned}
\psi_{n} & :=-\frac{1}{2} \sum_{i+j=n}\left[\Gamma_{i} \bullet \Gamma_{j}\right] \\
\Gamma_{n} & :=I \bar{\partial}^{*} G I \psi_{n}
\end{aligned}
$$

where $G:=G_{\bar{\partial}}=G_{\bar{\partial}}$, and I is defined by (4). Here, Γ_{n} is homogeneous of degree n in t^{a}.

Lemma 3.3. Let $\Gamma=\sum_{n \geq 1} \Gamma_{n}$ be as above. Then Γ is a normalized solution. More precisely, if we define

$$
\begin{equation*}
B_{n}:=\sqrt{-1} I \Lambda G I \psi_{n}, \quad B=\sum_{n \geq 2} B_{n} \tag{17}
\end{equation*}
$$

then $\Gamma=\Gamma_{1}+\Delta B$, and Γ is homogeneous of degree 2 with respect to the grading on $\boldsymbol{C}\left[\left[t_{\mathbf{H}}\right]\right] \hat{\otimes} \mathbf{t}$ induced by (1) and (10).

Proof. By definition,

$$
\bar{\partial} \Gamma+\frac{1}{2}[\Gamma \bullet \Gamma]=0 \Leftrightarrow\left\{\begin{array}{l}
\bar{\partial} \Gamma_{1}=0 \quad \text { and } \\
\bar{\partial} \Gamma_{n}=-(1 / 2) \sum_{i+j=n}\left[\Gamma_{i} \bullet \Gamma_{j}\right]=\psi_{n} \quad \forall n \geq 2
\end{array}\right.
$$

From (16), we have $\bar{\partial} \Gamma_{1}=0$. Therefore it is sufficient to prove inductively the following:

$$
\left\{\begin{array}{l}
\bar{\partial} \Gamma_{n}=\psi_{n} \tag{*}\\
\Gamma_{n}=\Delta B_{n} \\
\left|\Gamma_{n}\right|=2
\end{array}\right.
$$

We assume that $(*)_{1}, \ldots,(*)_{n-1}$ hold. Then

$$
\begin{aligned}
\bar{\partial} \psi_{n} & =-\frac{1}{2} \sum_{i+j=n}\left(\left[\bar{\partial} \Gamma_{i} \bullet \Gamma_{j}\right]-\left[\Gamma_{i} \bullet \bar{\partial} \Gamma_{j}\right]\right) \\
& =-\frac{1}{2} \sum_{i+j+k=n}\left[\left[\Gamma_{i} \bullet \Gamma_{j}\right] \bullet \Gamma_{k}\right]
\end{aligned}
$$

The right hand side vanishes because the Jacobi identity reads:

$$
\left[\left[\Gamma_{i} \bullet \Gamma_{j}\right] \bullet \Gamma_{k}\right]+\left[\left[\Gamma_{j} \bullet \Gamma_{k}\right] \bullet \Gamma_{i}\right]+\left[\left[\Gamma_{k} \bullet \Gamma_{i}\right] \bullet \Gamma_{j}\right]=0
$$

On the other hand, because of the Tian-Todorov lemma (7), we have $\psi_{n} \in \operatorname{Im} \Delta$. Namely, $I \psi_{n} \in \operatorname{ker} \bar{\partial} \cap \operatorname{Im} \partial$. We have

$$
\begin{aligned}
I \psi_{n} & =\partial \partial^{*} G I \psi_{n} \text { because } I \psi_{n} \in \operatorname{Im} \partial \\
& =\sqrt{-1} \partial(\Lambda \bar{\partial}-\bar{\partial} \Lambda) G I \psi_{n} \text { from (15) } \\
& =\bar{\partial}\left(\sqrt{-1} \partial \Lambda G I \psi_{n}\right) \\
& =\bar{\partial} \bar{\partial}^{*} G I \psi_{n} .
\end{aligned}
$$

Therefore we obtain $\psi_{n}=\bar{\partial} \Gamma_{n}$ and $\Gamma_{n}=\Delta B_{n}$. Finally, because

$$
I \Lambda I, I G I: \mathbf{t} \rightarrow \mathbf{t}
$$

preserve \boldsymbol{Z}-grading, we have

$$
\left|\Gamma_{n}\right|=\left|B_{n}\right|-1=\left|\psi_{n}\right|-1=2 .
$$

For $f=\sum_{\alpha} a_{\alpha} t^{\alpha}, g=\sum_{\beta} b_{\beta} t^{\beta} \in \boldsymbol{C}\left[\left[t^{1}, \ldots, t^{N}\right]\right]$, we define:

$$
f<g \stackrel{\text { def }}{\Longleftrightarrow}\left|a_{\alpha}\right| \leq\left|b_{\alpha}\right| \quad \text { for all } \alpha .
$$

If $f \ll g$ and g converges, then f also converges. For $b, c \in \boldsymbol{R}_{>0}$, define

$$
A(t)=A(b, c ; t):=\frac{b}{16 c} \sum_{\mu=1}^{\infty} \frac{c^{\mu}}{\mu^{2}}\left(t^{1}+\cdots+t^{N}\right)^{\mu} .
$$

Then $A(t)$ converges on $\left\{t \in \boldsymbol{C}^{N}| | t^{i} \mid<1 / N c\right\}$, and satisfies

$$
\begin{equation*}
A(t)^{2} \ll \frac{b}{c} A(t) . \tag{18}
\end{equation*}
$$

Proposition 1. Let $\Gamma(t)=\Gamma_{1}(t)+\Delta B(t)$ be chosen as in Lemma 3.3. Then, for fixed integer $k \geq 2$ and real number $0<\theta<1$, there exist sufficiently large numbers b, c which satisfy

$$
|\Gamma|_{k+\theta}(t) \ll A(t) \quad \text { and } \quad|B|_{k+1+\theta}(t) \ll A(t) .
$$

