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Abstract. In this paper, the blow-up of solutions of ordinary di¨erential equations,

which are deduced from the equation of equivariant harmonic maps, is studied. Its

direct consequence is the non-existence or existence result of equivariant harmonic maps

between warped product manifolds. As another application we prove the non-existence

of a harmonic map from an Euclidean space to a Hadamard manifold with a certain

nondegeneracy condition at in®nity, provided sectional curvatures of the Hadamard

manifold are bounded from above by a slowly decaying negative function of the distance

from a ®xed point.

1. Introduction.

Let R� �g S
mÿ1 be a warped product manifold �R�; dt

2� � �Smÿ1
; dy2�

equipped with the metric dt2 � g�t�2 dy2. R
m and H

m are typical examples of

such manifolds:

R
m � R� �f S

mÿ1 where f �t� � t;

H
m � R� �h S

mÿ1 where h�r� � sinh r:

We call a map U : M � �0;T� �f S
mÿ1 ! N � R� �h S

nÿ1 equivariant if it can

be written as

U�t; y� � �r�t�; j�y�� A R� �h S
nÿ1

for some function r : �0;T� ! R� and a map j : Smÿ1 ! S nÿ1. An equivariant

map U � �r; j� is harmonic if and only if j is a harmonic map with the constant

energy density e�j� as a map from Smÿ1 to S nÿ1 and r is a solution to
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�r�
�mÿ 1� _f �t�

f �t�
_rÿ

m
2h�r�h 0�r�

f 2�t�
� 0;�1:1�

r�0� � 0;

with m �
�����������

2e�j�
p

. Here _ and 0 mean d=dt and d=dr respectively. h�r� is a

nonnegative function behaving like r near r � 0 (for precise statement see §2).

The existence of such j, called the eigenmap, is shown by Ueno [15] for some

pairs of m and n. The equations like (1.1) were treated in [7 ], [12], [10] in the

context of rotationally symmetric harmonic maps. Moreover, as mentioned in

[17 ], in order to consider equivariant harmonic maps between complex manifolds,

it is necessary to treat a more general equation

�r�t� � p
_f1�t�

f1�t�
� q

_f2�t�

f2�t�

 !

_r�t��1:2�

ÿ m
2 h1�r�t��h

0
1�r�t��

f 21 �t�
� n

2 h2�r�t��h
0
2�r�t��

f 22 �t�

� �

� 0

for t > 0 with the initial condition

r�0� � 0:�1:3�

The above problem was considered by several authors in [17 ], [16], [9]. In

particular Nagasawa-Ueno [9] investigated the equation (1.2) under the condition

�

y 1

f1�t�
�

1

f2�t�

� �

dt < y:�1:4�

In this paper we supply the case

�

y

������������������������������

m2

f1�t�
2
�

n2

f2�t�
2

s

dt � y;�1:5�

which has not been considered in [9] yet. Such a case includes the one that the

source manifold is R
m. Let

h�r� �
maxfh1�r�; h2�r�g if n0 0;

h1�r� if n � 0:

�

Then, under the condition (1.5), we shall show that if h satis®es

�

y dr

h�r�
< y;

then the solutions r�t� blows up in ®nite t � T except zero solution. Moreover
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for given T > 0, there uniquely exists the solution r�t� which blows up at t � T

(Theorem 3.1). In contrast with the above case, if h satis®es

�

y dr

h�r�
� y;

then all solutions are global solutions which tend to in®nity as t ! y except zero

solution (Theorem 3.2). As a direct application of these theorems we can show

the non-existence or existence of equivariant harmonic maps between warped

product manifolds (Corollaries 3.1, 3.2).

