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Abstract. We call a function from o<o to o a predictor. A function f A oo is

said to be constantly predicted by a predictor p, if there is an n < o such that

Ei < ob j A �i; i � n�� f � j� � p� f Z j��. Let yo denote the smallest size of a set F of

predictors such that every f A oo can be constantly predicted by some predictor in

F. In [7], we showed that yo may be greater than cof�N�. In the present paper, we

will prove that yo may be smaller than d.

1. Introduction

A. Blass [2] introduced the notion of predictors and several evasion numbers,

and studied how large these evasion numbers are compared with cardinals in

CichonÂ 's diagram. After that, J. Brendle [4] extended this notion and studied

more closely. Also, he studied the `dual' cardinals of evasion numbers. Each

evasion number can be characterized as the uniformity of a certain subset of

P�oo�. The `dual' cardinal of an evasion number means the covering number

of the corresponding subset. There are known relations between these cardinals

and the cardinals in CichonÂ 's diagram (for details, see [2], [3], [4], [5], [6]).

Concerning this, we [7] introduced a notion of `constantly predict', and using this

notion, de®ned cardinal invariants yK (for 2UK Uo), as follows.

Following A. Blass [2], we call a function from o<o to o a predictor. A

function f A oo is said to be predicted constantly by a predictor p, if there is an

n < o such that, for any i < o, f � j� � p� f Z j�, for some j A �i; i � n�. Let

2UKUo. We denote by yK the smallest size of a set of predictors F such that

every function f A K o is predicted constantly by some predictor in F, and by

Dual�yK� the smallest size of a set of functions F HK o such that, for any

predictor p, there exists an f A F which is not predicted constantly by p.

The motivation of yK and Dual�yK� is in some game-theoretical charac-

terizations for cardinals in CichonÂ 's diagram. F. Galvin gave game-theoretical

characterizations for d and cov�M�, and M. Scheepers for b, add�M�, non�M�
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and add�N� (See [9], [10] for details). After that, M. Kada (in unpublished

work) introduced new games in order to characterized other cardinals in CichonÂ 's

diagram. Also, he pointed out the relationship between game-theoretic prop-

erties and the notion of predictors. The yo is a translation of the game which

corresponds to cof�M�.

It seems to be interesting to decide the size of these yK and Dual�yK� (for

2UKUo) in comparison with the cardinals in CichonÂ 's diagram and other

evasion numbers. Let M;N denote the meager ideal and the null ideal on oo,

respectively. Concerning these, the followings is a summary of the results of [7].

1. If K UMUo then yK U yM and Dual�yM�UDual�yK�.

2. cov�M�U y2 and cov�N�U y2, and Dual�y2�U non�M� and Dual�y2�U

non�N�.

3. non�M�U yo and Dual�yo�U cov�M�.

4. There is a generic model in which cof�N� � o1 and y2 � o2 hold.

5. There is a generic model in which yo � o2 and yK � o1 hold, for all

K < o.

The purpose of this paper is to give a generic model in which yo � o1 and

d � o2 hold. Before explaining how to get a desired generic model, I mention

several questions which I am interested in, but do not know the answers.

Question 0D. Is it consistent that b < Dual�yo�?

Question 1. For 2UKUo, is it consistent that yK < non�N�?

Question 1D. For 2UKUo, is it consistent that cov�N� < Dual�yK�?

Question 2. Is it consistent that y2 < non�M�?

Question 2D. Is it consistent that cov�M� < Dual�y2�?

Question 3. For 2UK < M < o, is it consistent that yK < yM?

Question 3D. For 2UK < MUo, is it consistent that Dual�yM� <

Dual�yK�?

Question 4D. For 2UKUo, is it consistent that Dual�yK� < add�N�?

Now, we explain how to get a desired generic model. Let V be a ground

model which satis®es CH. In V , let hPa jaUo2i be the o2-stage countable

support iteration of the rational perfect tree forcing. We will show that, in V
Po2 ,

every f A oo is constantly predicted by some predictor in V . Since it is known

(see e.g. [1]) that d � o2 holds in V
Po2 , the model V

Po2 is a desired one.

Let PT denote the rational perfect tree forcing. It is not di½cult to check

that, in V
PT , every f A oo is constantly predicted by some predictor in V . So, if

we can show that this property is preserved by countable support iterations, we

complete a proof of the result. But I don't know whether the property is

preserved by such iterations (even in the case of two step iterations). We

consider a somewhat stronger property of a forcing notion P. That is, in V
P,

for any f A oo, there exists a skip branching tree H A V such that f A Lim�H�
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(for the de®nition of skip branching trees, see the next section), and we will prove

that this property is preserved by the iteration.

In the next section, we give the de®nitions and notations, and describe the

result of this paper (Theorem 2.1). Section 3 is devoted to some technical

lemmas. In section 4, we introduce the notion of tentacle trees, and prove some

kind of preservation lemmas. Finally, we prove Theorem 2.1 in section 5.

2. Notations and the theorem.

We use the standard set theoretical notions and notations (see [1]). For any

set A, �A�o denotes the set of countable subsets of A, and A<o the set of ®nite

sequences of elements in A. The statement ``there exist in®nitely many i A x such

that � � � x � � �'' is denoted by b
yi A x�� � � x � � ��. Let P be a forcing notion and _f a

P-name such that wP _f : o ! V . We say that g : o ! V is an interpretation of _f

below p A P, if there exist pn A P (for n < o) such that pn�1 U pn U p and

pn w _f Z n � g Z n, for all n < o.

The forcing notion which will be used in this paper is countable support

iteration by the rational perfect tree forcing. The rational perfect tree forcing

was introduced by A. Miller [8]. We start with the de®nition of the rational

perfect tree forcing.

Definition 2.1. Let HHo
<o be a tree. s A H is a splitting point, if there

are distinct i; j A o such that s ĥii; s ĥ ji A H. The set of all splitting points of H

is denoted by split�H�. For any splitting point s A H, nextH�s� denotes the set

fs ĥii A H j i < og. H is said to be perfect, if Es A H bt A H (sH t and t is a

splitting point of H ). For any perfect tree H, stem�H� denotes the ®rst splitting

point of H. H is said to be a rational perfect tree, if it is a perfect tree and

nextH�s� is in®nite, for all s A split�H�.

