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Abstract. Let us consider the following nonlinear singular partial di¨erential

equation: �tqt�
m
u � F �t; x; f�tqt�

j
q
a

xugj�jajam; j<m� in the complex domain. Denote by

S� [resp. Slog] the set of all the solutions u�t; x� with asymptotics u�t; x� � O�jtja� [resp.

u�t; x� � O�1=jlog tja�] (as t ! 0 uniformly in x) for some a > 0. Clearly Slog IS�.

The paper gives a su½cient condition for Slog � S� to be valid.

The paper deals with nonlinear singular partial di¨erential equations of the

form

�tq=qt�mu � F �t; x; f�tq=qt� j�q=qx�augj�jajam; j<m��E�

in the complex domain. In GeÂrard-Tahara [1] the author has determined all the

singular solutions u�t; x� of (E) under the condition that u�t; x� � O�jtja� (as t ! 0

uniformly in x) for some a > 0.

The present paper investigates singular solutions u�t; x� of (E) under a

weaker condition that u�t; x� � O�1=jlog tja� (as t ! 0 uniformly in x) for some

a > 0.

§1. Preliminaries.

Notations: t A C , x � �x1; . . . ; xn� A C
n, N � f0; 1; 2; . . .g, and N

� �

f1; 2; . . .g. For a � �a1; . . . ; an� A N
n we write jaj � a1 � � � � � an and

q

qx

� �a

�
q

qx1

� �a1

� � �
q

qxn

� �an

:

Let m A N
�, N � ]f� j; a� A N �N

n
; j � jajam; j < mg, and write the vari-

able Z as

Z � fZj;agj�jajam
j<m

A C
N :
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Let F�t; x;Z� be a function in the variables �t; x;Z� de®ned in a neighborhood of

the origin �0; 0; 0� A C t � C
n
x � C

N
Z , and assume the following:

�A1� F�t; x;Z� is holomorphic near �0; 0; 0�;

�A2� F�0; x; 0�1 0 near x � 0;

�A3�
qF

qZj;a

�0; x; 0�1 0 near x � 0, if jaj > 0.

In this paper we always assume the conditions �A1�, �A2�, �A3�, and we will

consider the following nonlinear partial di¨erential equation

t
q

qt

� �m

u � F t; x; t
q

qt

� �j
q

qx

� �a

u

( )

j�jajam
j<m

0

B

@

1

C

A
�E�

with u � u�t; x� as the unknown function.

For (E) we set

C�l; x� � l
m ÿ

X

j<m

qF

qZj;0
�0; x; 0�l j

and denote by l1�x�; . . . ; lm�x� the roots of the equation C�l; x� � 0 in l. These

l1�x�; . . . ; lm�x� are called the characteristic exponents of (E).

The following is our basic problem:

Problem. Determine all kinds of local singularities which appear in the

solutions of (E).

Let us recall the result in GeÂrard-Tahara [1]. Denote:
. R�Cnf0g� denotes the universal covering space of Cnf0g;
. Sy � ft A R�Cnf0g�; jarg tj < yg;
. S�e�s�� � ft A R�Cnf0g�; 0 < jtj < e�arg t�g, where e�s� is a positive-valued

continuous function on Rs;
. Dr � fx A C

n; jxja rg;
. Cfxg denotes the ring of convergent power series in x, or equivalently the

ring of germs of holomorphic functions at the origin of C
n.

Definition 1. We denote by ~O� the set of all u�t; x� satisfying the following

conditions i) and ii):

i) u�t; x� is a holomorphic function on S�e�s�� �Dr for some positive-valued

continuous function e�s� and some r > 0;

ii) there is an a > 0 such that for any y > 0 we have

max
jxjar

ju�t; x�j � O�jtja� �as t ! 0 in Sy�:
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For the characteristic exponents l1�x�; . . . ; lm�x�, we set

m � ]fi;Re li�0� > 0g:

When m � 0, this is equivalent to the fact that Re li�0�a 0 for all i � 1; . . . ;m.

When mb 1, by a renumeration we may assume

Re li�0� > 0 for 1a ia m,

Re li�0�a 0 for m� 1a iam.

�

�1:1�

Then we already have:

Theorem 1 (GeÂrard-Tahara [1]). Denote by S� the set of all ~O�-solutions of

(E). Then we have:

(I) When m � 0, we have S� � fu0g where u0 � u0�t; x� is the unique holo-

morphic solution of (E) satisfying u0�0; x�1 0.

