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Abstract. In this paper we consider Jùrgensen's inequality for classical Schottky

groups of real types, that is, the third, sixth and eighth types. The in®mum of

Jùrgensen's numbers for the groups of the third, sixth and eighth types are 4, 16 and 16,

respectively.

0. Introduction.

Jùrgensen's inequality gives a necessary condition for a non-elementary

MoÈbius transformation group G � hA1;A2i to be discrete (Jùrgensen [2]): If

G � hA1;A2i is a non-elementary discrete group, then

J�hA1;A2i� :� jtr2�A1� ÿ 4j � jtr�A1A2A
ÿ1
1 Aÿ1

2 � ÿ 2jb 1;

where tr is the trace. The lower bound is the best possible. We call J�hA1;A2i�

Jùrgensen's number for the marked two-generator group G � hA1;A2i.

Here we will consider Jùrgensen's numbers for classical Schottky groups of

real type of genus two. In Sato [4] we classi®ed the groups into eight types (see

O1). In [7] we announced that Jùrgensen's inequalities were given for all such

groups of eight types and that the lower bounds were all best possible (see

Appendices). Gilman [1] and Sato [6] gave Jùrgensen's inequalities and the best

lower bounds for the groups of the ®rst and fourth types, that is, for Fuchsian

Schottky groups. Jùrgensen's inequalities for the groups of the second, ®fth and

seventh types were considered in [9]. Here we will give Jùrgensen's inequalities

and the lower bounds for the groups of the third, sixth and eighth types.

In O1 we will state notation and terminology. In O2 we will state Schottky

modular groups acting on the Schottky spaces of the third and sixth types and

represent their fundamental regions for the Schottky modular groups which are

given in Sato [8]. In O3 we will state the main results in this paper. In O4 we

will list properties of Jùrgensen's numbers in a series of lemmas, which play
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important roles in the proofs of the main theorems. In O5 we will give a proof

of Theorem 1 on Jùrgensen's numbers for classical Schottky groups of the third

type. In O6 we will prove Theorems 2 and 3 on Jùrgensen's numbers for classical

Schottky groups of the sixth and eighth types. In O7 we will give some examples

which guarantee that all of the lower bounds in the inequalities in Theorems

1, 2 and 3 are the best possible. In O8 we will make a summary of Jùrgensen's

inequalities for eight kinds of classical Schottky groups of real type.

Thanks are due to the referees for their careful reading and valuable

suggestions.

1. Notation and terminology.

We denote by MoÈb the group of all MoÈbius transformations. We say two

marked subgroups G � hA1; . . . ;Agi and Ĝ � hÂ1; . . . ; Âgi of MoÈb to be equiv-

alent if there exists a MoÈbius transformation T such that Âj � TAjT
ÿ1 for

j � 1; 2: . . . ; g. The Schottky space (resp. the classical Schottky space) of genus

g, denoted by Sg (resp. S
0
g ), is the set of all equivalence classes of marked

Schottky groups (resp. marked classical Schottky groups) of genus gb 1.

We denote by M2 the set of all equivalence classes �hA1;A2i� of marked

groups hA1;A2i generated by loxodromic transformations A1 and A2 whose ®xed

points are all distinct. Let �hA1;A2i� A M2. For j � 1; 2, let lj �jljj > 1�, pj
and p2�j be the multipliers, the repelling and the attracting ®xed points of Aj ,

respectively. We de®ne tj by setting tj � 1=lj. Thus tj A D� � fz j 0 < jzj < 1g.