For any rational perfect tree HHo
<o, we denote by GH the natural

isomorphism from o
<o to split�H�.

Definition 2.2. The rational perfect tree forcing PT is de®ned by

PT � fqHo
<ojq is a rational perfect treeg;

and for any q; q 0 A PT ,

qU q 0 if and only if qH q 0
:

And, de®ne the orderings U�
n on PT ( for n < o) by

qU�
n q

0 if and only if qU q 0 and GqZ o
n � Gq 0Z o

n
:

Note that PT satis®es Baumgartner's Axiom A with these orderings.

For each q A PT and s A o
<o, q Z s A PT denotes fu A q j uHGq�s� or Gq�s�Hug.
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Definition 2.3. Let HHo<o be a tree.

Max�H� denotes the set fs A H j Ei < o�s ĥii B H�g:

B�H� denotes the set fjsj j s A split�H�UMax�H�g:

Lim�H� denotes the set f f A oo j Ei < o� f Z i A H�g:

We say that H is skip branching, if Es A split�H� �nextH�s�V �split�H�U

Max�H�� � f�.

Now we describe the result of this paper.

Theorem 2.1. Assume that CH holds in V . Let hPa jaUo2i be the o2-

stage countable support iteration of the rational perfect tree forcing. Then, in

V
Po2 , it holds that, for every f A oo, there exists a skip branching tree H A V such

that f A Lim�H�.

As a corollary, we have

Corollary 2.2. Under the assumption of Theorem 2.1, in V
Po2 , there exists

a set of predictors F of size o1 such that, for any f A oo,

bp A FEi < o� f �i� � p� f Z i� or f �i � 1� � p� f Z �i � 1���:

So, yo � o1 holds in V
Po2 .

Since d � o2 holds in the generic model, we have that yo < d is consistent.

In order to prove Theorem 2.1, we need several de®nitions and lemmas.

Definition 2.4. For any a A �o�o, Ga denotes the order isomorphism from o

to a.

For any a A �o�o and any g A oo, we say that a is g-thin, if g�i� < Ga�i�, for

all i < o.

Lemma 2.3. For any g A oo, there exists fgi j i < ogHoo such that, for any

fai j i < ogH �o�o, if Ei < o (ai is gi-thin) then 6
i<o

ai is g-thin.

Proof. Take a g-thin set a and divide a into countable disjoint in®nite sets

fai j i < og. Then, gi � Gai (for i < o) are as required. r

Definition 2.5. A subset I of o is called an interval, if there exist n;m A o

such that n < m and I � �n;m�.

A family hIn jn < oi of intervals is called disjoint intervals, if it holds that

En < Em < o�max�In� < min�Im�� and lim
n<o

jInj � o:

Lemma 2.4. Let F be an unbounded subset of oo such that Ef A F ( f is

strictly increasing). Then, for any disjoint intervals hIn jn < oi, there exists f A F
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such that

Ea A �o�o �if a is f -thin; then b
yn < o �In V a � f��:

Proof. De®ne g A oo by

g� j� � max I2j � 1; for all j < o:

Since F is unbounded, take f A F such that byj < o�g� j� < f � j��. In order to

show that f satis®es the requirement of the lemma, let a A �o�o be f -thin. We

claim that

Ej < o �if g� j� < f � j�; then bk A � j; 2j� �Ik V a � f��:

To get a contradiction, assume that

g� j� < f � j� and Ek A � j; 2j��Ik V a0 f�:

Then, since jaV g� j�jV 2j ÿ j � j, it holds that Ga� j� < g� j� < f � j�. This con-

tradicts that a is f -thin. r

Definition 2.6. For any d; t A oo Uo<o, D�d; t� denotes the least i < o such

that d�i�0 t�i�, if such i exists, otherwise, D�d; t� is unde®ned.

Definition 2.7. Let u be a function from o to o<o. u is called a type I

function with root d A o<o, if

Ei < Ej < o�dH u�i� and jdj � 2U ju�i�j < ju� j�j and u�i��jdj� < u� j��jdj��:

u is called a type II function with limit h A oo, if

Ei < Ej < o�u�i�N h and D�u�i�; h� � 2U ju�i�j and D�u�i�; h� � 2UD�u� j�; h��:

Note that, for any functions f fi j i < ogHoo, if fi 0 fj for all i < j < o,

then there exist a A �o�o and ki < o (for i < o) such that h fGa�i�Z ki j i < oi is a

type I or type II function.

The following lemma will be used in the proof of Theorem 2.1 to handle the

successor cases of the induction step. We need the corresponding result which

handles the limit cases and will be established the next section.

Lemma 2.5. Let h : o<o ! o, q A PT , and _f a PT-name such that qw _f A

oonV. Then, there exist q 0 U q and fds js A o<og such that, for any s A o<o,

(1) q 0Z sw ds H _f ,

(2) h�s� < jdsj < jds^h0ij,

(3) hds^hii j i < oi is a type I or type II function.

Proof. It su½ces to show that
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Claim 1. There exists qn A PT ( for n < o) and ds A o<o ( for s A o<o) which

satisfy (2), (3) and

(1) 0 qn Z sw ds H _f , for all s A on

(4) qn�1 U�
n qn U q, for all n < o,

Proof of Claim 1. By induction on n < o. We only deal with the cases of

that 0 < n, because the case n � 0 can be done by a similar argument. So,

assume that n � m� 1 < o and qm and ds (for s A om) have been de®ned.

Let s A om. De®ne qn Z s and ds^hii, for i < o, as follows:

Take fi A oo (for i < o) such that

fi is an interpretation of _f below qmZ s ĥii and Ei < Ej < o � fi 0 fj�.

This can be taken, since qm Z sw _f B V . Since all fi's are distinct, there are

a A �o�o and ki < o (for i < o) such that

h fGa�i�Z ki j i < oi is a type I or type II function and h�s ĥii� < ki,

for all i < o.

For each i < o, take ri U qm Z s ĥGa�i�i such that ri w fGa�i�Z ki H _f . Set

qn Z s � 6
i<o

ri and ds^hii � fGa�i�Z ki, for i < o. Note that qn Z s ĥii � ri, for all

i < o. So, ds^hii (for s A om and i < o) and qn satisfy the requirements. r

3. Iteration.

In this section, we deal with a countable support(CS, for short) iteration

of the rational perfect tree forcing. Throughout this paper, hPa jaUo2i denotes

the o2-stage CS iteration of the rational perfect tree forcing. For each aUo2,

the canonical Pa-name of a generic ®lter is denoted by _GPa . For each p A Po2
, the

support of p is denoted by support�p�.