As a further application of the analysis on the equation (1.2), using the blow-

up (super-)solutions of (1.2), we can also deduce non-existence results for entire

harmonic maps between Hadamard manifolds under some conditions on the

curvatures and a kind of nondegeneracy condition. For example, in [13],

Tachikawa proved that if N is a Hadamard n-manifold whose sectional cur-

vatures are bounded from above by a negative constant, then there exists no

entire harmonic map U : R
m ! N whose expression u with respect to a normal

coordinate system centered at U�0� satis®es

X

n

i�1

X

m

a�1

Da

u i

juj

� �2

V
e

jxj2
for all x A R

m�1:6�

for some constant e > 0. Here j � j denotes the standard Euclidean norms. Let

us call such a condition the rotationally nondegeneracy condition (for its etymology

see Remark 4.1). Note that equivariant harmonic maps satisfy (1.6). In [14],

the above result was extended for the case that the source manifold is a simple

manifold M with a pole p0, under the condition

ÿr2 minfkM�p�; 0gU const: as r � dist�p0; p� ! y;�1:7�

where kM� p� is the minimum of the sectional curvature of M at p. Here, a

Riemannian manifold is said to be simple if it is di¨eomorphic to the Euclidean

m-space R
m and furnished with a metric for which associated Laplace-Beltrami

operator is uniformly elliptic, and p0 A M is said to be a pole of M if the

exponential map at p0 A M gives a di¨eomorphism between M and the Euclidean

space. The non-existence results of this type can be found in [10] also.

Moreover, in [2], Akutagawa-Tachikawa showed non-existence of harmonic

maps satisfying the rotationally nondegeneracy condition (1.6) at in®nity.

Note that in the results mentioned above it is assumed that the sectional

curvature of the target manifold N bounded from above by a negative constant.

Theorem 3.1 enables us to treat more general cases of target manifold N

(Theorem 4.1).
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2. A comparison theorem.

In the following we are always assuming the condition (1.5) on f1 and

f2. From geometrical point of view, we impose the following condition. The

constants p and q are related to the dimension of source manifold. Hence they

are originally positive integers, but we do not necessarily assume that. They are

always assumed

pV 1 and qV 1;

or

p� qV 1 provided f1�t�1 cf2�t� for some constant c > 0:

8

<

:

�2:1�

The functions fi and hj are warping functions, which are smooth functions de®ned

on �0;y� satisfying

fi�t� > 0 for t > 0;�2:2�

_fi�t�V 0 for tV 0;�2:3�

fi�t� � ait�O�t3� as t # 0 for some ai > 0;�2:4�

1U pt
_f1�t�

f1�t�
� qt

_f2�t�

f2�t�
for tV 0;�2:5�

�hih
0
i �

0�r�V 0 for rV 0;�2:6�

hj�r� � bjr�O�r3� as r # 0 for some bj > 0:�2:7�

If m� n � 0, then r�t�1 0 is unique solution to (1.2), (1.3) under the above

conditions. Therefore without loss of generality we may assume

m > 0:�2:8�

In this section we show a comparison theorem for two solutions to (1.2).

Theorem 2.1. We assume (2.1)±(2.8). Let r1 and r2 be two solutions to

(1.2) on some interval �a; b�. If

lim
t#a

f1�t�
p
f2�t�

q�r1�t� ÿ r2�t��� _r1�t� ÿ _r2�t��V 0;

then it holds that

�r1�t� ÿ r2�t��
2
V �r1�a� ÿ r2�a��

2
for t A �a; b�:
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Proof. We denote r1 ÿ r2 by R, which satis®es

�R� p
_f1
f1
� q

_f2
f2

 !