(II) When mb 1, under (1.1) and the following additional conditions

1) li�0�0 lj�0� for 1a i0 ja m,

2) C�1; 0�0 0,

3) C�i � j1l1�0� � � � � � jmlm�0�; 0�0 0 for any �i; j� A N �N
m satisfying

i � j jjb 2 (where j � � j1; . . . ; jm��,

we have

S� � fU�f1; . . . ; fm�; �f1; . . . ; fm� A �Cfxg�mg;

where U�f1; . . . ; fm� is an ~O�-solution of (E) determined by �f1; . . . ; fm� A �Cfxg�m

and having the expansion of the following form:

U�f1; . . . ; fm� �
X

ib1

ui�x�t
i

� f1�x�t
l1�x� � � � � � fm�x�t

lm�x�

�
X

i�2mj jjbk�2m
j jjb1

�i;j jj�0�0;1�

ji; j;k�x�t
i�j1l1�x������jmlm�x��log t�k:

§2. Problems.

In Theorem 1 we have restricted ourselves to the study of singular solutions

in ~O�. But, there seems to be a possibility that (E) has singular solutions which

do not belong in the class ~O�, as is seen in the following example.

Example 1. The equation

t
qu

qt
� u

qu

qx

� �k
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(where �t; x� A C
2 and k A N

�) has a family of singular solutions

u�t; x� �
1

k

� �1=k
x� a

�cÿ log t�1=k
; a; c A C ;

which do not belong in the class ~O�.

In order to include this kind of singular solutions in our framework, we

introduce the following new class of singular solutions:

Definition 2. We denote by ~Olog the set of all u�t; x� satisfying the fol-

lowing conditions i) and ii):

i) u�t; x� is a holomorphic function on S�e�s�� �Dr for some positive-valued

continuous function e�s� and some r > 0;

ii) there is an a > 0 such that for any y > 0 we have

max
jxjar

ju�t; x�j � O
1

jlog tja

� �

�as t ! 0 in Sy�:

Clearly we have ~Olog I
~O�. Therefore, if we denote by Slog the set of all

~Olog-solutions of (E), we have Slog IS�. Hence, our next problems can be set

up as follows:

Problem 1. When does Slog � S� hold?

Problem 2. When does Slog 0S� hold?

The purpose of this paper is to give a partial answer and a conjecture on the

problem 1. The problem 2 will be discussed in the forthcoming paper.

§3. A result and a conjecture.

In this section we will give a result on the problem 1 in a general form.

A function m�t� on �0;T� is called a weight function if it satis®es the fol-

lowing conditions m1�@m3�:

m1� m�t� A C0��0;T��,

m2� m�t� > 0 on �0;T� and m�t� is increasing in t,

m3�

�T

0

m�s�

s
ds < y.

By m2� and m3� the condition m�t� ! 0 (as t ! �0) is clear. In this paper we

impose the additional condition on m�t�:

m�t� A C1��0;T�� and t
dm

dt

� �

�t� � o�m�t�� �as t ! �0�:�3:1�

The following functions are typical examples:

m�t� �
1

�ÿlog t�b
;

1

�ÿlog t��log�ÿlog t��c
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with b > 1, c > 1. Note that the function m�t� � td with d > 0 does not satisfy

the condition (3.1).

Definition 3. Let m�t� be a weight function.

(1) For a > 0 we denote by ~Oa�m�t�� the set of all u�t; x� satisfying the

following conditions i) and ii):

i) u�t; x� is a holomorphic function on S�e�s�� �Dr for some positive-valued

continuous function e�s� and some r > 0;

ii) for any y > 0 we have

max
jxjar

ju�t; x�j � O�m�jtj�a� �as t ! 0 in Sy�:

(2) We de®ne ~O��m�t�� by

~O��m�t�� � 6
a>0

~Oa�m�t��:

Lemma 1. (1) ~Olog � ~O��m�t�� if m�t� � 1=�ÿlog t�b with b > 1.

(2) If m�t� satis®es (3.1) we have ~O� H ~O1�m�t�� �H ~O��m�t���.

