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Abstract. Denote by .o7(n) the family of isometry classes of compact n-dimensional
Alexandrov spaces with curvature > —1, and A; (M) the k” eigenvalue of the Laplacian
on M € .o/(n). We prove the continuity of A : o/(n) — R with respect to the Gromov-
Hausdorff topology for each k,ne N, and moreover that the spectral topology in-
troduced by Kasue-Kumura [7], coincides with the Gromov-Hausdorff topology on
< (n).

1. Introduction.

For ne N and D > 0, let .#Ri.(n,D) denote the family of isometry classes
of closed n-dimensional Riemannian manifolds with Ricci curvature Ricy >
—(n—1) and diameter diam(M) <D, and .# | (n,D) the family of all
M € MRi.(n,D) whose sectional curvatures K, satisfy |Kj| < 1. Fukaya
proved that, if we equip each M € .# i (n, D) with normalized volume measure
dvoly/vol(M), then for each ke N the function A; which assigns to each
M € M) (n,D) the k™ eigenvalue of the Laplacian on M extends to a con-
tinuous function on the measured Gromov-Hausdorff closure of .# . (n,D).
After that, Bérard-Besson-Gallot [1] and Kasue-Kumura [7| each proved that the
statement holds for .#gi(n,D) with some natural topologies different from
(indeed finer than) the measured Gromov-Hausdorff topology. Precisely, Kasue-
Kumura |7}, introduced a natural distance, called the spectral distance, be-
tween Riemannian manifolds by using the heat kernels, and proved the pre-
compactness of .#gi.(n, D) with respect to the spectral distance. The topology
induced from the spectral distance is called the spectral topology. The spectral
distance or topology completely expresses the closeness between the analytic
structures on manifolds. Especially, the k™ eigenvalue of the Laplacian of a
Riemannian manifold is continuous with respect to the spectral topology.
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In this paper, we consider the family, say .o/(n), of isometry classes of
compact n-dimensional Alexandrov spaces of curvature > —1. The family .« (n)
contains the dgg-closure of the family, say .#.(n, D,v), consisting of all M e
AMric(n, D) with sectional curvature Kj;; > —1 and volume vol(M) > v for any
fixed n e N, D,v > 0, where dgy denotes the Gromov-Hausdorff distance between
compact metric spaces. In our previous paper [10], we gave a natural definition
of the Laplacian 4y, on M e .o/(n). It has discrete spectrum consisting of
eigenvalues

0:/10(M) < /ll(M) S/IQ(M) < .../ oo.

We also proved the existence of Holder continuous heat kernel on M € o/(n), so
that the spectral distance is valid between Alexandrov spaces. We observe that
almost all results of [8] hold for Alexandrov spaces instead of manifolds, without
any change of their proofs. Our main theorem is stated as follows.

THEOREM 1.1. The spectral topology coincides with the Gromov-Hausdorff
topology on o/ (n) for each ne N. In particular, the k™ eigenvalue . : </ (n) — R
is continuous with respect to the Gromov-Hausdorff topology for each n,k € N.

Denote by .o/(n,D,v) the family of M € o/(n) with diam(M) < D and the
n-dimensional Hausdorff measure #"(M) > v > 0. Note that the dgy-closure
of Msc(n,D,v) is a proper subset of .o/(n,D,v), and that .«/(n,D,v) is dgp-
compact. As an immediate corollary to [Theorem 1.1, we have an upper bound
c(n,k,D,v) >0 depending only on n,ke N, D,v >0 for A4 on /(n,D,v).

