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Abstract. Let G be a ®nite group. A gap G-module V is a ®nite dimensional real

G-representation space satisfying the following two conditions:

(1) The following strong gap condition holds: dimV P > 2 dimV H for all P <

HaG such that P is of prime power order, which is a su½cient condition to de®ne a G-

surgery obstruction group and a G-surgery obstruction.

(2) V has only one H-®xed point 0 for all large subgroups H, namely H A L�G�.

A ®nite group G not of prime power order is called a gap group if there exists a gap G-

module. We discuss the question when the direct product K � L is a gap group for two

®nite groups K and L. According to [5], if K and K � C2 are gap groups, so is

K � L. In this paper, we prove that if K is a gap group, so is K � C2. Using [5], this

allows us to show that if a ®nite group G has a quotient group which is a gap group,

then G itself is a gap group. Also, we prove the converse: if K is not a gap group, then

K �D2n is not a gap group. To show this we de®ne a condition, called NGC, which is

equivalent to the non-existence of gap modules.

1. Introduction.

Let G be a ®nite group and p a prime. In this paper we assume that the

trivial group is also called a p-group. We denote by Pp�G� a set of p-subgroups

of G, de®ne the Dress subgroup Gfpg as the smallest normal subgroup of G whose

index is a power of p, possibly 1, and let denote by Lp�G� the family of sub-

groups L of G which contains Gfpg. Set

P�G� � 6
p

Pp�G� and L�G� � 6
p

Lp�G�:

Let V be a G-module V. We say that V is L�G�-free, if V Gfpg
� 0 holds for any

prime p. Set D�G� as a set of pairs �P;H� of subgroups of G such that P <

HaG and P A P�G�. We denote by D�G� be a set of all elements �P;H� of

D�G� with P B L�G�. Clearly note that this set equals to D�G� if P�G�VL�G�

� q holds. We de®ne a function dV : D�G� ! Z by

dV �P;H� � dimV P ÿ 2 dimV H :
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We say that V is positive (resp. nonnegative, resp. zero) at �P;H�, if dV �P;H�

is positive (resp. nonnegative, resp. zero). For a ®nite group G not of prime

power order, a real G-module V is called an almost gap G-module, if V is an

L�G�-free real G-module such that dV �P;H� > 0 for all �P;H� A D�G�. If

L�G�VP�G� � q holds, an almost gap G-module is called a gap G-module.

We can stably apply the equivariant surgery theory to gap G-modules. We say

that G is a/an (almost) gap group if there is a/an (almost) gap G-module. A

®nite group G is called an Oliver group if there does not exist a normal series

P /H / G such that P and G=H are of prime power order and H=P is cyclic. A

®nite group G has a smooth action on a disk without ®xed points if and only if G

is an Oliver group, and G has a smooth action on a sphere with exactly one ®xed

point if and only if G is an Oliver group (cf. Oliver [7] and Laitinen-Morimoto

[3]).

It is an important task to decide whether a given group G is a gap group.

In fact, if a ®nite Oliver group G is a gap group, then one can apply equivariant

surgery to convert an appropriate smooth action of G on a disk D into a smooth

action of G on a sphere S with SG � M � DG, where dimM > 0 (cf. Morimoto

[4, Corollary 0.3]).

Laitinen and Morimoto [3] de®ned the G-module

V�G� � �R�G� ÿ R� ÿ0
p

�R�G=Gfpg� ÿ R�;

which is useful to construct a gap G-module, and proved that a ®nite group G has

a smooth action on a sphere with any number of ®xed points if and only if G is

an Oliver group. This G-module also plays an important role in this paper.

The purpose of this paper is to study the question when a direct product group

is a gap group. The main theorem of this paper concerns a direct product

K �D2n, where D2n is the dihedral group of order 2n for nb 1 �D2 � C2 and

D4 � C2 � C2�.

Theorem 1.1. Let n be a positive integer and let K be a ®nite group. Then

K is a gap group if and only if G � K �D2n is a gap group.

This paper is a continuation of our joint work with M. Morimoto and M.

Yanagihara [5]. The key idea of the proof can be found in [6]. In [5, Theorem

3.5], we have shown that if P�K�VL�K� � q and K � C2 is a gap group, so is

K � F for any ®nite group F. In Lemma 5.1, we show that if K is a gap group,

so is K � C2, which is the case where n � 1 in the main theorem. Using Lemma

5.1 and [5, Theorem 3.5], we obtain the following theorem.

Theorem 1.2. If a ®nite group G has a quotient group which is a gap group,

then G itself is a gap group.
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Recall that G is an Oliver group if it has a quotient group which is an Oliver

group.

The organization of the paper is as follows. In Section 2, we estimate

dV �P;H� for a �K � L�-module V by characters of irreducible K- and L-

modules. In Section 3, we ®nd a gap G-module for a certain direct product

group of symmetric groups. The groups S4 and S5 are not gap groups but

S4 � S5 is a gap group. In Section 4, we introduce a condition NGC and show

that G holds NGC if and only if G is not a gap group. We de®ne a dimension

matrix and give the condition equivalent to one being a gap group by using a

dimension submatrix. In Section 5, by using the results in Section 4, we show

that K � C2 is an almost gap group if so is K. In Section 6, we show that there

are many ®nite groups G such that P�G�VL�G� � q holds but G are not gap

groups. As an application we completely decide when a direct product group of

symmetric groups is a gap group. Since a gap group which is a direct product of

symmetric groups is an Oliver group, it can act smoothly on a standard sphere

with one ®xed point.

