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Abstract. Singular invariant hyperfunctions on the space of n x n complex and
quaternion matrices are discussed in this paper. Following a parallel method employed
in the author’s paper on invariant hyperfunctions on the symmetric matrix spaces,
we give an algorithm to determine the orders of poles of the complex power of
the determinant function and to determine exactly the support of singular invariant
hyperfunctions, i.e., invariant hyperfunctions whose supports are contained in the set of
points of rank strictly less than n, obtained as negative-order-coefficients of the Laurent
expansions of the complex powers.

1. Introduction.

In the preceding paper [6], the author has determined the exact orders
of pole of the complex power of the determinant function on the n x n real
symmetric matrix space V :=Sym,(R) and the exact supports of the Laurent
expansion coefficients. In this paper we shall deal with the same problem on
two similar vector spaces—the space of complex and quaternion Hermitian
matrices.

For a given homogeneous polynomial P(x) on the vector space V, we can
define the hyperfunctions as a complex power of P(x) by

P(x)°, if xeV;,

|Hﬂﬁ:{o ifxé v,

with s € C where V;’s are connected components of the set V — {P(x)=0}.
Each |P(x)|; is well defined as a continuous function on ¥ when the real part of
s € C 1is sufficiently large and meromorphically continued to the whole complex
plane. The locations of poles are described by the b-function of P(x) and
the possible orders of pole are calculated by the roots of the b-function. But
the order of pole of the linear combination ) a;|P(x)|; is fully depend on the
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coefficients a; and it is not determined only by the b-function. It is rather easy
to verify that the support of the Laurent expansion coefficients of |P(x)|; is
contained in the set {P(x) = 0} if the degree of the coefficient is negative. But
the exact determination of the support seems to be not so easy.

The purpose of this paper is to give the complete answer of these problems
when P(x) is the determinant function on the space of complex or quaternion
Hermitian matrix space. First, we give the exact order of the poles of the linear
combination of the complex powers of the determinant function on the space of
complex and quaternion Hermitian matrices and we determine the
exact supports of hyperfunctions appearing as Laurent expansion coefficients of
the complex power of the relative invariant (Theorem 4.3).

The method of the proof is similar to the case of the symmetric matrix
space—the microlocal method. We only give the outline of the proof because it
is easily constructed from the proof of that in the case of the symmetric matrix
space. However, the results are different from those in the case of symmetric
matrices. The reason for the obvious difference seems to be a consequence of
the difference of the structure of the roots of h-functions. Namely, we can find
half integers in the roots of b-function of the determinant of real symmetric
matrix, but the roots of b-functions of the determinants of complex or quaternion
matrix are all integers.

We list here some related works on this topic. Similar results has been
obtained by Blind [T] and [2] by a functional analytic method. Rais [7] treated
invariant distributions from his original view point. Ricci and Stein con-
sidered the invariant distributions on the complex Hermitian matrix space. Sato-
Shintani [9] dealt with the zeta functions associated to the complex Hermitian
matrix space, which is closely related to the hyperfunctions treated here.

2. The Hermitian matrix space over the complex and the quaternion field.

Let V := Her,(C) be the space of n x n Hermitian matrices over the complex
field C, i.e., xe M,(C) such that x = ’X, and let G := GL,(C) be the general
linear group over C. By regarding GL,(C) as a real algebraic group and
considering V¥ = Her,(C) as an n’-dimensional real vector space, GL,(C)
operates algebraically on the real vector space V by

g:x+—g-x-'q, (1)

with x € ¥V and g € G. Here, § means the complex conjugate matrix of g and ‘g
1s the transposition of g. This is a linear representation of G on V.

Let P(x):=det(x). Then P(x) is an irreducible polynomial with real
coefficients on V', and it is relatively invariant under the action of G corre-
sponding to the character |det(g)|%, ie., P(g-x) = |det(g)|*P(x). We put S :=
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{xe V|P(x) =0} and call it the singular set. The complement set V —S§
decomposes into (n+ 1) open G-orbits

Vi:={xeHer,(C)|sgn(x) = (2i,2(n — 1))} (2)

with i =0,1,...,n. Here, sgn(x) for x € Her,(C) stands for the signature of the
quadratic form ¢,(?) := ¥+ x- ¥ on ¥ € C" when we consider ¢.(-) as a quadratic
form on R* ~ C". The map

% g det(g-'g) = |det(g)|? (3)

is a continuous homomorphism from GL,(C) to RZ,. The kernel of y is
denoted by G'! and it is a connected closed subgroup of G. The singular set S
consists of a finite number of G'-orbits. Namely we have

S := U S/ (4)

1
1<i<n,0<j<n—i

where S/ := {x e V|sgn(x) = (2/,2(n — i — j))} is a G'-orbit with sgn(-) defined
as above.

