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Abstract. We consider quasilinear strongly resonant problems with discontinuous

right hand side. To develop an existence theory we pass to a multivalued problem by,

roughly speaking, ®lling in the gaps at the discontinuity points. We prove the existence

of at least three nontrivial solutions. Our approach uses the nonsmooth critical point

theory for locally Lipschitz functionals due to Chang and a generalized version of the

Ekeland variational principle. At the end of the paper we also show that the non-

smooth (PS)-condition implies the coercivity of the functional, extending this way a well

known result of the ``smooth'' case.

1. Introduction.

In two recent papers we studied quasilinear elliptic problems at resonance and

near resonance with discontinuous right hand side (see Kourogenis-Papageorgiou

[18], [19]). In the ®rst paper [18] we investigated the resonant problem and using

a variational approach, we proved the existence of a nontrivial solution. In the

second paper [19], we considered problems near resonance with the parameter l

approaching from the left the ®rst eigenvalue l1 of the p-Laplacian. For such

problems we proved the existence of at least three nontrivial solutions. At the

end of that paper we mentioned as an open problem the existence of multiple

nontrivial solutions for the resonant equation. The aim of this work is to give a

solution to this open problem. Contrary to what we had in the ®rst paper, here

we assume that the potential function F �z; x� �
� x

0 f �z; r� dr has a ®nite limit for

almost all z A Z as x !Gy. In this respect our work is similar to that of Thews

[23], Bartolo-Benci-Fortunato [8] and Ward [25]. In Bartolo-Benci-Fortunato

this case was termed ``strongly resonant''. The case where limx!Gy F�z; x� is

in®nite for all z A EG with jEGj > 0 (here by j � j we denote the Lebesgue measure

on R
N ) was considered by Ahmad-Lazer-Paul [3] and Rabinowitz [21] while a
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mixed situation with limx!y F �x� � 0 and limx!ÿy F �x� � �y was studied by

Costa-Silva [13]. All the aforementioned works deal with semilinear equations

which have a continuous right hand side and prove the existence of one nontrivial

solution. Multiple solutions for semilinear resonant problems with a continuous

f, were proved by Ahmad [2], Goncalves-Miyagaki [14], [15] and Landesman-

Robinson-Rumbos [17]. The ®rst multiplicity result for the quasilinear resonant

problem was obtained recently by Alves-Carriao-Miyagaki [4], who studied an

equation with the p-Laplacian and a continuous right hand side. To our

knowledge, our theorem is the ®rst multiplicity result for strongly resonant

quasilinear problems with discontinuities. We hope that our work here will

motivate further research on the problem which will improve our result by

relaxing some of our hypotheses and by obtaining new multiplicity results.

Our approach combines the critical point theory for nonsmooth locally

Lipschitz functionals due to Chang [11] with a recently obtained extension of the

Ekeland variational principle due to Zhong [26]. We make use of a weak form

of the nonsmooth Palais-Smale condition, originally due to [10] (for smooth

problems) which has been exploited by Bartolo-Benci-Fortunato [8] (again in

the context of smooth problems). We show that the quasilinear discontinuous

resonant problem has at least three nontrivial solutions. Concerning the usual

nonsmooth Palais-Smale condition, introduced by Chang [11], at the end of the

paper we show that it implies the coercivity of the functionals, extending this way

to the present nonsmooth setting a result well-known in the ``smooth'' context.

2. Preliminaries.

Let X be a Banach space and X � its topological dual. A function

f : X ! R is said to be ``locally Lipschitz'', if for every x A X there exists a

neighbourhood U of x and a constant k > 0 depending on U such that

j f �z� ÿ f �y�jU kkzÿ yk for all z; y A U . From convex analysis we know that

a proper, convex and lower semicontinuous function g : X ! R � RU f�yg

is locally Lipschitz in the interior of its e¨ective domain dom g �

fx A X : g�x� < �yg. For a locally Lipschitz f, we de®ne the ``generalized

directional derivative'' at x A X in the direction h A X by

f 0�x; h� � lim
x 0!x
l#0

f �x 0 � lh� ÿ f �x 0�

l
:

It is easy to check that h ! f 0�x; h� is sublinear, continuous (in fact

j f 0�x; h�jU kkhk, hence f 0�x; �� is Lipschitz continuous). So from the Hahn-

Banach theorem, we know that f 0�x; �� is the support function of a nonempty,

N. C. Kourogenis and N. S. Papageorgiou18



convex and w�-compact set de®ned by

q f �x� � fx�
A X �

: �x�
; h�U f 0�x; h� for all h A Xg:

The set q f �x� is called the ``generalized (or Clarke) subdi¨erential'' of f ��� at

x. If f ; g : X ! R are locally Lipschitz functions, then q� f � g��x�J q f �x� �

qg�x� and q�l f ��x� � lq f �x� for all l A R. Moreover, if f : X ! R is also

convex, then the generalized subdi¨erential and the subdi¨erential in the sense of

convex analysis coincide. If f is strictly di¨erentiable at x (in particular if f is

continuously Gateaux di¨erentiable at x), then q f �x� � f f 0�x�g. A point x A X

is a ``critical point'' of f if 0 A q f �x�. It is easy to see that if x A X is a local

minimum or maximum, then 0 A q f �x�. For details we refer to Clarke [12].