Let us mention the idea of the proof of [Theorem 1.1. The proof relies on
the non-smooth analysis based on the synthetic method of Alexandrov geometry,
developed in our previous paper [10]. Assume that a sequence M; € .« (n),
i=1,2,..., dgg-converges to an M € o/(n). If the limit M has no singularities,
then M; converges to M with respect to the Lipschitz distance and then the proof
1s easy. However, this is not true in general. Nevertheless, we can still con-
struct a bi-Lipschitz map between subsets 2 < M and ; < M; with bi-Lipschitz
constant close to 1 for large 7 (see Theorem 3.1), where Q is any compact subset
of M such that M\Q is a small neighborhood of some ‘pointed’ singular set
(precisely the set Sy defined in §2). This makes a correspondence between
Wh2(Q,) and W'2(Q). For the theorem, it is essential to prove that for any
fixed k € N an eigenfunction for the k™ eigenvalue of 4y, L>-converges to some
eigenfunction for the k” eigenvalue of 4y, on Q(x Q;) as i — o, after taking
some subsequence. Here, it is a crucial point to show no presence of the
concentration of W' 2-mass on M;\Q; of the eigenfunction in the convergence
M; — M. Note that in the case of [5], ie., when M;e .# sy (n,D) and
dim M < n, then the singularities of M appears only by quotient of isometric



Convergence of Alexandrov spaces and spectrum of Laplacian 3

O(n)-action, and considering analysis on O(n)-invariant smooth functions keeps
away from the difficulty. On the other hand, our singularities are not only
caused by the quotient of group action, so that we need a different way to prove
the theorem. Our idea is to take the mollifier of eigenfunctions of 4y, to control
the concentration of the L?-mass on M;\Q; of the eigenfunctions (see
5.6). This also implies no presence of the energy concentration on M;\Q; of the
eigenfunctions.

ACKNOWLEDGMENT. The author would like to thank Kazuhiro Kuwae for
useful discussion and also the referee for valuable suggestions for improving this

paper.

2. Preliminaries.

We denote by 0(6) the symbol expressing a function such that 6(d) — 0 as
0 — 0, and use it like Landau’s symbols.

Let (X,dy) and (Y,dy) be two metric spaces, f : X — Y a (not necessarily
continuous) map, and & >0 a number. We call f an e¢-approximation if the
following (i) and ([ii] hold:

(1) |dy (f(x), /() —dx(x,y)| <& for any x,ye X,
(i) Y < B(f(X),e),

where B(A,r) denotes the r-metric ball of a subset 4 of a metric space. Note
that the Gromov-Hausdorff distance between X and Y is dgu (X, Y) < 0(¢) if and
only if a 6(¢)-approximation from X to Y exists. The dilatation dil(f) of f is
defined by

dil(f) = sup U X:SW)

€ |0, col.
x#yeX dX(x7 y) [ ]

Call f an e-almost isometry if f 1is a bi-Lipschitz homeomorphism with
Indil(f)] + [Indil(f )| < e.

In the following, we define some convention for Alexandrov spaces used in
this paper. We refer to [2| for the basics for Alexandrov spaces. Let M be an
n-dimensional Alexandrov space with curvature > —1, i.e., a complete locally
compact intrinsic metric space with curvature > —1 in the sense of triangle

comparison. For 0 > 0, the J-singular set of M 1s defined to be
Ss 1= {X € M|J/n_1(2x) < wy_1 —5},

where X', is the space of directions at x € M and w,_; the volume of the unit
(n—1)-sphere. It is known that, for 0 <Jd <« 1/n, M\Ss is a (incomplete)
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Lipschitz-Riemannian manifold whose Riemannian metric is compatible with the
original distance function ([12]). A singular point of M is defined to be a point
where the space of directions is not isometric the unit n-sphere. The set of
singular points of M, say the singular set Sy, coincides with [ 52055 The
Hausdorff dimension of Sy is <n—1 (2], [12]). A boundary point of M is
defined inductively as follows. If dimM =1, then M is a one-dimensional
Riemannian manifold and the boundary is naturally defined. When dim M > 2,
a point xe M is a boundary point if and only if 2, has a boundary
point. Denote by dM the set of boundary points of M. The double dbl(M) of
M is obtained by gluing two copies of M along their boundaries. The double of
an Alexandrov space with nonempty boundary is an Alexandrov space without
boundary and of the same lower bound of curvature ([2], [13]). There is a
natural isometric embedding of M into dbl(M). We denote by Sy the J-singular
points of dbl(M) contained in M. Then, the Hausdorff dimension of Sj is
<n-—2 ([2]).