In the same way, by putting V :=Her,(H) to be the space of nxn
Hermitian matrices over the Hamilton’s quaternion field H, and by putting
GL,(H) to be the general linear group over H, we can consider the same
situation. The group G := GL,(H) acts on V in the same manner as (1) where g
means the quaternion conjugate matrix of g. We use the same notations as in
the complex case. Let P(x) :=det(x), put §:={xe V| P(x) =0} and call it the
singular set. Then P(x) is an irreducible polynomial on V, and it is a relatively
invariant polynomial under the action of G corresponding to the character y(g)
.= |det(g)|?, ie., P(g-x)=yx(g9)P(x). The non-singular subset ¥ —S decom-
poses into (n+ 1) open G-orbits

Vi:={x e Her,(H);sgn(x) = (4i,4(n — 1))} (5)

with i =0,1,...,n. Here, sgn(x) for x € Her,(H) stands for the signature of
the quadratic form ¢.(7):= G-x -7 on ¥e H" when we consider ¢.(-) as a
quadratic form on R* ~ H". The continuous homomorphism y from G to RZ,
is defined as in the same way as (3). The kernel of y is denoted by G' and it is
a connected closed subgroup of G = GL,(H). The singular set S consists of a
finite number of G'-orbits. Namely we have (4) where S/ := {x € V|sgn(x) =
(47,4(n—i— j))} is a G'-orbit with sgn(-) defined as above.

ReEMARK 2.1. We give here a definition of the determinant of a quaternion
Hermitian matrix. Let M, (H) be the space of n x n quaternion matrices. Since
the quaternion field H is non-commutative, the determinant of x € M,(H) is not
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defined in the ordinary way. However we can define the determinant for a
quaternion Hermitian matrix and we give the definition here.

Let {1,i,j,k} be a basis of the quaternion field H over R. Here, 1 is the
identity element and

= =k=-1, ij=kjk=iki=]j. (6)

An element z of H is given by z=a+ bi + ¢j + dk with a,b,c,d € R and the
quaternion conjugate of z is given by Z=a — bi — ¢j — dk. In particular, when
c=d=0, z is a complex number.

Note that we can write

z=a+bi+c¢+dk=(a+Dbi)+ (c+di)j=a+pj

with o« =a+bi and f =c+di. Then we can regard H as the algebra C @ Cj.
Consider the algebra homomorphism : from H to M,(C) by

z:z:a+ﬁjH[“’ ﬂ. (7)
_ﬁ7 o
Let X =(z; ;) e Her,(H) be an n xn quaternion Hermitian matrix. By the
homomorphism 7 in (7), X is mapped in My,(C) by

X — (X ) = (=0 4). ®)

Since —/(¢1(X - j)) =1(X - j), we see that 1(X -j) is an alternating matrix. Then
by putting

det(X) =Pf(i(X - j)) 9)
we can define the determinant for the quaternion Hermitian matrix X. Here

Pf(A4) means the Pfaffian of an alternating matrix A. It is easily checked that
det(X) is an irreducible polynomial with real coefficients on Her,(H).

3. The complex powers of the determinant.

Let V be Her,(C) or Her,(H). We define the complex power of the
determinant function for a complex number se C by
|P(x)]* if xeV,,

Pl =

and consider a linear combination of |P(x)|;

P@sl(x) = zn:a,-|P(x)|f, (11)
i=0



Singular invariant hyperfunctions 593

with s € C and an n+ l-dimensional vector d := (ag,ay,...,a,) € cl,

Let (V) be the Schwartz’s space of rapidly decreasing functions on V
and let % (V)" be the space of tempered distributions on V. For a function
f(x) e Z(V), the integral

JPW’ (x) f(x) dx (12)

is absolutely convergent for a complex number s with sufficiently large real part.
Then (12) is holomorphic with respect to s € C if the real part R(s) is sufficiently
large and

Fx) — me (x)(x) dx (13)

defines a tempered distribution on ¥ with a holomorphic parameter se C.
From the general theory of b-functions of prehomogeneous vector spaces, (12) is
meromorphically extended to the whole complex plane with respect to s. Then
(13) is defined for all se C as a tempered distribution with a meromorphic
parameter 5. Since the space of tempered distributions .#(V)" on V is naturally
embedded into the space of hyperfunctions %(¥) on V, P(x) is well defined as
a hyperfunction with a meromorphic parameter s € C.

