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Abstract. Let E be an ample vector bundle on a projective manifold X, with
a section vanishing on a smooth subvariety Z of the expected dimension, and let H
be an ample line bundle on X inducing a very ample ample line bundle HZ on Z.
Triplets (X, E , H) as above are classified assuming that Z, embedded by |HZ |, is a
variety of small degree with respect to codimension.

Introduction.

As is well known, the degree d of any non-degenerate projective variety Z ⊂
P N satisfies the inequality d ≥ codimP N Z +1. Smooth non-degenerate projective
varieties of degree

d ≤ 2 codimP N Z + 1, (1)

have been studied and classified by Ionescu ([7]). Recently, several classification
problems for projective manifolds having a special variety among their hyperplane
sections have been revisited in the setting of ample or very ample vector bundles
([12], [16], [14], [18]). In this paper we are interested in ample vector bundles
admitting a section whose zero locus is a projective manifold of small degree with
respect to codimension in the sense of (1). More precisely, the setting we consider
is as follows.

0.1. Let X be a smooth complex projective variety of dimension n and let
E be an ample vector bundle of rank r ≥ 2 on X such that there exists a section
s ∈ Γ(E ) whose zero locus Z := (s)0 is a smooth subvariety of X of the expected
dimension n− r ≥ 3.
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Next, consider an ample line bundle H on X and suppose that its restriction
HZ to Z is very ample. Then, Z embedded in P N by the complete linear system
|HZ | is a projective manifold of degree d(Z, HZ). We are interested in triplets
(X, E ,H) as above such that d := d(Z, HZ) satisfies (1).

Comparing the pairs (Z, HZ) in our setting with the projective manifolds
studied in [7], the reader will note that we do not consider case dimZ = 2. In
fact we could describe the structure of pairs (X, E ) even in this case by using [17];
however a lack of information concerning H cannot be avoided (see Remark (3.5)).
This is the technical reason why we assume n− r ≥ 3 in (0.1).

The list of triplets (X, E ,H) we are looking for is provided by Theorem (2.1),
which is the main result of this paper. Essentially there are 17 types. Moreover,
all of them do really occur (Remarks (3.1) and (3.3)). Here is a sketch of the
proof. Most of the projective manifolds appearing in Ionescu’s classification are
special varieties in adjunction theory. So, the most appropriate tool to investigate
triplets (X, E ,H) compatible with them is a series of results of Maeda and the
first author [11], [12], [13] on special varieties in adjunction theory occurring as
zero loci of sections of ample vector bundles. In some cases they allow us to infer
the structure of (X, E ,H) from that of (Z, HZ) rather quickly. In other cases,
however, this requires some extra work. In particular, we have to pay attention
to scrolls over a smooth surface. Indeed, to restrict the possible candidates for
(X, E ,H) in this case, we have to analyze whether the scroll structure of (Z, HZ)
can coexist with further possible structures inherited from (X, H). Another sit-
uation requiring special care is that of pairs (Z,HZ) which admit a non-trivial
reduction in the adjunction theoretic sense. To deal with them we first show that
the reduction morphism of (Z, HZ) extends to a birational morphism from X to
a projective manifold X ′ contracting finitely many (−1)-hyperplanes. This gives
rise to a new triplet (X ′,E ′,H ′) defining, in turn, a polarized manifold which is
the minimal reduction of (Z, HZ). Then results from [13] apply to (X ′,E ′,H ′).
However, compatibility results for different adjunction theoretic structures on the
same variety are needed once more. Some of them already exist in the literature;
other ones are developed in Section 1.

Notice that condition (1) for our (Z, HZ) is equivalent to

d(Z, HZ) ≥ 2∆(Z, HZ) + 1, (2)

where ∆(Z, HZ) is the ∆-genus of the polarized manifold (Z, HZ). So, with a little
change of perspective, Theorem (2.1) provides also the classification of triplets
(X, E ,H) where (X, E ) is as in (0.1) and H is simply an ample line bundle on X

such that HZ admits a ladder and condition (2) is satisfied. Actually, under these
assumptions, the very ampleness of HZ , which is a hypothesis in Theorem (2.1),
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turns out to be a consequence of a result of Fujita [5, Theorem 3.5].
Finally we would like to note that this paper can be regarded as a contin-

uation of our previous investigation of projective manifolds of small ∆-genera as
zero loci of sections of ample vector bundles [15]. Actually in terms of ∆-genus,
condition (1) can be rephrased also as ∆(Z,HZ) ≤ codimP N Z (or ∆(Z,HZ) <

(1/2)d(Z,HZ), equivalently). From this point of view our Theorem (2.1) improves
[15, Corollary 5.3] considerably.

1. Background material.

We use the standard notation from algebraic geometry. By a little abuse we
make no distinction between a line bundle and the corresponding invertible sheaf.
Moreover, the tensor products of line bundles are denoted additively. The pullback
i∗E of a vector bundle E on X by an embedding of projective varieties i : Y ↪→ X

is denoted by EY . We denote by KX the canonical bundle of a smooth variety X.
The blow-up of a variety X along a smooth subvariety Y is denoted by BlY (X).

A polarized manifold is a pair (X, L ) consisting of a smooth complex projec-
tive variety X and an ample line bundle L on X. The degree and the ∆-genus
of a polarized manifold (X, L ) are defined as d(X, L ) = L dim X and ∆(X, L ) =
dimX + d(X, L ) − h0(X, L ), respectively. A polarized manifold (X, L ) is said
to be a scroll over a smooth variety W if there exists a surjective morphism
f : X−→W such that (F, LF ) ∼= (P r,OP r (1)) with r = dim X − dimW for any
fiber F of f . This condition is equivalent to saying that (X, L ) ∼= (PW (F ),H(F ))
for some ample vector bundle F on W , where H(F ) is the tautological line bun-
dle on the projective space bundle PW (F ) associated to F . A polarized man-
ifold (X, L ) is said to be a quadric fibration over a smooth curve W if there
exists a surjective morphism f : X−→W and any general fiber F of f is a smooth
quadric hypersurface Qn−1 in P n with n = dimX such that LF

∼= OQn−1(1).
A polarized manifold (X, L ) is said to be a Veronese bundle over a smooth
curve W if there exists a P 2-bundle p : X−→W such that LF

∼= OP 2(2) for
any fiber F of p. A polarized manifold (X, L ) is said to be a del Pezzo manifold
if KX + (dimX − 1)L = OX .