It is well-known that the classical critical point theory for smooth functions,

uses a compactness condition known as the ``Palais-Smale condition'' ((PS)-

condition). In the present nonsmooth context this condition takes the following

form: We say that f satis®es the ``nonsmooth (PS)-condition'', if any sequence

fxngnV1 JX along which f f �xn�gnV1 is bounded and m�xn� � minfkx�k : x�
A

q f �xn�g ��!
n!y

0, has a strongly convergent subsequence. If f A C1�X�, then since

q f �xn� � f f 0�xn�g, we see that the above de®nition coincides with the classical

(PS)-condition (see Rabinowitz [21]).

A weaker form of the Palais-Smale condition was introduced for smooth

functions by Cerami [10]. Cerami's condition for a locally Lipschitz functional

R : X ! R in the present nonsmooth setting has the following form: ``Any

sequence fxngnV1 JX such that jR�xn�jUM, nV 1, and �1� kxnk�m�xn� ��!
n!y

0,

has a strongly convergent subsequence''. We call this condition ``nonsmooth C-

condition''. It was proved in the smooth case by Bartolo-Benci-Fortunato [8]

(theorem 1.3), that this weaker compactness condition su½ces in order to have

the deformation theorem and from that derive minimax principles. The same

can be done in the nonsmooth case, where we can obtain the deformation

theorem of Chang [11] (theorem 3.1), by simple modi®cations of the proof of

Bartolo-Benci-Fortunato [8] based on lemmata 3:1 ! 3:4 of Chang [11] and then

have the nonsmooth minimax principles. An alternative approach, avoiding the

deformation theorem, can be based in the recent generalization of the Ekeland

variational principle due to Zhong [26] (see also theorem 2 below). Evidently the

nonsmooth (PS)-condition implies the nonsmooth C-condition. We say that a

locally Lipschitz functional R : X ! R satis®es the ``nonsmooth C-condition at

level c'' (resp. the ``nonsmooth (PS)-condition at level c''), if any sequence

fxngnV1 JX satisfying R�xn� ��!
n!y

c and �1� kxnk�m�xn� ��!
n!y

0 (resp.

m�xn� ��!
n!y

0) has a convergent subsequence. If these are true for every c A R,

then we have the previously introduced ``global'' de®nitions.
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The next theorem is due to Chang [11] and extends to a nonsmooth setting

the well-known ``Mountain Pass Theorem'' due to Ambrosetti-Rabinowitz [5].

Theorem 1. If X is a re¯exive Banach space, R : X ! R is locally Lipschitz,

there exist y A X and r > 0 with kyk > r such that maxfR�0�;R�y�g <

inf �R�x� : kxk � r�, c � infG max0UtU1 R�g�t�� where G � fg A C��0; 1�;X � : g�0� �

0; g�1� � yg and R��� satis®es the nonsmooth C-condition at level c, then

cV inf �R�x� : kxk � r� and there exists x A X such that 0 A qR�x�, R�x� � c.

Let ZJRN be a bounded domain. Consider the following nonlinear

eigenvalue problem

ÿdiv�kDx�z�kpÿ2
Dx�z�� � ljx�z�jpÿ2

x�z� a:e: on Z

xjG � 0:

( )

�1�

The least real number for which problem (1) has a nontrivial solution, is the ®rst

eigenvalue of the negative p-Laplacian ÿDpx � ÿdiv�kDxkpÿ2
Dx� with Dirichlet

boundary conditions (i.e. of �ÿDp;W
1;p
0 �Z�)) and is denoted by l1. This ®rst

eigenvalue l1 is positive, isolated and simple (i.e. the associated eigenfunctions are

constant multiples of each other). Moreover, we have the following variational

characterization of l1 > 0 via a Rayleigh quotient, namely

l1 � min
kDxkp

p

kxkp
p

: x A W
1;p
0 �Z�; x0 0

" #

: �2�

This minimum is realized at the normalized eigenfunction u1. Note that if

u1 minimizes the Rayleigh quotient, then so does ju1j and so we infer that the ®rst

eigenfuction u1 does not change sign on Z. In fact we can show that u1 0 0 a.e.

on Z and so we may assume that u1�z� > 0 a.e. on Z (note that when the

boundary of Z is smooth, by nonlinear elliptic regularity theory, u A C
1;b
loc �Z�,

0 < b < 1; see Tolksdorf [24]). The ®rst work on the properties of l1 when

ZJRN is a bounded domain of Holder class C2;a was obtained by Anane [6].

His result was extended to general bounded domains by Lindqvist [20].

The Ljusternik-Schnirelmann theory gives, in addition to l1, a whole strictly

increasing sequence of positive real numbers 0 < l1 < l2 < l3 < � � � < lk < � � � for

which there exist nontrivial solutions of the nonlinear eigenvalue problem (1).

In other words the spectrum s�ÿDp� of �ÿDp;W
1;p
0 �Z�� contains at least these

points flkgkV1. Nothing is known about the possible existence of other points

in s�ÿDp�J �l1;y�JR�. However, if X � hu1i � Ru1 and V is a topological

complement (i.e. W
1;p
0 �Z� � X lV ), then because l1 > 0 is isolated we have
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l̂2V � inf
kDvkp

p

kvkp
p

: v A V ; v0 0

" #

> l1; l̂2 � sup
V

l̂2V : �3�

Concerning l̂2 we have the important recent work of Anane-Tsouli [7], who

proved that l̂2 is the second eigenvalue of �ÿDp;W
1;p
o �Z��. Finally let us recall

the following generalization of the Ekeland variational principle due to Zhong

[26] which we will need in the sequel.