Let / be a fixed complex number. If Pl%(x) does not have pole at s = 4,
Pl4(x) is well defined and

P (g - x) = 7(g) %7 (x)
for all g€ G. Hence P%%(x) is invariant under the action of G'. The support

of P%/(x) is given by

Sup(PPx)= ) T
ie{ieZ|a; #0}

If Pl%(x) has pole at s = A, then PI%(x) does not have a meaning itself.
But the Laurent expansion coefficients of Pl%9(x) at s= 1 are G'-invariant
hyperfunctions on V. Let

S P (s - 2)

jeZ
be the Laurent expansion of Pl%%(x) at s=A. Then we have
Supp(P}""(x) < S

if j < 0. In this way, we see that all the Laurent expansion coefficients of PI%(x)
of negative degree are G'-invariant and their supports are contained in S.
We call them singular invariant hyperfunctions.
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Conversely, we have the following proposition.

ProrosiTION 3.1 ([4], [S]). Any singular invariant hyperfunction on V is given
as a linear combination of some negative-order coefficients of Laurent expansions of
PYsl(x) at various poles and for some de C™.

Proor. The prehomogeneous vector spaces
(G, V) := (GL4(C), Her,(C))
and
(G, V) = (GL,(H), Her,(H))

satisfy the sufficient conditions stated in [4] and [5]. One is the finite-orbit
condition and the other is that the dimension of the space of relatively invariant
hyperfunctions coincides with the number of open orbits. Then we have the
result. ]

4. Main results.

The order of P%*(x) fully depends on the vector @. In fact, even if Pl (x)
has a possible pole at s = A, we can take @ so that P\%*(x) is holomorphic at
s = A.  On the other hand, by taking another d, we can make the order of pole
of Pl%(x) at s= ] to be the possibly highest order. We have seen that the
support of the Laurent expansion coefficients of Pl%*(x) of negative degree is
contained S. But the exact support may be a proper subset of §. The exact
determination of the support is not deduced from the general theory. The
purpose of this paper is to give a complete answer to these problems.

We give some definitions to state the main results of this paper. We define
the coefficient vectors d*[s;] in the same way as the case of symmetric matrix
space in the following. d®[so] is an n — k + l-tuple of linear forms on C™'!
given by

d9[so] := (dP[s0), dV[s0), ..., d™, so]) € (€Y 7)mRH

with k =0,1,...,n, where (C"™)" means the dual vector space of C"*'. Each
element of d[s)] is a linear form on @ € C"*!, i.e., a linear map from C to C"*!,

dVs) s €™ 53— (dPso), @y € C.
We denote
@Yso], > = (< o), @, <P su], @, ., <A ], @) € €7,

DEFINITION 4.1 (Coefficient vectors d¥)[so]). We define the coefficient vectors
d® [s)] (k=10,1,...,n) by induction on k in the following way. First, we set
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dOso] := (d 0], d\” [so]s - - -, d[s0])

such that <di(0) [so],d) :=a; for i=0,1,...,n. Next, by induction on k, we define
all the coefficient vectors d') [so] for k=0,1,...,n by

d(k) [so] = (d(()k) [So],dl(k) [SO], . 7d;5]i)k [SO]) c ((Cn+1)*)n—k+l7

with @ [so] := d* V]so] + (—1)" ' d] Vo).

The following proposition is trivial by the definition.

PropOSITION 4.1. Let sy be an integer. For an integer i in 0 <i<n-—2
and de C™, if <d(’)[s0],fi>:0, then <d(’+1)[so],c'i>:O. In other words, if
d"Vsol,ay # 0, then <d"[so), @ + 0.

Using the above mentioned vectors d®[s)], we can determine the exact
orders of P%(x) at poles in the following theorem.