To prove this, we need the following two lemmas.
Lemma 3.4. For all $\varphi \in A^{*, *}(M)$ and $\gamma \in \mathbf{t}$, we have
(i) $|G \varphi|_{k+\theta} \leq C_{1}|\varphi|_{k-2+\theta}$,
(ii) $|\Lambda \varphi|_{k+\theta} \leq C_{2}|\varphi|_{k+\theta}$,
(iii) $C_{3}^{-1}|I \varphi|_{k+\theta} \leq|\varphi|_{k+\theta} \leq C_{3}|I \varphi|_{k+\theta}$,
(iv) $|\Delta \gamma|_{k+\theta} \leq C_{4}|\gamma|_{k+1+\theta}$,
where C_{1}, C_{2}, C_{3} and C_{4} are some positive constants depending on k, θ, not on φ, γ.
Proof. The first inequality is well-known in the theory of elliptic operators (cf. Kodaira [5], Appendix, etc.). $\Lambda: A^{*, *} \rightarrow A^{*, *}$ and $I: \mathbf{t} \rightarrow A^{*, *}$ are operators of order 0 , and $\Delta: \mathbf{t} \rightarrow \mathbf{t}$ is of order 1 . Hence we obtain the remaining inequalities.

Lemma 3.5. There exists a positive constant C_{5} depending on k, θ such that

$$
|[\varphi \bullet \psi]|_{k-1+\theta} \leq C_{5}|\varphi|_{k+\theta}|\psi|_{k+\theta}
$$

for all $\varphi, \psi \in \mathbf{t}$.
Proof. In general, if $U \subset \boldsymbol{R}^{l}$ is an open set, and $f, g \in C^{k+\theta}(U)$, we have

$$
|f g|_{k-1+\theta} \leq C|f|_{k-1+\theta}|g|_{k-1+\theta}
$$

for some constant C.

By $\quad \partial_{i}$, we denote $\partial / \partial z_{i}$. Let $\varphi=f d \bar{z}_{I} \otimes \partial_{i_{1}} \wedge \cdots \wedge \partial_{i_{p}}, \quad \psi=g d \bar{z}_{J} \otimes$ $\partial_{j_{1}} \wedge \cdots \wedge \partial_{j_{q}} \in \mathbf{t}$. Then, from (2), we have

$$
\begin{aligned}
{[\varphi \bullet \psi]=} & \pm d \bar{z}_{I} \wedge d \bar{z}_{J} \otimes\left\{\sum_{a=1}^{p} \pm f\left(\partial_{i_{a}} g\right) \partial_{i_{1}} \wedge \cdots \wedge \widehat{\partial_{i_{a}}} \wedge \cdots \wedge \partial_{i_{p}} \wedge \partial_{j_{1}} \wedge \cdots \wedge \partial_{j_{q}}\right. \\
& \left.+\sum_{b=1}^{q} \pm g\left(\partial_{j_{b}} f\right) \partial_{i_{1}} \wedge \cdots \wedge \partial_{i_{p}} \wedge \partial_{j_{1}} \wedge \cdots \wedge \widehat{\partial_{j_{b}}} \wedge \cdots \wedge \partial_{j_{q}}\right\}
\end{aligned}
$$

Hence

$$
\begin{aligned}
|[\varphi \bullet \psi]|_{k-1+\theta} & \leq \sum_{a=1}^{p}\left|f \partial_{i_{a}} g\right|_{k-1+\theta}+\sum_{b=1}^{q}\left|g \partial_{j_{b}} f\right|_{k-1+\theta} \\
& \leq 2 n C|\varphi|_{k+\theta}|\psi|_{k+\theta}
\end{aligned}
$$

Since general elements in \mathbf{t} are represented as sum of at most 4^{n} such elements, we obtain

$$
|[\varphi \bullet \psi]|_{k-1+\theta} \leq 2 n 4^{n} C|\varphi|_{k+\theta}|\psi|_{k+\theta} .
$$

Proof of Proposition 1. Recall that $\Gamma_{1}=\sum \gamma_{a} t^{a}$ and $A(t)=(b / 16)$. $\left(t^{1}+\cdots+t^{N}\right)+$ higher terms. Therefore, if

$$
\begin{equation*}
b \geq 16 \max _{a}\left|\gamma_{a}\right|_{k+\theta} \tag{19}
\end{equation*}
$$

then it follows that $\left|\Gamma_{1}\right|_{k+\theta}(t) \ll A(t)$.
Assume that for all $i=1, \ldots n$,

$$
\begin{equation*}
\left|\Gamma_{i}\right|_{k+\theta}(t) \ll A(t) \tag{20}
\end{equation*}
$$

for some $b, c>0$. Using Lemma 3.4, 3.5, and (17), we have

$$
\begin{equation*}
\left|B_{n+1}\right|_{k+1+\theta}(t)=\left|I \Lambda G I \psi_{n+1}\right|_{k+1+\theta}(t) \ll C_{1} C_{2} C_{3}^{2}\left|\psi_{n+1}\right|_{k-1+\theta}(t) \tag{21}
\end{equation*}
$$

We denote $\Gamma_{1}+\cdots+\Gamma_{n}$ by Γ^{n}. Then

$$
\left|\psi_{n+1}\right|_{k-1+\theta}(t)=\frac{1}{2}\left|\sum_{\substack{i+j=n+1 \\ i, j \geq 1}}\left[\Gamma_{i} \bullet \Gamma_{j}\right]\right|_{k-1+\theta}(t) \ll \frac{1}{2}\left|\left[\Gamma^{n} \bullet \Gamma^{n}\right]\right|_{k-1+\theta}(t)
$$

