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Abstract. Denote by A�n� the family of isometry classes of compact n-dimensional

Alexandrov spaces with curvatureVÿ1, and lk�M� the k th eigenvalue of the Laplacian

on M A A�n�. We prove the continuity of lk : A�n� ! R with respect to the Gromov-

Hausdor¨ topology for each k; n A N , and moreover that the spectral topology in-

troduced by Kasue-Kumura [7], [8] coincides with the Gromov-Hausdor¨ topology on

A�n�.

1. Introduction.

For n A N and D > 0, let MRic�n;D� denote the family of isometry classes

of closed n-dimensional Riemannian manifolds with Ricci curvature RicM V

ÿ�nÿ 1� and diameter diam�M�UD, and Mjsecj�n;D� the family of all

M A MRic�n;D� whose sectional curvatures KM satisfy jKM jU 1. Fukaya [5]

proved that, if we equip each M A Mjsecj�n;D� with normalized volume measure

d volM=vol�M�, then for each k A N the function lk which assigns to each

M A Mjsecj�n;D� the k th eigenvalue of the Laplacian on M extends to a con-

tinuous function on the measured Gromov-Hausdor¨ closure of Mjsecj�n;D�.

After that, BeÂrard-Besson-Gallot [1] and Kasue-Kumura [7] each proved that the

statement holds for MRic�n;D� with some natural topologies di¨erent from

(indeed ®ner than) the measured Gromov-Hausdor¨ topology. Precisely, Kasue-

Kumura [7], [8] introduced a natural distance, called the spectral distance, be-

tween Riemannian manifolds by using the heat kernels, and proved the pre-

compactness of MRic�n;D� with respect to the spectral distance. The topology

induced from the spectral distance is called the spectral topology. The spectral

distance or topology completely expresses the closeness between the analytic

structures on manifolds. Especially, the k th eigenvalue of the Laplacian of a

Riemannian manifold is continuous with respect to the spectral topology.
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In this paper, we consider the family, say A�n�, of isometry classes of

compact n-dimensional Alexandrov spaces of curvatureVÿ1. The family A�n�

contains the dGH -closure of the family, say Msec�n;D; v�, consisting of all M A

MRic�n;D� with sectional curvature KM Vÿ1 and volume vol�M�V v for any

®xed n A N , D; v > 0, where dGH denotes the Gromov-Hausdor¨ distance between

compact metric spaces. In our previous paper [10], we gave a natural de®nition

of the Laplacian DM on M A A�n�. It has discrete spectrum consisting of

eigenvalues

0 � l0�M� < l1�M�U l2�M�U � � � % y:

We also proved the existence of HoÈlder continuous heat kernel on M A A�n�, so

that the spectral distance is valid between Alexandrov spaces. We observe that

almost all results of [8] hold for Alexandrov spaces instead of manifolds, without

any change of their proofs. Our main theorem is stated as follows.

Theorem 1.1. The spectral topology coincides with the Gromov-Hausdor¨

topology on A�n� for each n A N . In particular, the k th eigenvalue lk : A�n� ! R

is continuous with respect to the Gromov-Hausdor¨ topology for each n; k A N .

Denote by A�n;D; v� the family of M A A�n� with diam�M�UD and the

n-dimensional Hausdor¨ measure H
n�M�V v > 0. Note that the dGH -closure

of Msec�n;D; v� is a proper subset of A�n;D; v�, and that A�n;D; v� is dGH -

compact. As an immediate corollary to Theorem 1.1, we have an upper bound

c�n; k;D; v� > 0 depending only on n; k A N , D; v > 0 for lk on A�n;D; v�.

Let us mention the idea of the proof of Theorem 1.1. The proof relies on

the non-smooth analysis based on the synthetic method of Alexandrov geometry,

developed in our previous paper [10]. Assume that a sequence Mi A A�n�,

i � 1; 2; . . . ; dGH -converges to an M A A�n�. If the limit M has no singularities,