Theorem 2. If h : R� ! R� is a continuous nondecreasing function such that
�

y

0 1=�1� h�r�� dr � �y; �Y ; d� is a complete metric space, x0 A Y is ®xed, f :

Y ! R � RU f�yg is a lower semicontinuous function not identically �y which

is bounded from below, then for any given l > 0, e > 0 and y A Y such that

f�y�U infY f� e, we can ®nd x A Y such that

(a) f�x�U f�y�;

(b) f�x�U f�u� �
e

l�1� h�d�x0; x���
d�u; x� for all u A Y ; and

(c) d�x; x0�U d�y; x0� � r, where r > 0 is such that

� d�y;x0��r

d�y;x0�

1

1� h�r�
drV l.

Remark. If h�r�1 0 and x0 � y, then we recover Ekeland's variational

principle (see for example Hu-Papageorgiou [16]).

Now we are ready to start studying our problem. So let ZJR
N be a

bounded domain with a C 1-boundary G . We consider the following quasilinear

resonant problem:

ÿdiv�kDx�z�kpÿ2
Dx�z�� ÿ l1jx�z�j

pÿ2
x�z� � f �z; x�z�� a:e: on Z

xjG � 0; 2U p < y:

( )

�4�

We do not assume that f �z; �� is continuous and so problem (4) need not

have a solution. To be able to develop a reasonable existence theory, we pass

to a multivalued version of (4) by, roughly speaking, ®lling in the gaps at the

discontinuity points of f �z; ��. More precisely we introduce the following two

functions:

f1�z; x� � lim
x 0!x

f �z; x 0� � lim
d#0

ess inf
jx 0ÿxj<d

f �z; x 0�

and

f2�z; x� � lim
x 0!x

f �z; x 0� � lim
d#0

ess sup
jx 0ÿxj<d

f �z; x 0�:
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Using them we de®ne the multifunction f̂ �z; x� � fy A R : f1�z; x�U yU

f2�z; x�g. Then instead of (4) we study the following quasilinear resonant elliptic

inclusion:

ÿdiv�kDx�z�kpÿ2
Dx�z�� ÿ l1jx�z�j

pÿ2
x�z� A f̂ �z; x�z�� a:e: on Z

xjG � 0; 2U p < y:

( )

�5�

By a solution of (5) we mean a function x A W
1;p
0 �Z� such that

div�kDx���kpÿ2
Dx���� A L1�Z� and ÿdiv�kDx�z�kpÿ2

Dx�z�� ÿ l1jx�z�j
pÿ2

x�z� �

u�z� a.e. on Z with u A L1�Z�, f1�z; x�z��U u�z�U f2�z; x�z�� a.e. Z. We will

show that (5) has at least three distinct nontrivial solutions. For this purpose we

introduce the following hypotheses on f �z; x�.

H� f �: f : Z � R ! R is a measurable function such that

(i) f1; f2 are N-measurable functions (i.e. for every x : Z ! R measurable

function, z ! f1�z; x�z�� and z ! f2�z; x�z�� are measurable functions; super-

positional measurability);

(ii) j f �z; x�jU
a1�z� for almost all z A Z, all x < 0

a2�z� � c2jxj
sÿ1 for almost all z A Z, all xV 0,

�

where a1; a2 A Ly�Z�, c2 > 0 and 1U sU p�; p� � Np=�N ÿ p�;

(iii) there exist FG A L1�Z� such that F�z; x� ���!
x!ÿy

Fÿ�z� and F �z; x� ��!
x!y

F��z� uniformly for almost all z A Z;

(iv) for almost all z A Z and all x A R, pF �z; x�U �l̂2 ÿ l1�jxj
p;

(v) there exist constants h; g > 0 such that for almost all z A Z and all

xV h > 0 we have �xu� ÿ pF�z; x��=ju�j1�1=r
V g > 0 for all u� A f̂ �z; x� and with

1U rU p� ÿ 1. Further if fxngnV1 JW
1;p
0 �Z� is such that jxn�z�j ��!

n!y
y a.e.

on Z, then
�

Z
fi�z; xn�z��xn�z� dz ��!

n!y
0 for i � 1; 2;

(vi) lim
x!0

�pF �z; x��=jxjp < ÿl1 uniformly for almost all z A Z;

(vii) there exist xÿ < 0 < x� such that
�

Z
F�z; xGu1�z�� dz > 0 and

�

Z
F�z; xGu1�z�� dz >

�

Z
FG�z� dz.

Remark. Hypothesis H(f )(i) is satis®ed if f is independent of z A Z or if

for almost all z A Z; f �z; �� is monotone nondecreasing. Indeed, in the ®rst case

the N-measurability of f1 and f2 follows from the fact that f1 is lower semi-

continuous, while f2 is upper semicontinuous. In the second case note that

f1�z; x� � limn!y f �z; xÿ 1=n� and f2�z; x� � limn!y f �z; x� 1=n�, hence both

functions f1 and f2 are measurable, thus N-measurable too. Hypothesis H(f )(iii)

is the ``strong resonance'' condition since for almost all z A Z, FG are ®nite.