Proof. (1) is clear. (2) is veri®ed as follows. By (3.1), for any e > 0 there

is a d > 0 such that tm 0
t�t�a em�t� holds on �0; d� and therefore we have

d

dt
�tÿem�t��a 0 for 0 < ta d:

Integrating this from t to d we have

dÿem�d�a tÿem�t� for 0 < ta d

and so

m�d�

de

� �

te a m�t� for 0 < ta d:�3:2�

Since e > 0 is arbitrary, (3.2) leads us to the conclusion of (2). r

Denote by S��m�t�� (resp. Sa�m�t��) the set of all ~O��m�t��-solutions of (E)

(resp. ~Oa�m�t��-solutions of (E)). By (2) of Lemma 1 we have

S� HS1�m�t��HS��m�t��:

The following theorem gives a su½cient condition for S��m�t�� � S� to be

valid.

Theorem 2. Let m�t� be a weight function satisfying (3.1). Then, S��m�t��

� S� is valid if

Re li�0� < 0 for all i � 1; . . . ;m�3:3�
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or if

Re li�0� > 0 for all i � 1; . . . ;m:�3:4�

In case (3.3), by Theorem 1 we have S� � fu0g and therefore the condition

S��m�t�� � S� is equivalent to the fact that the local uniqueness of the solution is

valid in S��m�t�� which is already proved in Tahara [4], [5].

In case (3.4) the proof of Theorem 2 consists of the following two parts:

C1) if u A S��m�t�� we have u A Sm�m�t��;

C2) if u A Sm�m�t�� we have u A S�.

The part C1) will be proved in O4 and the part C2) will be proved in O5.

Corollary. If (3.3) or (3.4) holds, we have Slog � S�.

Remark. The author believes that the following conjecture is true, though

at present he has no idea to prove this conjecture:

Conjecture. Slog � S� is valid if

Re li�0�0 0 for all i � 1; . . . ;m:�3:5�

§4. Proof of C1).

The assertion C1) comes from the following proposition.

Proposition 1. Let m�t� be a weight function satisfying (3.1). Assume

the condition (3.4). Then, if u�t; x� A ~O��m�t�� is a solution of (E) we have

u�t; x� A ~Om�m�t��.

First we note:

Lemma 2. Let d > 0, U be a compact neighborhood of the origin of C n
x ,

l�x� A C0�U�, u�t; x� A C1��0; d�;C0�U�� and f �t; x� A C0��0; d� �U�. Assume

e > 0, h > 0, C > 0, a > 0 and assume the following i)@iv):

i) tm 0
t�t�a em�t� on �0; d�,

ii) Re l�x�b h on U,

iii) j f �t; x�jaCm�t�a on �0; d� �U,

iv) �tq=qtÿ l�x��u � f on �0; d� �U .

Then, if ae < h holds we have

ju�t; x�ja
ju�d; x�j

m�d�a
�

C

hÿ ae

� �

m�t�a on �0; d� �U :�4:1�

Proof. By solving the equation iv) we see that u�t; x� is expressed by

u�t; x� �
t

d

� �l�x�

u�d; x� ÿ

� d

t

t

t

� �l�x�

f �t; x�
dt

t
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and by ii) and iii) we have

ju�t; x�ja
t

d

� �h

ju�d; x�j � C

� d

t

t

t

� �h

m�t�a
dt

t
on �0; d� �U :

Therefore, to show (4.1) it is su½cient to prove the following inequalities:

t

d

� �h

a
m�t�

m�d�

� �a

on �0; d�;�4:2�

� d

t

t

t

� �h

m�t�a
dt

t
a

1

hÿ ae
m�t�a on �0; d�:�4:3�

The proofs of (4.2) and (4.3) are as follows. Recall that the condition i)

implies (3.2) and so

t

d

� �e

a
m�t�

m�d�
on �0; d�:

Since 0 < ae < h is assumed, we have

t

d

� �h

a
t

d

� �ae

a
m�t�

m�d�

� �a

on �0; d�

which proves (4.2). Moreover, by the integration by parts and using the con-

dition i) we have

� d

t

1

th�1
m�t�a dt �

ÿ1

h

1

th
m�t�a

� �d

t

�
a

h

� d

t

1

th
m�t�aÿ1

m 0
t�t� dt

a
1

h

1

th
m�t�a �

a

h

� d

t

1

th�1
m�t�aÿ1�em�t�� dt

�
1

h

1

th
m�t�a �

ae

h

� d

t

1

th�1
m�t�a dt

and therefore we obtain

� d

t

1

th�1
m�t�a dta

1

hÿ ae

1

th
m�t�a on �0; d�

which leads us to (4.3). r

Next let us consider

C t
q

qt
; x

� �

u � f :�4:4�

Since l1�x�; . . . ; lm�x� are solutions of C�l; x� � 0 in l, the equation (4.4) is

written as
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t
q

qt
ÿ l1�x�

� �

� � � t
q

qt
ÿ lm�x�

� �

u � f :

