Gap modules for direct product groups

Dedicated to Professor Masayoshi Kamata on his 60th birthday

By Toshio Sumi

(Received Nov. 24, 1999)
(Revised Jun. 7, 2000)

Abstract

Let G be a finite group. A gap G-module V is a finite dimensional real G-representation space satisfying the following two conditions: (1) The following strong gap condition holds: $\operatorname{dim} V^{P}>2 \operatorname{dim} V^{H}$ for all $P<$ $H \leq G$ such that P is of prime power order, which is a sufficient condition to define a G surgery obstruction group and a G-surgery obstruction. (2) V has only one H-fixed point 0 for all large subgroups H, namely $H \in \mathscr{L}(G)$. A finite group G not of prime power order is called a gap group if there exists a gap G module. We discuss the question when the direct product $K \times L$ is a gap group for two finite groups K and L. According to [5], if K and $K \times C_{2}$ are gap groups, so is $K \times L$. In this paper, we prove that if K is a gap group, so is $K \times C_{2}$. Using [5], this allows us to show that if a finite group G has a quotient group which is a gap group, then G itself is a gap group. Also, we prove the converse: if K is not a gap group, then $K \times D_{2 n}$ is not a gap group. To show this we define a condition, called NGC, which is equivalent to the non-existence of gap modules.

1. Introduction.

Let G be a finite group and p a prime. In this paper we assume that the trivial group is also called a p-group. We denote by $\mathscr{P}_{p}(G)$ a set of p-subgroups of G, define the Dress subgroup $G^{\{p\}}$ as the smallest normal subgroup of G whose index is a power of p, possibly 1 , and let denote by $\mathscr{L}_{p}(G)$ the family of subgroups L of G which contains $G^{\{p\}}$. Set

$$
\mathscr{P}(G)=\bigcup_{p} \mathscr{P}_{p}(G) \quad \text { and } \quad \mathscr{L}(G)=\bigcup_{p} \mathscr{L}_{p}(G)
$$

Let V be a G-module V. We say that V is $\mathscr{L}(G)$-free, if $V^{G^{\{p\}}}=0$ holds for any prime p. Set $\mathscr{D}(G)$ as a set of pairs (P, H) of subgroups of G such that $P<$ $H \leq G$ and $P \in \mathscr{P}(G)$. We denote by $\mathscr{D}(G)$ be a set of all elements (P, H) of $\mathscr{D}(G)$ with $P \notin \mathscr{L}(G)$. Clearly note that this set equals to $\mathscr{D}(G)$ if $\mathscr{P}(G) \cap \mathscr{L}(G)$ $=\varnothing$ holds. We define a function $d_{V}: \mathscr{D}(G) \rightarrow \boldsymbol{Z}$ by

$$
d_{V}(P, H)=\operatorname{dim} V^{P}-2 \operatorname{dim} V^{H}
$$

Key Words and Phrases. gap group, gap module, real representation, direct product.

We say that V is positive (resp. nonnegative, resp. zero) at (P, H), if $d_{V}(P, H)$ is positive (resp. nonnegative, resp. zero). For a finite group G not of prime power order, a real G-module V is called an almost gap G-module, if V is an $\mathscr{L}(G)$-free real G-module such that $d_{V}(P, H)>0$ for all $(P, H) \in \mathscr{D}(G)$. If $\mathscr{L}(G) \cap \mathscr{P}(G)=\varnothing$ holds, an almost gap G-module is called a gap G-module. We can stably apply the equivariant surgery theory to gap G-modules. We say that G is a/an (almost) gap group if there is a/an (almost) gap G-module. A finite group G is called an Oliver group if there does not exist a normal series $P \triangleleft H \triangleleft G$ such that P and G / H are of prime power order and H / P is cyclic. A finite group G has a smooth action on a disk without fixed points if and only if G is an Oliver group, and G has a smooth action on a sphere with exactly one fixed point if and only if G is an Oliver group (cf. Oliver [7] and Laitinen-Morimoto [3]).

It is an important task to decide whether a given group G is a gap group. In fact, if a finite Oliver group G is a gap group, then one can apply equivariant surgery to convert an appropriate smooth action of G on a disk D into a smooth action of G on a sphere S with $S^{G}=M=D^{G}$, where $\operatorname{dim} M>0$ (cf. Morimoto [4, Corollary 0.3$]$).

Laitinen and Morimoto [3] defined the G-module

$$
V(G)=(\boldsymbol{R}[G]-\boldsymbol{R})-\underset{p}{\oplus}\left(\boldsymbol{R}\left[G / G^{\{p\}}\right]-\boldsymbol{R}\right),
$$

which is useful to construct a gap G-module, and proved that a finite group G has a smooth action on a sphere with any number of fixed points if and only if G is an Oliver group. This G-module also plays an important role in this paper. The purpose of this paper is to study the question when a direct product group is a gap group. The main theorem of this paper concerns a direct product $K \times D_{2 n}$, where $D_{2 n}$ is the dihedral group of order $2 n$ for $n \geq 1\left(D_{2}=C_{2}\right.$ and $D_{4}=C_{2} \times C_{2}$).

Theorem 1.1. Let n be a positive integer and let K be a finite group. Then K is a gap group if and only if $G=K \times D_{2 n}$ is a gap group.

This paper is a continuation of our joint work with M. Morimoto and M. Yanagihara [5]. The key idea of the proof can be found in [6]. In [5, Theorem 3.5], we have shown that if $\mathscr{P}(K) \cap \mathscr{L}(K)=\varnothing$ and $K \times C_{2}$ is a gap group, so is $K \times F$ for any finite group F. In Lemma 5.1, we show that if K is a gap group, so is $K \times C_{2}$, which is the case where $n=1$ in the main theorem. Using Lemma 5.1 and [$\mathbf{5}$, Theorem 3.5], we obtain the following theorem.

Theorem 1.2. If a finite group G has a quotient group which is a gap group, then G itself is a gap group.

Recall that G is an Oliver group if it has a quotient group which is an Oliver group.

The organization of the paper is as follows. In Section 2, we estimate $d_{V}(P, H)$ for a $(K \times L)$-module V by characters of irreducible K - and L modules. In Section 3, we find a gap G-module for a certain direct product group of symmetric groups. The groups S_{4} and S_{5} are not gap groups but $S_{4} \times S_{5}$ is a gap group. In Section 4, we introduce a condition NGC and show that G holds NGC if and only if G is not a gap group. We define a dimension matrix and give the condition equivalent to one being a gap group by using a dimension submatrix. In Section 5, by using the results in Section 4, we show that $K \times C_{2}$ is an almost gap group if so is K. In Section 6, we show that there are many finite groups G such that $\mathscr{P}(G) \cap \mathscr{L}(G)=\varnothing$ holds but G are not gap groups. As an application we completely decide when a direct product group of symmetric groups is a gap group. Since a gap group which is a direct product of symmetric groups is an Oliver group, it can act smoothly on a standard sphere with one fixed point.

2. Direct product groups.

Let $G=K \times L$ be a finite group. We denote by χ_{V} the character for a G module V. Let P and H be subgroups of G such that $[H: P]=2$. Then

$$
\begin{align*}
d_{V \otimes W}(P, H) & =\frac{1}{|P|} \sum_{x \in P} \chi_{V}\left(\pi_{1}(x)\right) \chi_{W}\left(\pi_{2}(x)\right)-\frac{2}{|H|} \sum_{y \in H} \chi_{V}\left(\pi_{1}(y)\right) \chi_{W}\left(\pi_{2}(y)\right) \tag{2.1}\\
& =-\frac{1}{|P|} \sum_{h \in H \backslash P} \chi_{V}\left(\pi_{1}(h)\right) \chi_{W}\left(\pi_{2}(h)\right)
\end{align*}
$$

where $V\left(\right.$ resp. W) is a K - (resp. L-) module and $\pi_{1}: G \rightarrow K$ and $\pi_{2}: G \rightarrow L$ are the canonical projections.

We set

$$
\begin{aligned}
\mathscr{D}^{2}(G)=\{(P, H) \in \mathscr{D}(G) \mid[H: P] & =\left[H G^{\{2\}}: P G^{\{2\}}\right]=2 \text { and } \\
P G^{\{q\}} & =G \text { for all odd primes } q\} .
\end{aligned}
$$

and

$$
\underline{\mathscr{D}}^{2}(G)=\underline{\mathscr{D}}(G) \cap \mathscr{D}^{2}(G) .
$$

Then $d_{V(G)}$ is positive on $\underline{\mathscr{D}}(G) \backslash \underline{\mathscr{D}}^{2}(G)$.
We have shown a restriction formula that reads as follows:

Proposition 2.2 (cf. [5, Proposition 3.1]). Let K be a subgroup of an almost gap group G such that $G^{\{2\}}<K \leq G$. Then K is an almost gap group. Furthermore, if the order of $G^{\{2\}}$ is not a power of a prime, then $G^{\{2\}}$ is an almost gap group.