_R

�
m
2

f 2
1

�h1�r1�h
0
1�r1� ÿ h1�r2�h

0
1�r2�� �

n
2

f 22
�h2�r1�h

0
2�r1� ÿ h2�r2�h

0
2�r2��:

We multiply both sides by f
p
1 f

q
2 R. It follows from (2.6) that

f
p
1 f

q
2 R� the right-hand sideV 0:

Therefore we obtain

d

dt
� f p

1 f
q
2 R

_R� ÿ f
p
1 f

q
2
_R2

V 0;

in particular

d

dt
� f p

1 f
q
2 R

_R�V 0:

By the assumption we get

f
p
1 f

q
2 R

_RV 0 for t A �a; b�:

We obtain from (2.2) that

d

dt
�R2�V 0 for t A �a; b�;

and

R�t�2 VR�a�2 for t A �a; b�: r

3. Structure of solutions.

We de®ne h�r� by

h�r� �
maxfh1�r�; h2�r�g if n0 0;

h1�r� if n � 0:

�

Proposition 3.1. We assume (2.1)±(2.8) and

�

y dr

h�r�
< y:�3:1�

Then there exists a solution to (1.2), (1.3) blowing up at t � T < y.
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Proof. We take t0 > 0 and ®xed. Let r be a solution to (1.2), (1.3) with

r�t0� � r0 > 0, which uniquely exists (see [16]). Put r 0�t0� � b�t0; r0�, and

f�r0; t0� �

�

y

r0

fb�r0; t0�
2�g1�t0�

2�h1�r�
2ÿh1�r0�

2��g2�t0�
2�h2�r�

2ÿh2�r0�
2�gÿ1=2

dr;

where

g1�t0� �
m

f1�t0�
; g2�t0� �

n

f2�t0�
:

We have already shown that f�r0; t0� is well-de®ned, and

f�r0; t0�V f1�t0�
p
f2�t0�

q

�T

t0

dt

f1�t�
p
f2�t�

q �16; Lemma 3:5�;�3:2�

lim
r0!y

f�r0; t0� � 0 �9; Lemma 4:1�:�3:3�

Here �0;T� is a life span of r. By (3.3) �r0; t0� satis®es

f�r0; t0� < f1�t0�
p
f2�t0�

q

�

y

t0

dt

f1�t�
p
f2�t�

q

for su½ciently large r0, and the life span must be a ®nite interval by (3.2). r

Theorem 3.1. We assume (2.1)±(2.8) and (3.1). Then the following facts

hold.

1. All solutions to (1.2), (1.3) blow up in ®nite time except zero solution.

2. For any T A �0;y� there exists a solution to (1.2), (1.3) which blows up at

t � T .

Proof. For a positive number l > 0 put

fi�l
ÿ1t� � Fi;l�t�:

We consider the problem

�~r�t� � p
_F1;l�t�

F1;l�t�
� q

_F2;l�t�

F2;l�t�

� �

_~r�t�

ÿ
1

l2
m2 h1�~r�t��h

0
1�~r�t��

F1;l�t�
2

� n2
h2�~r�t��h

0
2�~r�t��

F2;l�t�
2

 !

� 0;

~r�0� � 0:

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

�3:4�
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Since Fi;l satis®es (2.2)±(2.5), there exists a solution ~r to (3.4) which blows up at

®nite T by Proposition 3.1. Put ~rl�t� � ~r�lt�. Then (3.4) reduces to

�~rl�t� � p
_f1�t�

f1�t�
� q

_f2�t�

f2�t�

 !

_~rl�t�

ÿ m2 h1�~rl�t��h
0
1�~rl�t��

f1�t�
2

� n2
h2�~rl�t��h

0
2�~rl�t��

f2�t�
2

 !

� 0;

~rl�0� � 0:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

The life span of ~rl is �0; lÿ1T�. Let r be a non-trivial solution to (1.2), (1.3) with

r�t0� � r0. If l > 0 is su½ciently small, then

t0 < lÿ1T ; r�t0� � r0 > ~r�lt0� � ~rl�t0�;

_r�t0� > l
d~r

dt

�

�

�

�

t�lt0

� _~rl�t0�:

Here we use ~r�0� � 0 and the fact

_~r�lt0� � o
1

lt0

� �

which is reduced from [16, Theorem 2.1]. Theorem 2.1 yields

�r�t� ÿ ~rl�t��
2
V �r�t0� ÿ ~rl�t0��

2
> 0

for t > t0. Since both r and ~rl are continuous, we have

r�t� > ~rl�t� for t > t0:

Therefore the life span of r is shorter than that of ~rl.