Let (X, L ) be a polarized manifold. An effective divisor E ⊂ X is called a
(−1)-hyperplane if E ∼= P n−1, OE(E) ∼= OP n−1(−1) and LE

∼= OP n−1(1). Some-
times we write EE for OE(E) for shortness. Note that the set of (−1)-hyperplanes
contained in X is finite and, in case dimX ≥ 3, any two (−1)-hyperplanes are
disjoint. Let dimX ≥ 3. We will call a pair (Y, L) the reduction of (X, L ) if
there exists a birational morphism σ : X−→Y which is the contraction of all (−1)-
hyperplanes E1, . . . , Es contained in X and L is the (unique) line bundle on Y

such that L = σ∗L−E1− · · · −Es; in this case L is ample on Y , see for instance
[3, Lemma 5.7]. Let yi = σ(Ei). Recall that there is a bijection between the linear
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system |L | and the sublinear system |L−y1−· · ·−ys| of |L| consisting of elements
passing through y1, . . . , ys. We will need the following

Lemma 1.1. Let (X, L ) be a polarized manifold containing a (−1)-
hyperplane E and let σ : X−→X ′ be the birational morphism onto a smooth pro-
jective variety, contracting E. Let E be an ample vector bundle of rank r ≥ 2 on
X and suppose that EE

∼= OP n−1(1)⊕r. Then there exist an ample line bundle L ′

and an ample vector bundle E ′ of rank r on X ′ such that

L = σ∗L ′ − E and E = σ∗E ′ ⊗ OX(−E).

Proof. Since LE = OE(1) and EE = OE(−1), we have that (L + E)E =
OE . It follows that there exists L ′ ∈ Pic(X ′) such that L + E = σ∗L ′, i.e.
L = σ∗L ′−E. Moreover [3, Lemma 5.7] implies that L ′ is ample. The remaining
part of the statement comes from [12, Lemma 5.1]. ¤

The following well-known facts will be used several times.

Theorem 1.2 (Remmert–Van de Ven). Let S be a smooth surface and let
f : P 2−→S be a surjective morphism. Then S ∼= P 2.

Let X, E and Z be as in (0.1). We recall that KZ = (KX + det E )Z , by
adjunction. Moreover, for any rational curve C ⊂ X we have det E · C ≥ r.

Theorem 1.3 (Lefschetz–Sommese). Let X, E and Z be as in (0.1). Then
the restriction homomorphism Pic(X)−→Pic(Z) is an isomorphism.

We recall the following result [13, Theorem 3] (the final assertions are shown
in the proof).

Theorem 1.4. Let X, E and Z be as in (0.1). Let H be an ample line
bundle on X. Suppose that KZ +(dimZ−1)HZ is nef but KZ +(dimZ−2)HZ is
not nef. If the Picard number of X is ρ(X) > 1, then one of the following holds:

(I) there exists a (−1)-hyperplane E of (X, H) such that EE
∼= OP n−1(1)⊕r;

(II) X is a P n−1-bundle over a smooth curve C and (EF , HF ) ∼=
(OP n−1(1)⊕(n−3), OP n−1(2)) for any fiber F of the projection ψ : X−→C;

(III) (X, H) is a scroll over a smooth curve C and EF
∼= OP n−1(2) ⊕

OP n−1(1)⊕(r−1) for any fiber F of the projection ψ : X−→C;
(IV) (X, H) is a quadric fibration over a smooth curve C and EF

∼= OQn−1(1)⊕r

for any general fiber F of the fibration ψ : X−→C;
(V) (X, H) is a scroll over a smooth surface Σ and EF

∼= OP n−2(1)⊕r for any
fiber F of the projection ψ : X−→Σ.
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Moreover, in case (II) (Z, HZ) is a Veronese bundle over C, in cases (III) and
(IV) (Z,HZ) is a quadric fibration over C, in case (V) (Z, HZ) is a scroll over Σ;
all these structures are induced by ψ.

Now we collect some facts that we will use in the proof of Theorem (2.1).

Proposition 1.5. Let X, E , Z, H, and E be as in case (I) of Theorem
(1.4). Then E ∩ Z is a (−1)-hyperplane of (Z,HZ).

Proof. Set e = E ∩ Z. As EE
∼= OP n−1(1)⊕r, we have that e is a linear

subspace of E of dimension m ≥ n − 1 − r. Clearly, since e is contained in Z,
its dimension is ≤ n − r. Moreover, if equality holds, then Z = e ∼= P n−r. So
Z, hence X, would have Picard number 1, which is a contradiction. Therefore
m = n − r − 1, i.e. e ∼= P n−r−1 is a divisor inside Z. Now we can compute
(KZ)e = ((KX + detE )Z)e = ((KX + detE )E)e. Since OP n−1(−n) ∼= KE =
(KX +E)E

∼= (KX)E +OP n−1(−1), we derive (KZ)e = (OE(−n+1)+OE(r))e =
Oe(−(n − r − 1)). On the other hand, as e ∼= P n−r−1 is a divisor in Z, by
adjunction we have Oe(−(n− r)) = Ke = (KZ + e)e = Oe(−(n− r − 1)) + Oe(e).
Hence we obtain Oe(e) = Oe(−1), thus e is an exceptional divisor on Z. Moreover,
(HZ)e = (HE)e = (OE(1))e = Oe(1), therefore e is a (−1)-hyperplane of (Z, HZ).

¤

Of course (P 2×P 1,OP 2×P 1(2, 1)) can be regarded both as a Veronese bundle
over P 1 and as a scroll over P 2. The former structure, however, is not compatible
with case (II) of Theorem (1.4). In fact we can prove the following.

Lemma 1.6. Let X, E , Z, H, and E be as in case (II) of Theorem (1.4)
and suppose that C ∼= P 1. Then (Z,HZ) cannot be (P 2 × P 1,OP 2×P 1(2, a)) for
a = 1 or 2.

Proof. We can write X = PP 1(W ), where W is a vector bundle of rank n

on P 1, normalized as in [1, Lemma 3.2.4], i.e. W = ⊕n
i=1OP 1(αi) with α1 ≥ · · · ≥

αn = 0. Let ξ be the tautological line bundle on X and let F be a fiber of the
bundle projection ψ : X−→P 1. Since (E ⊗ξ−1)F

∼= O
⊕(n−3)
P n−1 , we get E ∼= ξ⊗ψ∗G ,

where G is a vector bundle of rank n− 3 on P 1. So G ∼= ⊕n−3
j=1 OP 1(bj). Therefore

E ∼= ⊕n−3
j=1 [ξ + bjF ], and the ampleness of E combined with [1, Lemma 3.2.4]

implies bj ≥ 1 for any j = 1, . . . , n− 3. In particular

deg W ≥ 0 and deg G ≥ n− 3. (1.6.1)