For $\varphi=\sum \varphi_{\alpha} \tau^{\alpha} \in \boldsymbol{C}\left[\left[t_{\mathbf{H}}\right]\right] \hat{\otimes} \mathbf{t}$, we have

$$
\begin{aligned}
|[\varphi \bullet \varphi]|_{k-1+\theta}(t) & \ll \sum_{\alpha, \beta} t^{\alpha} t^{\beta}\left|\left[\varphi_{\alpha} \bullet \varphi_{\beta}\right]\right|_{k-1+\theta} \\
& \ll \sum_{\alpha, \beta} t^{\alpha} t^{\beta} C_{5}\left|\varphi_{\alpha}\right|_{k+\theta}\left|\varphi_{\beta}\right|_{k+\theta} \\
& =C_{5}|\varphi|_{k+\theta}(t)|\varphi|_{k+\theta}(t)
\end{aligned}
$$

by Lemma 3.5. Since $\left|\Gamma^{n}\right|_{k+\theta} \ll A(t)$ by the assumption (20), we obtain

$$
\begin{align*}
\left|\psi_{n+1}\right|_{k-1+\theta} & \ll \frac{1}{2}\left|\left[\Gamma^{n} \bullet \Gamma^{n}\right]\right|_{k-1+\theta} \\
& \ll \frac{C_{5}}{2}\left|\Gamma^{n}\right|_{k+\theta}\left|\Gamma^{n}\right|_{k+\theta} \\
& \ll \frac{C_{5}}{2} A(t)^{2} \\
& \ll \frac{C_{5} b}{2 c} A(t) \text { from }(18) . \tag{22}
\end{align*}
$$

From (21) and (22), we have

$$
\left|B_{n+1}\right|_{k+1+\theta} \ll \frac{C_{1} C_{2} C_{3}^{2} C_{5} b}{2 c} A(t) .
$$

Choose b satisfying (19). Next, choose c so that c satisfies

$$
\begin{equation*}
c \geq \frac{1}{2} C_{1} C_{2} C_{3}^{2} C_{4} C_{5} b \tag{23}
\end{equation*}
$$

Then

$$
\begin{aligned}
\left|\Gamma_{n+1}\right|_{k+\theta} & =\left|\Delta B_{n+1}\right|_{k+\theta} \\
& \ll C_{4}\left|B_{n+1}\right|_{k+1+\theta} \\
& <A(t) .
\end{aligned}
$$

The conditions (19) and (23) are independent of n. Therefore once we choose b and c satisfying (19) and (23), we can apply this argument for all n. Hence for such b and c

$$
|\Gamma|_{k+\theta}(t) \ll A(t) \quad \text { and } \quad|B|_{k+1+\theta} \ll C_{4}^{-1} A(t) \ll A(t) .
$$

Remark. Since b and c depend on k and θ, the convergence radius of $\Gamma(t)$ also depends on k and θ.

From Proposition 1, we can deduce Corollary 3.2. However, because in order to observe the multiplicative structure of the resulting Frobenius manifold, it seems suitable to use $\Gamma(t)$, we prove the regularity of $\Gamma(t)$ in the next section.

4. Regularity of $\Gamma(t)$.

In the previous section, we proved that $\Gamma(t)$ is $C^{k+\theta}$. In this section we shall prove that $\Gamma(t)$ is C^{∞} on a sufficiently small neighbourhood of the origin in $\mathbf{H}^{e v}$. Since $B_{n}=(\sqrt{-1} / 2) I \Lambda G I\left(\sum_{i+j=n}\left[\Gamma_{i} \bullet \Gamma_{j}\right]\right)$, we have

$$
B=\frac{\sqrt{-1}}{2} I \Lambda G I([\Gamma \bullet \Gamma]) .
$$

Therefore if $\Gamma(t)$ is C^{∞}, then B is also C^{∞}. See Kodaira [5], Theorem 7.10.
In this section, we separate even and odd, again. $\left(t^{1} \ldots, t^{m}\right)$ denotes even parameter, and $\left(\tau^{1}, \ldots, \tau^{l}\right)$ denotes odd. Put

$$
\begin{align*}
\varphi(t) & :=I \Gamma(t), \quad \varphi_{n}:=I \Gamma_{n} \text { and } \tag{24}\\
S:=\left\{\left(t^{1}, \ldots, t^{m}\right)\right. & \left.\in \boldsymbol{C}^{m}| | t^{i} \mid<r \text { for } \forall i\right\} \text { for small } r>0 .
\end{align*}
$$

We assume that $\Gamma(t)$ is $C^{k+\theta}$ on S. Let π be a projection $M \times S \rightarrow M$. Then we can regard φ as a $C^{k+\theta}$ section of

$$
V=\pi^{*}\left(\bigwedge^{*} T_{M}^{*} \otimes \bigwedge^{*} \bar{T}_{M}^{*}\right) \otimes \bigwedge\left(\tau^{1}, \ldots, \tau^{l}\right) \rightarrow M \times S .
$$

In order to prove that $\Gamma(t)$ is C^{∞}, it is sufficient to prove that φ is so. We consider the equation that $\varphi(t)$ satisfies.

Since $\Gamma(t)$ satisfies

$$
\bar{\partial} \Gamma+\frac{1}{2}[\Gamma \bullet \Gamma]=0,
$$

$\varphi(t)$ satisfies

$$
\bar{\partial} \varphi+\frac{1}{2} I[I \varphi \bullet I \varphi]=0 .
$$

Here, we have $\varphi_{1}(t)=\sum\left(I \gamma_{a}\right) t^{a}$ by definition. Because we choose γ_{a} so that they satisfy (16), we have $\bar{\partial}\left(I \gamma_{a}\right)=\bar{\partial}^{*}\left(I \gamma_{a}\right)=0$. Therefore $\bar{\partial}^{*} \varphi_{1}(t)=0$. If $n \geq 2$, then $\bar{\partial}^{*} \varphi_{n}=0$ because $\varphi_{n}=\bar{\partial}^{*} G I \psi_{n}$. Hence $\varphi(t)$ satisfies the following:

$$
\Delta_{\bar{\partial}} \varphi+\frac{1}{2} \bar{\partial}^{*} I[I \varphi \bullet I \varphi]=0 .
$$

Using (15) and $\Delta \Gamma=0$, we can rewrite this equation as follows:

$$
\Delta_{\bar{\partial}} \varphi+\frac{\sqrt{-1}}{2} \partial \Lambda I[I \varphi \bullet I \varphi]=0 .
$$

On the other hand, since φ is holomorphic in $\left(t^{1}, \ldots, t^{m}\right)$, we obtain the following:

$$
\begin{equation*}
\left(-\sum_{i=1}^{m} \frac{\partial^{2}}{\partial t^{i} \partial \bar{t}^{i}}+\Delta_{\bar{\partial}}\right) \varphi+\frac{\sqrt{-1}}{2} \partial \Lambda I[I \varphi \bullet I \varphi]=0 . \tag{25}
\end{equation*}
$$

Unlike the Kodaira-Spencer theory, our $\varphi(t)$ is possibly nonzero even if $t=0$. Perhaps the quasi-linear equation (25) is not elliptic. However, we will prove the regularity, modifying the argument in Kodaira [5], appendix, §8.