Therefore, applying Lemma 2 m-times to this equation we obtain

Lemma 3. Assume the condition (3.4), and assume that u; f A
~O��m�t�� satisfy

the equation (4.4). Then, if f A
~Oa�m�t�� holds for some a > 0 we have u A

~Oa�m�t��.

Denote

R�u� � F t; x; t
q

qt

� �j
q

qx

� �a

u

( )

j�jajam
j<m

0

B

@

1

C

A
ÿ
X

j<m

qF

qZj;0
�0; x; 0� t

q

qt

� �j

u:

The equation (E) is written as

C t
q

qt
; x

� �

u � R�u�:�4:5�

Moreover we have

Lemma 4. If u A
~Oa�m�t�� holds for some a > 0 we have R�u� A ~Ob�m�t�� for

any b with 0 < baminf2a;mg.

Proof. By [5, Lemma 11] we know that

m�t� ct� � O�m�t�� �as t ! �0�

for some c > 0 and hence we can see that u A
~Oa�m�t�� implies

t
q

qt

� �j
q

qx

� �a

u A
~Oa�m�t��; j � jajam and j < m

(see the proof of [5, Theorem 3]).

Therefore, by �A1�, �A2� and �A3� we have

R�u� � F�t; x; 0�

�
X

j<m

qF

qZj;0
�t; x; 0� ÿ

qF

qZj;0
�0; x; 0�

� �

t
q

qt

� �j

u

�
X

j�jajam

jaj>0

qF

qZj;a

�t; x; 0� t
q

qt

� �j
q

qx

� �a

u

�
X

j�jajam
j<m

X

k�jbjam
k<m

O t
q

qt

� �j
q

qx

� �a

u� t
q

qt

� �k
q

qx

� �b

u

 !

� O�jtj� �O�jtj�O�m�jtj�a� �O�O�m�jtj�a� �O�m�jtj�a��:
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Since jtj � O�m�jtj�m� (as t ! �0) is already proved in (3.2) with e � 1=m, we

obtain the conclusion of Lemma 4. r

Now, by using Lemmas 3 and 4 let us prove Proposition 1.

Proof of Proposition 1. Let u A ~O��m�t�� be a solution of (E). Then, by

the de®nition of ~O��m�t�� we have u A ~Oa�m�t�� for some a > 0. Choose a

sequence a0; a1; . . . ; aN such that

i) a0 � a < a1 < a2 < � � � < aN � m, and

ii) ai�1 aminf2ai;mg for i � 0; 1; . . . ;N ÿ 1.

Since u A ~Oa0�m�t�� is known, by Lemma 4 we have R�u� A ~Oa1�m�t�� and

therefore by applying Lemma 3 to the equation C�tq=qt; x�u � R�u� we have

u A ~Oa1�m�t��. Then, by Lemma 4 we have R�u� A ~Oa2�m�t�� and so applying

Lemma 3 again to C�tq=qt; x�u � R�u� A ~Oa2�m�t�� we have u A ~Oa2�m�t��.

Thus, by repeating the same argument as above we obtain u A ~OaN �m�t��.

Since aN � m, this completes the proof of Proposition 1. r

§5. Proof of C2).

The assertion C2) comes from the following proposition.

Proposition 2. Let m�t� be a weight function satisfying

m�t� A C1��0;T�� and t
dm

dt

� �

�t� � O�m�t�� �as t ! �0�:�5:1�

Assume the condition (3.4). Then, if u A ~Om�m�t�� is a solution of (E) we have

u A ~O�.

We will prove this proposition from now. By (5.1) we have

tm 0
t�t�aAm�t� on �0;T��5:2�

for some A > 0. Also, by (3.4) we can ®nd h > 0 and R > 0 such that

Re li�x�b 2h > 0 on DR; i � 1; . . . ;m:�5:3�

Without loss of generality we may assume that 0 < h < 1 holds.