2. Direct product groups.

Let G � K � L be a ®nite group. We denote by wV the character for a G-

module V. Let P and H be subgroups of G such that �H : P� � 2. Then

dVnW �P;H� �
1

jPj

X

x AP

wV �p1�x��wW �p2�x�� ÿ
2

jHj

X

y AH

wV �p1�y��wW �p2�y���2:1�

� ÿ
1

jPj

X

h AHnP

wV �p1�h��wW �p2�h��;

where V (resp. W ) is a K- (resp. L-) module and p1 : G ! K and p2 : G ! L are

the canonical projections.

We set

D
2�G� � f�P;H� A D�G� j �H : P� � �HGf2g

: PGf2g� � 2 and

PGfqg � G for all odd primes qg:

and

D
2�G� � D�G�VD

2�G�:

Then dV�G� is positive on D�G�nD2�G�.

We have shown a restriction formula that reads as follows:
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Proposition 2.2 (cf. [5, Proposition 3.1]). Let K be a subgroup of an almost

gap group G such that Gf2g < KaG. Then K is an almost gap group.

Furthermore, if the order of Gf2g is not a power of a prime, then Gf2g is an almost

gap group.

Let RO�G�
L�G� be an additive subgroup of RO�G� generated by L�G�-free

irreducible real G-modules. There is a group epimorphism j : RO�G� !

RO�G�
L�G� which is a left inverse of the inclusion RO�G�

L�G� ,! RO�G�. For a

G-module V, we set VL�G� � j�V�. Then VL�G� is an L�G�-free G-module and

VL�G� � �V ÿ V G� ÿ 0
pjjGj
�V ÿ V G�G

fpg

:�2:3�

holds. In particular, V�G� � R�G�
L�G� holds. Here the minus sign is inter-

preted as follows. For some integer l > 0, we regard V as a G-submodule of

lR�G� with some G-invariant inner product. For a G-submodule W of V, we

denote by V ÿW the G-module which is orthogonal complement of W in V.

For distinct primes p and q, V Gfpg VV Gfqg � V G holds, since GfpgGfqg � G.

Then the direct sum of �V ÿ V G�G
fpg

is a G-submodule of V ÿ V G.

The following is a restriction formula for an odd prime p.

Proposition 2.4. Let K be a subgroup of G such that Gfpg < KaG for a

prime p. Suppose there is a normal p-subgroup L of G such that LK � G. If G

is a gap group then so is K.

Proof. Let W be a gap G-module. Since W K � 0, we set V �

�ResGK W L�
L�K�. We show that V is a gap K-module. It su½ces to show that V

is positive on D
2�K�. Let �P;H� A D

2�K�. Then P is a p-group and thus LP is

also a p-group. Therefore it follows that �LP;HP� A D
2�G� and dV �P;H� �

dW �LP;HP� ÿ
P

q dW �LPK
fqg;HPKfqg� � dW �LP;HP� ÿ dW �LPK

f2g;HPKf2g�.

We claim that LKf2g � Gf2g and thus dV �P;H� � dW �LP;LH� > 0. For g � lk A

G � LK , we obtain gÿ1LKf2gg � �kÿ1Lk��kÿ1Kf2gk� � LKf2g. Hence LKf2g is a

normal subgroup of G. Clearly LKf2gaGf2g.

K  ���
/

K VGf2g  ���
/

Kf2g
?
?
?
y

?
?
?
y

?
?
?
y

G � LK  ���
/

Gf2g � L�K VGf2g�  ���
/

LKf2g

Since LV �K VGf2g� � �LVGf2g�VK � LVK � LVKf2g, it follows that �Gf2g :

K VGf2g� � �LKf2g : Kf2g�. Therefore we obtain that �Gf2g : LKf2g� is a power of

2 and thus Gf2g � LKf2g. r
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Corollary 2.5. Let p be an odd prime, L a nontrivial p-group and K a

®nite group such that K � L is a gap group. Then the following holds.

(1) K �N is a gap group for any nontrivial subgroup N of L.

(2) If Kfpg < K , then K is a gap group.

Proof. In (2) we let N be a trivial group. Let V be a gap �K � L�-

module. Regarding V L as a �K � L�-module, set W � ResK�L
K�N V L. Then

W Kfqg
� V Kfqg�L

JV �K�L�fqg � 0 for any prime q, namely W is L�K �N�-free.

For �P;H� A D
2�K �N�, it follows that P is a p-group, �PL;HL� A D

2�K � L�

and then dW �P;H� � dV �PL;HL� > 0. Therefore W is positive on D
2�K �N�

and hence W l �dimW � 1�V�K �N� is a gap �K �N�-module. r

3. Product with a symmetric group.

Let Cn be a cyclic group of order n. In this section, by constructing

appropriate gap modules, we show that S5 � S4, S5 � S5 and S5 � S4 � C2 are all

gap groups. The proof depends on [5, Theorem 3.5] and the fact that A4 � C2 is

an almost gap group.