Evidently by virtue of hypothesis H(f )(vi), the growth condition imposed in

H(f )(iv) is automatically satis®ed in a neighbourhood of zero. Note that hy-
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pothesis H(f )(iv) is analogous to hypothesis Hy of Goncalves-Miyagaki [15] and

hypothesis �g5� of Costa-Silva [13]. The ®rst part of hypothesis H(f )(v) is a

variant of the well-known Ambrosetti-Rabinowitz condition (see Ambrosetti-

Rabinowitz [5] or Rabinowitz [21]). It is consistent with hypotheses H(f )(ii),

(iii) and (iv) and it implies that for xV h > 0, F �x� < 0. If for i � 1; 2,

fi�z; x�x ���!
jxj!y

0 uniformly for all z A Z, the second part of hypothesis H(f )(v)

is satis®ed. Because of hypothesis H(f )(vii), we do not need the second part

of hypothesis H(f )(v) for the proof of the existence of two solutions. Hypothesis

H(f )(vi) is needed in order to be able to apply theorem 1 and have a third

nontrivial solution. Without it we can not guarantee that the third solution

(which in this case is obtained via the Mountain Pass theorem) is nontrivial.

3. Auxiliary results.

Let R : W
1;p
0 �Z� ! R be the energy functional de®ned by

R�x� �
1

p
kDxkp

p ÿ
l1

p
kxkp

p ÿ

�

Z

F�z; x�z�� dz:

Because of hypothesis H(f )(iii) and since W
1;p
0 �Z� is embedded continuously

in Ls�Z� (Sobolev embedding theorem), from Chang [11] we have that R��� is

locally Lipschitz. In this section we prove a series of auxiliary results which

determine the properties of R���.

Proposition 3. If hypotheses H� f � hold, then R��� is bounded below.

Proof. Using hypothesis H(f )(iii), we can ®nd M > 0 such that for almost

all z A Z we have

jF �z; x� ÿ Fÿ�z�jU 1 for all xUÿM and

jF �z; x� ÿ F��x�jU 1 for all xVM:

Also by virtue of H(f )(ii), we see that for almost all z A Z and all jxj < M,

jF �z; x�jU â�z� with â A Ly�Z�. Then for every x A W
1;p
0 �Z� we have

R�x� �
1

p
kDxkp

p ÿ
l1

p
kxkp

p ÿ

�

fjx�z�j<Mg

F�z; x�z�� dz

ÿ

�

fx�z�<ÿMg

F �z; x�z�� dzÿ

�

fx�z�>Mg

F�z; x�z�� dz

Vÿkâk1 ÿ kFÿk1 ÿ kF�k1 ÿ 2jZj:

Multiple solutions 23



Recall that W
1;p
0 �Z� � X lV with X � hu1i � Ru1 and V a topological

complement. r

Proposition 4. If hypotheses H� f � hold, then RjV V 0.

Proof. Using hypothesis H(f )(iv) and (3), for every v A V we have

R�v� �
1

p
kDvkp

p ÿ
l1

p
kvkp

p ÿ

�

Z

F�z; v�z�� dz

V
1

p
kDvkp

p ÿ
l1

p
kvkp

p ÿ
1

p
�l̂2 ÿ l1�kvk

p
p

V
1

p
kDvkp

p ÿ
l1

p
kvkp

p ÿ
1

p
kDvkp

p �
l1

p
kvkp

p � 0 r

Recalling that kDu1k
p
p � l1ku1k

p
p (see section 2) and using hypothesis

H(f )(vii), we have:

Proposition 5. If hypotheses H� f � hold, then R�xGu1� < 0.

Proposition 6. If hypotheses H� f � hold, then R��� satis®es the nonsmooth

C-condition at level c0ÿ
�

Z
FG�z� dz.

Proof. Let fxngnV1 JW
1;p
0 �Z� be a sequence such that R�xn� ��!

n!y
c, c0

ÿ
�

Z
FG�z� dz and �1� kxnk1;p�m�xn� ��!

n!y
0 where for every x A W

1;p
0 �Z�, m�x� �

inffkx�k : x� A qR�x�g (see section 2). Let x�
n A qR�xn�, nV 1, be such that

kx�
nk � m�xn�. Its existence follows from the fact that qR�xn� is weakly compact

in Wÿ1;q�Z� and from the weak lower semicontinuity of the norm functional.

Since x�
n A qR�xn�, we have

x�
n � A�xn� ÿ l1J�xn� ÿ u�

n ; nV 1;

where A : W
1;p
0 �Z� ! Wÿ1;q�Z��1=p� 1=q � 1� is de®ned by hA�x�; yi �

�

Z
kDx�z�kpÿ2�Dx�z�;Dy�z��

R
N dz, J�xn���� � jxn���j

pÿ2
xn��� and u�

n A qc�xn�,

where c�x� �
�

Z
F�z; x�z�� dz for all x A W

1;p
0 �Z�. Note that by h� ; �i we denote

the duality brackets for the pair �W 1;p
0 �Z�;Wÿ1;q�Z��. From Chang [11] we

know that f1�z; xn�z��U u�n�z�U f2�z; xn�z�� a.e. on Z. Also it is easy to

check that A is monotone, demicontinuous, hence maximal monotone (see Hu-

Papageorgiou [16]).

Claim. fxngnV1 JW
1;p
0 �Z� is bounded.