Definition 3.1. For each x < aUo2, Pa=Px denotes the Px-name which

represents Pa in V
Px . That is

wx Pa=Px � fp Z �x; a� j p A Pag;

and for any r; r 0 A Pa=Px,

rU r 0 in Pa=Px if and only if p0 U rU p0 U r 0 in Pa; for some p0 A _GPx :

Let xU bUo2. It is known that, in V
Px , it holds that

hPa=Px ja A �x; b�i is isomorphic to the �b ÿ x�-stage CS iteration of the

rational perfect tree forcing.

So, we may identify hPa=Px ja A �x; b�i with this iteration.
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Definition 3.2. Let x < aUo2, and p A Pa. For each i < o, de®ne

p�hiix� A Pa by

support�p�hiix�� � support�p�U fxg;

p�hiix��h� �
p�h�; if h0 x,

p�x� Z hii; if h � x

�

Note that fp�hiix� j i < og is a partition of p.

Definition 3.3. Let x < aUo2, p A Pa, and pi A Pa ( for i < o).

We say that hpi j i < oi is a one-point partition of p at x, if for all i < o,

(1) pi Z x � p Z x,

(2) p Z xw pi�x� � p�x� Z hii,

(3) pi Z hw pi�h� � p�h�, for all h A �x� 1; a�.

In this case, we say that p is the root of hpi j i < oi.

Note that hp�hiix� j i < oi is a one-point partition of p at x.

Lemma 3.1. Assume that hpi j i < oi is a one-point partition of p at x.

Then, it holds that pi � p�hiix�, for all i < o.

Proof. Trivial. r

Lemma 3.2. Let aU x < bUo2, p A Pb, and pi A Pb ( for i < o). Then, the

following (a) and (b) are equivalent.

(a) hpi j i < oi is a one-point partition of p at x.

(b) The following (b.1) and (b.2) hold.

(b.1) Ei < o �pi Z a � p Z a�.

(b.2) p Z aw hpi Z �a; b�ji < oi is a one-point partition of p Z �a; b� at x in

Pb=Pa.

Proof. Trivial. r

Lemma 3.3. Let x < aUo2, and _a; _q Px-names, and pi A Pa ( for i < o).

Suppose that

(1) wx _a A �o�o and _q A PT ,

(2) pi Z x � pj Z x, for all i; j < o

(3) pi Z xwx pi�x�U _q Z hG_a�i�i, for all i < o.

Then, there exists p A Pa such that hpi j i < oi is a one-point partition of p at x.

Cardinal invariants associated with predictors II 41



Proof. Note that fpi Z h j i < og is pairwise incompatible, for any h > x.

De®ne a Px-name _qx by wx _qx � 6
i<o

pi�x�. By (3), it holds that p0 Z xw _qx A

PT. Let X � 6
i<o

support�pi�V �x� 1; a�. For each h A X , take a Ph-name _qh
such that

pi Z hw _qh � pi�h�; for all i < o:

De®ne p A Pa by

support�p� � support�p0 Z x�U fxgUX ;

p Z x � p0 Z x;

p�h� � _qh; for h A fxgUX :

Then, p is as required. r

From now on, l is an arbitrary but ®xed and su½ciently large regular

cardinal. H�l� denotes the family of sets that are hereditarily of cardinality < l.

Throughout the rest of this paper, N denotes a countable elementary substructure

of H�l�, in general. For any forcing notion P A N and p A P, we say that p A P

is �N;P�-generic, if it holds that

DVN is predense below p; for any dense subset D A N of P:

Lemma 3.4. Let x < aUo2, p A Pa, and x, a, Pa A N. Suppose that

p�hiix� is �N;Pa�-generic; for all i < o:

Then, p is �N;Pa�-generic.

Proof. Trivial. r

Corollary 3.5. Let x < aUo2, and x; a;Pa A N. Suppose that

p A Px is �N;Px�-generic and pwx _q A N� _GPx �VPa=Px:

Then, there exists p A Pa such that

(1) p is �N;Pa�-generic and p Z x � p,

(2) pwx p Z �x; a�U _q and p�x� Z hiiU _q�x� Z hii, for all i < o.

Proof. We work in V
Px below p. For each i < o, take _qi U _q�hiix� such

that

_qi is �N� _GPx �;Pa=Px�-generic and support� _qi�HN� _GPx �:

Since h _qi j i < oi is a one point partition at x, let _r be the root of this. Then, by

Lemma 3.4, _r is �N� _GPx �;Pa=Px�-generic. Return to V . Since pw support� _r�H
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N� _GPx �, we can take p A Pa such that

p Z x � p and pw p Z �x; a� � _r:

Then, p is as required. r

Definition 3.4. Let a is a limit ordinal with co®nality o and han jn < oi an

increasing sequence of ordinals with limit a. For each p A Pa and s A o<o, de®ne

p��s�� � p��s��hanjn<oi A Pa by

support�p��s��� � support�p�U faiji < jsjg;

p��s���x� � p�x�; if x0 ai for i < jsj;

wai p��s���ai� � p�ai� Z hs�i�i; for i < jsj:

We always omit the subscript hanjn < oi of ��s��hanjn<oi, since there are no

confusions throughout this paper.

Note that, for any s � hi0; . . . ; imi A o<o and any p A Pa, it holds that p��s�� �

p�hi0ia0 � � � � �himiam �.

The following hold.

(1) fp��s�� js A omg is a partition of p, for each m < o.

(2) If s; t A o<o and sH t, then p��t��U p��s��.

(3) If s; t A o<o and s; t are incompatible, then p��t��, p��s�� are incompatible.

Now, we are ready to establish the result corresponding to the last lemma in

the previous section.

Lemma 3.6. Let a be a limit ordinal with co®nality o, han jn < oi an

increasing sequence with limit a, h : o<o ! o, p A Pa, and _f a Pa-name such that

pw _f A oo. Suppose that

pwa _f B V
Px ; for all x < a:

Then, there exist p 0
U p and f _ds js A o<og such that, for all n < o and s A on,

(1) _ds^hii is a Pan -name, for all i < o,

(2) p 0��s��w _ds H _f ,

(3) w h�s� < j _dsj < j _ds^h0ij,

(4) w h _ds^hii j i < oi is a type I or type II function.