Since we have already obtained the assertion (1), the proof of (2) is in the

same way as the argument in [9, §4]. r

Corollary 3.1. Let mV 2, nV 2, and M � R� �f S
mÿ1, N � R� �h S

nÿ1

be warped product manifolds with warping functions f and h. Assume that f and h

satisfy (2.2)±(2.7) and

�

y dt

f �t�
� y;

�

y dr

h�r�
< y:

Then the following facts hold.

1. There do not exist equivariant harmonic maps from M to N except

constant maps.
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2. We assume that the eigenmap j : Smÿ1 ! S nÿ1 exists for the pair �m; n�.

Then the domain of equivariant harmonic maps is controllable in

the following sense. Let BT � �0;T� �f S
mÿ1

HM. There exists an

equivariant harmonic map from BT onto N which is unique among

equivariant harmonic maps up to the eigenmap.

� f �t�; h�r�� � �t; sinh r� is a typical example of Corollary 3.1, which corre-

sponds to M � R
m and N � H

n.

Next we assume
�

y
�dr=h�r�� � y.

Proposition 3.2. We assume (2.1)±(2.8) and

�

y dr

h�r�
� y:�3:5�

Then there exist no solution to (1.2), (1.3) which blows up at t � T < y.

Proof. We know the inequality

� r�t�

r0

dr

h�r�
U

� t

t0

�������������������������������

m2

f1�t�
2
�

n2

f2�t�
2

s

dt on tV t0

for a solution r to (1.2), (1.3) with r�t0� � r0 > 0 ([9, Lemma 2.3¨ ]). If r blows

up at T < y, then letting t " T in the inequality, we have

y �

�

y

r0

dr

h�r�
U

�T

t0

�������������������������������

m2

f1�t�
2
�

n2

f2�t�
2

s

dt < y:

This is contradiction. r

Theorem 3.2. We assume (2.1)±(2.8) and (3.5). Then all solutions to (1.2),

(1.3) are global solutions, and their limit value as t ! y are in®nite except zero

solution.

Proof. It follows from [16, Lemma 3.1] that all solutions are non-

decreasing. By Proposition 3.2 it is enough to show that there exists no global

solution whose limit value as t ! y is ®nite except zero solution. Let r be a

global solution satisfying

r�t0� � r0 > 0; lim
t!y

r�t� � l A �0;y�:
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Put smooth functions ~hi�r� satisfying (2.6) and

~hi�r� � hi�r� for rU 3l;

~hi�r� > hi�r� for r > 3l;

�

y dr

~h�r�
< y:

Here ~h�r� is

~h�r� �
maxf~h1�r�; ~h2�r�g if n0 0,
~h1�r� if n � 0.

�

Consider the problem

�r�t� � p
_f1�t�

f1�t�
� q

_f2�t�

f2�t�

 !

_r�t�

ÿ m
2
~h1�r�t��~h

0
1�r�t��

f1�t�
2

� n
2
~h2�r�t��~h

0
2�r�t��

f2�t�
2

 !

� 0;

~r�0� � 0; ~r�t0� � r0 > 0:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

By Theorem 2.1 it holds that r�t� � ~r�t� as long as ~r�t�U 3l. Theorem 3.1 yields

the existence of t1 such that

~r�t1� � 2l:

Since r is strictly increasing [16, Lemma 3.1], we get contradiction

l � lim
t!y

r�t� > r�t1� � ~r�t1� � 2l: r

Corollary 3.2. Let mV 2, nV 2, and M � R� �f S
mÿ1, N � R� �h S

nÿ1

be warped product manifolds with warping functions f and h. Assume that f and h

satisfy (2.2)±(2.7) and

�

y dt

f �t�
� y;

�

y dr

h�r�
� y:

We also assume that the eigenmap j : Smÿ1 ! S nÿ1 exists for the pair �m; n�.