Let $R O(G)_{\mathscr{L}(G)}$ be an additive subgroup of $R O(G)$ generated by $\mathscr{L}(G)$-free irreducible real G-modules. There is a group epimorphism $\varphi: R O(G) \rightarrow$ $R O(G)_{\mathscr{L}(G)}$ which is a left inverse of the inclusion $R O(G)_{\mathscr{L}(G)} \hookrightarrow R O(G)$. For a G-module V, we set $V_{\mathscr{L}(G)}=\varphi(V)$. Then $V_{\mathscr{L}(G)}$ is an $\mathscr{L}(G)$-free G-module and

$$
\begin{equation*}
V_{\mathscr{L}(G)}=\left(V-V^{G}\right)-\underset{p| | G \mid}{\bigoplus_{|l|}}\left(V-V^{G}\right)^{G^{\{p\}}} \tag{2.3}
\end{equation*}
$$

holds. In particular, $V(G)=\boldsymbol{R}[G]_{\mathscr{L}(G)}$ holds. Here the minus sign is interpreted as follows. For some integer $\ell>0$, we regard V as a G-submodule of $\ell \boldsymbol{R}[G]$ with some G-invariant inner product. For a G-submodule W of V, we denote by $V-W$ the G-module which is orthogonal complement of W in V. For distinct primes p and $q, V^{G^{\{p\}}} \cap V^{G^{\{q\}}}=V^{G}$ holds, since $G^{\{p\}} G^{\{q\}}=G$. Then the direct sum of $\left(V-V^{G}\right)^{G^{\{p\}}}$ is a G-submodule of $V-V^{G}$.

The following is a restriction formula for an odd prime p.
Proposition 2.4. Let K be a subgroup of G such that $G^{\{p\}}<K \leq G$ for a prime p. Suppose there is a normal p-subgroup L of G such that $L K=G$. If G is a gap group then so is K.

Proof. Let W be a gap G-module. Since $W^{K}=0$, we set $V=$ $\left(\operatorname{Res}_{K}^{G} W^{L}\right)_{\mathscr{L}(K)}$. We show that V is a gap K-module. It suffices to show that V is positive on $\mathscr{D}^{2}(K)$. Let $(P, H) \in \mathscr{D}^{2}(K)$. Then P is a p-group and thus $L P$ is also a p-group. Therefore it follows that $(L P, H P) \in \mathscr{D}^{2}(G)$ and $d_{V}(P, H)=$ $d_{W}(L P, H P)-\sum_{q} d_{W}\left(L P K^{\{q\}}, H P K^{\{q\}}\right)=d_{W}(L P, H P)-d_{W}\left(L P K^{\{2\}}, H P K^{\{2\}}\right)$. We claim that $L K^{\{2\}}=G^{\{2\}}$ and thus $d_{V}(P, H)=d_{W}(L P, L H)>0$. For $g=\ell k \in$ $G=L K$, we obtain $g^{-1} L K^{\{2\}} g=\left(k^{-1} L k\right)\left(k^{-1} K^{\{2\}} k\right)=L K^{\{2\}}$. Hence $L K^{\{2\}}$ is a normal subgroup of G. Clearly $L K^{\{2\}} \leq G^{\{2\}}$.

Since $L \cap\left(K \cap G^{\{2\}}\right)=\left(L \cap G^{\{2\}}\right) \cap K=L \cap K=L \cap K^{\{2\}}$, it follows that $\left[G^{\{2\}}\right.$: $\left.K \cap G^{\{2\}}\right]=\left[L K^{\{2\}}: K^{\{2\}}\right]$. Therefore we obtain that $\left[G^{\{2\}}: L K^{\{2\}}\right]$ is a power of 2 and thus $G^{\{2\}}=L K^{\{2\}}$.

Corollary 2.5. Let p be an odd prime, L a nontrivial p-group and $K a$ finite group such that $K \times L$ is a gap group. Then the following holds.
(1) $K \times N$ is a gap group for any nontrivial subgroup N of L.
(2) If $K^{\{p\}}<K$, then K is a gap group.

Proof. In (2) we let N be a trivial group. Let V be a gap $(K \times L)$ module. Regarding V^{L} as a $(K \times L)$-module, set $W=\operatorname{Res}_{K \times N}^{K \times L} V^{L}$. Then $W^{K^{\{q\}}}=V^{K^{\{q\}} \times L} \subseteq V^{(K \times L)^{\{q\}}}=0$ for any prime q, namely W is $\mathscr{L}(K \times N)$-free. For $(P, H) \in \mathscr{D}^{2}(K \times N)$, it follows that P is a p-group, $(P L, H L) \in \mathscr{D}^{2}(K \times L)$ and then $d_{W}(P, H)=d_{V}(P L, H L)>0$. Therefore W is positive on $\mathscr{D}^{2}(K \times N)$ and hence $W \oplus(\operatorname{dim} W+1) V(K \times N)$ is a gap $(K \times N)$-module.

3. Product with a symmetric group.

Let C_{n} be a cyclic group of order n. In this section, by constructing appropriate gap modules, we show that $S_{5} \times S_{4}, S_{5} \times S_{5}$ and $S_{5} \times S_{4} \times C_{2}$ are all gap groups. The proof depends on [5, Theorem 3.5] and the fact that $A_{4} \times C_{2}$ is an almost gap group.

Let $\mathscr{C}(G)$ be a complete set of cyclic groups C of G generated by elements in $H \backslash P$ of 2-power order, for all $(P, H) \in \mathscr{D}^{2}(G)$. Let $\mathfrak{C}(G)$ be a complete set of representatives of conjugacy classes of elements $C \in \mathscr{C}(G)$. We denote by $G_{\{p\}}$ a p-Sylow subgroup of G for a prime p.

Proposition 3.1. $G=A_{4} \times C_{2}$ is an almost gap group but not a gap group.
Proof. $\mathscr{P}(G) \cap \mathscr{L}(G)=\left\{G^{\{3\}}\right\}$ causes that G is not a gap group. Since $G^{\{3\}}=G_{\{2\}}$, the set $\underline{\mathscr{D}}^{2}(G)$ consists of four elements of type $\left(G_{\{3\}}, G_{\{3\}} \times C_{2}\right)$. Thus

$$
\left(\operatorname{Ind}_{C_{2}}^{G} \boldsymbol{R}_{ \pm}-\left(\operatorname{Ind}_{C_{2}}^{G} \boldsymbol{R}_{ \pm}\right)^{G^{\{2\}}}\right) \oplus 2 V(G)
$$

is a required almost gap G-module, where $\boldsymbol{R}_{ \pm}$is the nontrivial irreducible C_{2} module.

Proposition 3.2. The G-module $V(G)$ is an almost gap G-module for any nilpotent group G not of prime power order.

Proof. Note that G is isomorphic to $\prod_{p} G_{\{p\}}$. Thus if the order of G is divisible by three district primes, $V(G)$ is a gap group by [5, Theorem 0.2]. We may assume $|G|=p^{a} q^{b}$ for primes p and $q(p>q)$. Let $(P, H) \in \mathscr{D}^{2}(G)$. Since $P G^{\{p\}}=G$ implies $P=G_{\{p\}}=G^{\{q\}} \in \mathscr{L}(G)$, there are no elements $(P, H) \in$ $\mathscr{D}^{2}(G)$ such that $P \notin \mathscr{L}(G)$. Thus $V(G)$ is an almost gap G-module by [5, Lemma 0.1].

Proposition 3.3. $G=A_{5} \times C_{2}$ is a gap group.

Proof. Let $K=A_{4} \times C_{2}$ and W_{0} be an almost gap K-module. Set $W=$ $\operatorname{Ind}_{K}^{G} W_{0}$ and $V=W \oplus(\operatorname{dim} W+1) V(G)$. We show that V is a gap G-module. It suffices to show that W is positive at all $(P, H) \in \mathscr{D}^{2}(G)$. Note that

$$
d_{W}(P, H)=\sum_{P g K \in(P \backslash G / K)^{H / P}} d_{W_{0}}\left(K \cap g^{-1} P g, K \cap g^{-1} H g\right) \geq 0
$$

Since $K_{\{2\}}$ is a Sylow 2-subgroup of G, we have $(P \backslash G / K)^{H / P} \neq \varnothing$. It suffices to show that $K \cap g^{-1} P g \notin \mathscr{L}(K)$. Suppose $K \cap g^{-1} P g \in \mathscr{L}(K)$. Then $K \cap g^{-1} P g=$ $K_{\{2\}}$. Thus P is a Sylow 2-subgroup of G but this contracts the existence of H. Hence $K \cap g^{-1} P g \notin \mathscr{L}(K)$ and W is positive at all $(P, H) \in \mathscr{D}^{2}(G)$.