Proof. Take a countable elementary substructure N of H�l� such that h,

hanjn < oi, P, _f , p A N.

We ®rst show that, by induction on n < o, we can take pn A Pan , a Pan -name

_qn, and Pan -names _ds^hii (for s A on and i < o) such that, for all s A on,
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(5) pn is �N;Pan�-generic and pn U p Z an and pn�1 Z an � pn,

(6) pn w _qn A N� _GPan
�VPa=Pan and _qn U p Z �an; a�,

(7) pn�1 w _qn�1 U _qn Z �an�1; a�,

(8) pn��s��w _qn w
_ds H

_f ,

(9) pn��s��w h _ds^hii j i < oi is a type I or type II function,

(10) pn��s��w h�s ĥii� < j _ds^hiij and _qn�hiian �w
_ds^hii H

_f , for all i < o.

Case 1. n � 0.

In N, take p 0
U p and dh i A o

<o such that h�h i� < jdh ij and p 0 w dh i H
_f .

Take �N;Pa0�-generic condition p0 A Pa0 such that p0 U p 0Z a0. Set r0 � p 0Z

�a0; a�. Then, it holds that

p0 w r0 A N� _GPa0
�VPa=Pa0 :

Work in N� _GPa0
�. For each i < o, take an interpretation _fi of

_f below r0�hiia0 �

such that whenever i; j < o and i0 j, _fi 0
_fj. (This can be done, since w _f B

V
Pa0 .) Take _a A �o�o and _ki < o (for i < o) such that

h�hii� < _ki and h _fG_a�i�Z
_ki j i < oi is a type I or type II function:

Let _dhii � _fG_a�i�Z
_ki, for i < o. For each i < o, take _r0; i A Pa=Pa0 such that

_r0; i U r0�hG_a�i�ia0 � and _r0; i w _dhii H
_f :

Since hr0�hG_a�i�ia0 � j i < oi is a one-point partition at a0, by Lemma 3.3,

h _r0; i j i < oi is too. Let _q0 A Pa=Pa0 be the root of h _r0; i j i < oi.

Note that p0 w _q0 U r0. So, p0; _q0, and _dhii (for i < o) satisfy (5)@(10).

Case 2. n � m� 1.

By induction hypothesis, it holds that pm w _qm A N� _GPam
�VPa=Pam . By

Corollary 3.5, there exists pn A Pan such that

(11) pn is �N;Pan�-generic and pn Z am � pm,

(12) pm w pn Z �am; an�U _qm Z �am; an� and pn�am� Z hiiU _qm�am� Z hii, for all

i < o.

Note that pn satis®es (5) and

(8) 0 pn��s��w _qm Z �am; a�w _ds H
_f , for all s A o

n.

Let s A on. De®ne _q s
n and h _ds^hii j i < oi as follows:

S. Kamo44



Work in N� _GPan
� below pn��s��. Similar to the case 1, take _a A �o�o and _ds^hii,

_rn; i (for i < o) such that

(9) 0 h _ds^hii j i < oi is a type I or type II function,

(13) h�s ĥii� < j _ds^hiij and _rn; i U _qm Z �an; a��hG_a�i�ian � and _rn; i w _ds^hii H _f .

Let _q s
n be the root of h _rn; i j i < oi. Then, it holds that

(14) _q s
n U _qm Z �an; a� and _q s

n�hiiam �w
_ds^hii H _f .

Return to V , since hpn��s�� js A oni is a partition of pn, we can take a Pan -

name _qn which satis®es

pn��s��w _qn � _q s
n; for all s A on

:

Then, pn, _qn, and _ds^hii (for s A on and i < o) satisfy (5)@(10).

Let p 0 � 6
n<o

pn. It is easy to check that p 0 and h _ds js A o<oi satisfy (1),

(2) and

(3) 0 p 0��s��w h�s ĥii� < j _ds^hiij, for all i < o,

(4) 0 p 0��s��w h _ds^hii j i < oi is type I or type II function.

Since hp 0��s�� js A oni is a partition of p 0, for all n < o, we can replace _ds's which

satisfy (3) and (4). r

4. Tentacle trees.

In this section, we consider to attach trees fHi j i < og on a tree H. In

order to de®ne this manipulation, we introduce the notion of tentacle trees. We

start with several de®nitions.

Definition 4.1. For any SHo<o, hSi denotes the tree generated by S.

Definition 4.2. Let T Ho<o be a tree and d A o<onT .
~D�T ; d� denotes the maximal element of T V fd Z i j i < jdjg and D�T ; d� �

j ~D�T ; d�j.

d can be adjoinable on T, if it holds that

(1) D�T ; d� � 2U jdj and jstem�T�j < D�T ; d�

(2) ~D�T ; d� B split�T�

(3) nextT� ~D�T ; d��V split�T� � f

(4) d Z �D�T ; d� ÿ 1� B split�T�.
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T is called a tentacle tree of type I, if there is a type I function u : o ! o<o

such that T � hrang�u�i.

T is called a tentacle tree of type II, if there are a skip branching tree H

without a maximal element and a function u : o ! o<o such that

(1) u�i� is adjoinable on H, for all i < o,

(2) ju�i�j < ju� j�j and D�H; u�i�� � 2UD�H; u� j��, for all i < j < o,

(3) T � hH U rang�u�i.

In this case, we say that H and u construct T.

Note that every tentacle tree is a skip branching tree.

For any tentacle tree T, eT denotes the enumeration of Max�T� which is

de®ned by

jeT �i�j < jeT � j�j; for all i < j < o:

Definition 4.3. S denotes the set of all tentacle trees of type I or type II.

For each g A oo, S�g� denotes the set fH A SjB�H� is g-thing.

Definition 4.4. U denotes the set:

fU : o ! ooj Ei < o�U�i� is increasing� and

Ei < Ej < oEk < o�U�i��k�UU� j��k��g:

Definition 4.5. For K A S and U A U, A�K ;U� denotes the set:

fj jba; b A �o�o�j A
Q

i A a

S�U�Gÿ1
a �i��� and Ei < o�eK�Gb�i��H stem�j�Ga�i����g:

The next three lemmas can be proved by using easy diagonal arguments.