Let C�G� be a complete set of cyclic groups C of G generated by elements in

HnP of 2-power order, for all �P;H� A D
2�G�. Let C�G� be a complete set of

representatives of conjugacy classes of elements C A C�G�. We denote by Gfpg a

p-Sylow subgroup of G for a prime p.

Proposition 3.1. G � A4 � C2 is an almost gap group but not a gap group.

Proof. P�G�VL�G� � fGf3gg causes that G is not a gap group. Since

Gf3g � Gf2g, the set D
2�G� consists of four elements of type �Gf3g;Gf3g � C2�.

Thus

IndG
C2

RG ÿ �IndG
C2

RG�G
f2g

� �

l 2V�G�

is a required almost gap G-module, where RG is the nontrivial irreducible C2-

module. r

Proposition 3.2. The G-module V�G� is an almost gap G-module for any

nilpotent group G not of prime power order.

Proof. Note that G is isomorphic to
Q

p Gfpg. Thus if the order of G is

divisible by three district primes, V�G� is a gap group by [5, Theorem 0.2]. We

may assume jGj � paqb for primes p and q �p > q�. Let �P;H� A D
2�G�. Since

PGfpg � G implies P � Gfpg � Gfqg A L�G�, there are no elements �P;H� A

D
2�G� such that P B L�G�. Thus V�G� is an almost gap G-module by [5,

Lemma 0.1]. r

Proposition 3.3. G � A5 � C2 is a gap group.
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Proof. Let K � A4 � C2 and W0 be an almost gap K-module. Set W �

IndG
K W0 and V � W l �dimW � 1�V�G�. We show that V is a gap G-module.

It su½ces to show that W is positive at all �P;H� A D
2�G�. Note that

dW �P;H� �
X

PgK A �PnG=K�H=P

dW0
�K V gÿ1Pg;K V gÿ1Hg�b 0:

Since Kf2g is a Sylow 2-subgroup of G, we have �PnG=K�H=P
0q. It su½ces to

show that K V gÿ1Pg B L�K�. Suppose K V gÿ1Pg A L�K�. Then K V gÿ1Pg �

Kf2g. Thus P is a Sylow 2-subgroup of G but this contracts the existence of H.

Hence K V gÿ1Pg B L�K� and W is positive at all �P;H� A D
2�G�. r

Recalling (2.3), given a subgroup L of G, we de®ne a G-module V�L;G� �

�IndG
L �R�L� ÿ R��

L�G�, namely an L�G�-free G-module removing non-L�G�-free

part 0
p
�IndG

L �R�L� ÿ R��G
f pg

from IndG
L �R�L� ÿ R�.

Proposition 3.4. G � S5 � S4 and S5 � S5 are gap groups.

Proof. We regard G as a subgroup of S9. Set K1 � S5 � A4, K2 � A5 � S4

and K3 � C6 � S4, which are all gap groups. (Also see [5, Lemma 5.6].) We

de®ne Vm � IndG
Km

Wm for m � 1; 2; 3, where Wm is a gap Km-module. It follows

that

C�G� � fC2;1;C4;1;C1;2;C1;4;C2;2;C2;4;C4;2;C4;4;S2;S4;T2;T4g:

Here Ci;1, C1; i, Ci; j, Si and Ti are cyclic subgroups generated by ai, bi, aibj, si
and ti respectively �i; j � 2; 4�, where a2 � �1; 3�, a4 � �1; 2; 3; 4�, b2 � �6; 8�, b4 �

�6; 7; 8; 9�, si � aib
2
4 and ti � a24bi.

Let �P;H� A D
2�G�. If HnP has an element which is conjugate to an

element in

fai; si j i � 2; 4g; �resp: fbi; ti j i � 2; 4g; resp: fa2; bi; a2bi j i � 2; 4g�

then V1 (resp. V2, resp. V3� is positive at �P;H�.

Let L be a subgroup of G of order 16 generated by a4b2, b
2
4 , and �6; 7��8; 9�.

Now assume HnP consists of elements which are conjugate to elements in

fa4bi j i � 2; 4g. For such a pair �P;H�, there is an element a of G such that

aÿ1Ha is a subgroup of L. (Note that Gf2g � D8 �D8 has just 4 elements con-

jugate to g for each g � a4b4, a4b2.) Since NG�L� is a Sylow subgroup Gf2g, it

follows that

dV�L;G��P;H�b
jNG�L�j

jNG�L�V aÿ1PaLj
ÿ j�Gf2gPnG=L�H=Pj

b jNG�L�=Lj ÿ 2 � 2 > 0:

Putting all together, V�L;G�l 3�V�G�l03

i�1
Vi� is a gap G-module.

T. Sumi980



Since �S5 � S5 : G� � 5 is odd, S5 � S5 is a gap group by [5, Lemma

0.3]. r

Remark 3.5. Consider the following subgroups of G � S5 � S4: P �

ha24 ; b
2
4i, H4 � ha4b4; a4b

3
4i and H2 � ha4b2; a4b2b

2
4i. Then �P;H4� and �P;H2�

are elements of D
2�G�. N4 � NG�C4;4� � ha4; b4; a2b2i of order 32 has just

4 elements which are conjugate to a4b4 and no elements conjugate to a4b2.