then Mi converges to M with respect to the Lipschitz distance and then the proof

is easy. However, this is not true in general. Nevertheless, we can still con-

struct a bi-Lipschitz map between subsets WHM and Wi HMi with bi-Lipschitz

constant close to 1 for large i (see Theorem 3.1), where W is any compact subset

of M such that MnW is a small neighborhood of some `pointed' singular set

(precisely the set Ŝd de®ned in §2). This makes a correspondence between

W 1;2�Wi� and W 1;2�W�. For the theorem, it is essential to prove that for any

®xed k A N an eigenfunction for the k th eigenvalue of DMi
L2-converges to some

eigenfunction for the k th eigenvalue of DM on W�AWi� as i ! y, after taking

some subsequence. Here, it is a crucial point to show no presence of the

concentration of W 1;2-mass on MinWi of the eigenfunction in the convergence

Mi ! M. Note that in the case of [5], i.e., when Mi A Mjsecj�n;D� and

dimMU n, then the singularities of M appears only by quotient of isometric
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O�n�-action, and considering analysis on O�n�-invariant smooth functions keeps

away from the di½culty. On the other hand, our singularities are not only

caused by the quotient of group action, so that we need a di¨erent way to prove

the theorem. Our idea is to take the molli®er of eigenfunctions of DMi
to control

the concentration of the L2-mass on MinWi of the eigenfunctions (see Lemma

5.6). This also implies no presence of the energy concentration on MinWi of the

eigenfunctions.

Acknowledgment. The author would like to thank Kazuhiro Kuwae for

useful discussion and also the referee for valuable suggestions for improving this

paper.

2. Preliminaries.

We denote by y�d� the symbol expressing a function such that y�d� ! 0 as

d ! 0, and use it like Landau's symbols.

Let �X ; dX � and �Y ; dY � be two metric spaces, f : X ! Y a (not necessarily

continuous) map, and e > 0 a number. We call f an e-approximation if the

following (i) and (ii) hold:

jdY � f �x�; f �y�� ÿ dX �x; y�j < e for any x; y A X ;�i�

Y HB� f �X �; e�;�ii�

where B�A; r� denotes the r-metric ball of a subset A of a metric space. Note

that the Gromov-Hausdor¨ distance between X and Y is dGH�X ;Y� < y�e� if and

only if a y�e�-approximation from X to Y exists. The dilatation dil� f � of f is

de®ned by

dil� f � :� sup
x0y AX

dY � f �x�; f �y��

dX �x; y�
A �0;y�:

Call f an e-almost isometry if f is a bi-Lipschitz homeomorphism with

jln dil� f �j � jln dil� f ÿ1�j < e.

In the following, we de®ne some convention for Alexandrov spaces used in

this paper. We refer to [2] for the basics for Alexandrov spaces. Let M be an

n-dimensional Alexandrov space with curvature Vÿ1, i.e., a complete locally

compact intrinsic metric space with curvature Vÿ1 in the sense of triangle

comparison. For d > 0, the d-singular set of M is de®ned to be

Sd :� fx A M jHnÿ1�Sx�Uonÿ1 ÿ dg;

where Sx is the space of directions at x A M and onÿ1 the volume of the unit

�nÿ 1�-sphere. It is known that, for 0 < df 1=n, MnSd is a (incomplete)

Convergence of Alexandrov spaces and spectrum of Laplacian 3



Lipschitz-Riemannian manifold whose Riemannian metric is compatible with the

original distance function ([12]). A singular point of M is de®ned to be a point

where the space of directions is not isometric the unit n-sphere. The set of

singular points of M, say the singular set SM , coincides with 6
d>0

Sd. The

Hausdor¨ dimension of SM is Unÿ 1 ([2], [12]). A boundary point of M is

de®ned inductively as follows. If dimM � 1, then M is a one-dimensional

Riemannian manifold and the boundary is naturally de®ned. When dimMV 2,

a point x A M is a boundary point if and only if Sx has a boundary

point. Denote by qM the set of boundary points of M. The double dbl�M� of

M is obtained by gluing two copies of M along their boundaries. The double of

an Alexandrov space with nonempty boundary is an Alexandrov space without

boundary and of the same lower bound of curvature ([2], [13]). There is a

natural isometric embedding of M into dbl�M�. We denote by Ŝd the d-singular

points of dbl�M� contained in M. Then, the Hausdor¨ dimension of Ŝd is

Unÿ 2 ([2]).

We here de®ne some convention in analysis on Alexandrov spaces. Refer to

[12], [10] for the details. Assume from now on that M is compact. Recalling

that MnSd for 0 < df 1=n is a Lipschitz-Riemannian manifold, we can de®ne

the Sobolev space W 1;2 on it. For WHM, a symmetric bi-linear form EW on

W 1;2�W� (:� W 1;2�WnSd�) is de®ned by

EW�u; v� :�
�

W�nSd

h`u;`vi dHn; u; v A W 1;2�W�;

where W� denotes the interior of W and h� ; �i the Riemannian inner product.