We here define some convention in analysis on Alexandrov spaces. Refer to
[12], for the details. Assume from now on that M is compact. Recalling
that M\S; for 0 <0 « 1/n is a Lipschitz-Riemannian manifold, we can define
the Sobolev space W2 on it. For Q c M, a symmetric bi-linear form &, on
Wh2(Q) (= Wh2(Q\Ss)) is defined by

Solu,v) == J Vu,Vodd#", u,ve WhH(Q),
\Ss

where ©Q° denotes the interior of Q and <-,-) the Riemannian inner product.
Here, we note that the Riemannian volume measure is known to coincide with
the n-dimensional Hausdorff measure #" ([12]). Set &(u):= &q(u,u) for
simplicity. Recall that the W'-2-Hilbert inner product of u,ve WH2(Q) is given
by

(u, v) wi2Q) *— (u, U)LZ(Q) + &o(u,v),

and the associated W'2-norm of ue Wh2(Q) by

el = £/ 0 0) gy = 4/l ) + 6 0)

The Laplacian Ay : Z(Ay) = W2(M) — L?>(M) is defined as the generator
of the Dirichlet form (&, W'2(M)), i.e., the self-adjoint operator such that
D Ay) = WI2(M) and &y (u,v) = (\/—u VAyv),. for any u,ve WHi(M).
We proved in that W12(M) is compactly embedded into Lz(M). Con-
sequently, the Laplacian 4,, has only discrete spectrum as mentioned in §1, and
there exists a complete orthonormal basis {¢,};~, on L?>(M) consisting of
eigenfunctions ¢, for (M) of Ay.
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We now recall the definition of the spectral distance introduced by Kasue-
Kumura [7], [8]. We proved in that any Alexandrov space M admits Holder
continuous heat kernel pj :(0,00) x M x M — R. Let M,N e .</(n). Two
A"-measurable maps f: M — N and h: N — M are called e-spectral approxi-
mations, & > 0, if

—(1+1/1) |pM(t X, y) pN(t,f(x);f(y)” <&,

[P (8 h(2), h(w)) = pw (L, 2, w)| <

for any >0, x,ye M, and z,we N. The spectral distance SD(M,N) between
M and N is defined to be the infimum of ¢ > 0 such that both e-spectral ap-
proximations /' : M — N and & : N — M exist. We here agree that SD(M,N) :=
oo 1f one of the spectral approximations f and /& does not exist.

—(t+1/1)

3. Construction of almost isometries.
The purpose of this section is to prove the following:

THEOREM 3.1. Assume that a sequence M; e o/ (n) dgy-converges to an
M € o/ (n). Then, for any o with 0 <0< 1/n, there exist g-approximations
fé i M — M; for some ¢ \, 0 and compact subsets Ds ; M\S5 with U  Ds,i =
M\S; such that the restriction Js.i: Dsi — f5,i(Ds,i) is a 0(6)-almost isometry, and

lim #"(M;\ f5 (Ds,i)) = 0.

iI— 00

In particular, (M;, #") converges to (M, #") in the measured Gromov-Hausdorff
topology.

Here, refer to for the definition of the measured Gromov-Hausdorff
topology.