Thus j�H4nP�VN4j � 4 and so H4 VN4 � 8. Therefore if H4bC4;4, then

jN4=PC4;4VN4j � jN4=H4 VN4j � 4 and dV�C4; 4��P;H4�b 4ÿ 2 � 2. Similarly

since N2 � NG�C4;2� � ha4; b2; b
2
4 ; a2iGD8 � C2 � C2 of order 32 has only 4

elements conjugate to a4b2 and no elements conjugate to a4b4, it follows that

dV�C4; 2��P;H2�b 2. Then in this estimation we only obtain that V�C4;2�l

V�C4;4� is nonnegative at �P;H4� and �P;H2�. However j�PnG=C4; j�
Hj=Pj � 8

in fact and thus dV�C4; j��P;Hj� � 6 for j � 2; 4. Thus W � V�C4;2�lV�C4;4� is

positive at �P;Hj� for j � 2; 4, and hence 5�V�G�lV1 lV2 lV3�lW is a gap

G-module.

For G � S5 � S4 � C2, the set C�G� consists of 28 elements. Let K1 � S5 �

A4 � C2, K2 � A4 � S4 � C2 and K3 � C6 � S4 � C2 be subgroups of G. They

are gap groups by Proposition 3.1 and [5, Theorem 3.5]. Similarly by using their

gap groups, we can prove the next proposition.

Proposition 3.6. Let Vi �i � 1; 2; 3� be G-modules induced from gap Ki-

modules. Let K5 be a subgroup of G generated by �1; 2; 3; 4��6; 7�, �6; 7��8; 9�,

�6; 8��7; 9�, and �10; 11�, viewing naturally G � S5 � S4 � C2 as a subgroup of S11.

Then

3�V1 lV2 lV3 lV�G��lV�K5;G�

is a gap G-module. Furthermore, S5 � S5 � C2 is a gap group.

Considering the similar argument of the proof of Propositions 3.4 and 3.6,

we obtain the following proposition.

Proposition 3.7. Let G be a ®nite group such that P�G�VL�G� � q and F

a subset of C�G�. We assume that:

(1) For any element C of F, there is a gap group K such that CaKaG.

(2) There is an L�G�-free G-module W which is positive at any �P;H� A

D
2�G� such that H contains an element of C�G�nF as a subgroup.

Then G is a gap group.

Proof. For each element C of F, pick up a gap subgroup KC of G which

includes C and a gap KC-module WC . Then IndG
KC

WC is nonnegative on D�G�,
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and is positive at �P;H� A D
2�G� if C V gÿ1�HnP�g0q for some g A G.

Therefore W l �dimW � 1��V�G�l0
C AF

IndG
KC

WC� is a gap G-module. r

Let nb 9. Note that K � Snÿ5 � A5 �aSn� is a gap group, since A5 � C2

is a gap group. Let FHC�G� be a set of all elements of order < k2, where k2
is a power of 2 such that k2a n < 2k2. Then K contains any element of F up

to conjugate in G. W � V�h�1; 2; . . . ; k2�i;Sn� ful®lls (2) in Proposition 3.7.

Hence Sn is a gap group which has been already shown in [2].

4. Farkas lemma and the condition NGC.

Throughout this section, we assume that G is a ®nite group not of prime

power order. We consider the following condition NGC: There are a nonempty

subset SHD�G� and positive integers m�P;H� for �P;H� A S such that

X

�P;H� AS

m�P;H�dV �P;H� � 0�4:1�

for any L�G�-free irreducible G-module V.

We denote by NGC(G ) the condition NGC for a group G. If Gfpg � Gfqg,

then setting S � f�Gfqg;G�g and m�Gfqg;G� � 1, we obtain (4.1). If P�G�V

L�G� � q, then S must be a subset of D
2�G� by existence of V�G�.

We give two examples. For a dihedral group D2n of order 2n, any L�D2n�-

free irreducible module is zero at �f1g;C2�. Let P1 � h�1; 3��2; 4�i, H1 �

h�1; 2; 3; 4�i, P2 � h�1; 2; 3�i, and H2 � h�1; 2; 3�; �1; 2�i be subgroups of S5, and

set S � f�P1;H1�; �P2;H2�g. Then dW �P1;H1� � dW �P2;H2� � 0 for any L�S5�-

free irreducible module W. (See [6].) Therefore D2n and S5 satisfy the condition

NGC. Hereafter we show that if G is not a gap group, G satis®es the condition

NGC.

We write xb y (resp. x > y�, if xib yi (resp. xi > yi� for any i, where x �
t�x1; . . . ; xn� and y � t�y1; . . . ; yn�.

Theorem 4.2 (The duality theorem cf. [1, p. 248]). For an n�m matrix A

with entries in Q, let

minimize tcx

subject to Axb b; xb 0

be a primal problem and let

maximize tby

subject to tAya c; yb 0

T. Sumi982



be a problem which is called the dual problem. Then the following relationship

between the primal and dual problems holds.

Dual

Optimal Infeasible Unbounded

Optimal Possible Impossible Impossible

Primal Infeasible Impossible Possible Possible

Unbounded Impossible Possible Impossible

The duality theorem is proved by applying a linear programming over Q.

A key point of the proof is that the (revised) simplex method is closed over Q.