Here, we note that the Riemannian volume measure is known to coincide with

the n-dimensional Hausdor¨ measure H
n ([12]). Set E�u� :� EW�u; u� for

simplicity. Recall that the W 1;2-Hilbert inner product of u; v A W 1;2�W� is given

by

�u; v�W 1; 2�W� :� �u; v�L2�W� � EW�u; v�;

and the associated W 1;2-norm of u A W 1;2�W� by

kukW 1; 2�W� :�
������������������������

�u; u�W 1; 2�W�

q

�
��������������������������������

kuk2L2�W� � E�u�
q

:

The Laplacian DM : D�DM�HW 1;2�M� ! L2�M� is de®ned as the generator

of the Dirichlet form �E;W 1;2�M��, i.e., the self-adjoint operator such that

D�
�������

DM

p
� � W 1;2�M� and EM�u; v� � �

�������

DM

p
u;

�������

DM

p
v�L2 for any u; v A W 1;2�M�.

We proved in [10] that W 1;2�M� is compactly embedded into L2�M�. Con-

sequently, the Laplacian DM has only discrete spectrum as mentioned in §1, and

there exists a complete orthonormal basis fjkgyk�0 on L2�M� consisting of

eigenfunctions jk for lk�M� of DM .
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We now recall the de®nition of the spectral distance introduced by Kasue-

Kumura [7], [8]. We proved in [10] that any Alexandrov space M admits HoÈlder

continuous heat kernel pM : �0;y� �M �M ! R. Let M;N A A�n�. Two

H
n-measurable maps f : M ! N and h : N ! M are called e-spectral approxi-

mations, e > 0, if

eÿ�t�1=t�jpM�t; x; y� ÿ pN�t; f �x�; f �y��j < e;

eÿ�t�1=t�jpM�t; h�z�; h�w�� ÿ pN�t; z;w�j < e

for any t > 0, x; y A M, and z;w A N. The spectral distance SD�M;N� between

M and N is de®ned to be the in®mum of e > 0 such that both e-spectral ap-

proximations f : M ! N and h : N ! M exist. We here agree that SD�M;N� :�

y if one of the spectral approximations f and h does not exist.

3. Construction of almost isometries.

The purpose of this section is to prove the following:

Theorem 3.1. Assume that a sequence Mi A A�n� dGH -converges to an

M A A�n�. Then, for any d with 0 < df 1=n, there exist ei-approximations

fd; i : M ! Mi for some ei & 0 and compact subsets Dd; i HMnŜd with 6y

i�1
Dd; i �

MnŜd such that the restriction fd; i : Dd; i ! fd; i�Dd; i� is a y�d�-almost isometry, and

lim
i!y

H
n�Min fd; i�Dd; i�� � 0:

In particular, �Mi;H
n� converges to �M;Hn� in the measured Gromov-Hausdor¨

topology.

Here, refer to [5] for the de®nition of the measured Gromov-Hausdor¨

topology.

We need some de®nitions for the proof of the theorem. An e-net of a metric

space X, e > 0, is de®ned to be a discrete subset of X whose e-neighborhood

contains X. Let M be an n-dimensional Alexandrov space with distance function

dM . We say that a point x A M is d-strained, d > 0, if there is a sequence

fpigi�G1;...;Gn, called a d-strainer at x, such that for any i; j,

~epixpj >
p=2ÿ d if i0Gj,

pÿ d if i � ÿj,

�

where ~exyz for x; y; z A M denotes the angle of the comparison triangle of

hxyz in the hyperbolic plane at the vertex corresponding to y. It follows that

x A MnSy�d� if and only if x A M is a y�d�-strained point. Let x A M be a

Convergence of Alexandrov spaces and spectrum of Laplacian 5



d-strained point with strainer fpigi�G1;...;Gn, and let

j�y� :� �dM�pi; y� ÿ dM�pÿi; y��i�1;...;n A R
n
; y A M:

Then, there exists an open neighborhood U of x such that the restriction

j : U ! j�U� is a y�d�-almost isometry and the image j�U� is an open subset of

R
n (see [2]).

Proof of Theorem 3.1. When qM � q, we already proved the theorem in

§3 of [15]. Since the basic strategy of the proof here is similar to that in [15], we

omit some details.