We introduce a new norm on the space of sections of V. Let ψ be a section of V. Then we can represent ψ uniquely as $\psi=\sum_{\beta} \psi_{\beta} \tau^{\beta}$ where ψ_{β} is a section of $W=\pi^{*}\left(\bigwedge^{*} T_{M}^{*} \otimes \bigwedge^{*} \bar{T}_{M}^{*}\right)$. Let $\left\{V_{j}\right\}$ be a coordinate neighbourhood of M. Then $\left\{V_{j} \times S\right\}$ is a coordinate neighbourhood of $M \times S$. For $f=$ $\sum f_{j A B}\left(z_{j}, t\right) d z_{j}^{A} \wedge d \bar{z}_{j}^{B} \in \Gamma(M \times S, W)$, define

$$
|f|_{k+\theta}:=\max _{j, A, B}\left|f_{j A B}\left(z_{j}, t\right)\right|_{k+\theta}^{V_{j} \times S}
$$

In order to distinguish this norm from the one in the previous section, we denote the latter by $|\cdot|_{k+\theta}^{M}$. Next, for $\psi=\sum \psi_{\beta} \tau^{\beta}$ and fixed $\rho \in \boldsymbol{R}$ with $0<\rho<1$, define

$$
|\psi|_{k+\theta}^{\rho}:=\sum_{\beta}\left|\psi_{\beta}\right|_{k+\theta} \rho^{|\beta|}
$$

For $\varphi=\sum \varphi_{\alpha \beta} t^{\alpha} \tau^{\beta}$ defined by (24), we can assume that φ satisfies

$$
\begin{align*}
|\varphi|_{k+\theta}(t, \tau) & =\sum_{\alpha, \beta}\left|\varphi_{\alpha \beta}\right|_{k+\theta}^{M} t^{\alpha} \tau^{\beta} \\
& \ll A(t, \tau)=\sum_{\alpha, \beta} A_{\alpha \beta} t^{\alpha} \tau^{\beta} \\
& =\frac{b}{16 c} \sum_{\mu \geq 1} \frac{c^{\mu}}{\mu^{2}}\left(t^{1}+\cdots+t^{m}+\tau^{1}+\cdots+\tau^{l}\right)^{\mu} \tag{26}
\end{align*}
$$

i.e. $\left|\varphi_{\alpha \beta}\right|_{k+\theta}^{M} \leq A_{\alpha \beta}$.

Lemma 4.1. Under the assumption (26) above, we have
(i) $|\varphi|_{0}^{\rho} \leq A(r, \rho)$,
(ii) $|\varphi|_{\theta}^{\rho} \leq 2 A(r, \rho)+2^{1-\theta} \sum_{|\alpha| \geq 1}|\alpha| A_{\alpha \beta} r^{|\alpha|-\theta} \rho^{|\beta|}=: B(r, \rho)$, where $A(r, \rho)=A(r, \ldots, r, \rho, \ldots, \rho)$.

Proof. (i) is obvious. Indeed,

$$
|\varphi|_{0}^{\rho}=\sum_{\beta}\left|\sum_{\alpha} \varphi_{\alpha \beta} t^{\alpha}\right|_{0} \rho^{|\beta|} \leq \sum_{\alpha, \beta}\left|\varphi_{\alpha \beta}\right|_{0}^{M} r^{|\alpha|} \rho^{|\beta|} \leq A(r, \rho) .
$$

To prove (ii), it is sufficient to consider locally. For $(x, t),(y, s) \in V_{j} \times S$, we estimate

$$
\frac{\left|\varphi_{\beta}(x, t)-\varphi_{\beta}(y, s)\right|}{|(x, t)-(y, s)|^{\theta}}
$$

where $\varphi_{\beta}=\sum_{\alpha} \varphi_{\alpha \beta}(x) t^{\alpha}$. We have

Hence

$$
|\varphi|_{\theta}^{\rho}=\sum_{\alpha}\left|\varphi_{\beta}\right|_{\theta} \rho^{|\beta|} \leq 2 A(r, \rho)+2^{1-\theta} \sum_{\substack{|\alpha| \geq 1 \\ \beta}}|\alpha| A_{\alpha \beta} r^{|\alpha|-\theta} \rho^{|\beta|}
$$

Remark that if r and ρ are sufficiently small, then $A(r, \rho), B(r, \rho)$ are also small. Of course they converge.