Now suppose by contradiction that (Z, HZ) ∼= (P 2 × P 1,OP 2×P 1(2, a)), a = 1
or 2. Recall that the structure of (Z, HZ) as Veronese bundle is induced by ψ.
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Note that ξZ = OP 2×P 1(1, e) for some e ≥ 0 because ξ is spanned. From the
ampleness of HZ we thus get HZ = OP 2×P 1(2, a) = 2ξZ + (a − 2e)FZ . Thus
H = 2ξ + (a− 2e)F by the Lefschetz–Sommese Theorem. Moreover

a− 2e > 0 (1.6.2)

by ampleness, due to [1, Lemma 3.2.4]. On the other hand, 2KZ + 3HZ =
(3a − 4)FZ , which implies 2(KX + det E ) + 3H = (3a − 4)F . We can rewrite
this relation as

2(−nξ + (deg W − 2)F + (n− 3)ξ + deg G F ) + 3(2ξ + (a− 2e)F )− (3a− 4)F = 0,

from which we derive

deg W + deg G = 3e. (1.6.3)

Now, (1.6.2) shows that e = 0 because a ≤ 2; but then (1.6.3) contradicts (1.6.1).
¤

The result is no longer true if a ≥ 3, as the following example shows.

Example 1.7. Consider the exact sequence of vector bundles on P 1

0−→OP 1(−1)⊕3−→O⊕6
P 1−→OP 1(1)⊕3−→0

given by three copies of the Euler sequence twisted by OP 1(−1). Let W = O⊕6
P 1 ,

V = OP 1(1)⊕3 and consider X = PP 1(W ) ∼= P 5 × P 1, Z = PP 1(V ) ∼= P 2 × P 1.
Then Z is contained in X fiberwise and ξZ

∼= OP 2×P 1(1, 1). Then arguing as in
the proof of Lemma (1.6) we see that Z is the zero locus of a general section of
the (very) ample vector bundle E = [ξ + F ]⊕3. Moreover letting H = 2ξ + F we
get a very ample line bundle on X such that (Z, HZ) ∼= (P 2×P 1, OP 2×P 1(2, 3)).

Lemma 1.8. Let (Y,L ) be a scroll over a smooth surface S and suppose
that Y contains a (−1)-hyperplane with respect to L , say e. Then (Y,L ) is a del
Pezzo threefold of degree 7, namely Y = Blp(P 3) is the blow-up of P 3 at one point
p, and L = σ∗OP 3(2) − e, where σ : Y−→P 3 is the blowing-up. Equivalently,
Y ∼= PP 2(OP 2(2)⊕ OP 2(1)), L being the tautological line bundle.

Proof. Let π : Y−→S be the projection. Then π(e) is either a point or the
whole S. In the former situation the morphism π would have a divisorial fiber,
which is a contradiction, so we are left with the latter case. Here the dimension
of e has to be equal to 2, hence dimY = 3; moreover S ∼= P 2, by Theorem
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(1.2). So (Y,L ) is a 3-dimensional scroll over P 2. Set W = π∗L and M = π∗`,
where ` ⊂ P 2 is any line. Then L is the tautological line bundle of W on Y and
Pic(Y ) ∼= Z2 can be generated by L and M . Thus, since e is a divisor inside
Y , we can write e = aL − bM for some integers a, b. Taking into account that
M3 = 0 we get

1 = (ee)2 = e3 = a(a2L 3 − 3abL 2 ·M + 3b2L ·M2).

Hence a = 1. So, for any fibre f of π, we have

e · f = e ·M2 = aL ·M2 = a = 1.

This shows that e is a section of π. In particular, Me = Oe(1) due to the isomor-
phism π|e : e ∼= P 2. Moreover, L = e + bM . On the other hand, since

Oe(1) = Le = ee + bMe = Oe(−1 + b),

we conclude that b = 2, i.e. L = e+2M . Set U = π∗OY (e). Then Y = PP 2(U ),
e being the tautological section. Moreover, U = W (−2) and for any line ` ⊂ P 2

we have that M = π∗` = P`(U`), eM being the tautological section on M . Note
that

(eM )2 = Me · ee = Oe(1) · Oe(−1) = −1.

It turns out from well-known properties of the Segre–Hirzebruch surfaces that U` =
O`⊕O`(−1). Equivalently, W` = O`(2)⊕O`(1). This happens for any line `, hence
W is uniform, and then a theorem of Van de Ven [19, Chapter III, Theorem 2.2.2]
implies that W is either OP 2(2) ⊕ OP 2(1) or the tangent bundle TP 2 . However,
the latter case is impossible because h0(W (−2)) = h0(U ) = h0(e) > 0, while
the Euler sequence twisted by OP 2(−2) shows that h0(TP 2(−2)) = 0. Therefore,
Y ∼= PP 2(OP 2⊕OP 2(−1)), i.e. Y is P 3 blown-up at one point. Let σ : Y → P 3 be
the blowing-up. Then M+e = σ∗OP 3(1), which gives L = e+2M = σ∗OP 3(2)−e.
In other words, (Y,L ) is the del Pezzo threefold of degree 7. ¤

2. Small degree with respect to codimension.

Theorem 2.1. Let X, E and Z be as in (0.1). Let H be an ample line bundle
on X such that HZ is very ample and set dim |HZ | = N . Assume that

d(Z, HZ) ≤ 2(N − dimZ) + 1. (2.1.1)
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Then (X, E , H) is one of the following :

(1) (P n, OP n(1)⊕r, OP n(1));
(2) (P n, OP n(1)⊕(n−3), OP n(2));
(3) (P n, OP n(2)⊕ OP n(1)⊕(r−1), OP n(1));
(4) (P n, OP n(2)⊕2 ⊕ OP n(1)⊕(r−2), OP n(1));
(5) (P n, OP n(3)⊕ OP n(1)⊕(r−1), OP n(1));
(6) (Qn, OQn(1)⊕r, OQn(1));
(7) (Qn, OQn(2)⊕ OQn(1)⊕(r−1), OQn(1));
(8) (X, H) is a del Pezzo manifold with Pic(X) ∼= Z generated by H, d(X, H) ≥

3, and E = H⊕r;
(9) (X, H) is a scroll over a smooth curve C and EF

∼= OP n−1(1)⊕r for any
fiber F of the scroll projection;

(10) (X, H) is a scroll over a smooth curve C and EF
∼= OP n−1(2) ⊕

OP n−1(1)⊕(r−1) for any fiber F of the scroll projection;
(11) (X, H) is a quadric fibration over a smooth curve C and EF

∼= OQn−1(1)⊕r

for any general fiber F of the fibration;
(12) (X, H) is a scroll over a (birationally) ruled surface S and EF