Let u A ~Om�m�t�� be a solution of (E), and assume that u�t; x� is holomorphic

on S�e�s�� �D2R where e�s� is a positive-valued continuous function and R > 0 is

su½ciently small. Since the condition (5.1) is assumed, by [5, Lemma 11] we

have m�t� ct� � O�m�t�� (as t ! �0) for some c > 0 and by the same argument

as in the proof of [5, Theorem 3] we have

t
q

qt

� �j
q

qx

� �a

u A ~Om�m�t�� for j � jajam and j < m:

Therefore, for any y0 > 0 we can ®nd d > 0 and M > 0 such that
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t
q

qt

� �j
q

qx

� �a

u�t; x�

�

�

�

�

�

�

�

�

�

�

aMm�jtj�m on Sy0�d� �DR�5:4�

for j � jajam and j < m

where Sy0�d� � ft A Sy0 ; 0 < jtja dg.

Our purpose is to show the following: if R1 > 0 is su½ciently small, for any

y0 > 0 we can ®nd d1 > 0 and M1 > 0 such that

ju�t; x�jaM1jtj
h

on Sy0�d1� �DR1
:�5:5�

The rest part of this section is used to prove this estimate.

Denote

Y0 � 1;

Y1 � t
q

qt
ÿ l1�0�

� �

;

Y2 � t
q

qt
ÿ l2�0�

� �

t
q

qt
ÿ l1�0�

� �

;

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

Ym � t
q

qt
ÿ lm�0�

� �

t
q

qt
ÿ lmÿ1�0�

� �

� � � t
q

qt
ÿ l1�0�

� �

:

Since u A
~Om�m�t�� is a solution of (E), we have

Ymu � F �t; x; 0��5:6�

�
X

j<m

qF

qZj;0
�t; x; 0� ÿ

qF

qZj;0
�0; 0; 0�

� �

t
q

qt

� �j

u

�
X

j�jajam

jaj>0

qF

qZj;a

�t; x; 0� t
q

qt

� �j
q

qx

� �a

u

�
X

j�jajam
j<m

X

k�jbjam
k<m

O t
q

qt

� �j
q

qx

� �a

u� t
q

qt

� �k
q

qx

� �b

u

 !

� F �t; x; 0� �
X

j<m

aj�t; x�Yju�
X

j�jajam
j<m

bj;a�t; x�Yj

q

qx

� �a

u;
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where aj�t; x� � j < m� are holomorphic functions in a neighborhood of �0; 0�
satisfying aj�0; 0� � 0, and bj;a�t; x� � j � jajam; j < m� are functions in ~Om�m�t��.
Note that aj�t; x� � j < m� are independent of u, but bj;a�t; x� � j � jajam; j < m�
depend on u.

Introduce the following notation. For a formal power series f �t; x� in x

with coe½cients in C0��0;T�� of the form

f �t; x� �
X

a AN n

fa�t�xa
; fa�t� A C 0��0;T��

we write

k f �t�kr �
X

a AN n

j fa�t�j
a!

jaj! r
jaj

(which is a formal power series in r with coe½cients in C0��0;T��). In case

f �t; x� is a function on �0;T� �DR continuous in t and holomorphic in x, by

using the Taylor expansion of f �t; x� in x we can de®ne k f �t�kr in the same

way. Note that the following majorant relation holds:

q

qxi

� �

f �t�
















r

f

q

qr
k f �t�kr; i � 1; . . . ; n:

Take any y0 > 0. Let R > 0 and d > 0 be the ones in (5.4). Note that d

depends on y0 but R is independent of y0. For � j; k� A N �N satisfying j � ka

mÿ 1 we set

cj;k�t; r; y� � m�t�k �
X

jaj�k

Yj

q

qx

� �a

u�te
�����

ÿ1
p

y�
















r

;�5:7�

fj;k�t; r; y� �
� d

t

t

t

� �Re lj�1�0�
m�t�k�5:8�

�

8

<

:

X

jaj�k

Yj�1
q

qx

� �a

u�te
�����

ÿ1
p

y�
















r

� kA
X

jaj�k

Yj

q

qx

� �a

u�te
�����

ÿ1
p

y�
















r

9

=

;

dt

t
:

Then, by the argument similar to the proof of [4, Lemma 3] we have
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Lemma 5. cj;k�t; r; y� � j � kamÿ 1� and fj;k�t; r; y� � j � kamÿ 1� are

well-de®ned in C0��0; d� � �0;R� � �ÿy0; y0�� and satisfy the following properties

�1�@�4� on f�t; r; y�; 0 < ta d; 0a raR and jyj < y0g:
(1) For any � j; k� we have

cj;k�t; r; y�a
t

d

� �2h

cj;k�d; r; y� � fj;k�t; r; y�:

(2) When k > 0, we have

ÿt
q

qt
� 2h

� �

fj;k�t; r; y�

a nm�t� q

qr
cj�1;kÿ1�t; r; y� � nkAm�t� q

qr
cj;kÿ1�t; r; y�:

(3) When k � 0 and j � 0; 1; . . . ;mÿ 2, we have

ÿt
q

qt
� 2h

� �

fj;0�t; r; y�acj�1;0�t; r; y�:

(4) When k � 0 and j � mÿ 1, we have

ÿt
q

qt
� 2h

� �

fmÿ1;0�t; r; y�

aKt� �a�t; r� � b�t; r��
X

j<m

cj;0�t; r; y�

� Bm�t� q

qr

X

j�kamÿ1

cj;k�t; r; y�

for some K > 0, B > 0, a�t; r� A C 0��0; d� � �0;R�� with a�0; 0� � 0, and b�t; r� A
C 0��0; d� � �0;R�� with b�t; r� � O�m�t�m� (as t ! �0 uniformly in r A �0;R��.
Moreover, by (5.6) we see that K and a�t; r� are independent of y0.

Proof. Set

uj;k�t; x� � m�t�kYj

q

qx

� �a

u�te
�����

ÿ1
p

y
; x�:

Then we have
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t
q

qt
ÿ lj�1�0�

� �

uj;k�t; x�

� m�t�kYj�1
q

qx

� �a

u�te
�����

ÿ1
p

y
; x� � ktm 0

t�t�m�t�
kÿ1

Yj

q

qx

� �a

u�te
�����

ÿ1
p

y
; x�

and by integrating this from t to d we have

uj;k�t; x� �
t

d

� �lj�1�0�
uj;k�d; x�

ÿ
� d

t

t

t

� �lj�1�0�
�

m�t�kYj�1
q

qx

� �a

u�te
�����

ÿ1
p

y
; x�

� ktm 0
t�t�m�t�

kÿ1
Yj

q

qx

� �a

u�te
�����

ÿ1
p

y
; x�

�

dt

t
:

Therefore by taking the norm and by using (5.2) and (5.3) we obtain

m�t�k Yj

q

qx

� �a

u�te
�����

ÿ1
p

y�
















r

� kuj;k�t�kr

a
t

d

� �Re lj�1�0�
kuj;k�d�kr

�
� d

t

t

t

� �Re lj�1�0�
(

m�t�k Yj�1
q

qx

� �a

u�te
�����

ÿ1
p

y�
















r

� kAm�t�m�t�kÿ1
Yj

q

qx

� �a

u�te
�����

ÿ1
p

y�
















r

)

dt

t

a
t

d

� �2h

m�d�k Yj

q

qx

� �a

u�de
�����

ÿ1
p

y�
















r

�
� d

t

t

t

� �Re lj�1�0�
m�t�k

(

Yj�1
q

qx

� �a

u�te
�����

ÿ1
p

y�
















r

� kA Yj

q

qx

� �a

u�te
�����

ÿ1
p

y�
















r

)

dt

t

which leads us to the property (1).

Denote: e1 � �1; 0; . . . ; 0�; . . . ; en � �0; . . . ; 0; 1� A N n. If jaj > 0 we have

q

qx

� �a

� q

qxi

� �

q

qx

� �aÿei
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for some i � ia and

Yl

q

qx

� �a

u�te
�����

ÿ1
p

y�
















r

a
q

qr
Yl

q

qx

� �aÿei

u�te
�����

ÿ1
p

y�
















r

�5:9�

for any l � 0; 1; . . . ;m and any r A �0;R�.
When k > 0, by using (5.3) and (5.9) we can verify the property (2) as

follows:

ÿt
q

qt
� 2h

� �

fj;k�t; r; y�

a ÿt
q

qt
�Re lj�1�0�

� �

fj;k�t; r; y�

� m�t�k
8

<

:

X

jaj�k

Yj�1
q

qx

� �a

u�te
�����

ÿ1
p

y�
















r

� kA
X

jaj�k

Yj

q

qx

� �a

u�te
�����

ÿ1
p

y�
















r

9

=

;

a m�t�k
8

<

:

X

jaj�k

q

qr
Yj�1

q

qx

� �aÿei

u�te
�����

ÿ1
p

y�
















r

� kA
X

jaj�k

q

qr
Yj

q

qx

� �aÿei

u�te
�����

ÿ1
p

y�
















r

9

=

;

a nm�t� q

qr
cj�1;kÿ1�t; r; y� � nkAm�t� q

qr
cj;kÿ1�t; r; y�:

When k � 0 and j � 0; 1; . . . ;mÿ 2, the property (3) is veri®ed by:

ÿt
q

qt
� 2h

� �

fj;0�t; r; y�a ÿt
q

qt
�Re lj�1�0�

� �

fj;0�t; r; y�

� kYj�1u�te
�����

ÿ1
p

y�kr � cj�1;0�t; r; y�:

When k � 0 and j � mÿ 1 we have

ÿt
q

qt
� 2h

� �

fmÿ1;0�t; r; y��5:10�

a ÿt
q

qt
�Re lm�0�

� �

fmÿ1;0�t; r; y� � Ymu�te
�����

ÿ1
p

y�












r
:
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On the other hand, by (5.6) we know that the equation (E) is written as

Ymu � F�t; x; 0� �
X

j<m

�aj�t; x� � bj;0�t; x��Yju

�
X

j�jajam

jaj>0

bj;a�t; x�Yj

q

qx

� �a

u

� O�jtj� �
X

j<m

�O�jtj � jxj� �O�m�jtj�m��Yju

�
X

j�jajam

jaj>0

O�m�jtj�m�Yj

q

qx

� �a

u:

Therefore, by taking the norm and by using (5.9) we have

kYmu�te
�����

ÿ1
p

y�kr

aKt� �O�t� r� �O�m�t�m��
X

j<m

kYju�te
�����

ÿ1
p

y�kr

�
X

j�jajam

jaj>0

O�m�t�m� q

qr
Yj

q

qx

� �aÿei

u�te
�����

ÿ1
p

y�
















r

aKt� �O�t� r� �O�m�t�m��
X

j<m

cj;0�t; r; y�

�O�m�t�� q

qr

X

j�kamÿ1

cj;k�t; r; y�:

Hence, combining this with (5.10) we obtain the property (4). r

Next, we choose sj > 0 � j � 0; 1; . . . ;mÿ 1� so that

sj

sj�1
<

h

2
; j � 0; 1; . . . ;mÿ 2�5:11�

hold and then we choose d2 > 0 and R2 > 0 su½ciently small so that

smÿ1

sj
a�t; r� < h

4
; j � 0; 1; . . . ;mÿ 1;�5:12�
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smÿ1

sj
b�t; r� <

h

4
; j � 0; 1; . . . ;mÿ 1�5:13�

hold on f�t; r�; 0a ta d2; 0a raR2g. Since a�t; r� is independent of y0 we

may assume that R2 > 0 is also independent of y0.

Set

C�t; r; y� �
X

j�kamÿ1

cj;k�t; r; y�;

F�t; r; y� �
X

j<m

sjfj;0�t; r; y� �
X

j�kamÿ1
k>0

fj;k�t; r; y�:

Then we have:

Lemma 6. There are C1 > 0 and C2 > 0 such that

ÿt
q

qt
� h

� �

F�t; r; y��5:14�

a smÿ1Kt� C1
t

d

� �2h

1� m�t�
q

qr

� �

C�d; r; y�

� C2m�t�
q

qr
F�t; r; y�

holds on f�t; r; y�; 0 < ta d2; 0a raR2 and jyj < y0g.