Choose a partition of unity $\left\{\omega_{i}\right\}$ subordinate to the open cover $\left\{V_{i}\right\}$. Next, for each $l=1,2, \ldots$, we choose a C^{∞}-function $\eta^{l}(t)$ on S such that

$$
\left\{\begin{array}{l}
\eta^{l}(t) \equiv 1 \quad \text { if }|t| \leq\left(2^{-1}+2^{-l-1}\right) r \\
\eta^{l}(t) \equiv 0 \quad \text { if }|t| \geq\left(2^{-1}+2^{-l}\right) r \\
0 \leq \eta^{l}(t) \leq 1
\end{array}\right.
$$

Put $\omega_{j}^{l}(x, t):=\omega_{j}(x) \eta^{l}(t)$. Furthermore, we choose a C^{∞}-function $\chi_{j}(x)$ with $\operatorname{supp} \chi_{j} \subset V_{j}$ which is identically equal to 1 on some neighbourhood of $\operatorname{supp} \omega_{j}$. Put $\chi_{j}^{l}:=\chi_{j} \eta^{l}$. Because $\eta^{l} \equiv 1$ on some neighbourhood of $\operatorname{supp} \eta^{l+2}, \chi_{j}^{l} \equiv 1$ on some neighbourhood of $\operatorname{supp} \omega_{j}^{l+2}$. Then we shall prove the following:

Proposition 2. For some small $r>0, \eta^{2 l+1} \varphi$ is $C^{k+l+\theta}$. In particular, φ is C^{∞} on $M \times\left\{t \in \boldsymbol{C}^{m}| | t^{i} \mid<r / 2\right\}$.
$\omega_{j}^{l} \varphi$ can be considered as a vector-valued function with compact support on a $(2 n+2 m)$-dimensional torus $\boldsymbol{T}^{2 n+2 m}$. Since $\eta^{2 l+1} \varphi=\sum_{j} \omega_{j}^{2 l+1} \varphi$, to prove Proposition 2, it is sufficient to prove the regularity of $\omega_{j}^{2 l+1} \varphi$. To prove this, we need some lemmas. Let $C^{k+\theta}=C^{k+\theta}\left(\boldsymbol{T}^{l}, \boldsymbol{C}\right)$ be the space of \boldsymbol{C}-valued $C^{k+\theta}$ functions on \boldsymbol{T}^{l}.

Lemma 4.2. Let $u, v \in C^{K+\theta}\left(\boldsymbol{T}^{l}, \boldsymbol{C}\right)$. Then the product $u v$ is $C^{k+\theta}$. And there exists a positive constant B_{k} depending only on k and l, but independent of u and v such that

$$
|u v|_{k+\theta} \leq B_{k} \sum_{r+s=k}\left(|u|_{r+\theta}|v|_{s}+|u|_{r}|v|_{s+\theta}\right) .
$$

Lemma 4.3. Let $\left(x^{1}, \ldots, x^{l}\right)$ be coordinate functions on \boldsymbol{T}^{l}. For $h \in \boldsymbol{R}$ with $h \neq 0, a=1, \ldots, l$ and $f \in C^{k+\theta}$, define

$$
\Delta_{a}^{h} f\left(x^{1}, \ldots, x^{l}\right):=\frac{f\left(x^{1}, \ldots, x^{a}+h, \ldots, x^{l}\right)-f\left(x^{1}, \ldots, x^{l}\right)}{h}
$$

Then we have the following:
(i) If $f \in C^{k+\theta}$, then $\Delta_{a}^{h} f \in C^{k+\theta}$ for all $h \neq 0$ and $a=1, \ldots, l$.
(ii) If $f \in C^{k+1+\theta}$, then $\left|\Delta_{a}^{h} f\right|_{k+\theta} \leq|f|_{k+1+\theta}$ for all a and $h(0<|h|<1)$.
(iii) If $f \in C^{k+\theta}$ and for any $a=1, \ldots, l$ and any h with $0<|h|<1$ there exists a positive constant independent of h such that

$$
\left|\Delta_{a}^{h} f\right|_{k+\theta} \leq M
$$

then $f \in C^{k+1+\theta}$.
Lemma $4.4\left(C^{k+\theta}\right.$ a priori estimate). Let U be a domain in \boldsymbol{T}^{l}. Suppose that the second-order linear partial differential operator E with C^{∞} coefficients defined on \bar{U} is of diagonal type in the principal part and strongly elliptic. Let $0<\theta<1$. Then for all integer $k \geq 0$, there exists a positive constant C such that

$$
|f|_{k+2+\theta} \leq C\left(|E f|_{k+\theta}+|f|_{0}\right)
$$

for all $f \in C^{k+2+\theta}$ with supp $f \subset U$. Here C is independent of f.
See Kodaira [5], appendix §8, Theorem 2.3, Lemma 8.1 and Lemma 8.2. Put

$$
E:=-\sum_{i=1}^{m} \frac{\partial^{2}}{\partial t^{i} \partial \bar{t}^{i}}+\Lambda_{\bar{\partial}} .
$$

E is a second-order strongly elliptic operator of diagonal type in the principal
part. If we consider that $V_{i} \times S \subset \boldsymbol{T}^{2 n+2 m}$, then there exists a positive constant C_{0} such that

$$
\begin{equation*}
|\psi|_{k+\theta} \leq C_{0}\left(|E \psi|_{k-2+\theta}+|\psi|_{0}\right) \tag{27}
\end{equation*}
$$

for all sections ψ of W with $\operatorname{supp} \psi \subset V_{j} \times S$. This estimate (27) is true for all sections of W. Let $\psi=\sum \psi_{\beta} \tau^{\beta}$ be a section of V. Since $E \psi=\sum\left(E \psi_{\beta}\right) \tau^{\beta}$ and for all β

$$
\left|\psi_{\beta}\right|_{k+\theta} \leq C_{0}\left(\left|E \psi_{\beta}\right|_{k-2+\theta}+\left|\psi_{\beta}\right|_{0}\right)
$$

we obtain the following:

$$
\begin{align*}
|\psi|_{k+\theta}^{\rho} & =\sum_{\beta}\left|\psi_{\beta}\right|_{k+\theta} \rho^{|\beta|} \\
& \leq \sum_{\beta} C_{0}\left(\left|E \psi_{\beta}\right|_{k-2+\theta}+\left|\psi_{\beta}\right|_{0}\right) \rho^{|\beta|} \\
& =C_{0}\left(|E \psi|_{k-2+\theta}^{\rho}+|\psi|_{0}^{\rho}\right) \tag{28}
\end{align*}
$$

Here the constant C_{0} in (28) is same as the one in (27). We prove Proposition 2, using this.