Recalling (2.3), given a subgroup L of G, we define a G-module $V(L ; G)=$ $\left(\operatorname{Ind}_{L}^{G}(\boldsymbol{R}[L]-\boldsymbol{R})\right)_{\mathscr{L}(G)}$, namely an $\mathscr{L}(G)$-free G-module removing non- $\mathscr{L}(G)$-free part $\bigoplus_{p}\left(\operatorname{Ind}_{L}^{G}(\boldsymbol{R}[L]-\boldsymbol{R})\right)^{G^{\{p\}}}$ from $\operatorname{Ind}_{L}^{G}(\boldsymbol{R}[L]-\boldsymbol{R})$.

Proposition 3.4. $G=S_{5} \times S_{4}$ and $S_{5} \times S_{5}$ are gap groups.
Proof. We regard G as a subgroup of S_{9}. Set $K_{1}=S_{5} \times A_{4}, K_{2}=A_{5} \times S_{4}$ and $K_{3}=C_{6} \times S_{4}$, which are all gap groups. (Also see [5, Lemma 5.6].) We define $V_{m}=\operatorname{Ind}_{K_{m}}^{G} W_{m}$ for $m=1,2,3$, where W_{m} is a gap K_{m}-module. It follows that

$$
\mathfrak{C}(G)=\left\{C_{2,1}, C_{4,1}, C_{1,2}, C_{1,4}, C_{2,2}, C_{2,4}, C_{4,2}, C_{4,4}, S_{2}, S_{4}, T_{2}, T_{4}\right\} .
$$

Here $C_{i, 1}, C_{1, i}, C_{i, j}, S_{i}$ and T_{i} are cyclic subgroups generated by $a_{i}, b_{i}, a_{i} b_{j}, s_{i}$ and t_{i} respectively $(i, j=2,4)$, where $a_{2}=(1,3), a_{4}=(1,2,3,4), b_{2}=(6,8), b_{4}=$ $(6,7,8,9), s_{i}=a_{i} b_{4}^{2}$ and $t_{i}=a_{4}^{2} b_{i}$.

Let $(P, H) \in \mathscr{D}^{2}(G)$. If $H \backslash P$ has an element which is conjugate to an element in

$$
\left\{a_{i}, s_{i} \mid i=2,4\right\}, \quad\left(\text { resp. } \quad\left\{b_{i}, t_{i} \mid i=2,4\right\}, \text { resp. }\left\{a_{2}, b_{i}, a_{2} b_{i} \mid i=2,4\right\}\right)
$$

then V_{1} (resp. V_{2}, resp. V_{3}) is positive at (P, H).
Let L be a subgroup of G of order 16 generated by $a_{4} b_{2}, b_{4}^{2}$, and $(6,7)(8,9)$. Now assume $H \backslash P$ consists of elements which are conjugate to elements in $\left\{a_{4} b_{i} \mid i=2,4\right\}$. For such a pair (P, H), there is an element a of G such that $a^{-1} H a$ is a subgroup of L. (Note that $G_{\{2\}}=D_{8} \times D_{8}$ has just 4 elements conjugate to g for each $g=a_{4} b_{4}, a_{4} b_{2}$.) Since $N_{G}(L)$ is a Sylow subgroup $G_{\{2\}}$, it follows that

$$
\begin{aligned}
d_{V(L ; G)}(P, H) & \geq \frac{\left|N_{G}(L)\right|}{\left|N_{G}(L) \cap a^{-1} P a L\right|}-\left|\left(G^{\{2\}} P \backslash G / L\right)^{H / P}\right| \\
& \geq\left|N_{G}(L) / L\right|-2=2>0 .
\end{aligned}
$$

Putting all together, $V(L ; G) \oplus 3\left(V(G) \oplus \oplus_{i=1}^{3} V_{i}\right)$ is a gap G-module.

Since $\left[S_{5} \times S_{5}: G\right]=5$ is odd, $S_{5} \times S_{5}$ is a gap group by [$\mathbf{5}$, Lemma $0.3]$.

Remark 3.5. Consider the following subgroups of $G=S_{5} \times S_{4}: P=$ $\left\langle a_{4}^{2}, b_{4}^{2}\right\rangle, H_{4}=\left\langle a_{4} b_{4}, a_{4} b_{4}^{3}\right\rangle$ and $H_{2}=\left\langle a_{4} b_{2}, a_{4} b_{2} b_{4}^{2}\right\rangle$. Then $\left(P, H_{4}\right)$ and $\left(P, H_{2}\right)$ are elements of $\mathscr{D}^{2}(G) . \quad N_{4}=N_{G}\left(C_{4,4}\right)=\left\langle a_{4}, b_{4}, a_{2} b_{2}\right\rangle$ of order 32 has just 4 elements which are conjugate to $a_{4} b_{4}$ and no elements conjugate to $a_{4} b_{2}$. Thus $\left|\left(H_{4} \backslash P\right) \cap N_{4}\right|=4$ and so $H_{4} \cap N_{4}=8$. Therefore if $H_{4} \geq C_{4,4}$, then $\left|N_{4} / P C_{4,4} \cap N_{4}\right|=\left|N_{4} / H_{4} \cap N_{4}\right|=4$ and $d_{V\left(C_{4,4}\right)}\left(P, H_{4}\right) \geq 4-2=2$. Similarly since $N_{2}=N_{G}\left(C_{4,2}\right)=\left\langle a_{4}, b_{2}, b_{4}^{2}, a_{2}\right\rangle \cong D_{8} \times C_{2} \times C_{2}$ of order 32 has only 4 elements conjugate to $a_{4} b_{2}$ and no elements conjugate to $a_{4} b_{4}$, it follows that $d_{V\left(C_{4,2}\right)}\left(P, H_{2}\right) \geq 2$. Then in this estimation we only obtain that $V\left(C_{4,2}\right) \oplus$ $V\left(C_{4,4}\right)$ is nonnegative at $\left(P, H_{4}\right)$ and $\left(P, H_{2}\right)$. However $\left|\left(P \backslash G / C_{4, j}\right)^{H_{j} / P}\right|=8$ in fact and thus $d_{V\left(C_{4, j}\right)}\left(P, H_{j}\right)=6$ for $j=2,4$. Thus $W=V\left(C_{4,2}\right) \oplus V\left(C_{4,4}\right)$ is positive at $\left(P, H_{j}\right)$ for $j=2,4$, and hence $5\left(V(G) \oplus V_{1} \oplus V_{2} \oplus V_{3}\right) \oplus W$ is a gap G-module.

For $G=S_{5} \times S_{4} \times C_{2}$, the set $\mathfrak{C}(G)$ consists of 28 elements. Let $K_{1}=S_{5} \times$ $A_{4} \times C_{2}, K_{2}=A_{4} \times S_{4} \times C_{2}$ and $K_{3}=C_{6} \times S_{4} \times C_{2}$ be subgroups of G. They are gap groups by Proposition 3.1 and [5, Theorem 3.5]. Similarly by using their gap groups, we can prove the next proposition.

Proposition 3.6. Let $V_{i}(i=1,2,3)$ be G-modules induced from gap $K_{i}-$ modules. Let K_{5} be a subgroup of G generated by $(1,2,3,4)(6,7),(6,7)(8,9)$, $(6,8)(7,9)$, and $(10,11)$, viewing naturally $G=S_{5} \times S_{4} \times C_{2}$ as a subgroup of S_{11}. Then

$$
3\left(V_{1} \oplus V_{2} \oplus V_{3} \oplus V(G)\right) \oplus V\left(K_{5} ; G\right)
$$

is a gap G-module. Furthermore, $S_{5} \times S_{5} \times C_{2}$ is a gap group.
Considering the similar argument of the proof of Propositions 3.4 and 3.6 , we obtain the following proposition.

Proposition 3.7. Let G be a finite group such that $\mathscr{P}(G) \cap \mathscr{L}(G)=\varnothing$ and \mathfrak{F} a subset of $\mathfrak{C}(G)$. We assume that:
(1) For any element C of \mathfrak{F}, there is a gap group K such that $C \leq K \leq G$.
(2) There is an $\mathscr{L}(G)$-free G-module W which is positive at any $(P, H) \in$ $\mathscr{D}^{2}(G)$ such that H contains an element of $\mathfrak{C}(G) \backslash \mathfrak{F}$ as a subgroup.