∼= OP n−2(1)⊕r

for any fiber F of the scroll projection;
(13) there exist a birational morphism f : X−→X ′ expressing X as the blow-up

of a projective manifold X ′ at a finite set of points y1, . . . , ys (s ≥ 0), an
ample line bundle H ′ and an ample vector bundle E ′ of rank r on X ′ such
that

H = f∗H ′ − (E1 + · · ·+ Es) and E = f∗E ′ ⊗ OX(−E1 − · · · − Es),

where Ei = f−1(yi), i = 1, . . . , s; moreover, (X ′, E ′ ,H ′) is one of the
following triplets

(13-1) (P n, OP n(1)⊕(n−3), OP n(3));
(13-2) (P n, OP n(1)⊕(n−4), OP n(2));
(13-3) (P n, OP n(2)⊕ OP n(1)⊕(n−4), OP n(2));
(13-4) (Qn, OQn(1)⊕(n−3), OQn(2));
(13-5) X ′ is a P n−1-bundle over P 1 and (E ′F ′ , H ′

F ′) ∼= (OP n−1(1)⊕(n−3),

OP n−1(2)) for any fiber F ′ of the bundle projection X ′−→P 1.
For more information concerning the points y1, . . . , ys see Remark (3.3).

Proof. The possible pairs (Z, HZ) satisfying condition (2.1.1) are listed in
[7, Theorem I]. Noting that the first possibility is ruled out by the assumption
that dimZ ≥ 3, we are left with the following pairs:

(i) (Z, HZ) is a scroll over a smooth curve C;
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(ii) (Z, HZ) is a scroll over a (birationally) ruled surface S;
(iii) (Z, HZ) is a quadric fibration over a smooth curve C;
(iv) (Z, HZ) is a del Pezzo manifold;
(v) (Z, HZ) ∼= (P n−r,OP n−r (1));
(vi) (Z, HZ) ∼= (Qn−r,OQn−r (1));
(vii) (Z, HZ) admits a reduction (Y, L) which is one of the following pairs:

(vii-a) (P 3,OP 3(3));
(vii-b) (Q3,OQ3(2));
(vii-c) (P 4,OP 4(2));
(vii-d) a Veronese bundle over a smooth curve.

We proceed with a case-by-case analysis.

Case (i). Let f ∼= P n−r−1 be any fiber of the scroll projection Z−→C.
Then, by adjunction, Kf = (KZ +f)f = (KZ)f . This implies that (KZ +(dimZ−
1)HZ)f

∼= OP n−r−1(−1), and so KZ + (dimZ − 1)HZ is not nef. On the other
hand, KZ +(dimZ)HZ is nef, otherwise, by [8, Theorem 1.3] (see also [4, Theorem
1]), we would have the contradiction (Z, HZ) ∼= (P n−r,OP n−r (1)). Therefore we
are in the assumption of [13, Theorem 2]. Note that cases (1)–(3) of that list are
ruled out because our (Z, HZ) has a scroll structure and dimZ ≥ 3. Hence we are
left with the last case, which is case (9) of our statement.

Case (ii). Denote by f ∼= P n−r−2 any fiber of the scroll projection
π : Z−→S. Then (KZ +(dim Z−2)HZ)f

∼= OP n−r−2(−1), so KZ +(dim Z−2)HZ

is not nef. On the other hand we can assume that KZ +(dim Z−1)HZ is nef, oth-
erwise, recalling that the Picard number ρ(Z) > 1, we would fall in Case (i) by [8,
Theorem 1.5] (see also [4, Theorems 1 and 2]). Therefore all the possible triplets
(X, E ,H) are as in Theorem (1.4). We proceed with a case-by-case analysis.

In case (I), set e = E ∩ Z. By Proposition (1.5) and in view of Lemma (1.8),
we get that (Z, HZ) is a del Pezzo threefold of degree 7. But this fits into Case
(iv), which will be discussed later.

Let now (X, E ,H) be as in case (II). Then (Z, HZ) is endowed with both a
structure of scroll over the smooth surface S and a structure of Veronese bun-
dle over the smooth curve C. Note that, since the scroll projection of Z has
1-dimensional fibers, by restricting π to any fiber of the Veronese bundle we get a
surjection P 2−→S. Therefore S ∼= P 2, by Theorem (1.2). We can thus apply [2,
Theorem 2] to conclude that (Z, HZ) ∼= (P 2×P 1, OP 2×P 1(2, 1)). Hence, in view
of Lemma (1.6), we get a contradiction.

Now we deal with cases (III) and (IV). In both cases (Z, HZ) has a struc-
ture of scroll over the smooth surface S and a structure of quadric fibration over
the smooth curve C. Then, according to [10, Theorem], dim Z = 3 and either
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(Z, HZ) ∼= (P 1 × P 1 × P 1, OP 1×P 1×P 1(1, 1, 1)), which fits into Case (iv), or
S ∼= PC(F ) for some vector bundle F of rank 2 on C. In this last situation,
computing the Picard numbers, we have ρ(X) = ρ(Z) = ρ(S) + 1 = 3, which is a
contradiction, since ρ(X) turns out to be 2 in both cases (III) and (IV) (in case
(IV) recall that n ≥ 5).

Finally let (X, E ,H) be as in case (V). Then the pair (Z,HZ) inherits a
scroll structure ϕ : Z−→Σ over the smooth surface Σ from ψ. Suppose that the
scroll structures given by π : Z−→S and by ϕ are different. Then there exists a
fiber D ∼= P dim Z−2 of ϕ such that π(D) is not a point. Assume moreover that
dimZ ≥ 4. In this case D dominates S via π, hence D has to be 2-dimensional
and Theorem (1.2) implies that S ∼= P 2. Arguing symmetrically on π we deduce
that Σ ∼= P 2, too. Therefore we have either

(A) π = ϕ, up to an automorphism of the base surface S = Σ,
(B) dim Z = 4 and Z has two distinct P 2-bundle structures over P 2, or
(C) dim Z = 3 and π and ϕ give different P 1-bundle structures.

In case (A) we get case (12) of our statement, recalling that S is a (bira-
tionally) ruled surface.

In case (B), by using a result of Sato [20, Theorem A], we conclude that
(Z,HZ) ∼= (P 2 × P 2,OP 2×P 2(1, 1)), and then we can refer to the discussion of
Case (iv).