We need some definitions for the proof of the theorem. An e-net of a metric
space X, ¢ >0, is defined to be a discrete subset of X whose e-neighborhood
contains X. Let M be an n-dimensional Alexandrov space with distance function
dy. We say that a point xe M is o-strained, 0 > 0, if there is a sequence
{p:}izs1.. 1n> called a -strainer at x, such that for any i, j,

. n/2—0 ifi#+4],
iXpj > o .
LPipy {n—5 ifi=—

where / xyz for x,y,ze M denotes the angle of the comparison triangle of
Axyz in the hyperbolic plane at the vertex corresponding to y. It follows that
x € M\Syg) if and only if xe M is a 0(6)-strained point. Let xe M be a
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d-strained point with strainer {p;},_,; ,,, and let

o(y) = [du(piy) —du(p_i,¥))i1._,€R", yeM.

Then, there exists an open neighborhood U of x such that the restriction
¢:U — p(U) is a 0(0)-almost isometry and the image ¢(U) is an open subset of
R" (see [2]).

.....

ProOF OF THEOREM 3.1. When dM = (J, we already proved the theorem in
§3 of [15]. Since the basic strategy of the proof here is similar to that in [15], we
omit some details.

Let r and ¢ be small enough numbers such that 0 < ¢t «r. There exists a
t-net {x;};", of M \B(S;s,r) such that {x;}/2;NOM is a t-net of OM \B(S;s,r) and
that dys(x;,0M) > t for x; ¢ M. We embed M into its double dbl(M). Then,
there exists a 0(6)-strainer {py },_ 4, at each x; on dbl(M) such that the map

from U; := B(x;,2t) to ¢;(U;) = R" is a 0()-almost isometry. By an approx-
imation dbl(M) — dbl(M;) we project all the points x;, py to points in dbl(M;),
say yj, qj, such that {x;} NOM = {y;} NdM;. Supposing i is large enough, we
may assume that the map

.....

from V;:= B(y;,5t) to y;(V;) = R" is also a 0(6)-almost isometry. We also
assume that if x; € M, then pj, ¢; are symmetric to p; 1, ¢; -1 in dbl(M),
dbl(M;) respectively and pj € OM, qj € OM; for every k with |k| > 2, so that

p;=—¢;ot and Y, = =y, 0y for x; € M, where 1:dbl(M) — dbl(M) and 4 :

dbl(M;) — dbl(M;) denote the symmetric isometries. Note that for x; e M,
UNoM = goj_l({xl =0}) and V;NOM; = zpj_l({xl =0}). Set U/ := B(x;,1).
There are Lipschitz functions y; : M — [0,1] such that

supp[y;] = U;, =1 on U/, M < ) supp[y]°,
J

supply;]NOM = & for x; ¢ OM.
We inductively define a sequence of functions f(s’ i U;zl U, — M; by
fél,i = ‘Pl_l °Py - Ull — M,
and for j > 2,
5{[_1 on Ué;lUé\%

fa‘ji = ; ‘
vito (=)o ki +20) on Uy, UN U
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Note that each féj ; (and also its inverse) maps boundary points to boundary
points. The same discussion as in the proof of of yields that
fsi =K1 M \B(Ss,r) — M; is a 0(d)-almost isometry onto its image for i large
enough against r > 0. Taking a sequence of positive numbers r; slowly tending
to zero, we obtain the desired 0(6)-almost isometry f;;: Ds;:= M \B(Ss,r;) —
f5.:(Ds.i). We have lim;_, #"(M;\ f;5,(Ds;)) =0 in the same way as in the
proof of Lemma 3.4 of [15]. This completes the proof. ]

4. SD-precompactness of .o/ (n, D,v).

In this section, we shall prove the SD-precompactness of .«/(n,D,v). Let
M € o/(n). Take a C*-function p, : [0,00) — [0,00) such that p, is a positive
constant around 0, p,(r) =0 for r > 1, and

| pulsyax=1

where dx denotes the Lebesgue measure on R" with respect to the variable
xeR". For h> 0, we define the h-mollifier u, : M — R of a function ue L>(M)
by

fyeMpn(d(xa J’)/h)u(y) dAx"

UuplX) .=
) = (e, ) Ry A
Set, for R > 0,
a(M) := inf j puld(x, ) dA",
xeM yeM
B(M,R) = inf — -
= I B
0<r<R