We omit the detail.

Lemma 4.3 (Farkas Lemma). Let A be an n�m matrix with entries in Q.

For b A Qn, set

X�A; b� � fx A Qm jAx � b; xb 0g and Y�A; b� � fy A Qn j tAya 0;
tby > 0g:

Then either X �A; b� or Y�A; b� is empty but not both.

Proof. First suppose X �A; b�0q. If it might holds Y �A; b�0q, then
tyAx � tyb � tby > 0 but the inequalities tyAa t

0 and xb 0 implies tyAxa 0

which is contradiction. Thus Y�A; b� is empty. Next suppose X �A; b� � q.

Consider a primal problem

minimize t
0x

subject to
A

ÿA

� �

xb
b

ÿb

� �

; xb 0

which has an infeasible solution. Then the dual problem is

maximize tbz

subject to tAza 0

where z � y1 ÿ y2 and y �
y1

y2

� �

. This problem has a solution z � 0 and thus it

has an unbounded solution. Therefore there exists a solution z such that tbz > 0

and then Y�A; b�0q. r

Let n be a number of L�G�-free irreducible G-modules and m � jD�G�j.

We denote by M�m; n;Z� the set of m� n matrices with entries in Z. We say

that D is a dimension matrix of G, if D A M�m; n;Z� is a matrix whose �i; j�-

entry is dVj
�Pi;Hi�, where Vj runs over L�G�-free irreducible G-modules and

�Pi;Hi� runs over elements of D�G�. For a subset S of D�G�, a submatrix
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D 0 A M�jSj; n;Z� of a dimension matrix D of G is called a dimension submatrix

of G over S. Set

Z k
b0

� fx A Z k j xb 0g

and

ZS�G� � y � t�y1; . . . ; yk� A Z k
b0

�

�

�

�

�

tD 0ya 0;

X

i

yi > 0

( )

:

If G is a gap group, then there is x A Z n
b0

such that Dx > 0. The converse

is also true, since W �
P

i xiVi is a gap G-module, where xi is the i-th entry of x.

Proposition 4.4. The followings are equivalent.

(1) G is not a gap group.

(2) ZD�G��G�0q.

(3) There are a nonempty subset SJD�G� and positive integers m�P;H� for

�P;H� A S such that
P

�P;H� AS m�P;H�dV �P;H�a 0 for any L�G�-free irreducible

G-module V.

Proof. Let D be a dimension matrix of G. Set A � �D;ÿE �, where E is

the identity matrix, and b � t�1; . . . ; 1�. If there is x � t�x1; x2� A X �A; b�, then

Dx1 ÿ x2 � b and thus Dx1b b. Take a positive integer k such that kx1 A Zm.

Then D�kx1�b kbb b. Therefore X �A; b�0q implies that G is a gap group.

Clearly if G is a gap group, then X�A; b�0q holds. Then by Lemma 4.3, G

is a gap group if and only if Y�A; b� � q, equivalently ZD�G��G� � q holds.

Therefore (1) and (2) are equivalent.

It is clear that (3) implies (2). To ®nish the proof we show that (2) implies

(3). Take z A ZD�G��G�. Set S as a set of �Pit ;Hit�'s such that the it-th entry of z

is nonzero, and let m�Pit ;Hit� be the it-th entry of z. Then
P

�Pit ;Hit � AS
m�Pit ;Hit� �

dVj
�Pit ; Hit�a 0 clearly holds. r

Thus if NGC(G ) holds, then G is not a gap group.

Proposition 4.5. Suppose that there are an L�G�-free G-module W and a

subset T JD�G� such that dW �P;H�b 0 for any �P;H� A D�G� and dW �P;H� > 0

for any �P;H� A T . Then the followings are equivalent.

(1) G is not a gap group.

(2) ZD�G�nT�G�0q.

(3) There is a nonempty subset SJD�G�nT and integers m�P;H� > 0 for

�P;H� A S such that
P

�P;H� AS m�P;H�dV �P;H�a 0 for any L�G�-free irreducible

G-module V.

Proof. Clearly (2) implies (1) by Proposition 4.4. Suppose that G is not a

gap group. Let D1 be a dimension submatrix of G over S and D2 a dimension

submatrix of G over D�G�nS. Then D � t�D1;D2� is a dimension matrix of G.
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Let Vj �1a ja k� be a complete set of L�G�-free irreducible G-modules. Set

y � t�y1; . . . ; yk�, where W �
Pk

j�1 yjVj . Since there is a nonzero vector x �
t�x1; x2�b 0 such that txD � tx1D1 �

tx2D2a
t
0, we have tx1D1y�

tx2D2 ya 0.

Since D1y > 0 and D2yb 0, we obtain that tx1D1y � tx2D2 y � 0 and thus x1 � 0.

Therefore tx2D2a
t
0 for the nonzero vector x2b 0 and hence (2) holds. r

Corollary 4.6. Let G be a ®nite group such that P�G�VL�G� � q. The

group G is a gap group if and only if Z
D

2�G��G� � q holds.

This holds from the existence of V�G�.

The following proposition can be proven by the same manner of the proof of

Proposition 4.5. Recall that P�G�VL�G� � q implies D�G� � D�G�.