Then there exist equivariant harmonic maps from M to N. Moreover if j is an

onto map, then the map U � �r; j� is also an onto map unless r is constant.

When fi�t� � t, the following structure holds regardless of ®niteness or

in®niteness of
�

y
�dr=h�r��.
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Theorem 3.3. The set of all solutions to (1.2), (1.3) is a one parameter family

frl�t� � r�lt�glV0.

Proof. It is easy to see rl�t� is a solution if so is r�t�. The assertion yields

from the uniqueness theorem by Ueno [16, Corollary 3.4]. r

4. Harmonic maps from R
m to Hadamard manifolds.

In this section we generalize Corollary 3.1 in some aspect. That is, we

prove non-existence of a harmonic map with a rotational nondegeneracy at

in®nity, from R
m to an Hadamard manifold N whose sectional curvature K�p�

at p A N possibly tends to 0 as �dist� p0; p��
ÿ2 for some ®xed point p0 A N. A

Riemannian manifold N is said to be an Hadamard manifold if it is a complete

simply connected Riemannian manifold with nonpositive sectional curvature.

Recently, existence and non-existence of harmonic maps from complete non-

compact manifolds to Hadamard manifolds are studied by several authors.

About ``existence'' see, for example, [1], [3], [8].

In the following �� ; �� and j � j stand for the standard Euclidean inner product

and norm respectively. For a Riemannian manifold N � �N n; g�, �� ; ��g� p� stands

for the inner product on the tangent space TpN with respect to the metric g and

kXkg� p� �
���������������������

�X ;X�g� p�

q

. If N has a pole p0, let s�p0; p��t� be the geodesic curve

such that s�p0; p��0� � p0 and s�p0; p��1� � p. Let kN�p; p� be the sectional

curvature of N at p with respect to the plane section p and Krad;N�p; p0� the

maximum of the radial curvature of N at p, i.e.

K rad;N�p; p0� � maxfkN�p; p� j p C s 0� p0; p��1�g:�4:1�

Moreover, using a normal coordinate system de®ned by the exponential map at

the pole p0, we de®ne lN�p; p0� by

lN�p; p0� � inf
kxk2g� p�

jxj2

�

�

�

�

�

x A R
n with �x; s 0�p0; p��1��g�p� � 0

( )

:�4:2�

Now, we can state our main result of this section.

Theorem 4.1. Let N � �N n; g� be a Hadamard n-manifold. For some ®xed

point p0 A N, assume that

lim inf
dist� p0;p�!y

fdist�p0; p�g
2jK rad;N�p; p0�j > 0:�4:3�

Then there exists no harmonic map U : R
m ! N which satis®es the following

condition.
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lim inf
jxj!y

jxj2
1

r2lN�U�x�; p0�

� �

�e�U��x� ÿ e�r��x��

� �

> 0;�4:4�

where

r�x� � dist�U�x�; p0�;

and

e�U��x� �
1

2

X

m

a�1

kDaU�x�k2g�U�x��; e�r��x� �
1

2

X

m

a�1

jDar�x�j
2
:

Remark 4.1. Let u�x� be an expression of U with respect to a normal

coordinate system on N centered at p0. Then the condition (4.4) can be written

as

lim inf
jxj!y

jxj2
X

n

i�1

X

m

a�1

Da

u i�x�

ju�x�j

� �2

> 0:�4:5�

Compare (4.5) with (1.6). Moreover, for the case that M � R� �f S
mÿ1 and

N � R� �h S
nÿ1, the condition (4.4) can be replaced by a simpler condition: If

we write a map U : M � R� �f S
mÿ1 ! N � R� �h S

nÿ1 as

U�t; y� � �r�t; y�; j�t; y�� A R� �h S
nÿ1

;

then the condition

lim inf
t!y

kDyj�t; y�k > 0

implies (4.4).