We proved in (see Lemmas 4.3, 4.4, 7.1, and Theorems 4.1, 7.2 of and
their proofs) that for any 0 <h <1, 0 <r <R, and ue WhH2(M),

Cn
4.1 < —
(4.1) Slﬂbpm' < 200 & (u),
c,h
(42) ||I/lh — MHLz < m (5’(u),
(4.3) lu = g )| 2(B(x, ) < nD(M, RV ]| 12 31

where ¢, is a constant depending only on n and
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1
_ TV d%n .
HBCn) = Sen (B (x, 1)) JB(x,l‘) '

We also have some uniform estimate of the dilatation of u;,. The compactness of
the embedding W'?(M) = L?>(M) (Theorem 1.2 of [10]) is in fact obtained by
using the mollifier defined here.

LemmA 4.1. For any ne N and D,R,v > 0, we have

inf  a(M)>0 and sup  b(M,R) < .
Me ./ (n,D,v) Me</(n,D,v)

Here, </ (n,D,v) is defined in §I.

Proor. Since p, 1s positive on a neighborhood of 0, for the first estimate it
suffices to show that
inf inf #"(B(x,ry)) >0 for a small ry > 0.
Me</(n,D,v) xeM
This in fact follows from the Bishop-Gromov inequality ([I8]).
The second estimate is also implied by the Bishop-Gromov inequality. []

Let us recall the concept of spectral embedding (cf. [T], [7], [8]). Consider
the Hilbert space /5 := {(ax){"o | D 1~ a? < o} and denote by C..([0, 0),/>) the
space of continuous curves y: [0,00) — ¢ such that the />-norm [y(¢)|,, of y(¢)
tends to zero as t — 0. We equip C ([0, 00),/>) with the distance function d,
defined by

dOO (ya O-) = Sug |j/(l) - U(t)|/27 7,0 € COO([()? OO), /2)
>
Let M € o/(n) be an Alexandrov space and @ = {¢,},~, a complete orthonormal
basis on L?(M) consisting of eigenfunctions ¢, for A := 4 (M) of Ay. Define a
curve Fg[x] in C([0,00),/5) for xe M by

Folx)(1) := (710 R0, ()12, 120,

Note here that every eigenfunction of A, is Holder continuous on M (see
Theorem 1.4 of [10]). Then, the map Fyp gives an embedding of M into
C ([0, 00),72) and is called the spectral embedding of M with respect to the basis
@. Denote by #M the set of such bases @ on L?>(M), and by Zc/ (n) the set
of pairs (M,®) of M e o/(n) and ® e FM. For (M,®),(N,¥)e Ff(n), we
define SD*((M,®),(N,¥)) to be the Hausdorff distance between Fp(M) and
Fy(N) in C,([0,00),43), ie.,

SD*(M,®),(N,¥)):=inf{e > 0| Fog(M) < B(Fy(N),¢),Fg(N) < B(Fg(M),¢)}.
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LemMa 4.2, The family F</(n,D,v) is SD*-precompact and </ (n,D,v) SD-
precompact. The natural projection n: (< (n),SD*) — (/(n),SD) is Lipschitz
continuous.

ProOF. Note that the Bishop-Gromov inequality implies the uniform

boundedness of the doubling constant:
A7 (B(x,20))
4.4 sup — o < 0.
( ) xeM e/ (n,D,v) H (B(x7 V))
O<r<D

Combining (4.4), [4.3), Lemma 4.1 of this paper, and Theorem 2.4 of (see
also and Remark 7.1 of [10]) yields that the heat kernel py : (0,00) X M x
M — R on each M € o/(n,D,v) satisfies

v/2

pu(t,x,x) < cot™ for any >0 and xe M,

where ¢y and v are positive constants depending only on n,D,v. Thus, the
discussions in §1.3 and §2.2 of [8] complete the proof. N