We left proofs to the reader.

Lemma 4.1. Let g A oo, d A o<o, and un be a type I function with root d, for

all n < o.

Then, there exists a type I function v with the root d such that

(1) fjv� j�j j j < og is g-thin,

(2) b
yi < o�un�i� A rang�v��, for all n < o. r

Lemma 4.2. Let g A oo, and H a skip branching tree without a maximal

element, and un A �o<o�o, for n < o. Assume that

H and un construct a tentacle tree of type II ; for all n < o:
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Then, there exists a function v : o ! o<o such that

(1) H and v construct a tentacle tree of type II,

(2) b
yi < o�un�i� A rang�v��, for all n < o,

(3) fjv� j�j j j < ogU fD�H; v� j��j j < og is g-thin. r

Lemma 4.3. Let K A S and U A U. Then, for any countable subset C of

A�K ;U�, there exists c A A�K ;U� such that

Ej A Cb
yi A dom�j�V dom�c��j�i� � c�i��: r

The next lemma is a preservation theorem like those which appeared in [1]

and is proved almost the same arguments.

Lemma 4.4. Let aUo2 and P � Pa A N.

(1) Let d A o<o. Suppose that v is a type I function with root d which

satis®es b
yi < o�u�i� A rang�v��, for all type I functions u A N with root d.

Then, for each p A PVN, there exists an �N;P�-generic condition ~pU p such that

~pw b
yi < o�u�i� A rang�v��; for all type I functions u A N� _GP� with root d:

(2) Let H A N be a skip branching tree without a maximal element, and

v : o ! o<o. Assume that

H and v construct a tentacle tree of type II

and, for any u A �o<o�o VN,

if H and u construct a tentacle tree of type II ; then b
yi < o�u�i� A rang�v��:

Then, for each p A PVN, there exists an �N;P�-generic condition ~pU p such that

~pw for any u A �o<o�o VN� _GP�

if H and u construct a tentacle tree of type II ;

then b
yi < o�u�i� A rang�v��

� �

:

(3) Let Kn A SVN, Un A UVN, and cn A A�Kn;Un� ( for n < o), and

hU a, P� � Pa=Ph, and N � � N� _GPh �. Suppose that, in V
Ph , it holds that, for all

n < o,

Ej A A�Kn;Un�VN � �if rang�j�HN; then b
yi < o�j�i� � cn�i���:

Then, in V
Ph , it holds that, for any p A P� VN �, there exists a ~pU p such that

~p is �N �;P��-generic and support�~p�HN �,�3:1�

and, for any n < o,

~pw Ej A A�Kn;Un�VN �� _GP � � �if rang�j�HN then b
yi < o�j�i� � cn�i���.�3:2�
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Proof. We only deal with (3), since (1) and (2) can be proved by similar

arguments.

Let a 0 be the unique ordinal such that a � h� a 0. Then, in V
Ph ,

hPb=Ph j b A �h; a�i is isomorphic to the a 0 stage CS iteration of the rational

perfect tree forcing. So, we consider that the ground model is V
Ph (we will

denote this by V in the proof ), and the forcing notion is the a 0-stage CS

iteration. In addition, in the proof, we change notations as follows:

N� _GPh � will be denoted by N;

the original N will be denoted by N:

The proof will be done by induction on a 0 Uo2. Let Kn;Un;cn for n < o

satisfy the assumption of (3).

Case 1. a 0 � b � 1 (cf. the proof of Theorem 7.3.46 (p. 360) in [1])

Let p A Pa 0 VN. Take an �N;Pb�-generic condition p 0 U p Z b which satis®es

the requirements. We work in V
Pb below p 0. Take an enumeration h _xi j i < oi

of the set f _x A N� _GPb � j
_x is a PT-name and w _x A Ong, and, for each n < o, take

an enumeration h _jn; i j i < oi of the set

f _j A N� _GPb � j _j is a PT-name and wPT _j A A�Kn;Un� and rang� _j�HNg:

For each s A o<o, de®ne the ordering Us on PT by

q 0Us q if and only if q 0 U q and Et A o<o

(if s and t is incompatible, then q 0Z t � q Z t).

Take an enumeration hsj j j < oi of o<o such that if sj H sj 0 then jU j 0. Note

that, for any conditions qj A PT (for j < o),

if qj�1 Usj qj; for all j < o then 7
j<o

qj A PT:

Claim 2. For any j < o and any q A PT VN� _GPb �, there exist q� U q and

k� < o such that q� A N� _GPb � and, for each n; iU j,

(4) q� decides the value of _xi, _jn; i Z k�,

(5) bm A � j; k��V dom�cn��q
� wm A dom� _jn; i� and _jn; i�m� � cn�m��.

Proof of Claim 2. Work in N� _GPb �. Take q 0 U q such that q 0 decides the

values of _xi, for iU j.

By induction on k < o, take lk < o and qk A PT such that

qk�1 U qk U q 0 and j < lk < lk�1

qk decides the values of _jn; i Z lk; for n; iU j;

bm A �lk; lk�1��qk�1 wm A dom� _jn; i��; for each n; iU j:
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For each n; iU j, let jn; i be the function such that

qk w _jn; i Z lk � jn; i Z lk; for all k < o:

Then it is easy to check that jn; i A A�Kn;Un� and rang�jn; i�HN, for all i; nU j.

In V
Pb , by induction hypothesis, there exists ~k < o such that

bm A � j; l~k��m A dom�cn� and jn; i�m� � cn�m��; for all n; iU j:

Let q� � q~k and k� � l~k. Then, q� and k� are as required. r

Claim 3. There exist qj A PT VN� _GPb � and intervals Ij ( for j < o) such that

(6) qj�1 Usj�1
qj U p�b� and max�Ij� < min�Ij�1�,

(7) qj Z sj decides the value of _xi, for iU j,

(8) bm A Ij V dom�cn��qj Z sj wm A dom� _jn; i� and _jn; i�m� � cn�m��, for all

i; nU j.

Proof of Claim 3. By induction on j < o. Assume that j < o and qj 0 ; Ij 0

(for j 0 < j) have been de®ned. Set

q �
qjÿ1; if 0 < j,

p�b�; otherwise,

�

and k �
max�Ijÿ1� � 1; if j > 0,

0; otherwise.