Then G is a gap group.
Proof. For each element C of \mathfrak{F}, pick up a gap subgroup K_{C} of G which includes C and a gap K_{C}-module W_{C}. Then $\operatorname{Ind}_{K_{C}}^{G} W_{C}$ is nonnegative on $\mathscr{D}(G)$,
and is positive at $(P, H) \in \mathscr{D}^{2}(G)$ if $C \cap g^{-1}(H \backslash P) g \neq \varnothing$ for some $g \in G$. Therefore $W \oplus(\operatorname{dim} W+1)\left(V(G) \oplus \oplus_{C \in \mathfrak{F}} \operatorname{Ind}_{K_{C}}^{G} W_{C}\right)$ is a gap G-module.

Let $n \geq 9$. Note that $K=S_{n-5} \times A_{5}\left(\leq S_{n}\right)$ is a gap group, since $A_{5} \times C_{2}$ is a gap group. Let $\mathfrak{F} \subset \mathfrak{C}(G)$ be a set of all elements of order $<k_{2}$, where k_{2} is a power of 2 such that $k_{2} \leq n<2 k_{2}$. Then K contains any element of \mathfrak{F} up to conjugate in G. $W=V\left(\left\langle\left(1,2, \ldots, k_{2}\right)\right\rangle ; S_{n}\right)$ fulfills (2) in Proposition 3.7. Hence S_{n} is a gap group which has been already shown in [2].

4. Farkas lemma and the condition NGC.

Throughout this section, we assume that G is a finite group not of prime power order. We consider the following condition NGC: There are a nonempty subset $S \subset \mathscr{D}(G)$ and positive integers $m(P, H)$ for $(P, H) \in S$ such that

$$
\begin{equation*}
\sum_{(P, H) \in S} m(P, H) d_{V}(P, H)=0 \tag{4.1}
\end{equation*}
$$

for any $\mathscr{L}(G)$-free irreducible G-module V.
We denote by $\operatorname{NGC}(G)$ the condition NGC for a group G. If $G_{\{p\}}=G^{\{q\}}$, then setting $S=\left\{\left(G^{\{q\}}, G\right)\right\}$ and $m\left(G^{\{q\}}, G\right)=1$, we obtain (4.1). If $\mathscr{P}(G) \cap$ $\mathscr{L}(G)=\varnothing$, then S must be a subset of $\mathscr{D}^{2}(G)$ by existence of $V(G)$.

We give two examples. For a dihedral group $D_{2 n}$ of order $2 n$, any $\mathscr{L}\left(D_{2 n}\right)$ free irreducible module is zero at $\left(\{1\}, C_{2}\right)$. Let $P_{1}=\langle(1,3)(2,4)\rangle, H_{1}=$ $\langle(1,2,3,4)\rangle, P_{2}=\langle(1,2,3)\rangle$, and $H_{2}=\langle(1,2,3),(1,2)\rangle$ be subgroups of S_{5}, and set $S=\left\{\left(P_{1}, H_{1}\right),\left(P_{2}, H_{2}\right)\right\}$. Then $d_{W}\left(P_{1}, H_{1}\right)+d_{W}\left(P_{2}, H_{2}\right)=0$ for any $\mathscr{L}\left(S_{5}\right)$ free irreducible module W. (See [6].) Therefore $D_{2 n}$ and S_{5} satisfy the condition NGC. Hereafter we show that if G is not a gap group, G satisfies the condition NGC.

We write $\boldsymbol{x} \geq \boldsymbol{y}($ resp. $\boldsymbol{x}>\boldsymbol{y})$, if $x_{i} \geq y_{i}\left(\right.$ resp. $\left.x_{i}>y_{i}\right)$ for any i, where $\boldsymbol{x}=$ ${ }^{t}\left[x_{1}, \ldots, x_{n}\right]$ and $\boldsymbol{y}={ }^{t}\left[y_{1}, \ldots, y_{n}\right]$.

Theorem 4.2 (The duality theorem cf. [1, p. 248]). For an $n \times m$ matrix A with entries in \boldsymbol{Q}, let

$$
\begin{array}{ll}
\operatorname{minimize} & { }^{t} \boldsymbol{c} \boldsymbol{x} \\
\text { subject to } & A \boldsymbol{x} \geq \boldsymbol{b}, \quad \boldsymbol{x} \geq \mathbf{0}
\end{array}
$$

be a primal problem and let

$$
\begin{array}{ll}
\operatorname{maximize} & { }^{t} \boldsymbol{b y} \\
\text { subject to } & { }^{t} \boldsymbol{A} \boldsymbol{y} \leq \boldsymbol{c}, \quad \boldsymbol{y} \geq \mathbf{0}
\end{array}
$$

be a problem which is called the dual problem. Then the following relationship between the primal and dual problems holds.

		Dual		
		Optimal	Infeasible	
Unbounded				
Primal	Optimal	Possible	Impossible	
	Infeasible	Impossible	Possible	
	Unbounded	Impossible	Possible	
Impossible				

The duality theorem is proved by applying a linear programming over \boldsymbol{Q}. A key point of the proof is that the (revised) simplex method is closed over \boldsymbol{Q}. We omit the detail.

Lemma 4.3 (Farkas Lemma). Let A be an $n \times m$ matrix with entries in \boldsymbol{Q}. For $\boldsymbol{b} \in \boldsymbol{Q}^{n}$, set

$$
X(A, \boldsymbol{b})=\left\{\boldsymbol{x} \in \boldsymbol{Q}^{m} \mid A \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\right\} \quad \text { and } \quad Y(A, \boldsymbol{b})=\left\{\left.\boldsymbol{y} \in \boldsymbol{Q}^{n}\right|^{t} A \boldsymbol{y} \leq \mathbf{0},{ }^{t} \boldsymbol{b} \boldsymbol{y}>\mathbf{0}\right\} .
$$

Then either $X(A, \boldsymbol{b})$ or $Y(A, \boldsymbol{b})$ is empty but not both.
Proof. First suppose $X(A, \boldsymbol{b}) \neq \varnothing$. If it might holds $Y(A, \boldsymbol{b}) \neq \varnothing$, then ${ }^{t} \boldsymbol{y} A \boldsymbol{x}={ }^{t} \boldsymbol{y} \boldsymbol{b}={ }^{t} \boldsymbol{b} \boldsymbol{y}>\mathbf{0}$ but the inequalities ${ }^{t} \boldsymbol{y} A \leq^{t} \mathbf{0}$ and $\boldsymbol{x} \geq \mathbf{0}$ implies ${ }^{\boldsymbol{t}} \boldsymbol{y} A \boldsymbol{x} \leq \mathbf{0}$ which is contradiction. Thus $Y(A, \boldsymbol{b})$ is empty. Next suppose $X(A, \boldsymbol{b})=\varnothing$. Consider a primal problem

$$
\begin{array}{ll}
\operatorname{minimize} & { }^{t} \boldsymbol{0} \boldsymbol{x} \\
\text { subject to } & {\left[\begin{array}{c}
A \\
-A
\end{array}\right] \boldsymbol{x} \geq\left[\begin{array}{c}
\boldsymbol{b} \\
-\boldsymbol{b}
\end{array}\right], \quad \boldsymbol{x} \geq \mathbf{0}}
\end{array}
$$

which has an infeasible solution. Then the dual problem is

$$
\begin{array}{ll}
\operatorname{maximize} & { }^{t} \boldsymbol{b} \boldsymbol{z} \\
\text { subject to } & { }^{t} A z \leq \boldsymbol{0}
\end{array}
$$

where $z=y_{1}-y_{2}$ and $y=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$. This problem has a solution $z=0$ and thus it has an unbounded solution. Therefore there exists a solution z such that ${ }^{t} \boldsymbol{b} \boldsymbol{z}>0$ and then $Y(A, \boldsymbol{b}) \neq \varnothing$.

Let n be a number of $\mathscr{L}(G)$-free irreducible G-modules and $m=|\mathscr{D}(G)|$. We denote by $M(m, n ; \boldsymbol{Z})$ the set of $m \times n$ matrices with entries in \boldsymbol{Z}. We say that D is a dimension matrix of G, if $D \in M(m, n ; \boldsymbol{Z})$ is a matrix whose (i, j) entry is $d_{V_{j}}\left(P_{i}, H_{i}\right)$, where V_{j} runs over $\mathscr{L}(G)$-free irreducible G-modules and $\left(P_{i}, H_{i}\right)$ runs over elements of $\mathscr{D}(G)$. For a subset S of $\mathscr{D}(G)$, a submatrix
$D^{\prime} \in M(|S|, n ; \boldsymbol{Z})$ of a dimension matrix D of G is called a dimension submatrix of G over S. Set

$$
\boldsymbol{Z}_{\geq \mathbf{0}}^{k}=\left\{\boldsymbol{x} \in \boldsymbol{Z}^{k} \mid \boldsymbol{x} \geq \mathbf{0}\right\}
$$

and

$$
Z_{S}(G)=\left\{\boldsymbol{y}={ }^{t}\left[y_{1}, \ldots, y_{k}\right] \in \boldsymbol{Z}_{\geq \mathbf{0}}^{k} \mid{ }^{t} D^{\prime} \boldsymbol{y} \leq \mathbf{0}, \sum_{i} y_{i}>0\right\}
$$

If G is a gap group, then there is $\boldsymbol{x} \in \boldsymbol{Z}_{\geq \mathbf{0}}^{n}$ such that $D \boldsymbol{x}>\mathbf{0}$. The converse is also true, since $W=\sum_{i} x_{i} V_{i}$ is a gap G-module, where x_{i} is the i-th entry of \boldsymbol{x}.