5. Proof of main theorem.

Let a sequence {M;},_;,  in /(n) dgy-converge to an M e .o/(n), let
9, \, 0 be a sequence of numbers with J; « 1/n, and let f;; be as in Theoren)
3.1. Define a linear map F,;: L*(M;) — L*(M) by

Fyi(u) := Ip, ,-uofs i, UE L*(M,),

where I, denotes the indicator function of a set A, i.e., I4(x) :=1 for x € 4, and
I4(x):=0for x ¢ A. Set for simplicity A := Ax(M;) and 4; := A (M). We take
a basis @; = {p.},_, € FM; for each i. The following is a key to the proof of
the main theorem.

Lemma 5.1. For each k we have

. i
i =

Moreover, by replacing with a subsequence of {M;}, there exist a sequence

/(i) — o and a basis ® = {¢;};_, € FM such that Fy (p}) L*-converges to g,

as i — oo for each fixed k.

PrOOF OF THEOREM 1.1 UNDER ASSUMING LEMMA 5.1. We first prove that the
spectral topology is not stronger than the Gromov-Hausdorff topology on .o/ (n).
Suppose the contrary, so that we find a sequence M; € o/(n) dgy-converges to
M € o/(n) as i — oo, but there exists a constant & > 0 such that SD(M;, M) >
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¢ for all i. Note that [Theorem 3.1 says that (M;, #™") converges to (M, #")
with respect to the measured Gromov-Hausdorff topology. Since the diameters
of M; are uniformly bounded and the #"-volumes of M; bounded away from
zZero, implies the SD*-precompactness of {(M;, @;)};, ®; € FM,.
Therefore, by replacing with a subsequence of {i}, the embedded image Fp [M;]
converges to a subset FX < C ([0, 00),/>) with respect to the Hausdorff distance.
By Lemma 3.1 and the continuity of eigenfunctions, we obtain FX = Fp[M] for
some @ € #M, namely SD*((M;,®;),(M,®)) — 0 as i — oo, which contradicts
SD(M;, M) > & > 0.

We next prove that the spectral topology is not weaker than the Gromov-
Hausdorff topology on .o/(n). Assume that a sequence M; € .o/ (n) SD-converges
toan M € .o/(n) as i — co. By [Theorem 3.1(iii) of [8] and #"(M) > 0, we have
inf; #"(M;) >0. By Lemma 2.5 of [8], the diameters of M, are uniformly
bounded. Therefore, {M;} is a dgpy-relatively compact subset of .o/(n). By the
first part of the proof, any dgg-limit of {M;} must coincide with the SD-limit
M. Thus, M; dgy-converges to M. This completes the proof of the main
theorem. H

The rest of the paper is devoted to prove [Lemma 5.1. With the notations
defined in the top of this section, for a fixed integer kK > —1 and for every j =
0,...,k, let p; be an eigenfunction of 4, associated with eigenvalue 4; such that
{(pj};‘:O is L2-orthonormal, and let i(/) — oo be a sequence of positive integers.
Consider the following:

AssumpPTION 5.1. For each 7 and j=0,...,k,

(a) sup [|F7,i(0]) — ojll2 < 009),
i>i(/)
(b) lim A = ;.

If k= -1, then Assumption 5.1 says the empty statement and is trivially
true.
To obtain [Lemma 5.1, it suffices to prove the following:

Cramm 5.1. Under Assumption 5.1, by replacing with subsequences of {i},
{6/}, and {i(¢)} if necessary, there exists an eigenfunction ¢, € W1(M) of Ay
for ki1 such that {(pj}j{:f is L2-orthonormal and that (a) and (b) both hold for
every ¢ and j=0,... . k+1.

We suppose Assumption 5.1 and shall prove the claim.