�

By Claim 2, take an interval Ij H �k;o� and q� U q Z sj such that

q� A N� _GPb � and q� decides the value of _xi; for iU j;

bm A Ij V dom�cn��q
� wm A dom� _jn; i� and _jn; i�m� � cn�m��; for each i; nU j:

De®ne qj Usj q by qj Z sj � q�. Then, qj and Ij satisfy (6)@(8). r

Take qj and Ij (for j < o) which satisfy (6)@(8). Note that it holds that

(7) 0 qj Z sj w _xi A N� _GPb �, for all iU j < o.

Let ~q � 7
j<o

qj.

Claim 4. For all i; n < o, it holds that

(9) ~qwPT
_xi A N� _GPb �VOn,

(10) ~qwPTbym A dom�cn�V dom� _jn; i��cn�m� � _jn; i�m��.

Proof of Claim 4. Let q 0 U ~q and i; n < o.

(9) Take j < o such that iU j and G~q�sj� A split�q 0�. Then, q 0 and ~q Z sj
are compatible. Since ~q Z sj U qj Z sj , q

0 and qj Z sj are also compatible. By this

and by (7) 0, there exists q 00 U q 0 such that q 00 w _xi A N� _GPb �.

(10) Similar to the proof of (9). r

Let ~p � p 0 ĥ~qi. By (9) and (10), ~p is as required.
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Case 2. a 0 is a limit ordinal.

Take an increasing sequence haj j j < oi of ordinals such that

aj A N V a 0; for all j < o and sup
j<o

aj � sup�N V a 0�:

Similar to the case 1, take enumerations h _xi j i < oi and h _jn; i j i < oi (for n < o).

Claim 5. There exist pj A Paj and Paj -names _rj , _Ij ( for j < o) such that

(11) pj is �N;Paj �-generic and support�pj�HN and pj�1 Z aj � pj U p Z aj ,

(12) pj w _rj A N� _GPaj
�VPa 0=Paj and _rj U p Z �aj; a

0�,

(13) pj�1 w _rj�1 U _rj Z �aj�1; a
0� and pj w pj�1 Z �aj; aj�1�U _rj Z �aj; aj�1�,

(14) pj w _rj decides the value of _xj,

(15) pj w _Ij is an interval of o and max� _Ii� < min� _Ij�, for all i < j,

(16) pj w bm A _Ij V dom�cn�� _rj wm A dom� _jn; i� and _jn; i�m� � cn�m��, for all

n; iU j.

Proof of Claim 5. Similar to the proof of Claim 3. r

Take pj, _rj , _Ij (for j < o) which satisfy (11)@(16) in Claim 5. Let ~p �

6
j<o

pj. Then, by (11) and (14), ~p is �N;Pa 0�-generic. In order to check that ~p

is as required, let n, i, m < o and p 0 U ~p. Take j < o such that n, i, m < j.

Then, since ~p Z aj w ~p Z �aj; a
0�U _rj, by (16), we have that

bp 00 U p 0�p 00 w bm 0 A dom�cn�V dom� _jn; i�nm�cn�m
0� � _jn; i�m

0���: r

Corollary 4.5. Let aUo2, P � Pa, and g A oo. Then, the following hold

in V
P.

(1) Let _u be a type I function with root _d such that g�0� < j _dj. Then, there

exists a tentacle tree T A V of type I such that

stem�T� � _d and byi < o� _u�i� A Max�T�� and B�T� is g-thin:

(2) Let H A V be a skip branching tree without maximal elements, and _u be a

type II function with limit _h A Lim�H�. Assume that H and _u construct a tentacle

tree of type II. Then, there exists a tentacle tree T A V such that

(2.1) T is constructed from H and some type II function,

(2.2) fjdj jd A Max�T�gU fD�H; d� jd A Max�T�g is g-thin,

(2.3) byi < o� _u�i� A Max�T��.

Proof. Let aUo2, P � Pa, and g A oo.

(1) Let p A P and _u, _d be P-names such that

pw _u is a type I function with root _d:
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Replacing p by a certain stronger condition, if necessary, we may assume that

pw _d � d, for some d. Take an elementary substructure N of H�l� such that a,

P, g, _u A N. By Lemma 4.1, there exists a type I function v with root d such that

(3) fjv� j�j j j < og is g-thin,

(4) b
yi < o�u�i� A rang�v��, for every type I function u A N with root d.

Deleting a certain ®nite part of v, we may assume that fjv� j�j j j < ogU fjdjg is g-

thin. By using Lemma 4.4 (1), take ~pU p such that ~pw b
yi < o�u�i� A rang�v��,

for all type I function u A N� _GP� with root d. Especially, it holds that

~pw b
yi < o� _u�i� A rang�v��:

So, T � hrang�v�i is as required.

(2) Similar to (1) by using Lemma 4.2 and Lemma 4.4 (2). r

5. Proof of the theorem.

Now, we are ready to prove Theorem 2.1. Theorem 2.1 follows from the

following lemma.

Lemma 5.1. Let aUo2, P � Pa, p A P, g A oo, and _f be a P-name such that

pw _f A oo
:

Then, there exist ~pU p and HHo<o such that

(1) H is a skip branching tree,

(2) B�H� is g-thin,

(3) ~pw _f A Lim�H�.

Proof. We prove this lemma by induction on aUo2. So, let aUo2 and

assume that the lemma was proved for all a 0 < a. Let p A P � Pa, g A oo, and _f

a P-name such that pw _f A oo.

Claim 6. Let b < a and g 0 A oo. Then, the following holds in V
Pb .

Suppose that u : o ! o<o is a type I function with root d such that g 0�0� < jdj

or a type II function. Then, there exists a tentacle tree T A V such that

(4) B�T� is g 0-thin,

(5) b
yi < o�u�i� A Max�T��.