Let r and t be small enough numbers such that 0 < tf r. There exists a

t-net fxjg
m
j�1 of MnB�Ŝd; r� such that fxjg

m
j�1 V qM is a t-net of qMnB�Ŝd; r� and

that dM�xj; qM� > t for xj B qM. We embed M into its double dbl�M�. Then,

there exists a y�d�-strainer fpjkgk�G1;...;Gn at each xj on dbl�M� such that the map

jj :� �ddbl�M��pjk; �� ÿ ddbl�M��pj;ÿk; ���k�1;...;n

from Uj :� B�xj; 2t� to jj�Uj�HR
n is a y�d�-almost isometry. By an approx-

imation dbl�M� ! dbl�Mi� we project all the points xj, pjk to points in dbl�Mi�,

say yj, qjk, such that fxjgV qM � fyjgV qMi. Supposing i is large enough, we

may assume that the map

cj :� �ddbl�M��qjk; �� ÿ ddbl�M��qj;ÿk; ���k�1;...;n

from Vj :� B�yj ; 5t� to cj�Vj�HR
n is also a y�d�-almost isometry. We also

assume that if xj A qM, then pj1, qj1 are symmetric to pj;ÿ1, qj;ÿ1 in dbl�M�,

dbl�Mi� respectively and pjk A qM, qjk A qMi for every k with jkjV 2, so that

jj � ÿjj � i and cj � ÿcj � ii for xj A qM, where i : dbl�M� ! dbl�M� and ii :

dbl�Mi� ! dbl�Mi� denote the symmetric isometries. Note that for xj A qM,

Uj V qM � jÿ1
j �fx1 � 0g� and Vj V qMi � cÿ1

j �fx1 � 0g�. Set U 0
j :� B�xj; t�.

There are Lipschitz functions wj : M ! �0; 1� such that

supp�wj�HUj; wj � 1 on U 0
j ; MH 6

j

supp�wj �
�
;

supp�wj�V qM � q for xj B qM:

We inductively de®ne a sequence of functions f
j
d; i : 6

j

l�1
U 0

l
! Mi by

f 1
d; i :� cÿ1

1 � j1 : U
0
1 ! Mi

and for jV 2,

f
j
d; i :�

f
jÿ1
d; i on 6 j

l�1
U 0

l
nUj,

cÿ1
j � ��1ÿ wj�cj � f

jÿ1
d;i � wjjj� on 6 j

l�1
U 0

l
VUj.

8

<

:
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Note that each f
j
d; i (and also its inverse) maps boundary points to boundary

points. The same discussion as in the proof of Theorem 3.1 of [15] yields that

fd; i :� f m
d; i : MnB�Ŝd; r� ! Mi is a y�d�-almost isometry onto its image for i large

enough against r > 0. Taking a sequence of positive numbers ri slowly tending

to zero, we obtain the desired y�d�-almost isometry fd; i : Dd; i :� MnB�Ŝd; ri� !

fd; i�Dd; i�. We have limi!y H
n�Min fd; i�Dd; i�� � 0 in the same way as in the

proof of Lemma 3.4 of [15]. This completes the proof. r

4. SD-precompactness of A�n;D; v�.

In this section, we shall prove the SD-precompactness of A�n;D; v�. Let

M A A�n�. Take a Cy-function rn : �0;y� ! �0;y� such that rn is a positive

constant around 0, rn�r� � 0 for rV 1, and

�

R
n

rn�jxj� dx � 1;

where dx denotes the Lebesgue measure on R
n with respect to the variable

x A R
n. For h > 0, we de®ne the h-molli®er uh : M ! R of a function u A L2�M�

by

uh�x� :�

�

y AM
rn�d�x; y�=h�u�y� dH

n

�

y AM
rn�d�x; y�=h� dH

n :

Set, for R > 0,

a�M� :� inf
x AM

�

y AM

rn�d�x; y�� dH
n;

b�M;R� :� inf
x AM
0<rUR

rn

H
n�B�x; r��

:

We proved in [10] (see Lemmas 4.3, 4.4, 7.1, and Theorems 4.1, 7.2 of [10] and

their proofs) that for any 0 < h < 1, 0 < rUR, and u A W 1;2�M�,

sup
M

juhjU
cn

a�M�h

����������

E�u�
p

;�4:1�

kuh ÿ ukL2 U
cnh

a�M�

����������

E�u�
p

;�4:2�

kuÿ uB�x; r�kL2�B�x; r�� U cnb�M;R�rk`ukL2�B�x;3r��;�4:3�

where cn is a constant depending only on n and

Convergence of Alexandrov spaces and spectrum of Laplacian 7



uB�x; r� :�
1

H
n�B�x; r��

�
B�x; r�

u dHn:

We also have some uniform estimate of the dilatation of uh. The compactness of

the embedding W 1;2�M�HL2�M� (Theorem 1.2 of [10]) is in fact obtained by

using the molli®er de®ned here.