Proposition 4.4. The followings are equivalent.
(1) G is not a gap group.
(2) $Z_{\mathscr{D}(G)}(G) \neq \varnothing$.
(3) There are a nonempty subset $S \subseteq \mathscr{D}(G)$ and positive integers $m(P, H)$ for $(P, H) \in S$ such that $\sum_{(P, H) \in S} m(P, H) d_{V}(P, H) \leq 0$ for any $\mathscr{L}(G)$-free irreducible G-module V.

Proof. Let D be a dimension matrix of G. Set $A=[D,-E]$, where E is the identity matrix, and $\boldsymbol{b}={ }^{t}[1, \ldots, 1]$. If there is $\boldsymbol{x}={ }^{t}\left[\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right] \in X(A, \boldsymbol{b})$, then $D \boldsymbol{x}_{1}-\boldsymbol{x}_{2}=\boldsymbol{b}$ and thus $D \boldsymbol{x}_{1} \geq \boldsymbol{b}$. Take a positive integer k such that $k \boldsymbol{x}_{1} \in \boldsymbol{Z}^{m}$. Then $D\left(k \boldsymbol{x}_{1}\right) \geq k \boldsymbol{b} \geq \boldsymbol{b}$. Therefore $X(A, \boldsymbol{b}) \neq \varnothing$ implies that G is a gap group. Clearly if G is a gap group, then $X(A, \boldsymbol{b}) \neq \varnothing$ holds. Then by Lemma 4.3, G is a gap group if and only if $Y(A, \boldsymbol{b})=\varnothing$, equivalently $Z_{\mathscr{D}(G)}(G)=\varnothing$ holds. Therefore (1) and (2) are equivalent.

It is clear that (3) implies (2). To finish the proof we show that (2) implies (3). Take $\boldsymbol{z} \in Z_{\mathscr{O}(G)}(G)$. Set S as a set of $\left(P_{i_{t}}, H_{i_{t}}\right)$'s such that the i_{t}-th entry of \boldsymbol{z} is nonzero, and let $m\left(P_{i_{t}}, H_{i_{t}}\right)$ be the i_{t}-th entry of \boldsymbol{z}. Then $\sum_{\left(P_{i_{t}}, H_{i_{t}}\right) \in S} m\left(P_{i_{t}}, H_{i_{t}}\right)$. $d_{V_{j}}\left(P_{i_{t}}, H_{i_{t}}\right) \leq 0$ clearly holds.

Thus if $\operatorname{NGC}(G)$ holds, then G is not a gap group.
Proposition 4.5. Suppose that there are an $\mathscr{L}(G)$-free G-module W and a subset $T \subseteq \mathscr{D}(G)$ such that $d_{W}(P, H) \geq 0$ for any $(P, H) \in \mathscr{D}(G)$ and $d_{W}(P, H)>0$ for any $(P, H) \in T$. Then the followings are equivalent.
(1) G is not a gap group.
(2) $Z_{\mathscr{D}(G) \backslash T}(G) \neq \varnothing$.
(3) There is a nonempty subset $S \subseteq \mathscr{D}(G) \backslash T$ and integers $m(P, H)>0$ for $(P, H) \in S$ such that $\sum_{(P, H) \in S} m(P, H) d_{V}(P, H) \leq 0$ for any $\mathscr{L}(G)$-free irreducible G-module V.

Proof. Clearly (2) implies (1) by Proposition 4.4. Suppose that G is not a gap group. Let D_{1} be a dimension submatrix of G over S and D_{2} a dimension submatrix of G over $\mathscr{D}(G) \backslash S$. Then $D={ }^{t}\left[D_{1}, D_{2}\right]$ is a dimension matrix of G.

Let $V_{j}(1 \leq j \leq k)$ be a complete set of $\mathscr{L}(G)$-free irreducible G-modules. Set $\boldsymbol{y}={ }^{t}\left[y_{1}, \ldots, y_{k}\right]$, where $W=\sum_{j=1}^{k} y_{j} V_{j}$. Since there is a nonzero vector $\boldsymbol{x}=$ ${ }^{t}\left[\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right] \geq \mathbf{0}$ such that ${ }^{t} \boldsymbol{x} D={ }^{t} \boldsymbol{x}_{1} D_{1}+{ }^{t} \boldsymbol{x}_{2} D_{2} \leq{ }^{t} \mathbf{0}$, we have ${ }^{t} \boldsymbol{x}_{1} D_{1} \boldsymbol{y}+{ }^{t} \boldsymbol{x}_{2} D_{2} \boldsymbol{y} \leq 0$. Since $D_{1} \boldsymbol{y}>\boldsymbol{0}$ and $D_{2} \boldsymbol{y} \geq \mathbf{0}$, we obtain that ${ }^{t} \boldsymbol{x}_{1} D_{1} \boldsymbol{y}={ }^{t} \boldsymbol{x}_{2} D_{2} \boldsymbol{y}=0$ and thus $\boldsymbol{x}_{1}=\mathbf{0}$. Therefore ${ }^{t} \boldsymbol{x}_{2} D_{2} \leq{ }^{t} \mathbf{0}$ for the nonzero vector $\boldsymbol{x}_{2} \geq \mathbf{0}$ and hence (2) holds.

Corollary 4.6. Let G be a finite group such that $\mathscr{P}(G) \cap \mathscr{L}(G)=\varnothing$. The group G is a gap group if and only if $Z_{\mathscr{D}^{2}(G)}(G)=\varnothing$ holds.

This holds from the existence of $V(G)$.
The following proposition can be proven by the same manner of the proof of Proposition 4.5. Recall that $\mathscr{P}(G) \cap \mathscr{L}(G)=\varnothing$ implies $\mathscr{D}(G)=\mathscr{D}(G)$.

Proposition 4.7. Let G be a finite group not of prime power order. Suppose that there are an $\mathscr{L}(G)$-free G-module W and a subset $T \subseteq \mathscr{\mathscr { D }}^{2}(G)$ such that $d_{W}(P, H) \geq 0$ for any $(P, H) \in \mathscr{D}(G)$ and $d_{W}(P, H)>0$ for any $(P, H) \in T$. Then the followings are equivalent.
(1) G is not an almost gap group.
(2) $Z_{\mathscr{D}^{2}(G) \backslash T}(G) \neq \varnothing$.
(3) There is a nonempty subset $S \subseteq \underline{\mathscr{Q}}^{2}(G) \backslash T$ and integers $m(P, H)>0$ for $(P, H) \in S$ such that $\sum_{(P, H) \in S} m(P, H) d_{V}(P, H) \leq 0$ for any $\mathscr{L}(G)$-free irreducible G-module V.

Theorem 4.8. Let G be a finite group not of prime power order. Then

$$
Z_{S}(G)=\left\{\left.\boldsymbol{y} \in \boldsymbol{Z}_{\geq \mathbf{0}}^{k}\right|^{t} D \boldsymbol{y}=\mathbf{0}, \boldsymbol{y} \neq \mathbf{0}\right\}
$$

where D is a dimension submatrix over S. In particular G is not a gap group if and only if $\operatorname{NGC}(G)$ holds.