TueoREM 4.2.  The exact order of the poles of P%%(x) is computed by the
following algorithm.
1. (In the complex case.) The exact order P%¥(x) at s = —m (m=1,2,...)
is computed by the following algorithm.
(a) If 1 <m <n, then P4 (x) has a possible pole of order less than m.
Plasl(x) is holomorphic if and only if <d"V[—m],a) = 0.
For integers p in 1 < p < m, then P@(x) has pole of order p if
and only if <dP*V[—m],@> =0 and {d'P)[-m],a@y +# 0.
Plasl(x) has pole of order m if and only if {d"[—m],@) # 0.
(b) If m > n, then P@(x) has a possible pole of order less than n.
P@3l(x) is holomorphic if and only if {d"V[—m],a) = 0.
For zntegers pinl<p<n, P@l(x ) has pole of order p if and
only if <dPV[—m),@> =0 and <d'P[-m],a) +# 0.
P@3l(x) has pole of order n if and only if {d"[—m],a@) # 0.
2. (In the quaternion case.) The exact order P%(x) at s=-m
(m=1,2,...) is computed by the following algorithm.
(@) If1<m g 2n —1, then P%3(x) has a possible pole of order less
than |(m+1)/2].
« Psl(x) is holomorphic if and only if <d )[=m],d@) = 0.
For integers p in 1 <p < |(m+1)/2|, P%(x) has pole of order
p if and only if {(dP™V[—m],a@y =0 and d'P) [—m],a@y # 0.
PASl(x) has pole of order |(m+1)/2] if and only if
(dLm1)/2)) [—m], @) # 0.
(b) If m > 2n, then P%(x) has a possible pole of order less than n.
PlEsl(x) is holomorphic if and only if <d"V[—m],a) = 0.
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For integers p in 1 <p < n, P%(x) has pole of order p if and
only if <d(p+1)[—m],2i> =0 and {d'? [—m],a) # 0.
Plasl(x) has pole of order n if and only if {d™[—m],a@) # 0.

Next we consider the exact support of the Laurent expansion coefficients of
the complex powers of the relative invariant. Remember that the structures of
the singular orbits given by

ve= || (14)

0<i<n
0<j<n-—i
where we denote Sé =V, It is easily seen that §:=||_,_, S; with S;=
o< j<ni S/.  Each singular orbit is a stratum which not only is a G-orbit but is
a G'-orbit. The strata Sl-j (1 <i<n0<j<n—i) have the closure inclusion
relation

s/ > Slj—:ll SRR (15)

They have the same structure as the case of symmetric matrix space and we use
the same notation here.

The support of a singular invariant hyperfunction is a closed set consisting of
a union of several strata Sij . Since the support is a closed G-invariant subset, we
can express the support of a singular invariant hyperfunction as a closure of a
union of the highest rank strata, which is easily rewritten by a union of singular
orbits. The exact support of the Laurent coefficients of P4 (x) is given by the
following theorem.

THEOREM 4.3 (Support of the singular invariant hyperfunctions). Let m be a
positive integer and suppose that P (x) has pole of order p at s = —m. Let

0

P&I(x) =y P "(x) (s +m) (16)

w=—p

be the Laurent expansion of Plsl(x) at s = —m. The support of the coefficients
P[j”_m] (x) is contained in S if j < 0. Recall that the coefficient vectors

dW[so) = (dyso), [, ., A Iso]) € (€)Y

are defined in Definition 4.1 at s=—-m (m=1,2,...). In both the complex case

and the quaternion case, the support of pam (x) (w=-=1,-2,...,—p) is con-
tained in the closure S_,, and it is given by
Supp(P%~"(x)) = U ST (17)
je{0<j<ntw|d ™ [—ma@y#0}
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5. Outline of the proof of the main results.

The rest of this paper is devoted to give outlines of proof of [Theorem 4.2
and [Theorem 4.3.

We consider invariant hyperfunctions on ¥ under the action of G as
solutions to a holonomic system. Let f(x) be a hyperfunction on V. We say
that f(x) is a y’-invariant hyperfunction if

fp(g)x) = x(9)" f(x), (18)

for all g € G with s € C and y(g) := det(g)z. Then it is a hyperfunction solution
to the following system of linear differential equations .#, obtained by taking
infinitesimal actions of G,

My <<dp(A)x,%> - sé;g(A))u(x) —0 for all 4¢ . (19)

Here, ® 1s the Lie algebra of G; dp is the infinitesimal representation of p; Jy
is the infinitesimal character of y. The system of linear differential equation (19)
1s a regular holonomic system and hence the solution space is finite dimensional.
See for detail [5].