It remains to discuss case (C). Due to the two scroll structures of (Z, HZ)
we can write Z = PS(V ) and Z = PΣ(W ) for two ample vector bundles V and
W on S and Σ respectively, both of rank 2 and both having HZ as tautological
line bundle on Z. Let T ∈ |HZ | be a smooth element and look at the birational
morphisms π|T : T−→S and ϕ|T : T−→Σ. Note that π|T contracts s = c2(V ) (−1)-
lines e1, . . . , es, while ϕ|T contracts t = c2(W ) (−1)-lines ε1, . . . , εt of (T, HT ). In
particular it turns out that S and Σ are birationally equivalent (via the birational
map ϕ|T ◦ π|−1

T ). Since

ρ(S) + 1 = ρ(Z) = ρ(Σ) + 1

and

ρ(S) + s = ρ(T ) = ρ(Σ) + t,

we see that

t = s. (2.1.2)

By the canonical bundle formula, we have
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KT +HT = (KZ +2HZ)T = (−2HZ +π∗(KS +det V )+2HZ)T = π|∗T (KS +det V ).

Hence HT = π|∗T det V −∑s
i=1 ei and KT = π|∗T KS +

∑s
i=1 ei. From these and

the corresponding relations involving ϕ|T instead of π|T we get from (2.1.2):

c1(V )2 = c1(W )2, K2
S = K2

Σ, detV ·KS = det W ·KΣ.

Now, consider a curve εj for some j. If π(εj) is a point, then there exists an
index i such that εj = ei. By applying the rigidity lemma [1, Lemma 4.1.13] we
conclude that there are a morphism h : S−→Σ such that ϕ = h◦π and a morphism
k : Σ−→S such that π = k◦ϕ. But then h : S−→Σ would be an isomorphism, with
π and ϕ inducing the same P 1-bundle structure on Z, a contradiction. Therefore
εj 6= ei for any i and j. In particular Cj := π(εj) is an irreducible curve of S.
Recall that εj and ei are two distinct lines inside (T,HT ). Hence εj · ei = 0 or 1.
Since the multiplicity of Cj at the point pi = π(ei) is mj,i = εj · ei, we conclude
that Cj has no singular points, hence, due to the birationality of π|T , it is a smooth
rational curve. We have εj = π|∗T Cj −

∑s
i=1 mj,i ei. Let γj be the number of the

mj,i different from zero. Then:

1 = HT · εj = det V · Cj − γj , (2.1.3)

and

−1 = KT · εj = KS · Cj + γj . (2.1.4)

Recalling that V is an ample vector bundle and Cj a smooth P 1, (2.1.3) gives

2 ≤ deg VCj = det V · Cj = 1 + γj .

Therefore γj ≥ 1; in other words, there exist indexes j and i such that εj · ei = 1.
Summing-up (2.1.3) and (2.1.4) for such a j we thus get

0 = (KS + detV ) · Cj ,

which shows that the adjoint bundle KS + detV is not ample. Since V has rank
2, [6, Main Theorem] tells us that (S, V ) is one one the following pairs:

(C1) (P 2,OP 2(1)⊕2);
(C2) (P 2,OP 2(2)⊕ OP 2(1));
(C3) (P 2, TP 2);
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(C4) (P 1 × P 1,OP 1×P 1(1, 1)⊕2);
(C5) S is a P 1-bundle over a smooth curve B and Vf

∼= OP 1(1)⊕2 for every fibre
f of the projection S−→B.

Of course case (C4) fits into case (C5). In case (C1) the pair (Z, HZ) ∼= (P 1 ×
P 2, OP 1×P 2(1, 1)), but this clearly fits in Case (i) (already discussed). Note that
in cases (C2)–(C4) the pair (Z, HZ) is a del Pezzo manifold and then we can refer
again to the discussion of Case (iv). Now suppose that (Z, HZ) is as in case (C5).
Then S is a P 1-bundle over a smooth curve B. In particular, looking at the Picard
numbers, this gives ρ(Z) = ρ(S) + 1 = 3. Therefore

ρ(X) = 3, (2.1.5)

by the Lefschetz–Sommese theorem.
Now, by composing the ruling projection p : S−→B with the scroll projection

π : Z−→S we get a morphism p ◦ π : Z−→B making Z a (P 1 × P 1)-bundle over
B. To see this, recall that Z = PS(V ). Then, letting fb and Gb denote the fibers
of p and of p ◦ π over a point b ∈ B, respectively, we have

Gb = π−1(fb) = Pfb
(Vfb

) ∼= P 1 × P 1.

Moreover, (Z,HZ) turns out to be a quadric fibration over B, since

HGb
∼= OP 1×P 1(1, 1)

under the isomorphism above. Indeed, let f be a fiber of π|Gb
: Gb−→fb. Then

Gb = f × fb and f ∈ |OP 1×P 1(0, 1)|. Note that HGb
= (HZ)Gb

is the tautological
line bundle on Gb of Vfb

∼= Ofb
(1) ⊗ O⊕2

fb
. Hence HGb

∼= f + OP 1×P 1(1, 0), the
latter summand being the tautological line bundle of O⊕2

fb
. Therefore HGb

∼=
OP 1×P 1(1, 1). It thus follows from [14, Theorem 0.4] that either

(a) (X, H) is a scroll over B, and ED
∼= OP n−1(2) ⊕ OP n−1(1)⊕(n−4) for any

fiber D of the projection X−→B; or
(b) (X, H) is a quadric fibration over B and ED

∼= OQn−1(1)⊕(n−3) for any
general fiber D of the fibration X−→B.

In both cases we would get ρ(X) = ρ(B) + 1 = 2 (in case (b) recall that n ≥ 5).
But this contradicts (2.1.5).

Case (iii). We are in the assumption of [14, Theorem 0.4]; hence we obtain
cases (10) and (11) of the statement.
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Case (iv). We can apply [13, Theorem 4 and Remark], whose cases (2), (3),
(6), (9) and (10) are ruled out by our assumption n−r ≥ 3; the remaining cases (1),
(4), (5), (7) and (8) are those listed as (2), (5), (4), (7) and (8) in our statement.
In case (8) note that d(X, H) = Hn = Hn−r · cr(E ) = Hn−r

Z = d(Z, HZ) ≥ 3
because HZ is very ample.

Case (v). As Z ∼= P n−r has dimension ≥ 3, it follows from [11, Theorem
A] that (X, E ) ∼= (P n, OP n(1)⊕r). Then H ∼= OP n(1) in view of Theorem (1.3).
This gives case (1) in the statement.

Case (vi). As Z ∼= Qn−r has dimension ≥ 3, it follows from [11, Theorem
B] that (X, E ) is either (P n, OP n(2)⊕OP n(1)⊕(r−1)) or (Qn, OQn(1)⊕r). By the
Lefschetz–Sommese theorem this leads to (3) and (6) in the statement.

Case (vii). Let σ : Z−→Y be the reduction morphism leading to a reduction
(Y, L) of (Z,HZ) as in (vii-a)–(vii-d). Assume that σ is non-trivial. Then σ is
the blowing-up of Y at a finite set {y1, . . . , ys} and HZ = σ∗L −∑s

i=1 ei, where
ei = σ−1(yi) for all i = 1, . . . , s.