Proof. Since (1) and (3) of Proposition 4.4 are equivalent, $\mathrm{NGC}(G)$ implies G is not a gap group. Suppose that G is not a gap group. We show that $\operatorname{NGC}(G)$ holds. Let D be a dimension submatrix of G over $\mathscr{D}^{2}(G)$ and set $\boldsymbol{c}=$ ${ }^{t}[1, \ldots, 1] \in \boldsymbol{Q}^{n}$. Note that $\boldsymbol{R}[G]$ includes all irreducible G-modules. Since $V(G)$ is a module removing non- $\mathscr{L}(G)$-free, (irreducible) G-modules from $\boldsymbol{R}[G]$, the G module $V(G)$ includes any $\mathscr{L}(G)$-free irreducible G-modules. Let $\boldsymbol{a} \in \boldsymbol{Z}_{\geq 0}^{n}$ be a vector corresponding with $V(G)$. Thus we obtain that both $D \boldsymbol{a}=\mathbf{0}$ and ${ }^{t} \boldsymbol{b} \boldsymbol{a}>0$ for any $\boldsymbol{b} \in \boldsymbol{Q}^{n}$ such that $\boldsymbol{b} \geq 0$ and ${ }^{t} \boldsymbol{c} \boldsymbol{b}>0$. Then

$$
Y\left({ }^{t} D, \boldsymbol{b}\right) \cap Y\left(-{ }^{t} D, \boldsymbol{b}\right) \neq \varnothing
$$

By Lemma 4.3 we get

$$
X\left({ }^{t} D, \boldsymbol{b}\right) \cup X\left(-{ }^{t} D, \boldsymbol{b}\right)=\varnothing
$$

namely,

$$
\left\{\left.\boldsymbol{x} \in \boldsymbol{Q}^{m}\right|^{t} D \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\right\} \cup\left\{\left.\boldsymbol{x} \in \boldsymbol{Q}^{m}\right|^{t} D \boldsymbol{x}=-\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\right\}=\varnothing
$$

Then defining a map $f: \boldsymbol{Z}_{\geq 0}^{m} \rightarrow \boldsymbol{Z}^{n}$ by $f(\boldsymbol{x})=^{t} D \boldsymbol{x}$, the image of f is a subset of

$$
\boldsymbol{Z}^{n} \backslash\left\{ \pm \boldsymbol{b} \mid \boldsymbol{b} \geq \mathbf{0},{ }^{t} \boldsymbol{c} \boldsymbol{b}>0\right\}=\left(\boldsymbol{Z}^{n} \backslash\{ \pm \boldsymbol{b} \mid \boldsymbol{b} \geq \mathbf{0}\}\right) \cup\{\mathbf{0}\} .
$$

Taking $z \in Z_{\mathscr{Q}^{2}(G)}(G)$ by Proposition 4.5, $f(z) \leq \mathbf{0}$ holds. On the other hand, the vector $f(\boldsymbol{z})$ belongs to $\left(\boldsymbol{Z}^{n} \backslash\{ \pm \boldsymbol{b} \mid \boldsymbol{b} \geq \mathbf{0}\}\right) \cup\{\mathbf{0}\}$. Hence we obtain $f(\boldsymbol{z})=\mathbf{0}$. We complete the proof.

5. Product with the cyclic group of order 2 .

The purpose of this section is to prove the following lemma.
Lemma 5.1. If K is an almost gap group, then so is $G=K \times C_{2}$.
Combining [5, Theorem 0.4] and Lemma 5.1, we obtain Theorem 1.2.
Now we show Lemma 5.1. To apply Proposition 4.5, we define a subset T of $\mathscr{Q}(G)$. Let W be an almost gap K-module. Let $\pi_{1}: G \rightarrow K$ and $\pi_{2}: G \rightarrow C_{2}$ be canonical projections. First, set $T_{1}=\underline{\mathscr{Q}}(G) \backslash \mathscr{\mathscr { Q }}^{2}(G)$. The module $V_{1}=V(G)$ is nonnegative on $\mathscr{D}(G)$ and positive on T_{1}. Second, set $T_{2}=\left\{(P, H) \in \mathscr{D}^{2}(G) \mid\right.$ $\left.\pi_{2}(P)=\pi_{2}(H)\right\}$. Then $V_{2}=\operatorname{Ind}_{K}^{G} W$ is nonnegative on $\mathscr{D}(G)$ and positive on T_{2}. It is clear that V_{1} and V_{2} are $\mathscr{L}(G)$-free. Note that $V\left(P \times C_{2}\right)$ is an almost gap group and particularly, nonnegative on $\mathscr{D}(G)$ for any p-group $P(p \neq 2)$. Third, set $T_{3}=\left\{\left(P, P \times C_{2}\right) \in \mathscr{D}^{2}(G) \mid P \in \mathscr{P}(K) \backslash \mathscr{L}(K)\right\}$. We show that there is an $\mathscr{L}(G)$-free G-module V_{3} such that V_{3} is nonnegative on $\mathscr{D}(G)$ and positive on T_{3}, by dividing two cases. Let $(P, H) \in T_{3}$.

The first case is one where $|K|$ is divisible by at least two odd primes. Take an odd prime q such that q divides $|K|$ and addly if $P \neq\{1\}$ then P is not a q group. Then $\operatorname{Ind}_{C_{q} \times C_{2}}^{G} V\left(C_{q} \times C_{2}\right)$ is positive at (P, H). Set $V_{3}=\bigoplus_{p} \operatorname{Ind}_{C_{p} \times C_{2}}^{G}$ $V\left(C_{p} \times C_{2}\right)$, where p ranges over all odd primes which divide $|K|$. Then V_{3} is positive on T_{3}.

The second case is one where $|K|=2^{a} p^{b}$ for some odd prime p and some integer $a, b \geq 1$. Set $L=K_{\{p\}} \times C_{2}$ and $V_{3}=\operatorname{Ind}_{L}^{G} V(L) . \quad$ If $\mathscr{P}(K) \cap \mathscr{L}(K)=\varnothing$, then $K_{\{p\}}$ is not a normal subgroup of K and thus there is an element $g \in G$ for any $P \in \mathscr{P}(K)$ such that $L \cap g^{-1} P g<K_{\{p\}}$. If $K_{\{p\}}$ is a normal subgroup of K, then $L \cap P<K_{\{p\}}$ for any $P \in \mathscr{P}(K) \backslash \mathscr{L}(K)$. Therefore we obtain that

$$
\begin{aligned}
d_{V_{3}}(P, H) & =\sum_{P g L \in(P \backslash G / L)^{H / P}} d_{V(L)}\left(L \cap g^{-1} P g, L \cap g^{-1} H g\right) \\
& =\sum_{\pi_{1}(P) g K_{\{p\}} \in \pi_{1}(P) \backslash K / K_{\{p\}}} \operatorname{dim} V(L)^{L \cap g^{-1} P g}>0 .
\end{aligned}
$$

Then V_{3} is positive on T_{3}.
Putting all together, $V=V_{1} \oplus V_{2} \oplus V_{3}$ is nonnegative on $\mathscr{D}(G)$ and positive on $T=T_{1} \cup T_{2} \cup T_{3}$.

Let $V_{j}(1 \leq j \leq \gamma)$ be all irreducible K-modules such that V_{j} is $\mathscr{L}(K)$-free whenever $1 \leq j \leq \alpha, V_{j}{ }^{K^{\{2\}}}=0$ but $V_{j}^{K^{\{p\}}} \neq 0$ for some odd prime p whenever $\alpha<j \leq \beta$, and $V_{j}^{K^{\{2\}}} \neq 0$ whenever $\beta<j \leq \gamma$. Then any $\mathscr{L}(G)$-free irreducible G-module is one of $U_{j}=V_{j} \otimes \boldsymbol{R}(1 \leq j \leq \alpha)$ and $W_{k}=V_{k} \otimes \boldsymbol{R}_{ \pm}(1 \leq k \leq \beta)$. Here \boldsymbol{R} (resp. $\boldsymbol{R}_{ \pm}$) is the irreducible trivial (resp. nontrivial) C_{2}-module.

Suppose that G is not an almost gap group. By Proposition 4.7, there are a nonempty subset $S \subseteq \mathscr{D}(G) \backslash T$ and a nonzero vector $\boldsymbol{x} \in \boldsymbol{Z}_{\geq \mathbf{0}}^{\gamma}$ such that ${ }^{t} \boldsymbol{x} D \leq{ }^{t} \mathbf{0}$. Here $D=\left[d_{U_{j}}(P, H), d_{W_{k}}(P, H)\right]$ is a dimension submatrix of G over S, where $1 \leq j \leq \alpha$ and $1 \leq k \leq \beta$. For $(P, H) \in S$, we obtain that $P=H \cap K, \pi_{1}(H)>P$,

$$
d_{U_{j}}(P, H)=-\frac{1}{|P|} \sum_{h \in H \backslash P} \chi_{V_{j}}\left(\pi_{1}(h)\right) \chi_{\boldsymbol{R}}\left(\pi_{2}(h)\right)=d_{V_{j}}\left(P, \pi_{1}(H)\right),
$$

and

$$
d_{W_{k}}(P, H)=-\frac{1}{|P|} \sum_{h \in H \backslash P} \chi_{W_{k}}\left(\pi_{1}(h)\right) \chi_{\boldsymbol{R}_{ \pm}}\left(\pi_{2}(h)\right)=-d_{V_{k}}\left(P, \pi_{1}(H)\right) .
$$

Let $F=\left[d_{U_{j}}(P, H)\right]$ be a submatrix of D such that $D=\left[F,-F,-F^{\prime}\right]$ for some matrix F^{\prime}. Then ${ }^{t} \boldsymbol{x} D \leq{ }^{t} \mathbf{0}$ implies that ${ }^{t} \boldsymbol{x} F \leq{ }^{t} \mathbf{0}$ and $-{ }^{t} \boldsymbol{x} F \leq{ }^{t} \mathbf{0}$. Hence ${ }^{t} \boldsymbol{x} F={ }^{t} \mathbf{0}$ holds. On the other hand, a map $\underline{\mathscr{D}}(G) \backslash T \rightarrow \underline{\mathscr{D}}^{2}(K)$ assigning (P, H) to $\left(P, \pi_{1}(H)\right)$ is a bijection. (If $|K|$ is odd, then $\underline{\mathscr{D}}(G) \backslash T$ and $\underline{\mathscr{D}}^{2}(K)$ are both empty.) Then $F=\left[d_{V_{j}}\left(P, \pi_{1}(H)\right)\right]$ is a dimension submatrix of $K . \quad$ By Proposition 4.7, K is not an almost gap group, which is contradiction. Therefore $K \times C_{2}$ is also an almost gap group.