Proposition 4.7. Let G be a ®nite group not of prime power order. Suppose

that there are an L�G�-free G-module W and a subset T JD
2�G� such that

dW �P;H�b 0 for any �P;H� A D�G� and dW �P;H� > 0 for any �P;H� A T . Then

the followings are equivalent.

(1) G is not an almost gap group.

(2) Z
D

2�G�nT�G�0q.

(3) There is a nonempty subset SJD
2�G�nT and integers m�P;H� > 0 for

�P;H� A S such that
P

�P;H� AS m�P;H�dV �P;H�a 0 for any L�G�-free irreducible

G-module V.

Theorem 4.8. Let G be a ®nite group not of prime power order. Then

ZS�G� � fy A Z k
b0

j tDy � 0; y0 0g;

where D is a dimension submatrix over S. In particular G is not a gap group if

and only if NGC(G ) holds.

Proof. Since (1) and (3) of Proposition 4.4 are equivalent, NGC(G ) implies

G is not a gap group. Suppose that G is not a gap group. We show that

NGC(G ) holds. Let D be a dimension submatrix of G over D
2�G� and set c �

t�1; . . . ; 1� A Qn. Note that R�G� includes all irreducible G-modules. Since V�G�

is a module removing non-L�G�-free, (irreducible) G-modules from R�G�, the G-

module V�G� includes any L�G�-free irreducible G-modules. Let a A Z n
b0

be a

vector corresponding with V�G�. Thus we obtain that both Da � 0 and tba > 0

for any b A Qn such that bb 0 and tcb > 0. Then

Y� tD; b�VY�ÿ tD; b�0q:

By Lemma 4.3 we get

X � tD; b�UX �ÿ tD; b� � q;

namely,

fx A Qm j tDx � b; xb 0gU fx A Qm j tDx � ÿb; xb 0g � q:
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Then de®ning a map f : Z
m
b0 ! Z

n by f �x� � tDx, the image of f is a subset of

Z
nnfGb j bb 0; tcb > 0g � �Z nnfGb j bb 0g�U f0g:

Taking z A Z
D

2�G��G� by Proposition 4.5, f �z�a 0 holds. On the other hand,

the vector f �z� belongs to �Z nnfGb j bb 0g�U f0g. Hence we obtain f �z� � 0.

We complete the proof. r

5. Product with the cyclic group of order 2.

The purpose of this section is to prove the following lemma.

Lemma 5.1. If K is an almost gap group, then so is G � K � C2.

Combining [5, Theorem 0.4] and Lemma 5.1, we obtain Theorem 1.2.

Now we show Lemma 5.1. To apply Proposition 4.5, we de®ne a subset T

of D�G�. Let W be an almost gap K-module. Let p1 : G ! K and p2 : G ! C2

be canonical projections. First, set T1 � D�G�nD2�G�. The module V1 � V�G�

is nonnegative on D�G� and positive on T1. Second, set T2 � f�P;H� A D
2�G� j

p2�P� � p2�H�g. Then V2 � IndG
K W is nonnegative on D�G� and positive on

T2. It is clear that V1 and V2 are L�G�-free. Note that V�P� C2� is an almost

gap group and particularly, nonnegative on D�G� for any p-group P �p0 2�.

Third, set T3 � f�P;P� C2� A D
2�G� jP A P�K�nL�K�g. We show that there is

an L�G�-free G-module V3 such that V3 is nonnegative on D�G� and positive on

T3, by dividing two cases. Let �P;H� A T3.

The ®rst case is one where jK j is divisible by at least two odd primes. Take

an odd prime q such that q divides jK j and addly if P0 f1g then P is not a q-

group. Then IndG
Cq�C2

V�Cq � C2� is positive at �P;H�. Set V3 � 0
p
IndG

Cp�C2

V�Cp � C2�, where p ranges over all odd primes which divide jKj. Then V3 is

positive on T3.

The second case is one where jK j � 2apb for some odd prime p and some

integer a; bb 1. Set L � Kfpg � C2 and V3 � IndG
L V�L�. If P�K�VL�K� � q,

then Kfpg is not a normal subgroup of K and thus there is an element g A G for

any P A P�K� such that LV gÿ1Pg < Kfpg. If Kfpg is a normal subgroup of K,

then LVP < Kfpg for any P A P�K�nL�K�. Therefore we obtain that

dV3
�P;H� �

X

PgL A �PnG=L�H=P

dV�L��LV gÿ1Pg;LV gÿ1Hg�

�
X

p1�P�gKfpg A p1�P�nK=Kfpg

dimV�L�LVg
ÿ1Pg > 0:

Then V3 is positive on T3.

Putting all together, V � V1 lV2 lV3 is nonnegative on D�G� and positive

on T � T1 UT2 UT3.
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Let Vj �1a ja g� be all irreducible K-modules such that Vj is L�K�-free

whenever 1a ja a, Vj
Kf2g

� 0 but Vj
Kfpg

0 0 for some odd prime p whenever

a < ja b, and Vj
Kf2g

0 0 whenever b < ja g. Then any L�G�-free irreducible

G-module is one of Uj � Vj nR �1a ja a� and Wk � Vk nRG �1a ka b�.

Here R (resp. RG� is the irreducible trivial (resp. nontrivial) C2-module.