Recall that KZ = σ∗KY + (dim Z − 1)
∑s

i=1 ei. Set e = e1, for simplicity.
Since Oe(e) = Oe(−1) and (HZ)e = Oe(1), we get (KZ + (dim Z − 2)HZ)e =
Oe(−1), which shows that KZ + (dimZ − 2)HZ is not nef. On the other hand
KZ + (dimZ − 1)HZ is nef, otherwise, by [8, Theorem 1.5] (see also [4, Theorems
1 and 2]), (Z, HZ) should be one of the following:

(α) (P n−r, OP n−r (1));
(β) (Qn−r, OQn−r (1));
(γ) (P 2, OP 2(2));
(δ) a scroll over a smooth curve.

But in all these cases (Z, HZ) cannot have a non-trivial reduction. Therefore we are
in the assumptions of Theorem (1.4), and we proceed with a case-by-case analysis.
First we investigate cases (II)–(V), showing that they lead to a contradiction; then
we will consider case (I).

So let (X, E ,H) be as in case (II). Then Z is 3-dimensional and the pair
(Z, HZ) has a structure of Veronese bundle ϕ : Z−→C induced by ψ and, at the
same time, Z contains an exceptional divisor e. Clearly ϕ(e) = ϕ(P 2) is a point
of C, thus e is contained in, and hence is, a fiber of ϕ. Therefore Oe(e) has to be
trivial, which is a contradiction, since e is an exceptional divisor.

Now we deal with cases (III) and (IV). In both cases the image of e ∼= P n−r−1

via ϕ := ψ|Z must be a point, so e is contained in a fiber of ϕ. Since all these
fibers are irreducible, e turns out to be a fiber of the quadric fibration ϕ, but this
is a contradiction.
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Assume now that (X, E ,H) is as in case (V). Note that (Z, HZ) satisfies the
assumption of Lemma (1.8), hence the pair (Z,HZ) is a del Pezzo threefold which
has already been discussed. Therefore this situation is ruled out by the previous
analysis of Case (iv).

So we are left with (X, E ,H) as in case (I). Put ε = E ∩ Z. Then ε is a
(−1)-hyperplane of (Z, HZ), by Proposition (1.5). Since σ contracts all (−1)-
hyperplanes of (Z, HZ), it follows that ε = ei for some i. Let f ′ : X−→X ′

be the contraction of E to a point of a smooth projective variety X ′. Then
f ′|Z : Z−→Z ′ := f ′(Z) contracts ε, and σ factors through f ′|Z . Therefore, by
Lemma (1.1), there exist an ample line bundle H ′ and an ample vector bundle E ′

of rank r on X ′ with a section vanishing on Z ′ such that

H = f ′∗H ′ − E and E = f ′∗E ′ ⊗ OX(−E).

Now, as σ : Z−→Y factors through f ′|Z : Z−→Z ′, either (Z ′,H ′
Z′) ∼= (Y, L), or,

arguing as before, KZ′ + (dimZ ′ − 2)H ′
Z′ is not nef but KZ′ + (dimZ ′ − 1)H ′

Z′

is nef. Then, repeating the argument for (X ′,E ′,H ′, Z ′), we conclude that there
exists a divisor E′ ∼= P n−1 ⊆ X ′ as in case (I) of Theorem (1.4). By Proposition
(1.5) again this divisor defines a (−1)-hyperplane of (Z ′,H ′

Z′) and we can contract
E′ by f ′′ : X ′−→X ′′. Moreover, there exist an ample line bundle H ′′ and an
ample vector bundle E ′′ of rank r on X ′′ such that H ′ = f ′′∗H ′′ − E′ and E ′ =
f ′′∗E ′′ ⊗ OX′(−E′).

Note that each step of this procedure decreases by 1 the Picard number of
X and Z. So, after finitely many steps we get a birational morphism f : X−→X0

onto a projective manifold X0 (consisting of finitely many contractions); moreover
there exist both an ample line bundle H0 and an ample vector bundle E0 of rank
r on X0 such that

H = f∗H0 − E1 − · · · − Es and E = f∗E0 ⊗ OX(−E1 − · · · − Es).

Note that by construction f |Z = σ, E0 has a section vanishing on Y and (H0)Y =
L. Now consider (X0,E0, Y,H0), with (H0)Y = L.

In case (vii-a) we can apply [11, Theorem A], hence (X0, E0) ∼=
(P n, OP n(1)⊕(n−3)). Moreover, as PicX0

∼= PicY by Theorem (1.3), from
L = OY (3) we conclude that H0

∼= OP n(3). Therefore we obtain case (13-1)
of the statement.

As to case (vii-b), by [11, Theorem B], we have (X0, E0) ∼= (P n, OP n(2) ⊕
OP n(1)⊕(n−4)) or (X0, E0) ∼= (Qn, OQn(1)⊕(n−3)). Moreover, H0 is OP n(2) in the
former case and OQn(2) in the latter. Therefore we obtain cases (13-3) and (13-4)
of the statement.

Arguing as in case (vii-a), in case (vii-c) we obtain (13-2) of the statement.
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Now consider case (vii-d). As a first thing note that the pair (Z, HZ) satisfies
the hypothesis of [9, Section 4, p. 904, lines 8–6 from the bottom]; hence the bound
on the degree provided by (2.1.1) implies that the base curve of the Veronese
bundle structure of (Y, L) is P 1. We have (2KY + 3L)F = OF for any fiber F

of the projection p : Y−→P 1, hence 2(KY + L)F = −LF , which says that KY +
(dimY −2)L is not nef. On the other hand, we claim that KY +(dim Y −1)L is nef.
Otherwise the pair (Y, L) would be as in cases (α)–(δ) above, by [8, Theorem 1.5]
(see also [4, Theorems 1 and 2]). Cases (α)–(γ) are ruled out noting that ρ(Y ) = 2;
as to case (δ), if π : Y−→B is the scroll projection, then any fiber G of π has to
be also a fiber F of p. So OP 2(1) ∼= HG

∼= HF
∼= OP 2(2), which is a contradiction.

This proves the claim. So we can apply Theorem (1.4). Checking the list, note
that only case (II) can occur. Indeed, in case (I), in view of Proposition (1.5), Y

would contain a (−1)-hyperplane with respect to L, which is a contradiction, since
(Y, L) is a reduction. In cases (III) and (IV) the pair (Y, L) would be a quadric
fibration over a smooth curve; but then any fiber ∼= P 2 of the Veronese bundle
would be contained in a quadric surface, which is a contradiction. Finally, in case
(V), we get a contradiction by [2, Theorem 2]. Hence we are left with case (II),
which gives (13-5) of the statement. ¤

Two special cases deserve some attention.