Lemma 4.1. For any n A N and D;R; v > 0, we have

inf
M AA�n;D; v�

a�M� > 0 and sup
M AA�n;D; v�

b�M;R� < y:

Here, A�n;D; v� is de®ned in §1.

Proof. Since rn is positive on a neighborhood of 0, for the ®rst estimate it

su½ces to show that

inf
M AA�n;D; v�

inf
x AM

H
n�B�x; r0�� > 0 for a small r0 > 0:

This in fact follows from the Bishop-Gromov inequality ([18]).

The second estimate is also implied by the Bishop-Gromov inequality. r

Let us recall the concept of spectral embedding (cf. [1], [7], [8]). Consider

the Hilbert space l2 :� f�ak�
y

k�0 j
P

y

k�0 a
2
k < yg and denote by Cy��0;y�; l2� the

space of continuous curves g : �0;y� ! l2 such that the l2-norm jg�t�j
l2

of g�t�

tends to zero as t ! y. We equip Cy��0;y�; l2� with the distance function dy
de®ned by

dy�g; s� :� sup
t>0

jg�t� ÿ s�t�j
l2
; g; s A Cy��0;y�; l2�:

Let M A A�n� be an Alexandrov space and F � fjkg
y

k�1 a complete orthonormal

basis on L2�M� consisting of eigenfunctions jk for lk :� lk�M� of DM . De®ne a

curve FF�x� in Cy��0;y�; l2� for x A M by

FF�x��t� :� �eÿ�t�1=t�=2eÿlkt=2jk�x��
y

k�0; tV 0:

Note here that every eigenfunction of DM is HoÈlder continuous on M (see

Theorem 1.4 of [10]). Then, the map FF gives an embedding of M into

Cy��0;y�; l2� and is called the spectral embedding of M with respect to the basis

F. Denote by FM the set of such bases F on L2�M�, and by FA�n� the set

of pairs �M;F� of M A A�n� and F A FM. For �M;F�; �N;C� A FA�n�, we

de®ne SD���M;F�; �N;C�� to be the Hausdor¨ distance between FF�M� and

FC�N� in Cy��0;y�; l2�, i.e.,

SD���M;F�; �N;C�� :� inffe > 0 jFF�M�HB�FC�N�; e�;FC�N�HB�FF�M�; e�g:

T. Shioya8



Lemma 4.2. The family FA�n;D; v� is SD�-precompact and A�n;D; v� SD-

precompact. The natural projection p : �FA�n�;SD�� ! �A�n�;SD� is Lipschitz

continuous.

Proof. Note that the Bishop-Gromov inequality implies the uniform

boundedness of the doubling constant:

sup
x AM AA�n;D; v�

0<rUD

H
n�B�x; 2r��

H
n�B�x; r��

< y:�4:4�

Combining (4.4), (4.3), Lemma 4.1 of this paper, and Theorem 2.4 of [16] (see

also [14] and Remark 7.1 of [10]) yields that the heat kernel pM : �0;y� �M �

M ! R on each M A A�n;D; v� satis®es

pM�t; x; x�U c0t
ÿn=2 for any t > 0 and x A M;

where c0 and n are positive constants depending only on n;D; v. Thus, the

discussions in §1.3 and §2.2 of [8] complete the proof. r

5. Proof of main theorem.

Let a sequence fMigi�1;2; ... in A�n� dGH -converge to an M A A�n�, let

dl & 0 be a sequence of numbers with d1 f 1=n, and let fd; i be as in Theorem

3.1. De®ne a linear map Fl; i : L
2�Mi� ! L2�M� by

Fl; i�u� :� IDdl ; i
� u � fdl; i; u A L2�Mi�;

where IA denotes the indicator function of a set A, i.e., IA�x� :� 1 for x A A, and

IA�x� :� 0 for x B A. Set for simplicity l i
k :� lk�Mi� and lk :� lk�M�. We take

a basis Fi � fj i
kg

y
k�0 A FMi for each i. The following is a key to the proof of

the main theorem.