Proof of Proposition 2. (I) First, we shall prove that $\omega_{j}^{3} \varphi \in C^{k+1+\theta}$.
$\omega_{j}^{3} \varphi$ can be considered as a function on $\boldsymbol{T}^{2 n+2 m}$. Therefore we can define $\Delta_{a}^{h}\left(\omega_{j}^{3} \varphi\right)$. By Lemma 4.3, it is sufficient to prove the following: for each $a=1, \ldots, 2 n+2 m$ and each β, there exists a positive constant K such that $\left|\Delta_{a}^{h} \omega_{j}^{3} \varphi_{\beta}\right|_{k+\theta} \leq K$ for all $h \in \boldsymbol{R}$ with $0<|h|<1$.

For simplicity, denote $\omega:=\omega_{j}^{3}, \chi:=\chi_{j}^{1}$. If $\left|\Delta_{a}^{h} \omega \varphi\right|_{k+\theta}^{p} \leq K$, then we have $\left|\Delta_{a}^{h} \omega \varphi_{\beta}\right|_{k+\theta} \leq \rho^{-|\beta|} K$ for each β. Therefore, we shall prove that:

$$
\left|\Delta_{a}^{h} \omega \varphi\right|_{k+\theta}^{\rho} \leq K .
$$

We have

$$
\begin{aligned}
E(\omega \varphi) & =E(\omega \chi \varphi)=[E, \omega](\chi \varphi)+\omega E(\chi \varphi) \\
& =-\frac{\sqrt{-1}}{2} \omega \partial \Lambda I[I \chi \varphi \bullet I \chi \varphi]+[E, \omega](\chi \varphi) .
\end{aligned}
$$

Therefore

$$
\begin{align*}
E\left(\Delta_{a}^{h} \omega \varphi\right) & =\Delta_{a}^{h} E(\omega \varphi)+\left[E, \Delta_{a}^{h}\right](\omega \varphi) \\
& =-\frac{\sqrt{-1}}{2} \Delta_{a}^{h}(\omega \partial \Lambda I[I \chi \varphi \bullet I \chi \varphi])+\Delta_{a}^{h}([E, \omega](\chi \varphi))+\left[\Delta_{\bar{\delta}}, \Delta_{a}^{h}\right](\omega \varphi) \\
& =: F_{1} . \tag{29}
\end{align*}
$$

Here we used the following facts:

$$
\left[-\sum_{i=1}^{m} \frac{\partial^{2}}{\partial t^{i} \partial \bar{t} i}, \Delta_{a}^{h}\right]=0 \quad \text { and } \quad \chi \equiv 1 \text { on a neighbourhood of } \operatorname{supp} \omega .
$$

Using (28), we obtain

$$
\left|\Delta_{a}^{h} \omega \varphi\right|_{k+\theta}^{\rho} \leq C_{0}\left(\left|F_{1}\right|_{k-2+\theta}^{\rho}+\left|\Delta_{a}^{h} \omega \varphi\right|_{0}^{\rho}\right) .
$$

Since $\omega \varphi$ is $C^{k+\theta}$, we have

$$
\begin{equation*}
\left|\Delta_{a}^{h} \omega \varphi\right|_{0}^{\rho} \leq \sum_{\beta}\left|\omega \varphi_{\beta}\right|_{k+\theta} \rho^{|\beta|} \tag{30}
\end{equation*}
$$

from Lemma 4.3. The right hand side of (30) is independent of h.
Let us estimate $\left|F_{1}\right|_{k-2+\theta}^{p}$. First, we have $\left|U_{a}^{h}([E, \omega](\chi \varphi))\right|_{k-2+\theta}^{p} \leq K$. Here K is a positive constant which is independent of h. Indeed, since $[E, \omega]$ is first order operator, $[E, \omega](\chi \varphi)$ is $C^{k-1+\theta}$.

Secondly, we have $\left|\left[\Delta_{\bar{i}}, \Delta_{a}^{h}\right](\chi \varphi)\right|_{k-2+\theta}^{p} \leq K$. Indeed Δ_{a}^{h} acts only on coefficients of $\Delta_{\bar{\partial}}$ which is smooth.

Finally we estimate $\left|\Delta_{a}^{h}(\omega \partial \Lambda I[I \chi \varphi \bullet I \chi \varphi])\right|_{k-2+\theta}^{\rho}$. Since

$$
\Delta_{a}^{h}(\omega \partial \Lambda I[I \chi \varphi \bullet I \chi \varphi])=\sum_{\beta, \gamma} \pm \Delta_{a}^{h}\left(\omega \partial \Lambda I\left[I \chi \varphi_{\beta} \bullet I \chi \varphi_{\gamma}\right]\right) \tau^{\beta} \tau^{\gamma},
$$

we have

$$
\left|\Delta_{a}^{h}(\omega \partial \Lambda I[I \chi \varphi \bullet I \chi \varphi])\right|_{k-2+\theta}^{\rho} \leq \sum_{\beta, \gamma}\left|\Delta_{a}^{h}\left(\omega \partial \Lambda I\left[I \chi \varphi_{\beta} \bullet I \chi \varphi_{\gamma}\right]\right)\right|_{k-2+\theta} \rho^{|\beta|+|\gamma|} .
$$

Lemma 4.5.

$$
\left|\Delta_{a}^{h}\left(\omega \partial \Lambda I\left[I \chi \varphi_{\beta} \bullet I \chi \varphi_{\gamma}\right]\right)\right|_{k-2+\theta} \leq C_{1}\left(\left|\Delta_{a}^{h} \omega \varphi_{\beta}\right|_{k+\theta}\left|\varphi_{\gamma}\right|_{\theta}+\left|\varphi_{\beta}\right|_{\theta}\left|\Delta_{a}^{h} \omega \varphi_{\gamma}\right|_{k+\theta}\right)+K
$$

where C_{1} is a positive constant which is independent of h, ω and χ.
Postponing the proof of this lemma, we shall finish the proof of (I). If we assume Lemma 4.5, we have

$$
\begin{aligned}
\left|\Delta_{a}^{h}(\omega \partial \Lambda I[I \chi \varphi \bullet I \chi \varphi])\right|_{k-2+\theta}^{\rho} & \leq 2 C_{1} \sum_{\beta, \gamma}\left|\Delta_{a}^{h} \omega \varphi_{\beta}\right|_{k+\theta}\left|\varphi_{\gamma}\right|_{\theta} \rho^{|\beta|+|\gamma|}+K \\
& =2 C_{1}\left|\Delta_{a}^{h} \omega \varphi\right|_{k+\theta}^{\rho}|\varphi|_{\theta}^{\rho}+K
\end{aligned}
$$