Suppose not. Then by passing to a subsequence if necessary, we may

assume that kxnk ��!
n!y

y, kxnk0 0 for all nV 1. From the choice of the

sequence fxngnV1, we have
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pR�xn� � kDxnk
p
p ÿ l1kxnk

p
p ÿ pc�xn�U pM1; for some M1 > 0 �6�

and jhx�
n ; xnijU en with en # 0: �7�

From (7) we have

ÿhA�xn�; xni� l1�J�xn�; xn�qp � �u�
n ; xn�s 0s U en;

where by �� ; ��qp we denote the duality brackets for the pair �Lq�Z�;Lp�Z��,

1=p� 1=q � 1 and by �� ; ��s 0s the duality brackets for the pair �Ls 0
�Z�;Ls�Z��,

1=s� 1=s 0 � 1. Note that by the Sobolev embedding theorem W
1;p
0 �Z� is

embedded continuously in Lp�Z� and in Ls�Z�, hence xn A Lp�Z�VLs�Z� for all

nV 1, while J�xn� A Lq�Z� and u�
n A Ls 0

�Z� (see hypothesis H(f )(iii)). So we

have

ÿkDxnk
p
p � l1kxnk

p
p �

�

Z

u�
n �z�xn�z� dzU en: �8�

Adding (6) and (8), we obtain

ÿ pc�xn� �

�

Z

u�
n �z�xn�z� dzU pM1 � c3 for some c3 > 0;

)

�

fxn<0g

�u�
n �z�xn�z� ÿ pF �z; xn�z��� dz

�

�

fxnV0g

�u�
n �z�xn�z� ÿ pF �z; xn�z��� dzU pM1 � c3: �9�

Because of hypothesis H(f )(ii) we have

�

fxn<0g

�u�
n �z�xn�z� ÿ pF�z; xn�z��� dz

�

�

�

�

�

�

�

�

�

�

U c4kxnk1;p for some c4 > 0: �10�

Using (10) in (9) we obtain

�

fxnV0g

�u�
n �z�xn�z� ÿ pF�z; xn�z��� dzU c5 � c4kxnk1;p �with c5 � pM1 � c3�:

Dividing with kxnk
1�1=r
1;p , we have

�

fxnV0g

u�
n �z�xn�z� ÿ pF �z; xn�z��

kxnk
1�1=r
1;p

dzU
c5

kxnk
1�1=r
1;p

�
c4

kxnk
1=r
1;p

) lim
n!y

�

fxnV0g

u�
n �z�xn�z� ÿ pF�z; xn�z��

kxnk
1�1=r
1;p

dz � 0: �11�
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Note that in concluding the last equality (and not only the inequalityU 0),

we have used hypothesis H(f )(v). Also from the same hypothesis, we see that for

almost all z A Z, if xn�z�V h > 0, then u�
n �z�0 0. So we can write that

�

f0Uxng

u�
n �z�xn�z� ÿ pF�z; xn�z��

kxnk
1�1=r
1;p

dz

�

�

f0Uxn<hg

u�
n �z�xn�z� ÿ pF �z; xn�z��

kxnk
1�1=r
1;p

dz

�

�

fxnVhg

u�
n �z�xn�z� ÿ pF �z; xn�z��

ju�
n �z�j

1�1=r

ju�
n �z�j

kxnk
1�1=r
1;p

dz:

Because of hypothesis H(f )(ii) we have for some c6 > 0

�

f0Uxn<hg

u�
n �z�xn�z� ÿ pF �z; xn�z��

kxnk
1�1=r
1;p

dz

�
�
�
�
�

�
�
�
�
�
U

c6

kxnk
1=r
1;p

��!
n!y

0; �12�

)

�

fxnVhg

u�
n �z�xn�z� ÿ pF�z; xn�z��

ju�
n �z�j

1�1=r

ju�
n �z�j

1�1=r

kxnk
1�1=r
1;p

dz ��!
n!y

0 �from �11� and �12��;

)

�

fxnVhg

ju�
n �z�j

1�1=r

kxnk
1�1=r
1;p

dz ��!
n!y

0 �see hypothesis H�f��v��:

Moreover, using once again hypotheses H(f )(ii) and the fact that

f1�z; xn�z��U u�
n �z�U f2�z; xn�z�� a.e. on Z, we have

�

f0Uxn<hg

ju�
n �z�j

1�1=r

kxnk
1�1=r
1;p

dz ��!
n!y

0:

Finally since ju�
n �z�jU a1�z� a.e. on fxn < 0g and a1 A Ly�Z� (see hypothesis

H(f )(ii)), we have

�

fxn<0g

ju�
n �z�j

1�1=r

kxnk
1�1=r
1;p

dzU

�

fxn<0g

a1�z�
1�1=r

kxnk
1�1=r
1;p

dz ��!
n!y

0;

)
u�
n

kxnk1;p
��!
n!y

0 in L1�1=r�Z�:

If y � 1� 1=r, then y 0 � r� 1U p�, �1=y� 1=y 0 � 1�, and so by the Sobolev

embedding theorem we have that W
1;p
0 �Z� is embedded continuously in Ly 0

�Z�,

hence Ly�Z� � Ly 0

�Z�� is embedded continuously in Wÿ1;q�Z� � W
1;p
0 �Z��. So

u�
n=kxnk1;p ��!

n!y
0 in Wÿ1;q�Z�.
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Let yn � xn=kxnk1;p, nV 1. Since kynk1;p � 1, nV 1, by passing to a subse-

quence if necessary, we may assume that yn !
w

y in W
1;p
0 �Z�, yn ! y in L p�Z�

(because W
1;p
0 �Z� is embedded compactly in L p�Z�), yn !

w
y in Ly

0

�Z� (because

W
1;p
0 �Z� is embedded continuously in Ly

0

�Z�), yn�z� ! y�z� a.e. on Z as n ! y

and jyn�z�jU h�z� a.e. on Z with h A L p�Z�.