Lemma 5.1. For each k we have

lim
i!y

l i
k � lk:

Moreover, by replacing with a subsequence of fMig, there exist a sequence

l�i� ! y and a basis F � fjkg
y
k�1 A FM such that Fl�i�; i�j

i
k� L2-converges to jk

as i ! y for each ®xed k.

Proof of Theorem 1.1 under assuming Lemma 5.1. We ®rst prove that the

spectral topology is not stronger than the Gromov-Hausdor¨ topology on A�n�.

Suppose the contrary, so that we ®nd a sequence Mi A A�n� dGH -converges to

M A A�n� as i ! y, but there exists a constant e0 > 0 such that SD�Mi;M�V

Convergence of Alexandrov spaces and spectrum of Laplacian 9



e0 for all i. Note that Theorem 3.1 says that �Mi;H
n� converges to �M;H

n�

with respect to the measured Gromov-Hausdor¨ topology. Since the diameters

of Mi are uniformly bounded and the H
n-volumes of Mi bounded away from

zero, Lemma 4.2 implies the SD�-precompactness of f�Mi;Fi�gi, Fi A FMi.

Therefore, by replacing with a subsequence of fig, the embedded image FFi
�Mi�

converges to a subset FX HCy��0;y�; l2� with respect to the Hausdor¨ distance.

By Lemma 5.1 and the continuity of eigenfunctions, we obtain FX � FF�M� for

some F A FM, namely SD���Mi;Fi�; �M;F�� ! 0 as i ! y, which contradicts

SD�Mi;M�V e0 > 0.

We next prove that the spectral topology is not weaker than the Gromov-

Hausdor¨ topology on A�n�. Assume that a sequence Mi A A�n� SD-converges

to an M A A�n� as i ! y. By Theorem 3.1(iii) of [8] and H
n�M� > 0, we have

inf i H
n�Mi� > 0. By Lemma 2.5 of [8], the diameters of Mi are uniformly

bounded. Therefore, fMig is a dGH -relatively compact subset of A�n�. By the

®rst part of the proof, any dGH -limit of fMig must coincide with the SD-limit

M. Thus, Mi dGH -converges to M. This completes the proof of the main

theorem. r

The rest of the paper is devoted to prove Lemma 5.1. With the notations

de®ned in the top of this section, for a ®xed integer kVÿ1 and for every j �

0; . . . ; k, let jj be an eigenfunction of DM associated with eigenvalue lj such that

fjjg
k
j�0 is L2-orthonormal, and let i�l� ! y be a sequence of positive integers.

Consider the following:

Assumption 5.1. For each l and j � 0; . . . ; k,

sup
iVi�l�

kFl; i�j
i
j � ÿ jjkL2 U y�dl�;�a�

lim
i!y

l i
j � lj :�b�

If k � ÿ1, then Assumption 5.1 says the empty statement and is trivially

true.

To obtain Lemma 5.1, it su½ces to prove the following:

Claim 5.1. Under Assumption 5.1, by replacing with subsequences of fig,

fdlg, and fi�l�g if necessary, there exists an eigenfunction jk�1 A W 1;2�M� of DM

for lk�1 such that fjjg
k�1
j�0 is L2-orthonormal and that (a) and (b) both hold for

every l and j � 0; . . . ; k � 1.

We suppose Assumption 5.1 and shall prove the claim.

Lemma 5.2. Let W be a domain of a Lipschitz-Riemannian manifold such that

W 1;2�W� is compactly embedded into L2�W�, and let fuigHW 1;2�W� be a sequence

T. Shioya10



satisfying

lim
i!y

kuikW 1; 2�W� < y:

Then, there exists a subsequence fuj�i�g of fuig converging to a function u A

W 1;2�W� L2-strongly and W 1;2-weakly such that

kukW 1; 2�W� U lim
i!y

kuikW 1; 2�W�:

Proof. A standard discussion in functional analysis. r

Lemma 5.3. Let U and V be two domains of Lipschitz-Riemannian manifolds

and f : U ! V a d-almost isometry, d > 0. Then, we have u � f ÿ1 A W 1;2�V� for

any u A W 1;2�U�, and the map W 1;2�U� C u 7! u � f ÿ1 A W 1;2�V� is a y�d�-almost

isometry with respect to L2 and W 1;2-norm.