From Lemma 4.1, we have $|\varphi|_{\theta}^{\rho} \leq B(r, \rho)$. Therefore we obtain

$$
\left|\Delta_{a}^{h}(\omega \varphi)\right|_{k+\theta}^{p} \leq 2 C_{0} C_{1} B(r, \rho)\left|\Delta_{a}^{h} \omega \varphi\right|_{k+\theta}^{p}+K .
$$

If we choose r and ρ such that

$$
\begin{equation*}
2 C_{0} C_{1} B(r, \rho) \leq 1 / 2 \tag{31}
\end{equation*}
$$

then it follows that $\left|\Delta_{a}^{h} \omega \varphi\right|_{k+\theta}^{\rho} \leq K$.
Proof of Lemma 4.5. For simplicity, we denote $f=\varphi_{\beta}$ and $g=\varphi_{\gamma}$. Let

$$
\begin{aligned}
& f=\sum_{A, B} f_{A B} d z^{A} \wedge d \bar{z}^{B}, \quad g=\sum_{C, D} g_{C D} d z^{C} \wedge d \bar{z}^{D} \\
& \Lambda\left(d z^{A} \wedge d \bar{z}^{B}\right)=\sum_{C, D} \Lambda_{C D}^{A B} d z^{C} \wedge d \bar{z}^{D} \\
& \Omega=h d z^{1} \wedge \cdots \wedge d z^{n} .
\end{aligned}
$$

Then

$$
I(f)=\sum \pm f_{A B} / h d \bar{z}^{B} \otimes \partial_{z^{n-A}}
$$

where $n-A$ denotes the compliment of A in $\{1, \ldots, n\}$.

$$
\begin{aligned}
{[I f \bullet I g] } & =\sum_{\substack{i \in A \\
A, B, C, D}} \pm\left(f_{A B} / h\right) \partial_{i}\left(g_{C D} / h\right) d \bar{z}^{B} d \bar{z}^{D} \partial_{z^{n-A-i}} \partial_{z^{n-C}}+(f \leftrightarrow g), \\
I[I f \bullet I g] & =\sum \pm f_{A B} \partial_{i}\left(g_{C D} / h\right) d z^{E} d \bar{z}^{F}+(f \leftrightarrow g),
\end{aligned}
$$

where E and F are defined so that $I\left(d \bar{z}^{B} d \bar{z}^{D} \partial_{z^{n-A-i}} \partial_{z^{n-C}}\right)=d z^{E} d \bar{z}^{F}$

$$
\omega \partial \Lambda I[I \chi f \bullet I \chi g]=\sum \pm \omega \partial_{j}\left(\Lambda_{E F}^{G H} \chi f_{A B} \partial_{i}\left(\chi g_{C D} / h\right)\right) d z^{j} d z^{G} d \bar{z}^{H}+(f \leftrightarrow g)
$$

Therefore it is sufficient to estimate

$$
\begin{equation*}
\left|\Delta_{a}^{h}\left(\omega \partial_{j}\left(\Lambda_{E F}^{G H} \chi f_{A B} \partial_{i}\left(\chi g_{C D} / h\right)\right)\right)\right|_{k-2+\theta} . \tag{32}
\end{equation*}
$$

When we expand (32) by Leibniz rule, all the terms except

$$
\begin{equation*}
\left|\omega \Lambda_{E F}^{G H} \chi f_{A B} h^{-1} \partial_{i} \partial_{j} \Delta_{a}^{h}\left(\chi g_{C D}\right)\right|_{k-2+\theta} \tag{33}
\end{equation*}
$$

can be estimated by positive multiple of $|\omega f|_{k+\theta}|\chi g|_{k+\theta}$ or $|\chi f|_{k+\theta}|\omega g|_{k+\theta}$. Using Lemma 4.2, we can estimate (33) as follows:

$$
\begin{aligned}
& \left|\omega \Lambda_{E F}^{G H} \chi f_{A B} h^{-1} \partial_{i} \partial_{j} \Delta_{a}^{h}\left(\chi g_{C D}\right)\right|_{k-2+\theta} \\
& \quad \leq\left|\Lambda_{E F}^{G H} f_{A B} h^{-1} \partial_{i} \partial_{j} \Delta_{a}^{h}\left(\omega g_{C D}\right)\right|_{k-2+\theta}+K \\
& \quad \leq 2 B\left|\Lambda_{E F}^{G H} h^{-1}\right|_{\theta}\left|f_{A B}\right|_{\theta}\left|\partial_{i} \partial_{j} \Delta_{a}^{h}\left(\omega g_{C D}\right)\right|_{k-2+\theta}+K \\
& \quad \leq 2 B C|f|_{\theta}\left|\Delta_{a}^{h}(\omega g)\right|_{k+\theta}+K .
\end{aligned}
$$