Recall that m�xn� ! 0 and so

hA�xn�; yn ÿ yiÿ l1�J�xn�; yn ÿ y�pq ÿ hu�
n ; yn ÿ yiU enkyn ÿ yk1;p; nV 1:

Dividing by kxnk
pÿ1
1;p we obtain

hA�yn�; ynÿ yiÿl1�J�yn�; ynÿ y�pqÿ
u�
n

kxnk1;p
;
ynÿ y

kxnk
pÿ2
1;p

U
en

kxnk
pÿ1
1;p

kynÿ yk1;p:

+*

We know that u�
n=kxnk1;p ��!

n!y
0 in Wÿ1;q�Z�, so hu�

n=kxnk1;p; �yn ÿ y�=

kxnk
pÿ2
1;p i ��!

n!y
0. Moreover, �J�yn�; yn ÿ y�pq ��!

n!y
0. Thus ®nally we have

limhA�yn�; yn ÿ yiU 0:

But A being maximal monotone, is generalized pseudomonotone (see for

example Hu-Papageorgiou [16], de®nition III.6.2 and remark III.6.3, p. 365). So

we have

A�yn� !
w

A�y� in Wÿ1;q�Z� as n ! y

and hA�yn�; yni ! hA�y�; yi ) kDynkp ! kDykp.

Since Dyn !
w

Dy in Lp�Z;RN� and the latter is uniformly convex, from the

Kadec-Klee property we infer that Dyn ! Dy in Lp�Z;RN�, hence yn ! y in

W 1;p
o �Z� and so kyk1;p � 1; i.e. y0 0 (an alternative proof of this can be based

on the continuity of Aÿ1).

Again from the choice of the sequence fxngnV1, we have that for every

u A W
1;p
0 �Z�

hA�xn�; uiÿ l1�J�xn�; u�pq ÿ

�

Z

u�
n �z�u�z� dz

�
�
�
�

�
�
�
�
U enkuk1;p:

Dividing by kxnk
pÿ1
q;p we obtain

hA�yn�; uiÿ l1�J�yn�; u�pq ÿ

�

Z

u�
n �z�

kxnk1;p

u�z�

kxnk
pÿ2
1;p

dz

�
�
�
�
�

�
�
�
�
�
U

en

kxnk
pÿ1
1;p

kuk1;p

) hA�y�; ui � l1�J�y�; u�pq for all u A W
1;p
0 �Z�

)

�

Z

kDy�z�kpÿ2�Dy�z�;Du�z��
R

N dz
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� l1

�

Z

jy�z�jpÿ2
y�z�u�z� dz for all u A W

1;p
0 �Z�

) hÿdiv�kDykpÿ2
Dy�; ui � l1�jyj

pÿ2
y; u�pq for all u A W

1;p
0 �Z�

(note that div�kDykpÿ2
Dy� A Wÿ1;q�Z�; recall the representation theorem for the

elements in Wÿ1;q�Z� � W
1;p
0 �Z��, see example Adams [1], theorem 3.10, p. 50).

So we infer

ÿdiv�kDy�z�kpÿ2
Dy�z�� � l1jy�z�j

pÿ2
y�z� a:e: on Z

yjG � 0

( )

) y � Gu1:

Suppose without any loss of generality that y � u1 (the proof for the case

y � ÿu1 is similar). Since u1�z� > 0 for all z A Z, we have that xn�z� ��!
n!y

y a.e.

on Z. Recall that

jhx�
n ; xnijU en �see �7��;

) ÿen U hA�xn�; xniÿ l1�J�xn�; xn�pq ÿ

�

Z

u�
n �z�xn�z� dzU en

) ÿen U kDxnk
p
p ÿ l1kxnk

p
p ÿ

�

Z

u�
n �z�xn�z� dzU en:

By virtue of hypothesis H(f )(v) we have that
�

Z
u�
n �z�xn�z� dz ��!

n!y
0. So we

infer that kDxnk
p
p ÿ l1kxnk

p
p ��!

n!y
0. From the choice of the sequence fxngnV1 J

W
1;p
0 �Z� we have that R�xn� ��!

n!y
c. So given e > 0 we can ®nd n0 � n0�e�V 1

such that for nV n0 we have

cÿ eUR�xn�U c� e

) cÿ eU
1

p
kDxnk

p
p ÿ

l1

p
kxnk

p
p ÿ

�

Z

F�z; xn�z�� dzU c� e:

Passing to the limit as n ! y we obtain

cÿ eUÿ

�

Z

F��z� dzU c� e:

Let e # 0 to conclude that c � ÿ
�

Z
F��z� dz, a contradiction. This proves

the claim.