Corollary 5.2. The wreath product $K \int L$ is a gap group for any finite group K, if L is a gap group.

Proof. It is clear from the existence of epimorphisms $K \int L \rightarrow L$.

6. Product with a dihedral group.

Let $D_{2 n}=\left\langle a, b \mid a^{2}=b^{n}=(a b)^{2}=1\right\rangle$ be a dihedral group of order $2 n$. In this section we study which $K \times D_{2 n}$ is a gap group. If K is a gap group, then so is $K \times D_{2 n}$. We are also interesting in the converse problem.

We set

$$
\mathscr{D}_{p}^{2}(G)=\left\{(P, H) \in \mathscr{D}^{2}(G) \mid P \text { is a } p \text {-group }\right\}
$$

for a prime p and

$$
\mathscr{D}_{1}^{2}(G)=\left\{\left(\{1\}, C_{2}\right) \in \mathscr{D}^{2}(G)\right\} .
$$

Proposition 6.1. Let G be a finite group not of prime power order, p an odd prime and Q a nontrivial p-group. The natural projection $\pi: G \times Q \rightarrow G$ induces a surjection $Z_{\mathscr{D}_{p}^{2}(G \times Q)}(G \times Q) \rightarrow Z_{\mathscr{D}_{p}^{2}(G)}(G)$. Furthermore, it is a bijection if $|G|$ and p are coprime.

Proof. Let $(P, H) \in \mathscr{D}_{p}^{2}(G \times Q)$. Note that $H \cap Q=P \cap Q,(G \times Q)^{\{2\}} \cap$ $Q=Q$ and $\pi\left(P(G \times Q)^{\{r\}}\right)=\pi(P) \pi(G \times Q)^{\{r\}}=\pi(P) G^{\{r\}}$ for any prime r. Thus $(\pi(P), \pi(H)) \in \mathscr{D}_{p}^{2}(G)$. For a G-module V, it follows that
$d_{V \otimes \boldsymbol{R}}(P, H)=-\frac{1}{|P|} \sum_{h \in H \backslash P} \chi_{V}(\pi(h))=-\frac{|P \cap Q|}{|P|} \sum_{x \in \pi(H) \backslash \pi(P)} \chi_{V}(x)=d_{V}(\pi(P), \pi(H))$,
where \boldsymbol{R} regards as the trivial W-module and χ_{V} is the character for V. Thus the projection π induces a map $Z_{\mathscr{O}_{p}^{2}(G \times Q)}(G \times Q) \rightarrow Z_{\mathscr{D}_{p}^{2}(G)}(G)$. We show that the map is surjective. Set $S=\left\{(A \times Q, B \times Q) \mid(A, B) \in^{p} \mathscr{D}_{p}^{2}(G)\right\}$ which is a subset of $\mathscr{D}_{p}^{2}(G \times Q)$. Let $(P, H) \in S$. Then $d_{V \otimes W}(P, H)=d_{V}(\pi(P), \pi(H)) \operatorname{dim} W^{Q}$ for a G-module V and a Q-module W. If $V \times W$ is $\mathscr{L}(G \times Q)$-free and W is the trivial irreducible Q-module, then V is $\mathscr{L}(G)$-free. Thus a dimension submatrix $D=\left[d_{V \otimes W}(P, H)\right]$ over S coincides with $\left[d_{V}(\pi(P), \pi(H)), \mathbf{0}, \ldots, \mathbf{0}\right]$. Note that $\left[d_{V}(\pi(P), \pi(H))\right]$ is a dimension submatrix over $\mathscr{D}_{p}^{2}(G)$. For $\boldsymbol{x} \in Z_{\mathscr{D}_{p}^{2}(G)}(G)$, take $\boldsymbol{y} \in Z_{\mathscr{D}_{p}^{2}(G \times Q)}(G \times Q)$ whose entry corresponding to $(P, H) \in \mathscr{D}_{p}^{2}(G \times Q)$ is the entry of \boldsymbol{x} corresponding to $(\pi(P), \pi(H))$ if $(P, H) \in S$ and zero otherwise. Then the map sends \boldsymbol{y} to \boldsymbol{x}. Therefore the map is surjective. If $|G|$ is a coprime to p, then $S=\mathscr{D}_{p}^{2}(G \times Q)$ which implies that the map is bijective. We complete the proof.

This proposition implies as follows. If $\mathscr{P}(G) \cap \mathscr{L}(G)=\varnothing$, then $Z_{\mathscr{D}_{p}^{2}(G)}(G)$ $\neq \varnothing$ is equivalent to that there is a nontrivial p-group Q such that $G \times Q$ is not a gap group. Furthermore, if $G \times Q$ is a gap group for some nontrivial p-group Q, so is $G \times R$ for any nontrivial p-group R. It also holds in the case where $p=2$, by Theorem 1.2 and Proposition 2.2.

Corollary 6.2. Let K be a p-group. The group $G=K \times D_{2 n}$ is not a gap group.

Proof. Since $(\{1\},\langle a\rangle) \in \mathscr{D}_{p}\left(D_{2 n}\right)$, Proposition 6.1 yields the assertion.
Proposition 6.3. Let p be a prime and let K_{1} and K_{2} be finite groups not of prime power order. If $Z_{\mathscr{D}_{p}^{2}\left(K_{1}\right)}\left(K_{1}\right)$ and $Z_{\mathscr{O}_{p}^{2}\left(K_{2}\right)}\left(K_{2}\right)$ are both nonempty, then $Z_{\mathscr{O}_{p}^{2}\left(K_{1} \times K_{2}\right)}\left(K_{1} \times K_{2}\right) \neq \varnothing$.

Proof. We define $(P, H) \in \mathscr{D}_{p}^{2}\left(K_{1} \times K_{2}\right)$ for $\left(P_{1}, H_{1}\right) \in \mathscr{D}_{p}^{2}\left(K_{1}\right)$ and $\left(P_{2}, H_{2}\right)$ $\in \mathscr{D}_{p}^{2}\left(K_{2}\right)$ as follows. Set $P=P_{1} \times P_{2}$, which is a p-group. Take $h_{j} \in H_{j}$ such that $h_{j} \notin P_{j}$ and h_{j} is an element of 2-power order for $j=1,2$, and denote by H a subgroup of $K_{1} \times K_{2}$ generated by P and $h=h_{1} h_{2}$. It is clear that $(P, H) \in$ $\mathscr{D}_{p}^{2}\left(K_{1} \times K_{2}\right)$. Let S be a subset of $\mathscr{D}_{p}^{2}\left(K_{1} \times K_{2}\right)$ which is the image of the above assignment and $D=\left[d_{V \otimes W}(P, H)\right]$ a dimension submatrix over S. Since

$$
\begin{aligned}
d_{V \otimes W}(P, H) & =-\frac{1}{|P|} \sum_{x \in P} \chi_{V}\left(\pi_{1}(h x)\right) \chi_{W}\left(\pi_{2}(h x)\right) \\
& =-\frac{1}{|P|} \sum_{\left(p_{1}, p_{2}\right) \in P} \chi_{V}\left(h_{1} p_{1}\right) \chi_{W}\left(h_{2} p_{2}\right) \\
& =-\frac{1}{|P|} \sum_{p_{1} \in P_{1}} \chi_{V}\left(h_{1} p_{1}\right) \sum_{p_{2} \in P_{2}} \chi_{W}\left(h_{2} p_{2}\right) \\
& =-d_{V}\left(P_{1}, H_{1}\right) d_{W}\left(P_{2}, H_{2}\right)
\end{aligned}
$$

we have $\left[d_{V \otimes W}(P, H)\right]=-\left[d_{V}\left(P_{1}, H_{1}\right)\right] \otimes\left[d_{W}\left(P_{2}, H_{2}\right)\right] . \quad$ Recall that $\left[d_{V}\left(P_{1}, H_{1}\right)\right]$ (resp. $\left.\left[d_{W}\left(P_{2}, H_{2}\right)\right]\right)$ is a dimension submatrix over $\mathscr{D}_{p}^{2}\left(K_{1}\right)$ (resp. $\left.\mathscr{D}_{p}^{2}\left(K_{2}\right)\right)$. Thus $\boldsymbol{x}_{j} \in Z_{\mathscr{P}_{p}^{2}\left(K_{j}\right)}\left(K_{j}\right)(j=1,2)$ implies $\boldsymbol{x}_{1} \otimes \boldsymbol{x}_{2} \in Z_{\mathscr{O}_{p}^{2}\left(K_{1} \times K_{2}\right)}\left(K_{1} \times K_{2}\right)$.