LeMMA 5.2.  Let Q be a domain of a Lipschitz-Riemannian manifold such that
W2(Q) is compactly embedded into L*(Q), and let {u;} = W12(Q) be a sequence
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satisfying

lim ([u[ 120y < 0.
I—0o0

Then, there exists a subsequence {u;;} of {u;} converging to a function ue
Wh2(Q) L*-strongly and W'-2-weakly such that

[ull iz < Hm [l 12
11— 00

Proor. A standard discussion in functional analysis. ]

Lemma 5.3. Let U and V be two domains of Lipschitz-Riemannian manifolds
and f - U — V a S-almost isometry, 6 > 0. Then, we have uof~' e W2(V) for
any ue WH2(U), and the map W1*(U) su uof~te WL(V) is a 0(6)-almost
isometry with respect to L*> and W'2-norm.

ProoOF. See, for example, Theorem 4(ii) in 4.2.2 of [4] and its Remark.
[

LEMMA 5.4. We have

lim ’lk+1 < sl

i— 00

ProOF. There exists an eigenfunction Y € W12(M) for /4, such that
{@),..., 01, ¥} is L*-orthonormal. By of [10], for any 6 > 0 there
exists an approximation ;€ W12(M) of  such that supp[ys] N S; = & and

(5.1) W5 — Yl <0

For i large enough, we have supp[ys] = Ds; and set
yio [ Vst on D)
5
0 on Mi\f57i(D5,i)-

implies ! e WH2(M;). In what follows, we assume that i is suf-
ficiently large against k and a fixed 5. Then, by and &(Y) = Agrq, we
have

E(5) = (1+0(0)8(hs) = (1 +09)) (A1 + 0(9)) = dist + 0(9).
Remark here that 0(6) is independent of i. By [Lemma 5.3 and (5.1),

W5ll2 = (14 00) sl 2 = (1 +0@) (W] 2 +09) = 1+ 0()

and also, in the same way, (wé,(pj)Lz = 0(0) for each j=1,...,k. Using the
Gram-Schmidt method, we find a function lp(; e W2(M;) such that (lp(é,(p}) =
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0, H%HLZ =1, and Wé — Y|l < 00). Therefore,

lim 4, < lim gfl%) < Jir1 + 005).
e = [l 12

By taking 0 — 0, this completes the proof. ]

LemMaA 5.5.  For any fixed ¢, there exists a subsequence 1(/) < {i} such that
as 1(/)>i— o, Fyi(p;.,) converges to a function ¢, ,€ W'*(M) in the
L*(Q)-strong and W'2(Q)-weak topologies for any compact subset Q = M\S;,,
and the limit satisfies

oo W < (14000) (14 tim 4, ).

Proor. Let Q< M \S‘(;/ be any compact domain with Lipschitz boundary
and set Q; :=f;, (2) for large enough i. Note that Q is a compact Lipschitz-
Riemannian manifold with Lipschitz boundary, so that a standard discussion
shows that W!2(Q) is compactly embedded in L*(Q). Since |} +1||12,V1,2(Qi) <
lgi, i ll52 = 1+ 2., we have, by Lemmas 53 and B3,

lll)—fglc ||F/,i((ﬂli+1)||%w,2(g) < (1+000/))(1 + Ajes1)-

Applying yields that there exist a subsequence I(/) = {i} and a
function ¢, , € W3(Q) such that

(i) as I(/)2i— oo, Fyi(pi,)|q converges to ¢, , L*(Q)-strongly and
wh2(Q)-weakly;

we have

H%%%mswwww+mdﬁ-

iI— 00

By taking a monotone increasing sequence of Q tending to M\S;,, the diagonal
argument extends ¢, , to a function in WIIO’C2 (M) which satisfies (i) and (11) for
any compact subset Q < M\S;. This completes the proof. ]

Our next aim is to control the L?-mass of the eigenfunctions L . around the
o-singular set of M.