Because of the claim and by passing to a subsequence if necessary, we may

assume that xn !
w

x in W
1;p
0 �Z� as n ! y. Also since f1�z; xn�z��U u�

n �z�U
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f2�z; xn�z�� a.e. on Z, by virtue of hypothesis H(f )(ii) we have that fu�
ngnV1 J

Ls 0
�Z� is bounded. Therefore

hA�xn�; xn ÿ xi � hx�
n ; xn ÿ xiÿ l1�J�xn�; xn ÿ x�pq ÿ �u�

n ; xn ÿ x�ss 0

) limhA�xn�; xn ÿ xi � 0:

But A being maximal monotone, is generalized pseudomonotone (see Hu-

Papageorgiou [16], de®nition III.6.2 and remark III.6.3, p. 365). So we have

hA�xn�; xni ��!
n!y

hA�x�; xi ) kDxnkp ��!
n!y

kDxkp. On the other hand we know

that Dxn !
w

Dx in Lp�Z;R
n� and Lp�Z;RN� has the Kadec-Klee property (being

uniformly convex). So Dxn ��!
n!y

Dx in Lp�Z;R
N�, hence xn ��!

n!y
x in W

1;p
0 �Z�.

r

The next proposition will allow the use of theorem 1 (see also proposition 3

of Kourogenis-Papageorgiou [18]).

Proposition 7. If hypotheses H� f � hold, then we can ®nd b1; b2 > 0 and

p < nU p� such that R�x�V b1kxk
p
1;p ÿ b2kxk

n
1;p for all x A W

1;p
0 �Z�.

Proof. By virtue of hypothesis H(f )(vi) we can ®nd m < ÿl1 and d > 0

such that for almost all z A Z and all jxjU d, we have

F�z; x�U
1

p
mjxjp:

On the other hand from hypothesis H(f )(ii) we have

jF �z; x�jU a3�z�jxj �
c2

p
jxjs a:e: on Z for all x A R;

with a3�z� � maxfa1�z�; a2�z�g A Ly�Z�:

Therefore we can ®nd g > 0 large enough and p < nU p� such that the

inequality

F�z; x�U
1

p
mjxjp � gjxjn a:e: on Z; for all x A R

holds.

Then for every x A W
1;p
0 �Z� we have

R�x� �
1

p
kDxkp

p ÿ
l1

p
kxkp

p ÿ

�

Z

F�z; x�z�� dz

V
1

p
kDxkp

p ÿ
l1

p
kxkp

p ÿ
1

p
mkxkp

p ÿ gkxkn
n
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V
1

p
kDxkp

p ÿ
1

p
�l1 � m�kxkp

p ÿ gkxkn
n

V
1

p
ÿ

m

l1

� �

kDxkp
p ÿ gkxkn

n :

Note that �1=p��ÿm=l1� � b̂1 > 0. From PoincareÂ's inequality and since

W
1;p
0 �z� is continuously embedded in Ln�Z� (recall that nU p�), we can ®nd

b1; b2 > 0 such that

R�x�V b1kxk
p
1;p ÿ b2kxk

n
1;p for all x A W

1;p
0 �Z�: r

4. Multiplicity result.

Now we have the necessary tools to state and prove a multiplicity theorem

for problem (5).

Theorem 8. If hypotheses H� f � hold, then problem (5) has at least three

nontrivial solutions.

Proof. Let UG � fx A W
1;p
0 �Z� : x � Gtu1 � v; t > 0; v A Vg. We will

show that R��� attains its in®mum on both open sets U� and Uÿ. To this end

let m� � inf �R�x� : x A U�� � inf �R�x� : x A U�� (since R��� is locally Lip-

schitz). Let

R�x� �
R�x� if x A U�

�y otherwise.

�

Evidently R��� is a lower semicontinuous function which is bounded below

(see proposition 3). Apply theorem 2 with x0 � 0, h�r� � r, e � e2n , where en # 0

and l � en. Then noting propositions 4 and 5, we can produce a sequence

fxngnV1 JU� such that R�xn� # m� (minimizing sequence) and

R�xn�UR�u� �
en

�1� kxnk1;p�
kxn ÿ uk1;p for all u A W

1;p
0 �Z�

) ÿ
en

�1� kxnk1;p�
kxn ÿ uk1;p UR�u� ÿ R�xn�:

Let u � xn � tw, with t > 0 and w A W
1;p
0 �Z�. Because xn A U� and U� is

open, we can ®nd d > 0 such that for 0U tU d we have xn � tw A U�. Hence

we have
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ÿ
en

�1� kxnk1;p�
kwk1;p U

R�xn � tw� ÿ R�xn�

t
for 0 < tU d

) ÿ
en

�1� kxnk1;p�
kwk1;p UR0�xn;w�:

Let cn�w� � ��1� kxnk1;p�=en�R
0�xn;w�. Then cn��� is sublinear, continuous

with cn�0� � 0 and ÿkwk1;p Ucn�w� for all w A W
1;p
0 �Z�. We can apply

lemma 1.3 for Szulkin [22] and obtain y�
n A Wÿ1;q�Z�, nV 1, such that ky�

nkU 1

and hy�
n ;wiUcn�w� for all w A W

1;p
0 �Z� and all nV 1. Then if x�

n � �en=

�1� kxnk1;p��y
�
n , we have hx�

n ;wiUR0�xn;w� for all w A W
1;p
0 �Z�, hence x�

n A

qR�xn�, nV 1. We have �1� kxnk1;p�m�xn�U �1� kxnk�kx
�
nkU enky

�
nkU en

��!
n!y

0. Note that because of hypothesis H(f )(vii), m� < ÿ
�

Z
F��z� dz. So we

can use proposition 6 and assume that xn ! y1 in W
1;p
0 �Z� with y1 A U�. Then

R�xn� ��!
n!y

R�y1� � m�. If y1 A qU� � V , by propositions 4 and 5 we have

0UR�y1� � m� < 0;

a contradiction. So y1 A U�, hence is a local minimum of R���. This means

that 0 A qR�y1�. Similarly working on Uÿ we obtain y2 A Uÿ such that 0 A

qR�y2�. Clearly y2 0 y1.