Corollary 2.2. Let (X, E , H) be as in Theorem (2.1).

(a) If H = det E , then only cases (2) and (13) with s = 0 occur; moreover,
r = 2 except case (13-1), where r = 2, 3.

(b) If E = H⊕r, then only cases (1), (6), (8), (9), (11), (12) occur.

Proof. If H = detE then for any rational curve C ⊂ X we have H · C =
detE ·C ≥ r. In particular (X, H) cannot contain lines, which implies that s = 0
in case (13). Thus a close inspection of the list in Theorem (2.1) gives assertion
(a). Assertion (b) is immediate.

3. Examples and remarks.

All cases (1)–(13) in Theorem (2.1) are effective. This follows immediately
in cases (1)–(8). For case (13) see Remark (3.3). We provide examples for the
remaining cases.

Examples 3.1. Examples for cases (9)–(11) are the following.
Case (9): X = PP 1(⊕n

i=1OP 1(ai)), with a1 ≥ · · · ≥ an = 0, E = ⊕r
j=1(ξ +

bjF ), H = ξ + bF , where ξ is the tautological line bundle on X, F is a fiber of the
bundle projection X−→P 1 and b > 0, bj > 0 for every j.
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Case (10): X = P n−1 × P 1, E = OP n−1×P 1(2, 1) ⊕ OP n−1×P 1(1, 1)⊕(r−1),
H = OP n−1×P 1(1, 1).

Case (11): X = Qn−1 × P 1, E = OQn−1×P 1(1, 1)⊕r, H = OQn−1×P 1(1, 1).
For the above triplets we have d(Z, HZ) ≥ n in the first example, while

d(Z, HZ) = 2n − 1, 2n, in the second and in the third one, respectively. On the
other hand, ∆(Z, HZ) = 0, n− 2, n− 2 in the three examples, respectively. Hence
(2.1.1) holds in the equivalent form provided by (2) in the Introduction. Here is
an example as in case (12).

Case (12): X = P 3 × P 2, E = OP 3×P 2(1, 1)⊕2, H = OP 3×P 2(1, 1).
In this example d(Z, HZ) = 10, while ∆(Z, HZ) = 3, hence (2) holds.

Concerning case (12), more generally, we can prove the following fact.

Proposition 3.2. Let S be a smooth regular surface (i.e. h1(OS) = 0)
polarized by a very ample line bundle L and let X = P n−2 × S, E =
OP n−2×S(1, 1)⊕r, H = OP n−2×S(1, 1), where OP n−2×S(0, 1) stands for the pull-
back of L via the second projection. Then condition (2.1.1) holds if and only if
(S, L ) is either (P 2,OP 2(1)) with (n, r) = (5, 2), (6, 2), (6, 3), (7, 2), (7, 3), (7, 4),
or (P 1 × P 1,OP 1×P 1(1, 1)) and (n, r) = (5, 2).

Proof. We have

d(Z, HZ) = OP n−2×S(1, 1)n =
(

n

2

)
L 2.

Consider a smooth ladder X = X0 ⊃ X1 ⊃ · · · ⊃ Xr = Z, where Xi ∈
|OXi−1(1, 1)| and the exact sequences 0−→OXi−1−→HXi−1−→HXi

−→0 for i =
1, . . . , r. We have h1(OX) = h1(OS) = 0, hence h1(OXi

) = 0 for i = 1, . . . , r by the
Lefschetz theorem. Set h = h0(L ). Noting that h0(H) = h0(L ⊕(n−1)) = (n−1)h,
by induction we get

h0(HZ) = h0(H)− r = (n− 1)h− r.

Thus condition (2.1.1) applied to (Z, HZ) reads as

(
n

2

)
L 2 ≤ 2(n− 1)h− 2(n + 1) + 1. (3.2.1)

On the other hand, since ∆(S, L ) ≥ 0, we know that

(
n

2

)
(h− 2) ≤

(
n

2

)
L 2. (3.2.2)
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Combining (3.2.1) with (3.2.2), and recalling that n ≥ 5 and h ≥ 3, we easily see
that 5 ≤ n ≤ 7, with h ≤ 4 if n = 5, and h = 3 in the remaining cases. So, if h = 3,
taking into account the range of r, we get (S, L ) ∼= (P 2,OP 2(1)) with all pairs
(n, r) listed in the statement. Let h = 4. Then n = 5, hence r = 2; moreover S,
embedded by |L |, is a non-degenerate smooth surface in P 3. In this case (3.2.1)
gives 10L 2 ≤ 21. Therefore (S, L ) ∼= (P 1×P 1,OP 1×P 1(1, 1)) and this concludes
the proof. ¤

Remark 3.3. Note that the points y1, . . . , ys appearing in case (13) of The-
orem (2.1) are the same arising in case (vii) in the proof because f |Z = σ, as
already observed. Some upper bounds on s are mentioned in [7, Remark (1.6)]
and fit into a more general set of restrictions concerning them. In fact we show
that s ≤ 6, 5, 1, 5 in cases (vii-a)–(vii-d), respectively. Moreover, if y1, . . . , ys are
general enough to insure the ampleness of HZ , then HZ is very ample and the con-
ditions they impose to the linear system |L| are linearly independent. To prove this
facts, as a first thing, we note the following. In case (vii-a), the points y1, . . . , ys

can be neither three on a line, nor six on a conic; in case (vii-b), neither two on
a line, nor four on a conic (contained in Q3). This is immediate. E.g., in the
last case suppose that y1, . . . , y4 ∈ γ, a conic inside Q3; let C := σ−1(γ), where
σ : Z−→Y is the reduction morphism. Then

HZ · C = (σ∗OQ3(2)− e1 − · · · − e4 − · · · − es) · C = OQ3(2) · γ − 4 = 0,

but then HZ could not be ample, a contradiction. The remaining conditions follow
arguing in the same way. In case (vii-c) the same argument shows that no two of
the yi’s can be collinear, hence s ≤ 1. Moreover, if s = 1, we can immediately
observe that HZ is very ample. Indeed, Z is isomorphic to PP 3(OP 3(2)⊕OP 3(1))
and HZ is the tautological line bundle. Furthermore, an immediate check shows
that condition (2.1.1) is satisfied for s ≤ 1. Finally consider case (vii-d). Note
that y1, . . . , ys belong to distinct fibers of p. To see this suppose by contradiction
that y1 and y2 are in the same fiber F ∼= P 2 of p, let ` be the line 〈y1, y2〉 and let
C := σ−1(`). Then