Proof. See, for example, Theorem 4(ii) in 4.2.2 of [4] and its Remark.

r

Lemma 5.4. We have

lim
i!y

l i
k�1 U lk�1:

Proof. There exists an eigenfunction c A W 1;2�M� for lk�1 such that

fj1; . . . ; jk;cg is L2-orthonormal. By Theorem 1.1 of [10], for any d > 0 there

exists an approximation cd A W 1;2�M� of c such that supp�cd�V Ŝd � q and

kcd ÿ ckW 1; 2 < d:�5:1�

For i large enough, we have supp�cd�HDd; i and set

c i
d :�

cd � f
ÿ1
d; i on fd; i�Dd; i�,

0 on Min fd; i�Dd; i�.

(

Lemma 5.3 implies c i
d A W 1;2�Mi�. In what follows, we assume that i is suf-

®ciently large against k and a ®xed d. Then, by Lemma 5.3 and E�c� � lk�1, we

have

E�c i
d� � �1� y�d��E�cd� � �1� y�d���lk�1 � y�d�� � lk�1 � y�d�:

Remark here that y�d� is independent of i. By Lemma 5.3 and (5.1),

kc i
dkL2 � �1� y�d��kcdkL2 � �1� y�d���kckL2 � y�d�� � 1� y�d�

and also, in the same way, �c i
d; j

i
j �L2 � y�d� for each j � 1; . . . ; k. Using the

Gram-Schmidt method, we ®nd a function ĉ i
d A W 1;2�Mi� such that �ĉ i

d; j
i
j �L2 �

Convergence of Alexandrov spaces and spectrum of Laplacian 11



0, kĉ i
dkL2 � 1, and kĉ i

d ÿ c i
dkW 1; 2 U y�d�. Therefore,

lim
i!y

l i
k�1 U lim

i!y

E�ĉ i
d�

kĉ i
dkL2

U lk�1 � y�d�:

By taking d ! 0, this completes the proof. r

Lemma 5.5. For any ®xed l, there exists a subsequence I�l�H fig such that

as I�l� C i ! y, Fl; i�j
i
k�1� converges to a function jk�1;l A W 1;2�M� in the

L2�W�-strong and W 1;2�W�-weak topologies for any compact subset WHMnŜdl ,

and the limit satis®es

kjk�1;lk
2
W 1; 2 U �1� y�dl�� 1� lim

i!y

l i
k�1

� �

:

Proof. Let WHMnŜdl be any compact domain with Lipschitz boundary

and set Wi :� fdl; i�W� for large enough i. Note that W is a compact Lipschitz-

Riemannian manifold with Lipschitz boundary, so that a standard discussion

shows that W 1;2�W� is compactly embedded in L2�W�. Since kj i
k�1k

2
W 1; 2�Wi�

U

kj i
k�1k

2
W 1; 2 � 1� l i

k�1, we have, by Lemmas 5.3 and 5.4,

lim
i!y

kFl; i�j
i
k�1�k

2
W 1; 2�W� U �1� y�dl���1� lk�1�:

Applying Lemma 5.2 yields that there exist a subsequence I�l�H fig and a

function jk�1;l A W 1;2�W� such that

(i) as I�l� C i ! y, Fl; i�j
i
k�1�jW converges to jk�1;l L2�W�-strongly and

W 1;2�W�-weakly;

(ii) we have

kjk�1;lk
2
W 1; 2�W� U �1� y�dl�� 1� lim

i!y

l i
k�1

� �

:

By taking a monotone increasing sequence of W tending to MnSdl , the diagonal

argument extends jk�1;l to a function in W
1;2
loc �M� which satis®es (i) and (ii) for

any compact subset WHMnŜd. This completes the proof. r

Our next aim is to control the L2-mass of the eigenfunctions j i
k�1 around the

d-singular set of M.