Proof of Claim 6. The case that u : o ! o<o is type I was already proved

as corollary 4.5 (1). So, it su½ces to deal with the case that u is a type II

function. We work in V
Pb . Let h A oo be the limit of u. Take disjoint in-

tervals hInjn < oi such that

En < ob i < o��D�h; u�i�� ÿ 1; ju�i�j � 2�H In�:

By Lemmas 2.3 and 2.4, since V Voo is unbounded in oo, there is a g1 A oo VV
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such that

byn < o�aV In � f� and aU b is g 0-thin; for any g1-thin sets a; b A �o�o:

By induction hypothesis, take a skip branching tree H A V such that

h A Lim�H� and B�H� is g1-thin:

Deleting the set of ®nite maximal branches in H, if necessary, we may assume

that H has no maximal elements. Since B�H� is g1-thin, there exists an a A �o�o

such that

�D�h; u�i�� ÿ 1; ju�i�j � 2�VB�H� � f; for all i A a:

Let v � uGa : o ! o<o. Then, it holds that

H and v construct a tentacle tree of type II:

By Corollary 4.5 (2), there exists a tentacle tree T A V of type II such that

T is constructed from H and some type II function;

fjdj jd A Max�T�gU fD�H; d� j d A Max�T�g is g1-thin;

byi < o�v�i� A Max�T��:

This T is as required. r

Take increasing functions gs A oo (for s A o<o) such that, 6
s Ao<o as

is g-thin, whenever as A �o�o is gs-thin for all s A o<o, Et A ojsj(if Ei <

jsj�t�i�U s�i�) then Ei < o (gt�i�U gs�i�), for all s A o<o. For each s A o<o, set

Us � hgs^hii j i < oi A U.

First, we deal with the case that a is a successor ordinal. So, let a � b � 1.

Without loss of generality, we may assume that pw _f B V
Pb .

We work in V
Pb . By using Lemma 2.5, take _qU p�b� and f _ds js A o<og

such that, for all s A o<o, gs�0� < j _dsj and h _ds^hii j i < oi is a type I or type II

function and _q Z sw _ds H _f .

Using Claim 6, we can take tentacle trees f _Ts js A o<ogHV such that, for all

s A o<o,

B� _Ts� is gs-thin and byi < o� _ds^hii A Max� _Ts�� and _ds H stem� _Ts�:

Set _js � h _Ts^hii j i < o and _ds^hii A Max� _Ts�i, for s A o<o. Note that it holds

that,
_js A A� _Ts;Us� and rang� _js�HV ; for all s A o<o

:

Return to V . Take a countable elementary substructure N of H�l� such

that the above arguments were done in N. By Lemma 4.3, take cK ;U A A�K ;U�
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(for K A SVN and U A UVN) such that, for all K A SVN, U A UVN,

Ej A A�K ;U�VNbyi < o�j�i� � cK;U�i��:

Without loss of generality, we may assume that, for any K A SVN and any

U A UVN, rang�cK ;U�HN. By Lemma 4.4 (3), take ~pU p Z b such that, for all

K A SVN, U A UVN,

~pw Ej A A�K ;U�VN� _GPb � �if rang�j�HN then byi�j�i� � cK;U�i��:

Especially, it holds that

(6) ~pw byi � _js�i� � c _Ts;Us
�i��, for all s A o<o.

Replacing ~p by certain stronger condition, if necessary, we may assume that

~pw _Th i � T ; for some T A N:

By induction on n < o, de®ne Cn Hon and tentacle trees Ks A N (for s A Cn)

by

C0 � fh ig;

Kh i � T

Cn�1 � fs ĥii js A Cn and i A dom�cKs;Us
�g;

Ks^hii � cKs;Us
�i�; for all s ĥii A Cn�1:

Let C � 6
n<o

Cn, and K � 6fKs js A Cg. It is easy to check that K is a skip

branching tree. Since it holds that

Es A Cnbyi < o�s ĥii A Cn�1�; for all n < o;

C is a perfect rational tree.

Claim 7. B�KGC�s�� is gs-thin, for all s A o<o.

Proof of Claim 7. By induction on jsj < o. The case s � h i is clear.

So, let s � t̂ hii. Set s 0 � GC�s�, t 0 � GC�t�, a � dom�cK t 0 ;Ut 0
�, i 0 � Ga�i�, u �

t 0 ĥii. Note that s 0 � t 0 ĥi 0i. So, KGC�s� � Ks 0 � Kt 0^hi 0i � cK t 0 ;Ut 0
�i 0�. Since

cK t 0 ;Ut 0
�i 0� A S�Ut 0�G

ÿ1
a �i 0��� � S�gu�, B�KGC�s�� is gu-thin. Since s� j�U u� j�, for

all j < juj, gs�k�U gu�k�, for all k < o. So, B�KGC�s�� is gs-thin. r

By Claim 7, since B�K�H 6
s AC

B�Ks�, B�K� is g-thin. Work in V
Pb below

~p. By induction on n < o, de®ne _Dn HCn by

_D0 � fh ig;

_Dn�1 � fs ĥii A Cn�1 j s A _Dn and i A dom� _js� and _js�i� � cKs;Us
�i�g:

Claim 8. ~pw Es A _Dn �Ks � _Ts�, for all n < o.
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Proof of Claim 8. Easy. r

By Claim 8 and (6), it holds that

(7) ~pw Es A _Dnbyi < o�s ĥii A _Dn�1�, for all n < o.

De®ne Pb-name _r by

w _r � 7
n<o

U f _q Z s j s A _Dng:

By (7), it holds that ~pw _r A PT. Note that

~pw _rU _q and f _q Z s j s A _Dng is predense below _r:

Since it holds that

~pw f _ds js A 6
n<o

_DngHK and _q Z sw _ds H _f ; for all s A o<o;

we have that ~pw _rw _f A Lim�K�. So, it holds that ~p ĥ _riw _f A Lim�K�. This

completes the proof of the case that a is a successor ordinal.

Next, we deal with the case that a is a limit ordinal. Without loss of

generality, we may assume that pwa _f B V
Px , for all x < a and cof�a� � o.

Take an increasing sequence han jn < oi of ordinals with the limit a. Replacing

p by a certain stronger condition, if necessary, we may assume that there exist

f _ds js A o<og which satisfy (1)@(4) in Lemma 3.6, where h � hgs�0� js A o<oi.

Note that, for any s; t A o<o, if s and t are incompatible, then w _ds and _dt are

incompatible. For each n < o, by using Claim 6, take Pan -names h _Ts js A oni

such that, for each s A on,

(8) wan
_Ts A V and _Ts is a tentacle tree and B� _Ts� is gs-thin and _ds H

stem� _Ts�,

(9) wan b
yi < o� _ds^hii A Max� _Ts��.