LemMMA 5.6.  For any fixed /, let Q M\S(;/ be any compact subset such that
H"(M\Q) <9,, and set Q;:=f5, (). Then we have

g—ff}o ||(ﬂ1i+1 ||L2(M,-\Q,~) < 0(dy).
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Proor. Since #"(M;) — #"(M) and diam(M;) — diam(M) as i — oo,
implies lim; ,, a(M;) > 0. Therefore, by [4.1}, [4.2), and &(p;,,) =
i1, the h-mollifier ¢/, of pf_;, 0 < h < 1, satisfies that for some constant ¢ > 0
and for all sufficiently large i,

and  [|gpq — Gpsill2 < ch.

Sl oY

sup |¢Z/lc+1| <

1

It then follows that
||(P/i+1||L2(M,-\Q,-) = ||(”lic+1 B (/Zli+1||L2 + ||§5llc+1 B IQl-(ﬁliHHLZ + ||I~Qi¢]i+1 o IQ;?”II;-H“LZ

< 2||€”li+1 - @iﬂ”LZ + ||¢li+1||L2(M,-\Q,-)

"(M\Q;
Szch_*_@

Here,

lim " (M;\2;) = lim (A" (M;) — A" (1))

<AH(M)—(1-000)#"(2)
— #(M\Q) + 0(6,) #"(RQ) < 0(5,).

Therefore, if we set & to be the square root of the last 8(d,) of the above formula,
the proof is completed. [

LemMa 5.7.  For any fixed ¢ and for all sufficiently large i€ I(/), we have

(1) 1F2 (i) 2 = 1+ 0(0),

(2) 0p11./ll2 =1+ 005,),

(3) 12, i(0k1) = Prcr ol 2 < 000),

(4) ((Prs1.059;) 12l < 00,) for any j=0,... k.

PROOF. Let @ = M\S;, be any compact subset such that #"(M\Q) </,
and set Q; :=f;, (Q).
(1): implies

1Ezi( P )l < (L4 001 l2s, iy, ) < 1+ 000).
On the other hand, by Lemmas and [5.6,

17 i) @) = (1= 000kl 2@y = 1 = 000).

Thus we obtain (1).
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(2): By and the above,

[ Pks1,0ll200) = I(/)hafgoo ”F/,i((”liH)HL?(Q) =1+ 0(0/).

Taking Q — M\S;, we have (2).

(3): It follows from (1) that F,;(p;,,) converges to ¢, , L*(M)-weakly,
which together with (1) and (2) shows (3).

(4): By (944,02 =0, ll9/ll;- =1, and by Lemma 5.6, we have, for all
sufficiently large i e I(/),

|((”li+17(ﬂf)L2(Q,)’ = |((P/i+1>€0;)L2 - (IMi\Q,»(”/i+1a(9;)L2‘
< ’|(pli+1||L2(Mi\Qi) < 0(,).

Therefore, by (1), (2), [Lemma 5.5, (a) of Assumption 5.1, and by [Lemma 5.3,

Gt < | Fr o) Frdo)) o] + 0000

< (1+000), T [(9hs100])ziy| + 000) < 0007).

This completes the proof. [

Proor or CLamm 5.1. By Lemma 5.2, some subsequence of ¢ , converges
to a function ¢, € Wh2(M) L*-strongly and W!2-weakly. (2), (4) of [Lemma
5.7, and respectively imply

2 - '
@il =1, ((/)k+1a(ﬂj)L2 =0, |lggpllyr <1+ h_m Ayt

1— 00

We therefore obtain

i) _ g(p,) < tim 2,0,
[ Prs1ll 22 i—o0

which together with [Lemma 5.4 implies (b) for j =k + 1 and that ¢, is an
eigenfunction for eigenvalue /..

We may assume that I(/+1) < I(/) for every /. Thus, if i(/)eI(/) is
taken to be large enough for each 7, the diagonal argument together with
5.7(3) proves (a) by replacing with subsequences. This completes the proof.
[

Ayl <
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