The characteristic subvariety of the holonomic system (19) is denoted by
ch(.Z;). 1t is given by

ch(. ) :={(x,y) e T*V|{dp(A)x,yy =0 for all 4 e G}. (20)

The characteristic variety has the following irreducible component decomposition,

ch(.#y) =) 4, (21)
i=0
with 4; = Tg V where Tg V stands for the conormal bundle of the rank (n —i)-
orbit §;. It is a well known result that the singular support of the hyperfunction
solution to .#; is contained in ch(.Zy).
We define the subset A7 by

A= A=\ 4, (22)
i#]
It is an open-dense subset of A;. The open subset A; consists of several open
connected components, each of which is a G-orbit. Furthermore, 4; is a non-
singular algebraic subvariety and an open dense subset in A;.

4= | 4" (23)

0<j<n—i
0<k<i
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| () 0,
s I . n—i
A"J/k:G((nl o)( Iﬁk)>>' Y

I
Here, I ,(fD = ( 1 I ) and I, is an identity matrix of size p. Each orbit
—lp—q

with

ik .
A" is a connected component in A:.

Hyperfunction solutions u(s, x) to .4 that we consider in this paper are the
linear combinations

u(s,x) = P(x):=> ai- |P(x)]], (25)
i=0
with @ = (ap,ay, ... ,a,) € C""" introduced in (I11). Since P%*(x) is a hyper-

function with a meromorphic parameter s € C, the microfunction sp(P%* (x)) and
its principal symbols o ;«(P%%(x)) depend on se C meromorphically. See [6,
§3.3] for details on principal symbols.

We define the coefficient functions of P%*(x) on the Lagrangian connected
component A/ % as a function of 7 and s in the same way as [6, Proposition 3.3].
Let

0 e (P(x)) = ¢ (@, 5)2]" (5)/ /1], (26)

with cl.j’k(Zi, s) being a meromorphic function in se C. We call c{”‘(a’, s) a
coefficient function or simply a coefficient of P%*(x) on A/ % with respect to the
canonical basis,

Q! (s)//]dx]. (27)

The canonical basis (27) is defined in the same way as [6, Proposition 3.3].  Then
the coefficient functions ¢/ o (d@,s) depend on @e C"™™ linearly and on se C
meromorphically.

Then we have [Proposition 5.1 and |Proposition 5.10.

PropoSITION 5.1.  The following three conditions are equivalent.

1. PlS(x) has pole of order p at s = s.

2. sp(Pls] (X))|u,{1/ﬁ has pole of order p at s=s.

3. All the coefficient functions in {c;j"k(fi, )0<i<n0<j<n-—i
0 < k < i} have pole of order not greater than p at s = sy and at least one
coefficient of them has pole of order p at s =s.

The proof of [Proposition 5.1 can be carried out in the same way as [6,
Proposition 3.7]. Then we have only to compute the orders of pole or the
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supports of Laurent expansion coefficients of the coefficient functions cl-j’k(c_z’, s)
instead of those of Pl%(x). We use the following two relations and in
the proof of the main theorem.

PROPOSITION 5.2.  The coefficient functions on A; and A7,

relations. These relations depend on s € C meromorphically.
1. (the complex case)

have the following

¢ @)
[ ¢l s)
T(s+i+1) lexp(—(n/2)V—1(s+i+1)) exp(+(n/2)vV—1(s+i+1))
V2 |exp(+(n/2)vV—=1(s+i+1)) exp(—(n/2)V—1(s+i+1))
y [ exp(-+(n/2)V/—1(i — 2Kk)) 0
i 0 exp(—(n/2)vV—1(i — 2k))
x _C{H’k(ﬁ"g)] 28
| ) 2
2. (the quaternion case)
{c{;ﬁ“ a.s)
¢l (@ s)
_ I(s+2i—1) |exp(—(n/2)vV—1(s +2i — 1)) exp(+(n/2)vV/—1(s 4+ 2i — 1))
V21 exp(+(n/2)vV—1(s +2i — 1)) exp(—(n/2)vV/—1(s+2i — 1))
| exp(eyv/=T( - 26)) 0
I 0 exp(—nv/—1(i — 2k))
y j+1 k( S) "
a5 )

Proor. See [3, Theorem 2.13]. The above relations are the cases of
Her,(C) and Her,(H). O

By the relation formulas in Proposition 5.2, we have the following three
propositions in the complex (resp. quaternion) case.

PropoSITION 5.3. Let so:=—-m (m=1,2,...). For a fixed integer p sat-
isfying 0 <p <min{m,n} (resp. 0<p <min{(m+1)/2,n}), we suppose that
<d(”)[s0],c_i> #0. Then czl"(c_i,s) has pole of order q for ¢ =0,1,....p at s = sy.
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PropoOSITION 5.4.  Under the same condition of Proposition 5.3, c;’?am) =
(nzc), x dD[sol,@> for q=0,1,....p where (nzc), is a non-zero constant
depending on q.