By virtue of proposition 7 we can ®nd 0 < r < minfx�; xÿg such that RjqBr
>

0 > mG. Thus we can apply theorem 1 (with y � x�u1 or y � xÿu1) and obtain

y3 0 y1, y3 0 y2, y3 0 0 such that 0 A qR�y3�.

Finally let y � yk, k � f1; 2; 3g. Since 0 A qR�y�, we have

A�y� ÿ l1jyj
pÿ2

yÿ u� � 0;

for some u� A qc�y� (hence f1�z; y�z��U u��z�U f2�z; y�z�� a.e. on Z). Thus for

every u A Cy
0 �Z� we have

hA�y�; uiÿ l1�J�y�; u�pq ÿ �u�; u�ss 0 � 0

)

�

Z

kDy�z�kpÿ2�Dy�z�;Du�z��
R

N dz �

�

Z

�u��z� � l1jy�z�j
pÿ2

y�z��u�z� dz:

Using the de®nition of the distributional derivative and since

div�kDykpÿ2
Dy� A Wÿ1;q�Z� (see Adams [1], theorem 3.10, p. 50), we have

hÿdiv�kDykpÿ2
Dy�; uiÿ l1�J�y�; u�pq ÿ �u�; u�ss 0 � 0 for all u A Cy

0 �Z�:

Since Cy
0 �Z� is dense in W

1;p
0 �Z�, we conclude that

ÿdiv�kDy�z�kpÿ2
Dy�z�� ÿ l1jy�z�j

pÿ2
y�z� � u��z� a:e: on Z

yjG � 0; 2U p < y;

( )

�13�
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with u��z� A f̂ �z; y�z�� a.e. on Z. So y is a solution of (5). Therefore y1; y2; y3
are three distinct nonzero solutions of (5). r

Remark. If we drop hypothesis H(f )(vi), we can still have a third solution

y3, via the nonsmooth saddle point theorem (see Chang [11], theorem 3.3, p. 118),

provided x� � jxÿj. Indeed propositions 4, 5 and 6 allow the use of the

nonsmooth saddle point theorem. However in general we can not guarantee that

y3 0 0.

We conclude this paper with a result which highlights the di¨erence between

the nonsmooth (PS)-condition and the nonsmooth C-condition and also extends

to the present nonsmooth setting a result well-known for ``smooth'' functions.

It has been observed that in the di¨erentiable case, the (PS)-condition implies

coercivity for a functional which is bounded below. This was proved by Costa-

Silva [13] (for a FreÂchet di¨erentiable functional) and by Calkovic-Li-Willem [9]

(for a Gateaux di¨erentiable functional which is also lower semicontinuous). In

the next proposition we extend this result to the present nonsmooth case.

Proposition 9. If Y is a Banach space, f : Y ! R is locally Lipschitz and

bounded below and c � limkyk!y f�y� is ®nite, then there exists a sequence

fxngnV1 JY such that kxnk ! y, f�xn� ! c and m�xn� ! 0 as n ! y.

Proof. We can ®nd fyngnV1 JY such that

f�yn�U c�
1

n
and kynkV 2n:

Let h � inf �f�y� : y A Y �. Because f��� is bounded below, h is ®nite.

Apply theorem 2 with h�r� � 0, x0 � yn, e � en � c� �1=n� ÿ h and

l � ln � n. We can ®nd xn A Y , nV 1, such that

f�xn�U f�yn�U c�
1

n
; f�xn�U f�u� �

en

n
kxn ÿ uk for all u A Y

and kxn ÿ ynkU n for all nV 1:

Let u � xn � tv with t > 0 and v A Y . Then we have

ÿxnkvkU
f�xn � tv� ÿ f�xn�

t

where xn � en=n # 0 as n ! y. Letting t # 0 we obtain

ÿxnkvkU f0�xn; v� for all nV 1 and all v A Y :

Let cn�v� � �1=xn�f
0�xn; v�. Then c��� is sublinear, continuous with c�0� � 0

and ÿkvkUcn�v� for all v A Y . Invoking lemma 1.3 of Szulkin [22], we can ®nd
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y�
n A Y �, nV 1, such that ky�

nkU 1 and �y�
n ; v�Ucn�v� for all nV 1 and all v A

Y . Then if x�
n � xn y

�
n , we have

�x�
n ; v�U f0�xn; v� for all nV 1 and all v A Y ;

) x�
n A qf�xn� for all nV 1:

Hence m�xn�U kx�
nkU xn ��!

n!y
0. Also

kxnkV kynk ÿ kxn ÿ ynkV 2nÿ n � n ! �y

) f�xn� ��!
n!y

c:

Therefore fxngnV1 JY is the desired sequence. r

An immediate consequence of this proposition is the following corollary.

Corollary 10. If Y is a Banach space, f : Y ! R is locally Lipschitz,

bounded below and satis®es the nonsmooth (PS)-condition,

then f��� is coercive.
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