Suppose that G is not an almost gap group. By Proposition 4.7, there are a

nonempty subset SJD�G�nT and a nonzero vector x A Z
g
b0 such that t

xDa t0.

Here D � �dUj
�P;H�; dWk

�P;H�� is a dimension submatrix of G over S, where

1a ja a and 1a ka b. For �P;H� A S, we obtain that P � H VK , p1�H� > P,

dUj
�P;H� � ÿ

1

jPj

X

h AHnP

wVj
�p1�h��wR�p2�h�� � dVj

�P; p1�H��;

and

dWk
�P;H� � ÿ

1

jPj

X

h AHnP

wWk
�p1�h��wRG

�p2�h�� � ÿdVk
�P; p1�H��:

Let F � �dUj
�P;H�� be a submatrix of D such that D � �F ;ÿF ;ÿF 0� for some

matrix F 0. Then t
xDa t0 implies that t

xFa t0 and ÿ t
xFa t0. Hence t

xF � t0

holds. On the other hand, a mapD�G�nT ! D
2�K� assigning �P;H� to �P; p1�H��

is a bijection. (If jK j is odd, then D�G�nT and D
2�K� are both empty.) Then

F � �dVj
�P; p1�H��� is a dimension submatrix of K. By Proposition 4.7, K is not

an almost gap group, which is contradiction. Therefore K � C2 is also an almost

gap group.

Corollary 5.2. The wreath product K
�
L is a gap group for any ®nite group

K, if L is a gap group.

Proof. It is clear from the existence of epimorphisms K
�
L ! L. r

6. Product with a dihedral group.

Let D2n � ha; b j a2 � bn � �ab�2 � 1i be a dihedral group of order 2n. In

this section we study which K �D2n is a gap group. If K is a gap group, then so

is K �D2n. We are also interesting in the converse problem.

We set

D
2
p �G� � f�P;H� A D

2�G� jP is a p-groupg

for a prime p and

D
2
1�G� � f�f1g;C2� A D

2�G�g:

Proposition 6.1. Let G be a ®nite group not of prime power order, p an odd

prime and Q a nontrivial p-group. The natural projection p : G �Q ! G induces

a surjection Z
D

2
p �G�Q��G �Q� ! Z

D
2
p �G�

�G�. Furthermore, it is a bijection if jGj

and p are coprime.
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Proof. Let �P;H� A D
2
p�G �Q�. Note that H VQ � PVQ, �G �Q�f2g V

Q � Q and p�P�G �Q�frg� � p�P�p�G �Q�frg � p�P�Gfrg for any prime r.

Thus �p�P�; p�H�� A D
2
p�G�. For a G-module V , it follows that

dVnR�P;H� � ÿ
1

jPj

X

h AHnP

wV �p�h�� � ÿ
jPVQj

jPj

X

x A p�H�np�P�

wV �x� � dV �p�P�; p�H��;

where R regards as the trivial W-module and wV is the character for V . Thus

the projection p induces a map Z
D

2
p �G�Q��G �Q� ! Z

D
2
p �G��G�. We show that

the map is surjective. Set S � f�A�Q;B�Q� j �A;B� A D
2
p�G�g which is a sub-

set of D2
p�G �Q�. Let �P;H� A S. Then dVnW �P;H� � dV �p�P�; p�H�� dimW Q

for a G-module V and a Q-module W. If V �W is L�G �Q�-free and W is the

trivial irreducible Q-module, then V is L�G�-free. Thus a dimension submatrix

D � �dVnW �P;H�� over S coincides with �dV �p�P�; p�H��; 0; . . . ; 0 �. Note that

�dV �p�P�; p�H��� is a dimension submatrix over D
2
p�G�. For x A Z

D
2
p �G��G�, take

y A Z
D

2
p �G�Q��G �Q� whose entry corresponding to �P;H� A D

2
p�G �Q� is the

entry of x corresponding to �p�P�; p�H�� if �P;H� A S and zero otherwise.

Then the map sends y to x. Therefore the map is surjective. If jGj is a coprime

to p, then S � D
2
p�G �Q� which implies that the map is bijective. We complete

the proof. r

This proposition implies as follows. If P�G�VL�G� � q, then Z
D

2
p �G�

�G�

0q is equivalent to that there is a nontrivial p-group Q such that G �Q is not a

gap group. Furthermore, if G �Q is a gap group for some nontrivial p-group Q,

so is G � R for any nontrivial p-group R. It also holds in the case where p � 2, by

Theorem 1.2 and Proposition 2.2.

Corollary 6.2. Let K be a p-group. The group G � K �D2n is not a gap

group.

Proof. Since �f1g;hai� ADp�D2n�, Proposition 6.1 yields the assertion. r

Proposition 6.3. Let p be a prime and let K1 and K2 be ®nite groups not

of prime power order. If Z
D

2
p �K1�

�K1� and Z
D

2
p �K2�

�K2� are both nonempty, then

Z
D

2
p �K1�K2�

�K1 � K2�0q.