Since _Th i is a Pa0 -name, without loss of generality, we may assume that p Z a0
decides the value of _Th i. Take T such that pw _Th i � T . For notational

convenience, we denote T by _T �
h i.

Let n < o and s A on. We de®ne Pan -names _T �
s^hii, _rs^hii (for i < o), and _js

as follows:

Work in V
Pan . Let i < o. Take _T �

s^hii A V and _rs^hii A Pan�1
=Pan such that

_rs^hii U p Z �an; an�1��hiian � and _rs^hii w _Ts^hii � _T �
s^hii:

Note that

(8) 0 _T �
s^hii is a tentacle tree and B� _T �

s^hii� is gs^hii-thin and _ds^hii H
stem� _T �

s^hii�,

(9) 0 _rs^hii w byj < o� _ds^hi; ji A Max� _T �
s^hii��.

Let _js � h _T �
s^hii j i < o and _ds^hii A Max� _T �

s �i.
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Return to V . Note that, for all n < o, s A on,

(10) wan rang� _js�HV , and if dom� _js� A �o�o then _js A A� _T �
s ;Us�.

Take a countable elementary substructure N of H�l� such that the above

arguments were done in N. By using the same arguments as in the proof of the

successor case, take cK ;U A A�K ;U� (for K A SVN and U A UVN), and de®ne

Cn Hon (for n < o), C, and tentacle trees Ks (for s A C) and K. Note that K is

a skip branching tree and B�K� is g-thin. We complete the proof by showing

that there exists ~pU p such that ~pw _f A Lim�K�. The desired ~p will be con-

structed as the union of pn (for n < o) in the next claim.

Claim 9. There exist pn A Pan and Panÿ1
-names _Dn, _rn ( for n < o) such that,

for all n < o,

(11) pn is �N;Pan�-generic and pn U p Z an and pn�1 Z an � pn,

(12) for all K 0 A SVN and all U A UVN,

pn w Ej A A�K 0;U�VN� _GPan
� �if rang�j�HN then byi�j�i� � cK ;U�i���

(13) w _Dn HCn and _rn : o
U n ! 6

kUn
_Dk is an order isomorphism and

Ek < n� _rk H _rn�,

(14) pn��s��w _T �
_rn�s�

� _T_rn�s� � K _rn�s�, for all s A on,

(15) Ep 0 U pn��s�� �if p 0 w _rn�s� � t then p 0 U p Z an��t���, for all s, t A on.

Proof of Claim 9. By induction on n < o. By using Lemma 4.4 (3), take

p0 U p Z a0 which satis®es (11) and (12). Set _D0 � fh ig and _r0 the unique

function from o0 to _D0. Assume that n � m� 1 and pm; _rm; _Dm have been

de®ned. Let s A om. De®ne Pam -names _Es, _ts, and _qs as follows:

We work in V
Pam below pm��s��. Set

_t � _rm�s� and _as � fi < o j _j _t�i� � cK _t;U _t
�i�g:

By induction hypothesis (14), and by (9) and (10), it holds that _j _t A A�K _t;U _t�.

By this and (12), _as is in®nite. Set _Es � f _t ĥii j i A _asg and de®ne _ts : o ! _Es by

_ts�i� � _t ĥG _as�i�i; for all i < o:

For each i < o, since _r _ts�i� A N� _GPam
�, take _r�s^hii U _r _ts�i� such that

_r�s^hii is �N� _GPam
�;Pan=Pam�-generic and support� _r�s^hii�HN� _GPam

�;

and, for all K 0 A SVN and all U A UVN,

_r�s^hii w Ej A A�K 0;U�VN� _GPan
� (if rang�j�HN then byi�j�i� � cK ;U�i��).
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Since h _r�s^hii j i < oi is a one point partition at am, let _qs be the root of this. Note

that support� _qs�H famgU 6
i<o

support� _r�s^hii�HN and _qs�hiiam � � _r�s^hii, for all

i < o.

Return to V . Take pn A Pan such that

pn Z am � pm and pm��s��w pn Z �am; an� � _qs; for all s A om
:

It is not di½cult to check that pn satis®es (11) and (12). Replacing _Es, _ts (for

s A om), if necessary, we may assume that

w byi < o� _rm�s� ĥii A _Es� and _ts : o ! _Es is a bijection; for all s A om
:

De®ne _Dn and _rn Z on by

w _Dn � 6
s Aom

_Es and _rn�s ĥii� � _ts�i�; for all s ĥii A on

It is easy to check that _Dn and _rn satisfy (13). In order to show (14), let s �

s0 ĥii A on. Set _t0 � _rm�s0�, _t � _rn�s� � _t0 ĥ_ki. Since

pm��s0��w _r�s U _r _t U p Z �am; an��h_kiam � and pn Z �am; an��hiiam � � _r�s0̂ i

and _r _t w _T �
_t � _T_t, it holds that pn��s��w _T �

_t � _T _t. Since pm��s0��w _k A _as0 , we have

that pm��s0��w _T �
_t � _j _t0

�_k� � _c _K _t0
; _U _t0

�_k� � K _t. Now, we deal with (15). Suppose

that s; t A on, p 0 U pn��s��, and p 0 w _rn�s� � t. Let s � s0 ĥii and t � t0 ĥki. By

induction hypothesis, it holds that p 0Z am U p Z am��t0��. Since it hold that

pm��s0��w pn Z �am; an��hiiam �U p Z �am; an��h _rn�s��m�iam � and

p 0Z am w p 0Z �am; an�U pn Z �am; an��hiiam � and _rn�s��m� � k;

we have that p 0Z am w p 0Z �am; an�U p Z �am; an��hkiam �. So, p 0 U p Z an��t��. r

Let ~p � 6
n<o

pn. It follws from the next claim that ~pw _f A Lim�K�.

Claim 10. ~pw En < obt A on ( _dt A K and _dt H _f ).

Proof of Claim 10. Let p 0 U ~p and n < o. Take s A on such that p 0 and

~p��s�� are compatible. Without loss of generality, we may assume that

p 0 U ~p��s�� and p 0Z an w _rn�s� � t; for some t A on
:

Set p 00 � p 0Z an. Note that

p 00 U ~p Z an��s�� � pn��s��:

By (14), we have that p 00 w _dt A Kt HK . By (15), p 00 U p Z an��t��. So, p 0 U p��t��

and p 0 w _dt H _f . r
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