Here we used $\omega \chi=\omega . \quad C_{1}$ is represented as a combination of $C^{k+\theta}$ norms of Λ and Ω. Hence C is independent of χ and ω.
(II) To complete the proof of Proposition 2, we prove, by induction, the following: for all $l=1,2, \ldots, \omega_{j}^{2 l+1} \varphi$ is $C^{k+l+\theta}$. Here, we do not change r and ρ satisfying (31). Under the assumption that $\omega_{j}^{2 l+1} \varphi$ is $C^{k+l+\theta}$, we prove that $\omega_{j}^{2 l+3} \varphi$ is $C^{k+l+1+\theta}$. To prove this, it is sufficient to prove that

$$
\left|\Delta_{a}^{h}\left(D^{l} \omega_{j}^{2 l+3} \varphi\right)\right|_{k+\theta}^{\rho} \leq K
$$

where D^{l} denotes an arbitrary l-th order differential. By the same computation as (29), we obtain

$$
\begin{aligned}
F_{l+1}:= & E\left(\Delta_{a}^{h}\left(\omega_{j}^{2 l+3} \varphi\right)\right) \\
= & -\frac{\sqrt{-1}}{2} \Delta_{a}^{h}\left(\omega_{j}^{2 l+3} \partial \Lambda I\left[I \chi_{j}^{2 l+1} \varphi \bullet I \chi_{j}^{2 l+1} \varphi\right]\right) \\
& +\Delta_{a}^{h}\left(\left[E, \omega_{j}^{2 l+3}\right]\left(\chi_{j}^{2 l+1} \varphi\right)\right)+\left[\Delta_{\bar{\partial}}, \Delta_{a}^{h}\right]\left(\omega_{j}^{2 l+3} \varphi\right) .
\end{aligned}
$$

Therefore

$$
E\left(\Delta_{a}^{h}\left(D^{l} \omega_{j}^{2 l+3} \varphi\right)\right)=D^{l} F_{l+1}+\left[\Delta_{\bar{\partial}}, D^{l}\right]\left(\Delta_{a}^{h} \omega_{j}^{2 l+3} \varphi\right)
$$

Here we used $\left[\Delta_{a}^{h}, D^{l}\right]=0$. Hence

$$
\begin{aligned}
& \left|\Delta_{a}^{h}\left(D^{l} \omega_{j}^{2 l+3} \varphi\right)\right|_{k+\theta}^{\rho} \\
& \quad \leq C_{0}\left(\left|D^{l} F_{l+1}\right|_{k-2+\theta}^{\rho}+\left|\left[\Delta_{\bar{\delta}}, D^{l}\right]\left(\Delta_{a}^{h} \omega_{j}^{2 l+3} \varphi\right)\right|_{k-2+\theta}^{\rho}+\left|\Delta_{a}^{h}\left(D^{l} \omega_{j}^{2 l+3} \varphi\right)\right|_{0}^{\rho}\right)
\end{aligned}
$$

By assumption of induction, $\omega_{j}^{2 l+3} \varphi=\eta^{2 l+3} \omega_{j}^{2 l+1} \varphi$ is $C^{k+l+\theta}$. Hence $\left|\Delta_{a}^{h}\left(D^{l} \omega_{j}^{2 l+3} \varphi\right)\right|_{0}^{\rho} \leq K$. Since $\left[\Delta_{\bar{\delta}}, D^{l}\right]$ is $(l+1)$-th order, we have

$$
\left|\left[\Delta_{\bar{\delta}}, D^{l}\right]\left(\Delta_{a}^{h} \omega_{j}^{2 l+3} \varphi\right)\right|_{k-2+\theta}^{\rho} \leq C\left|\Delta_{a}^{h} \omega_{j}^{2 l+3}\right|_{k+l-1+\theta}^{\rho} \leq C\left|\omega_{j}^{2 l+3}\right|_{k+l+\theta}^{\rho} \leq K
$$

Consider $\left|D^{l} F_{l+1}\right|_{k-2+\theta}^{\rho}$. The same argument as (I) is also valid here. Therefore it is sufficient to estimate

$$
\left|D^{l} \Delta_{a}^{h}\left(\omega_{j}^{2 l+3} \partial \Lambda I\left[I \chi_{j}^{2 l+1} \varphi \bullet I \chi_{j}^{2 l+1} \varphi\right]\right)\right|_{k+\theta}^{\rho} .
$$

By the same computation as Lemma 4.5, we obtain the following:

$$
\left|D^{l} \Delta_{a}^{h}\left(\omega_{j}^{2 l+3} \partial \Lambda I\left[I \chi_{j}^{2 l+1} \varphi \bullet I \chi_{j}^{2 l+1} \varphi\right]\right)\right|_{k+\theta}^{\rho} \leq 2 C_{1}|\varphi|_{\theta}^{\rho}\left|\Delta_{a}^{h}\left(D^{l} \omega_{j}^{2 l+3} \varphi\right)\right|_{k+\theta}^{\rho}+K
$$

where C_{1} is the same constant as Lemma 4.5. Since r and ρ are chosen so that they satisfies (31), we obtain the following again:

$$
\left|\Delta_{a}^{h}\left(D^{l} \omega_{j}^{2 l+3} \varphi\right)\right|_{k+\theta}^{\rho} \leq K
$$

Acknowledgement. Thanks are due to Professor Kenji Fukaya for his advice and encouragement.

References

[1] S. Barannikov and M. Kontsevich, Frobenius manifolds and formality of Lie algebra of polyvector fields, Preprint alg-geom/97010072.
[2] H.-D. Cao and J. Zhou, Frobenius manifold structure on Dolbeault cohomology and mirror symmetry, Preprint math.D.G/9805094.
[3] B. Dubrovin, Geometry of 2D topological field theories, In: Springer LNM, 1620 (1996), 120-348.
[4] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley, New York, 1978.
[5] K. Kodaira, Complex Manifolds and Deformation of Complex Structure, Springer-Verlag, New York, 1986.
[6] M. Kontsevich and Yu. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys., $164: 3$ (1994), 525-562.
[7] Yu. Manin, Three constructions of Frobenius manifolds: a comparative study, Preprint math.Q.A/9801006.
[8] Yu. Manin, Frobenius manifolds, quantum cohomology, and moduli spaces (Chapters I, II, III), Preprint MPI 96-113, 1996.

Yuya Itagaki
Department of Mathematics
Kyoto University
Kyoto, 606-8502
Japan
E-mail: itagaki@kusm.kyoto-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 53D45; Secondary 14J32.
 Key Words and Phrases. Frobenius manifold, B-model, differential Gerstenhaber-BatalinVilkovisky algebra.