HZ · C = (σ∗L− e1 − e2 − · · · − es) · C = LF · `− 2 = 0,

which contradicts the ampleness of HZ .
Now suppose that the position of y1, . . . , ys is general enough to insure that

the line bundle HZ = σ∗L − ∑s
i=1 ei is ample. As we said in the Introduction,

condition (2.1.1) can be rephrased in terms of ∆-genus as

d ≥ 2∆(Z, HZ) + 1. (3.3.1)
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We have

d = Hdim Z
Z = Ldim Y − s and h0(HZ) = h0(L)− t, (3.3.2)

where t is the number of linearly independent linear conditions imposed by the
points y1, . . . , ys to the linear system |L|. Let g = g(Z, HZ) be the sectional
genus and recall that g(Z, HZ) = g(Y, L). Looking at cases (vii-a), (vii-b) and
(vii-d) separately, we get (d, ∆, g) = (27 − s, 10 + t − s, 10) in case (vii-a) and
(16−s, 5+ t−s, 5) in case (vii-b). In case (vii-d) we can write Y = PP 1(V ) where
V = ⊕3

j=1OP 1(bj) is normalized as in [1, Lemma 3.2.4], i.e. b1 ≥ b2 ≥ b3 = 0. Let
ξ be the tautological line bundle of V and let b =

∑3
j=1 bj . Then we can write

L = 2ξ + βF , where F ∼= P 2 is a fiber of the projection p : Y−→P 1. Note that
β > 0, due to the ampleness of L. We can compute the degree

L3 = (2ξ + βF )3 = 8ξ3 + 12βξ2 · F = 8b + 12β = 2(4b + 6β).

On the other hand, we can compute h0(L) = h0(S2V ⊗ OP 1(β)). Now, S2V =
⊕i≤jOP 1(bi + bj), so h0(S2V ⊗OP 1(β)) =

∑
i≤j h0(OP 1(bi + bj + β)). Therefore

h0(L) = 4b + 6β + 6.

Moreover, by adjunction, the canonical bundle formula for P -bundles gives

2g(L)− 2 = (KY + 2L) ·L2 = (ξ + (b + 2β − 2)F ) · (4ξ2 + 4βξ ·F ) = 8b + 12β − 8.

Then recalling (3.3.2) we obtain (d, ∆, g) = (8b+12β−s, 4b+6β−3+t−s, 4b+6β−3)
in case (vii-d). Since t ≤ s, we thus see that ∆ ≤ g in all cases, equality implying
t = s. Therefore, in view of (3.3.1), [5, Theorem 3.5] applies to our polarized
manifold (Z, HZ) and tells us that

∆ = g and HZ is very ample.

In particular, t = s. Thus the assumption on (Z, HZ) in Theorem (2.1), rephrased
by (3.3.1), says that s ≤ 6, 5, 5 in cases (vii-a), (vii-b) and (vii-d), respectively.
Conversely, if these bounds hold, then (3.3.1) is fulfilled and so HZ is very ample.

Remark 3.4. A triplet (X, E ,H) as in case (13-5) of Theorem (2.1) with
s = 0 is provided by Example (1.7). Another example is the following. Putting
together two copies of the Euler sequence twisted by OP 1(−1) with the identity
of OP 1 we can construct an exact sequence
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0−→OP 1(−1)⊕2−→O⊕5
P 1−→OP 1(1)⊕2 ⊕ OP 1−→0.

Let W = O⊕5
P 1 , V = OP 1(1)⊕2 ⊕ OP 1 and consider X = PP 1(W ), Z = PP 1(V ).

Then Z is contained in X fiberwise. Note that Z is the blow-up of a quadric cone
Q0 ⊂ P 4 of rank 4, the blowing-up being given by the morphism associated with
|ξZ | (it contracts the section of Z corresponding to the surjection V −→OP 1(1) to
the vertex of Q0). Then arguing as in the proof of Lemma (1.6) one sees that Z is
the zero locus of a general section of the (very) ample vector bundle E = [ξ +F ]⊕2

on X. Moreover H = 2ξ + F is very ample and induces the structure of Veronese
bundle on Z.

Remark 3.5. As observed in the Introduction, unlike in [7], our setting
includes only projective manifolds Z with dimZ ≥ 3. To deal with case dim Z = 2,
we have to consider the further possibility ([7, Theorem I, case a)]) that

Z is a (birationally) ruled surface. (∗)

Of course cases (ii) and (vii) listed in the proof of Theorem (2.1) do not occur.
Moreover the remaining cases (which could be settled for dimZ = 2 in a similar
way as we did for dimZ ≥ 3) fit into (∗). On the other hand, in case (∗) by
adjunction we see that KX + det E is not nef, hence to lift this situation to the
ample vector bundle setting we can use [17, Theorem]. This provides 14 possibil-
ities for (X, E ); however, a lack of information concerning H cannot be avoided.
More precisely, if dimZ = 2 and (Z, HZ) satisfies (2.1.1), we can make explicit
more than what is said in [7, Theorem I, case a)]; namely, the hyperplane bundle
HC of a general curve section C of (Z, HZ) has to be non-special. Actually, if
HC were special, then Clifford’s theorem and the exact cohomology sequence of
0−→OZ−→HZ−→HC−→0 would give h0(HZ) ≤ 1 + h0(HC) ≤ (d/2) + 2, where
d = d(Z,HZ), but this contradicts the inequality

h0(HZ) ≥ 1
2
(d + 5) (3.5.1)

coming from (2.1.1). On the other hand the non-speciality of HC is not sufficient
for a ruled surface (Z, HZ) to satisfy (2.1.1). The Bordiga surface of degree 6
in P 4 is a convincing example. In fact, confining to rational surfaces, condition
(2.1.1) turns out to be equivalent to

d ≥ 2g + 1, (3.5.2)

where g = g(C) is the sectional genus of (Z, HZ). To see this, first note that Z
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rational with HC non-special implies

h0(HZ) = h0(HC) + 1 = d + 2− g. (3.5.3)

Now, if (2.1.1) holds, then, as we said, HC is non-special, hence (3.5.2) follows
from (3.5.3) and (3.5.1). Conversely, suppose that (3.5.2) holds. Then taking into
account (3.5.3) we get

d ≤ 2d− 2g − 1 = 2(d− 1− g) + 1 = 2(h0(HZ)− 3) + 1,

which is (2.1.1). However, describing explicitly which rational surfaces satisfy
(3.5.2) seems a hard problem. Notice that (3.5.2) is true for P 2 and for all Segre–
Hirzebruch surfaces for any polarization.
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Università degli Studi di Milano

via C. Saldini

50, I-20133 Milano, Italy

E-mail: lanteri@mat.unimi.it

Carla Novelli

Dipartimento di Matematica
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