Lemma 5.6. For any ®xed l, let WHMnŜdl be any compact subset such that

H
n�MnW�U dl, and set Wi :� fdl; i�W�. Then we have

lim
i!y

kj i
k�1kL2�MinWi�

U y�dl�:

T. Shioya12



Proof. Since H
n�Mi� ! H

n�M� and diam�Mi� ! diam�M� as i ! y,

Lemma 4.1 implies limi!ya�Mi� > 0. Therefore, by (4.1), (4.2), and E�j i
k�1� �

l i
k�1, the h-molli®er ~j i

k�1 of j i
k�1, 0 < h < 1, satis®es that for some constant c > 0

and for all su½ciently large i,

sup
Mi

j~j i
k�1jU

c

h
and kj i

k�1 ÿ ~j i
k�1kL2 U ch:

It then follows that

kj i
k�1kL2�MinWi�

U kj i
k�1 ÿ ~j i

k�1kL2 � k~j i
k�1 ÿ IWi

~j i
k�1kL2 � kIWi

~j i
k�1 ÿ IWi

j i
k�1kL2

U 2kj i
k�1 ÿ ~j i

k�1kL2 � k~j i
k�1kL2�MinWi�

U 2ch�
cHn�MinWi�

h
:

Here,

lim
i!y

H
n�MinWi� � lim

i!y
�Hn�Mi� ÿH

n�Wi��

UH
n�M� ÿ �1ÿ y�dl��H

n�W�

� H
n�MnW� � y�dl�H

n�W�U y�dl�:

Therefore, if we set h to be the square root of the last y�dl� of the above formula,

the proof is completed. r

Lemma 5.7. For any ®xed l and for all su½ciently large i A I�l�, we have

kFl; i�j
i
k�1�kL2 � 1� y�dl�;�1�

kjk�1;lkL2 � 1� y�dl�;�2�

kFl; i�j
i
k�1� ÿ jk�1;lkL2 U y�dl�;�3�

j�jk�1;l; jj�L2 jU y�dl� for any j � 0; . . . ; k:�4�

Proof. Let WHMnŜdl be any compact subset such that H
n�MnW�U dl,

and set Wi :� fdl; i�W�.

(1): Lemma 5.3 implies

kFl; i�j
i
k�1�kL2 U �1� y�dl��kj

i
k�1kL2� fdl ; i�Ddl ; i

�� U 1� y�dl�:

On the other hand, by Lemmas 5.3 and 5.6,

kFl; i�j
i
k�1�kL2�W� V �1ÿ y�dl��kj

i
k�1kL2�Wi�

V 1ÿ y�dl�:

Thus we obtain (1).
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(2): By Lemma 5.5 and the above,

kjk�1;lkL2�W� � lim
I�l� C i!y

kFl; i�j
i
k�1�kL2�W� � 1� y�dl�:

Taking W ! MnŜdl we have (2).

(3): It follows from (1) that Fl; i�j
i
k�1� converges to jk�1;l L2�M�-weakly,

which together with (1) and (2) shows (3).

(4): By �j i
k�1; j

i
j �L2 � 0, kj i

jkL2 � 1, and by Lemma 5.6, we have, for all

su½ciently large i A I�l�,

j�j i
k�1; j

i
j �L2�Wi�

j � j�j i
k�1; j

i
j �L2 ÿ �IMinWi

j i
k�1; j

i
j �L2 j

U kj i
k�1kL2�MinWi�

U y�dl�:

Therefore, by (1), (2), Lemma 5.5, (a) of Assumption 5.1, and by Lemma 5.3,

j�jk�1;l; jj�L2�W�jU lim
I�l� C i!y

j�Fl; i�j
i
k�1�;Fl; i�j

i
j ��L2�W�j � y�dl�

U �1� y�dl�� lim
I�l� C i!y

j�j i
k�1; j

i
j �L2�Wi�

j � y�dl�U y�dl�:

This completes the proof. r

Proof of Claim 5.1. By Lemma 5.2, some subsequence of jk�1;l converges

to a function jk�1 A W 1;2�M� L2-strongly and W 1;2-weakly. (2), (4) of Lemma

5.7, and Lemma 5.5 respectively imply

kjk�1kL2 � 1; �jk�1; jj�L2 � 0; kjk�1k
2
W 1; 2 U 1� lim

i!y

l i
k�1:

We therefore obtain

lk�1 U
E�jk�1�

kjk�1kL2

� E�jk�1�U lim
i!y

l i
k�1;

which together with Lemma 5.4 implies (b) for j � k � 1 and that jk�1 is an

eigenfunction for eigenvalue lk�1.

We may assume that I�l�1�H I�l� for every l. Thus, if i�l� A I�l� is

taken to be large enough for each l, the diagonal argument together with Lemma

5.7(3) proves (a) by replacing with subsequences. This completes the proof.

r
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