PrOPOSITION 5.5. Let so:=—-m (m=1,2,...). For a fixed integer p sat-
isfying 0 <p <min{m,n} (resp. 0<p <min{(m+1)/2,n}), we suppose that
(dP V) s],@> = 0. Then ¢;*(d,s) has pole of order at most p for q=p,p+1,...
at s = s.

Then we have the following proposition.

ProrosiTiON 5.6 (Exact orders of coefficient functions). Let sy:= —m
(m=1,2,...). The order of the pole of the coefficient function ¢;*(d,s) at s = 5o
has the following property. There exists an integer p in 0 <p < min{m,n}
(resp. 0 <p <min{(m+ 1)/2,n}) such that the orders of the pole at s =sy of
c;"(ﬁ, s) coincide with q for q in 0 < q < p and the orders of the pole at s = s
of ¢;*(d,s) do not exceed p for q in p<q<n

Now we can give the proof of Theorem 4.2 in the complex (resp. quaternion)
case. We do not have to prove the converses since if we establish all the
statements, then the converses are automatically true since all the possible cases

are proved. We give here proof of part (a) of MTheorem 4.2

LemMa 5.7 Let sp:=-m (m=1,2,...). If <d(1)[—m],&’>:0, then
P@Sl(x) is holomorphic at s = s.

Proor. By applying [Proposition 5.3 in the case of p = 0, all the coefficients
2*(d,s) (0 <i<mn) are holomorphic at s=sp. Thus, by [Proposition 5.1,
Pl3l(x) is holomorphic at s = . O

c

LemMA 5.8. Let so:=—-m (m=1,2,...). For a fixed integer p satisfying
1 <p <min{m,n} (resp. 0 <p <min{(m+1)/2,n}), if dP*V[-m],ay =0 and
dP[—m),a@> # 0, then P4 (x) has pole of order p at s=s.
P P

Proor. From the conditions <d'? [—m],ay # 0 and <d(p+1)[—m],2i> =0, we
see that all the coefficients ¢;*(d,s) have pole of order at most p, and that the
coefficient c;;'(c'i, s) has pole of order p by applying [Proposition 5.3 and
[Proposition 5.5, Then all the coefficients ¢;**(d,s) (0 <i < n) have pole of order

at most p, and at least one of them has pole of order p. Thus, by
5.1, Pl%(x) has pole of order p at s = s. O

LEmMMA 5.9. Let so:=-m (m=1,2,...) and suppose that m <n (resp.
m < 2n). If <d"[—m),a@y #0 (resp. <d"V/2D[—m) @y #0), then P@3(x) has
pole of order m (resp. |(m+1)/2]) at s=s.
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PrOOF. Since <d(’")[—m],Zi> # 0 (resp. <d(“m+1)/2”[—m],c_i> # 0), we see that
the coefficient ¢*(d,s) (resp. cI(,'n ) (d,s)) has pole of order m by applying
IProposition 5.3 for the case p =m. On the other hand, all the coefficients of
Pls(x) have pole of order at most m since we are considering the poles at
s =—m with m <n (resp. m < 2n) by the theory of b-functions. Then all the
coefficients ¢;*(d,s) (0 <i < n) have pole of order at most m (resp. |(m + 1)/2]),
and at least one of them has pole of order m (resp. |(m+1)/2]). Thus, by
[Proposition 5.1, P%*(x) has pole of order m (resp. |(m+1)/2]) at s=sp. []

By [Lemma 5.7, Lemma 5.8 and Lemma 5.9, we have part (a) of Theoreml
4.2 in the complex (resp. quaternion) case. The proof of part (b) is almost the
same, so we omit them.

Next we go to the proof of Theorem 4.3.

PROPOSITION 5.10.  Suppose that P%*/(x) has pole of order p at s =s,. We
give the Laurent expansion of P®9(x) at s =sy by

Pl Z P (x) (s — 50" (30)

w=—p

Then we have

Supp (P} (x)) = U s/ (31)
cl:." (d@,

s) has pole of
(i,j)€Z*| order > —w for some k

in0<k<iat s=s

The proof of [Proposition 5.10 can be carried out in the same way as 6,
Proposition 3.8]. By |Proposition 5.10| and the argument in [6, §6], we can prove
Theorem 4.3.
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