Remarking $\bigcap_{p} \mathscr{D}_{p}^{2}(G)=\mathscr{D}_{1}^{2}(G)$, similarly as in the proof of Proposition 6.3, we obtain the following proposition.

Proposition 6.4. Let K_{1} and K_{2} be finite groups not of prime power order such that $Z_{\mathscr{D}^{2}\left(K_{1}\right)}\left(K_{1}\right) \neq \varnothing$ and $Z_{\mathscr{D}_{1}^{2}\left(K_{2}\right)}\left(K_{2}\right) \neq \varnothing$. Then $Z_{\mathscr{D}^{2}\left(K_{1} \times K_{2}\right)}\left(K_{1} \times K_{2}\right) \neq \varnothing$ holds.

On the other hand, the G-module $V(G)$ gives some restriction:
Proposition 6.5. Let G be a finite group such that $\{1\}<G^{\{p\}}<G$ for some odd prime p. Then $d_{V(G)}$ is positive on $\mathscr{D}_{1}^{2}(G)$. In particular, $Z_{\mathscr{D}_{1}^{2}(G)}(G)=\varnothing$ holds.

EXAMPLE 6.6. Let $D_{4}=\langle(1,2)(3,4),(1,3)(2,4)\rangle$ and $D_{8}=\langle(1,2)(3,4)$, $(1,2,3,4)\rangle$ be subgroups of S_{4}. Then $\left(D_{4}, D_{8}\right) \in Z_{\mathscr{D}_{2}^{2}\left(S_{4}\right)}\left(S_{4}\right)$. Thus $Z_{\mathscr{P}_{2}^{2}\left(S_{4} \times S_{4}\right)}$ $\left(S_{4} \times S_{4}\right) \neq \varnothing$ which implies that $S_{4} \times S_{4}$ is not a gap group. Repeating, $\prod_{i=1}^{n} S_{4}$ is also not a gap group.

Now we prove the main theorem.
Proof of Theorem 1.1. By Theorem 1.2, G is a gap group if so is K. If K is of prime order, Corollary 6.2 yields the assertion. Let K be a finite group not of prime power order which is not a gap group. Then there is a vector $\boldsymbol{x} \in Z_{\mathscr{D}^{2}(K)}(K)$. By Proposition 2.2, it suffices to show $\operatorname{NGC}(G)$ under the assumption that n is odd, say $n=2 \gamma+1$. Let $D=\left[d_{V_{j}}(P, H)\right] \in M(s, t ; \boldsymbol{Z})$ be a dimension submatrix of K over $\mathscr{D}^{2}(K)$. We define $\left(P, H^{\prime}\right) \in \mathscr{D}^{2}(G)$ for $(P, H) \in$ $\mathscr{D}^{2}(K)$ as follows. Take an element $h \in H \backslash P$ of 2-power order. Let H^{\prime} be a subgroup of G which are generated by P and $h a$. Note that H^{\prime} does not depend on the choice of h. Set $F=\left[d_{V_{j}^{\prime}}\left(P, H^{\prime}\right)\right] \in M\left(s, t^{\prime} ; \boldsymbol{Z}\right)$, where t^{\prime} is a number of $\mathscr{L}(G)$-free irreducible G-modules. We claim that ${ }^{t} F \boldsymbol{x}=\mathbf{0}$, which implies $Z_{\mathscr{D}^{2}(G)}(G) \neq \varnothing$ and thus G is not a gap group. Let W_{1} (resp. W_{2}) be trivial (resp. nontrivial) 1-dimensional $D_{2 n}$-module and $W_{k}(3 \leq k \leq \gamma+2)$ be all irreducible 2-dimensional $D_{2 n}$-modules. Let $V_{j}(1 \leq j \leq \beta)$ be all irreducible K -
modules such that V_{j} is $\mathscr{L}(K)$-free whenever $1 \leq j \leq \alpha$ but V_{j} is not whenever $\alpha<$ $j \leq \beta$. Then an $\mathscr{L}(G)$-free irreducible G-module is one of $V_{j} \otimes W_{1}(1 \leq j \leq \alpha)$, $V_{j} \otimes W_{2}(1 \leq j \leq \alpha)$ and $V_{j} \otimes W_{k}(1 \leq j \leq \beta, 3 \leq k \leq \gamma+2)$. Thus $t^{\prime}=2 \alpha+\beta \gamma$. We obtain that

$$
d_{V_{j} \otimes W_{1}}\left(P, H^{\prime}\right)=-\frac{1}{|P|} \sum_{h \in H^{\prime} \backslash P} \chi_{V_{j}}\left(\pi_{1}(h)\right) \chi_{W_{1}}(a)=d_{V_{j}}(P, H)
$$

by (2.1), where $\pi_{1}: G \rightarrow K$ is a canonical projection. Similarly, we get $d_{V_{j} \otimes W_{2}}\left(P, H^{\prime}\right)=-d_{V_{j}}(P, H)$ and $d_{V_{j} \otimes W_{k}}\left(P, H^{\prime}\right)=0$. Thus $F=[D,-D, \mathbf{0}]$ and then ${ }^{t} F \boldsymbol{x}=\mathbf{0}$. We complete the proof.

Corollary 6.7. Let K be a p-group, $\prod_{k=1}^{\alpha} S_{4}$, or S_{5}. Then $G=K \times$ $\prod_{j=1}^{\beta} D_{2 n_{j}}$ is not a gap group for any $\beta \geq 0$ and any $n_{j} \geq 1$.

Proof. Since K is not a gap group, Corollary 6.2 and Theorem 1.1 imply $\mathrm{NGC}\left(K \times D_{2 n_{1}}\right)$. Thus the proof is completed applying Theorem 1.1 each step by induction on β.

Theorem 6.8. Let $n_{k}(1 \leq k \leq \alpha)$ be an integer such that $n_{1} \geq n_{2} \geq \cdots \geq$ $n_{\alpha}>1$ and let $G=\prod_{k=1}^{\alpha} S_{n_{k}}$ be a direct product group of symmetric groups. Then G is a gap group if and only if either $\alpha \geq 1$ and $n_{1} \geq 6$ or $\alpha \geq 2$ and $n_{1}=5$, $n_{2} \geq 4$.

This holds from Propositions 2.2, 3.4, Corollary 6.7 and a result of Dovermann and Herzog [2]: A symmetric group S_{n} is a gap group for $n \geq 6$.

References

[1] V. Chvátal, Linear Programming, W. H. Freeman and company, 1983.
[2] K. H. Dovermann and M. Herzog, Gap conditions for representations of symmetric groups, J. Pure Appl. Algebra, 119 (1997), 113-137.
[3] E. Laitinen and M. Morimoto, Finite groups with smooth one fixed point actions on spheres, Forum Math., 10 (1998), 479-520.
[4] M. Morimoto, Deleting-inserting theorems of fixed point manifolds, K-theory, 15 (1998), 13-32.
[5] M. Morimoto, T. Sumi and M. Yanagihara, Finite groups possessing gap modules, Contemp. Math., 258 (2000), 329-342.
[6] M. Morimoto and M. Yanagihara, The gap condition for S_{5} and GAP programs, Jour. Fac. Env. Sci. Tech., Okayama Univ., 1 (1996), 1-13.
[7] R. Oliver, Fixed point sets of group actions on finite acyclic complexes, Comment. Math. Helv., 50 (1975), 155-177.

Toshio Sumi

Department of Art and Information Design Faculty of Design
Kyushu Institute of Design
Shiobaru 4-9-1
Fukuoka, 815-8540, Japan
E-mail: sumi@kyushu-id.ac.jp