Proof. By using (2)@(4) of Lemma 5 we have

ÿt
q

qt
� 2h

� �

F�t; r; y�

a

X

jamÿ2

sjcj�1;0�t; r; y�

� smÿ1Kt� smÿ1�a�t; r� � b�t; r��
X

j<m

cj;0�t; r; y�

� C3m�t�
q

qr

X

j�kamÿ1

cj;k�t; r; y�

for some C3 > 0, and therefore by (1) of Lemma 5, (5.11), (5.12) and (5.13) we

obtain
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ÿt
q

qt
� 2h

� �

F�t; r; y�

a

X

jamÿ2

h

2
sj�1

t

d

� �2h

cj�1;0�d; r; y� � fj�1;0�t; r; y�

� �

� smÿ1Kt

�
X

j<m

h

4
�
h

4

� �

sj
t

d

� �2h

cj;0�d; r; y� � fj;0�t; r; y�

� �

� C3m�t�
q

qr

X

j�kamÿ1

t

d

� �2h

cj;k�d; r; y� � fj;k�t; r; y�

� �

a
h

2
�
h

4
�
h

4

� �

F�t; r; y� � smÿ1Kt

� C1
t

d

� �2h

1� m�t�
q

qr

� �

C�d; r; y� � C2m�t�
q

qr
F�t; r; y�

for some C1 > 0 and C2 > 0. This immediately leads us to (5.14). r

Now, let us complete the proof of Proposition 2. Set

M2 � smÿ1K �
C1

d2h
sup

0araR2

jyj<y0

1� m�d2�
q

qr

� �

C�d; r; y�

� �

:

Then, by Lemma 6 we have

ÿt
q

qt
� hÿ C2m�t�

q

qr

� �

F�t; r; y�aM2�t� t2h��5:15�

on f�t; r; y�; 0 < ta d2; 0a raR2 and jyj < y0g.

Completion of the proof of Proposition 2. Take any R1 such that 0 <

R1 < R2, and then choose d1 > 0 so that 0 < d1 < d2 and

R1 � C2

� d1

0

m�s�

s
dsaR2:

De®ne the function r�t� by

r�t� � R1 � C2

� t

0

m�s�

s
ds for 0a ta d1:
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Then, R1 a r�t�aR2 for 0a ta d1, t�dr=dt� � C2m�t�, and r�t� is increasing in

t. Moreover we have

�0; d1� � �0;R1�H f�t; r�; 0a ta d1; 0a ra r�t�g:�5:16�

Set

j�t; y� � F�t; r�t�; y� for 0a ta d1 and jyj < y0:�5:17�

By (5.15) we have

ÿt
q

qt
� h

� �

j�t; y� � ÿt
q

qt
� h

� �

Fÿ
qF

qr
t
dr�t�

dt

� ÿt
q

qt
� hÿ C2m�t�

q

qr

� �

F

aM2�t� t
2h�;

that is

ÿt
q

qt
� h

� �

j�t; y�aM2�t� t
2h�; 0 < ta d1 and jyj < y0

which is equivalent to

ÿ
q

qt
�tÿhj�t; y��aM2

1

th
�

1

t1ÿh

� �

; 0 < ta d1 and jyj < y0:

Since 0 < h < 1 is assumed, by integrating this from t to d1 we have

t
ÿhj�t; y�a dÿh

1 j�d1; y� �M2
d1ÿh

1

1ÿ h
�
dh1
h

 !

and hence

j�t; y�aM3t
h; 0 < ta d1 and jyj < y0�5:18�

where

M3 �
1

dh1
sup

0araR2

jyj<y0

�F�d1; r; y�� �M2
d1ÿh

1

1ÿ h
�
dh1
h

 !

:

Thus, if we notice the fact that F�t; r; y� is increasing in r, by (5.16), (5.17) and

(5.18) we obtain

F�t; r; y�aM3t
h�5:19�

H. Tahara728



on f�t; r; y�; 0 < ta d1; 0a raR1 and jyj < y0g.
Finally, let us show that the estimate (5.5) follows from (5.19). Note that

c0;0�t; r; y� � ku�te
�����

ÿ1
p

y�kr

holds. Therefore, by (5.19) and (1) of Lemma 5 we have

ku�te
�����

ÿ1
p

y�kr a
t

d

� �2h

ku�de
�����

ÿ1
p

y�kr � f0;0�t; r; y�

a
t

d

� �2h

sup
0araR1

jyj<y0

ku�de
�����

ÿ1
p

y�kr �
M3

s0
th

on f�t; r; y�; 0 < ta d1; 0a raR1 and jyj < y0g. This implies (5.5).

Since R1 > 0 is chosen independently of y0, this completes the proof of

Proposition 2. r
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