Proof. We de®ne �P;H� A D
2
p �K1 � K2� for �P1;H1� A D

2
p �K1� and �P2;H2�

A D
2
p �K2� as follows. Set P � P1 � P2, which is a p-group. Take hj A Hj such

that hj B Pj and hj is an element of 2-power order for j � 1; 2, and denote by H a

subgroup of K1 � K2 generated by P and h � h1h2. It is clear that �P;H� A

D
2
p �K1 � K2�. Let S be a subset of D2

p �K1 � K2� which is the image of the above

assignment and D � �dVnW �P;H�� a dimension submatrix over S. Since
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dVnW �P;H� � ÿ
1

jPj

X

x AP

wV �p1�hx��wW �p2�hx��

� ÿ
1

jPj

X

�p1;p2� AP

wV �h1 p1�wW �h2 p2�

� ÿ
1

jPj

X

p1 AP1

wV �h1 p1�
X

p2 AP2

wW �h2 p2�

� ÿdV �P1;H1�dW �P2;H2�;

we have �dVnW �P;H�� � ÿ�dV �P1;H1��n �dW �P2;H2��. Recall that �dV �P1;H1��

(resp. �dW �P2;H2��� is a dimension submatrix over D2
p �K1� (resp. D

2
p �K2��. Thus

xj A Z
D

2
p �Kj�

�Kj� � j � 1; 2� implies x1 n x2 A Z
D

2
p �K1�K2�

�K1 � K2�. r

Remarking 7
p
D

2
p �G� � D

2
1�G�, similarly as in the proof of Proposition 6.3,

we obtain the following proposition.

Proposition 6.4. Let K1 and K2 be ®nite groups not of prime power order such

that Z
D

2�K1�
�K1�0q and Z

D
2
1 �K2�

�K2�0q. Then Z
D

2�K1�K2�
�K1 � K2�0q holds.

On the other hand, the G-module V�G� gives some restriction:

Proposition 6.5. Let G be a ®nite group such that f1g < Gfpg < G for some

odd prime p. Then dV�G� is positive onD
2
1�G�. In particular, Z

D
2
1 �G�

�G� �q holds.

Example 6.6. Let D4 � h�1; 2��3; 4�; �1; 3��2; 4�i and D8 � h�1; 2��3; 4�;

�1; 2; 3; 4�i be subgroups of S4. Then �D4;D8� A Z
D

2
2 �S4�

�S4�. Thus Z
D

2
2 �S4�S4�

�S4 � S4�0q which implies that S4 � S4 is not a gap group. Repeating,Qn
i�1 S4 is also not a gap group.

Now we prove the main theorem.

Proof of Theorem 1.1. By Theorem 1.2, G is a gap group if so is K. If

K is of prime order, Corollary 6.2 yields the assertion. Let K be a ®nite group

not of prime power order which is not a gap group. Then there is a vector

x A Z
D

2�K��K�. By Proposition 2.2, it su½ces to show NGC(G ) under the

assumption that n is odd, say n � 2g� 1. Let D � �dVj
�P;H�� A M�s; t;Z� be a

dimension submatrix of K over D
2�K�. We de®ne �P;H 0� A D

2�G� for �P;H� A

D
2�K� as follows. Take an element h A HnP of 2-power order. Let H 0 be a

subgroup of G which are generated by P and ha. Note that H 0 does not depend

on the choice of h. Set F � �dV 0
j
�P;H 0�� A M�s; t 0;Z�, where t 0 is a number of

L�G�-free irreducible G-modules. We claim that tFx � 0, which implies

Z
D

2�G��G�0q and thus G is not a gap group. Let W1 (resp. W2) be trivial

(resp. nontrivial) 1-dimensional D2n-module and Wk �3a ka g� 2� be all irre-

ducible 2-dimensional D2n-modules. Let Vj �1a ja b� be all irreducible K-
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modules such that Vj is L�K�-free whenever 1a ja a but Vj is not whenever a <

ja b. Then an L�G�-free irreducible G-module is one of Vj nW1 �1a ja a�,

Vj nW2 �1a ja a� and Vj nWk �1a ja b; 3a ka g� 2�. Thus t 0 � 2a� bg.

We obtain that

dVjnW1
�P;H 0� � ÿ

1

jPj

X

h AH 0nP

wVj
�p1�h��wW1

�a� � dVj
�P;H�

by (2.1), where p1 : G ! K is a canonical projection. Similarly, we get

dVjnW2
�P;H 0� � ÿdVj

�P;H� and dVjnWk
�P;H 0� � 0. Thus F � �D;ÿD; 0� and

then tFx � 0. We complete the proof. r

Corollary 6.7. Let K be a p-group,
Qa

k�1 S4, or S5. Then G � K �Qb
j�1 D2nj is not a gap group for any bb 0 and any njb 1.

Proof. Since K is not a gap group, Corollary 6.2 and Theorem 1.1 imply

NGC�K �D2n1�. Thus the proof is completed applying Theorem 1.1 each step

by induction on b. r

Theorem 6.8. Let nk �1a ka a� be an integer such that n1b n2b � � � b

na > 1 and let G �
Qa

k�1 Snk be a direct product group of symmetric groups. Then

G is a gap group if and only if either ab 1 and n1b 6 or ab 2 and n1 � 5,

n2b 4.

This holds from Propositions 2.2, 3.4, Corollary 6.7 and a result of Dover-

mann and Herzog [2]: A symmetric group Sn is a gap group for nb 6.
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