Remark 4.2. As mentioned in Section 1, in the former non-existence results

of [2], [13], [14], it is assumed that the sectional curvature of the target manifold

N bounded from above by a negative constant. In Theorem 4.1, we prove a

similar non-existence result as in [2] for the case that the target manifold N has

sectional curvatures possibly decaying at in®nity, using Theorem 3.1.

Before we give the proof of Theorem 4.1, we prepare some di¨erential

geometric estimates which are based on [6, Lemma 6].

Lemma 4.1. Let N be a Riemannian n-manifold with a pole p0, �y
1; . . . ; yn� a

normal coordinate system centered at p0, �gij�y�� the metric tensor with respect to

the normal coordinate system. Let r be a function of class C 2�R�;R�� which

satis®es

lim
t!0

r�t�

t
� 1; r�t� > 0 for any t A �0;y�:�4:6�
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Assume that

Krad;N�y; 0�Uÿ
r 00�t�

r�t�
;�4:7�

where t � jyj. Then we have the following estimates

gij�y��X
iX j � ykG i

kl�y�X
jX l�V jzj2 � t

r 0�t�

r�t�
gij�y�x

ix j
;�4:8�

gij�y�X
iX j

V jzj2 �
r2�t�

t2
jxj2;�4:9�

for all y, X A R
n, where z � tÿ2�X ; y�y and x � X ÿ z.

Proof. We can proceed as in the proof of [13, Lemma 1], [14, Lemmas 2.1,

2.2] or [2, Lemma 2.1], because we can apply Rauch's comparison theorem under

the assumption (4.7) on the radial curvatures only. r

Lemma 4.2. Let N be as in Theorem 4.1. Then there exists a positive

constant k, c0, c1 > 0 and a > 1 such that for

rk�t� �

1

k
sinh kt for 0 < tU 1

c0 � c1t
a for tV 1

8

<

:

the following estimates hold:

gij�y��X
iX j � ykG

j
klX

lX j�V jzj2 � jyj
r 0
k�jyj�

rk�jyj�
gij�y�x

ix j
;�4:10�

gij�y�X
iX j

V jzj2 �
r2k�jyj�

jyj2
jxj2�4:11�

for all y and X A R
n, where t � jyj, z � tÿ2�X ; y�y and x � X ÿ z.

Proof. Since N has negative sectional curvature and satis®es (4.3), there

exists a constant k > 0 such that

�4:12�

ÿk2
VmaxfsupfKrad;N�y; 0�jy A N; jyjU 1g; supfjyj2Krad;N�y; 0�jy A N; jyjV 1gg:

For a positive constant k, put jk�t� � c0 � c1t
a, and choose the positive constants

c0, c1 and a so that

jk�1� �
1

k
sinh k; j 0

k�1� � cosh k; j 00
k �1� � k sinh k:�4:13�
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Then we have

a � ak �
k sinh k � cosh k

cosh k
> 1; & 1 as k # 0;

c1 �
cosh2 k

k sinh k � cosh k
; c0 �

ÿk � sinh k cosh k

k�k sinh k � cosh k�
:

8

>

>

>

<

>

>

>

:

�4:14�

Moreover it is easy to see that

ÿt2
j 00
k �t�

jk�t�

� �0

U 0:�4:15�

Now put

rk�t� �
1

k
sinh kt for 0U tU 1;

jk�t� for tV 1:

8

<

:

Then, by (4.13) rk is of class C 2. By direct calculations, we can see that rk�t�

satis®es (4.6) and that

ÿ
r 00
k �t�

rk�t�
� ÿk2 for 0U tU 1:�4:16�

Moreover, noting (4.15) and (4.14), we obtain

inf
t>1

ÿt2
r 00
k �t�

rk�t�

� �

� lim
t!y

ÿt2
r 00
k �t�

rk�t�

� �

� ÿa�aÿ 1� % 0 as k # 0:�4:17�

Now, by (4.12), (4.16) and (4.17), if we take k > 0 su½ciently small, we get

Krad;N�y; 0�Uÿ
r 00
k �jyj�

rk�jyj�
:

Thus (4.7) is also ful®lled by r � rk. Now, we can apply Lemma 4.1 with r � rk
and get (4.10). r

Let u � �u1�x�; . . . ; un�x�� be the expression of a harmonic map U : R
m ! N

in terms of a normal coordinate system centered at any ®xed point q0 in N.

Then u satis®es the following equation of weak form

�

R
m

X

m

a�1

gij�Dau
iDaj

j � jkG i
klDau

lDau
j� dx � 0�4:18�

for all j A Cy
0 �Rm

;R
n�.
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Proposition 4.1. Let N be as in Theorem 4.1, rk be the function de®ned in

Lemma 4.2 and u be the expression of a harmonic map U : R
m ! N with respect

to a normal coordinate system on N centered at an arbitrary ®xed point q0 A N.

Then we have the following di¨erential inequality

Djuj�x� ÿ
2r 0

k�juj�

rk�juj�
fe�u��x� ÿ e�juj��x�gV 0;�4:19�

where e�u� � �1=2�
Pm

a�1 gij�u�Dau
iDau

j and e�juj� � �1=2�
Pm

a�1�Dajuj�
2.

Moreover, if u satis®es (4.4), then we get

Djuj ÿ
e0

jxj2
rkr

0
k�juj�V 0 on R

mnBR0
�0��4:20�

for some e0 > 0 and R0 > 0.

Proof. Replacing kÿ1 sinh�kt� in the proof of [13, Proposition 1], [14,

Proposition 3.1] or [2, Proposition 2.1] by rk�t�, and using Lemma 4.2, we get

the assertion. r

Now we are in a position to prove Theorem 4.1.

Proof of Theorem 4.1. Let u�x� be the expression of a harmonic map U :

R
m ! N with respect a normal coordinate system y � �y1; . . . ; yn� on N centered

at arbitrary ®xed point q0 A N. Take R0 as in Proposition 4.1 and put x �

supBR0
�0�juj. Assume that U is not a constant map. Then juj can not remain

bounded because of a Liouville-type theorem due to [5]. Thus, there exists a

compact set D0 HR
mnBR0

�0� on which jujV x� 1. Let f1�t� � f2�t� � t, h1�r�

� h2�r� � rk�r� of Lemma 4.2 and m2 � n2 � e0 in (1.2) then it is easy to see that

the conditions (2.6), (2.7) and (3.1) are satis®ed. Thus, by Theorem 3.1 and

Theorem 3.3, there exist a one-parameter family of solutions rl�t� to

�r�
�mÿ 1�

t
_rÿ

e0rk�r�r
0
k�r�

t2
� 0;

or equivalently to the equation

Drl�jxj� ÿ
e0

jxj2
rkr

0
k�rl�jxj�� � 0;

which satisfy rl�0� � 0 and blow up at jxj � T=l for some T > 0. Since

rl�0� � 0, we can take l0 > 0 su½ciently small so that D0 HBT=l0�0� and

rl0�jxj� < 1 on D0:�4:21�

Let

c�x� � rl0�jxj� � x;
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then c�x� satis®es

Dc�x� ÿ
e0

t2
rk r

0
k�c�x��U 0 in R

m:

c�x�V x on qBR0
�0� and lim

jxj!T=l
c�x� � y:

Now, using comparison theorem for elliptic equations, we can see that

ju�x�jUc�x� on BT=l�0�nBR0
�0�:

On the other hand (4.21) implies that ju�x�j > c�x� on D0. This is a

contradiction. r
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