We de®ne r by setting r � 1=�p1; p3; p2; p4�, where �p1; p3; p2; p4� is the cross-ratio

of p1; p3; p2 and p4, that is, �p1; p3; p2; p4� � ��p1 ÿ p2��p3 ÿ p4��=��p1 ÿ p4� �

�p3 ÿ p2��. Thus r A C ÿ f0; 1g. We can de®ne a mapping a of the space M2

into �D��2 � �C ÿ f0; 1g� by setting a��hA1;A2i�� � �t1; t2; r�. Then we say that

�hA1;A2i� or hA1;A2i represents �t1; t2; r� and �t1; t2; r� corresponds to �hA1;A2i�

or hA1;A2i. Conversely, l1; l2 and p4 are uniquely determined from a given

point t� �t1; t2; r� A �D
��2��Cÿf0; 1g� under the normalization condition p1 � 0,

p3 �y and p2 � 1; we de®ne lj � j � 1; 2� and p4 by setting lj � 1=tj and p4 � r,

respectively. We determine A1�z�;A2�z� A MoÈb from t as follows: the multi-

plier, the repelling and the attracting ®xed points of Aj�z� are lj, pj and p2�j ,

respectively. Thus we obtain a mapping b of �D��2 � �C ÿ f0; 1g� into M2 by

setting b�t� � �hA1�z�;A2�z�i�. Then we note that ba � ab � id. Therefore we

identify M2 with a�M2�. Similarly we can de®ne the mapping a� of S2 or S
0
2

into �D��2 � �C ÿ f0; 1g� by restricting a to this space, and identify S2 (resp. S 0
2 )

with a��S2� (resp. a��S 0
2��. From now on we denote a�M2�; a

��S2� and a��S 0
2�

by M2; S2 and S
0
2 , respectively.

We call G � hA1;A2i a marked group of real type if �t1; t2; r� A R
3 VM2,

that is, t1; t2 and r are all real numbers in M2, where �t1; t2; r� corresponds to
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G � hA1;A2i. Then there are eight kinds of marked groups of real type as

follows.

Definition 1.1 (cf. [4]). Let G � hA1;A2i be a marked two-generator

group in M2 and let �t1; t2; r� correspond to hA1;A2i.

(1) G is of the ®rst type (Type I) if t1 > 0; t2 > 0; r > 0.

(2) G is of the second type (Type II) if t1 > 0; t2 < 0; r > 0.

(3) G is of the third type (Type III) if t1 > 0; t2 < 0; r < 0.

(4) G is of the fourth type (Type IV) if t1 > 0; t2 > 0; r < 0.

(5) G is of the ®fth type (Type V) if t1 < 0; t2 > 0; r > 0.

(6) G is of the sixth type (Type VI) if t1 < 0; t2 < 0; r > 0.

(7) G is of the seventh type (Type VII) if t1 < 0; t2 < 0; r < 0.

(8) G is of the eighth type (type VIII) if t1 < 0; t2 > 0; r < 0.

For each k � I; II; . . . ;VIII, we call the set of all equivalence classes of

marked Schottky groups (resp. marked classical Schottky groups) of Type k the

real Schottky space (resp. the real classical Schottky space) of Type k, and denote

them by RkS2 (resp. RkS
0
2�.

2. Fundamental regions and Schottky modular groups.

In this section we will state Schottky modular groups acting on the real

Schottky spaces of the third and sixth types and represent their fundamental

regions for the Schottky modular groups, which are obtained in [8].

Theorem A (Neumann [3]). The group F2 of automorphisms of a marked

two-generator group G � hA1;A2i has the following presentation:

F2 � hN1;N2;N3 j �N2N1N2N3�
2 � 1;

Nÿ1
3 N2N3N2N1N3N1N2N1 � 1;N1N3N1N3 � N3N1N3N1i;

where N1 : �A1;A2� 7! �A1;A
ÿ1
2 �, N2 : �A1;A2� 7! �A2;A1� and N3 : �A1;A2� 7!

�A1;A1A2�.

We call the mappings N1, N2 and N3 the Nielsen transformations.

Let �t1; t2; r� be the point corresponding to a marked Schottky group G �

hA1;A2i. Let �t1� j�; t2� j�; r� j�� be the images of �t1; t2; r� under the Nielsen

transformations Nj � j � 1; 2; 3�. We set X � rÿ t2 ÿ rt1t2 � t1 and Y � rÿ t2 �

rt1t2 ÿ t1. Then by straightforward calculations, we have the following.

Lemma 2.1 (Sato [4, Lemma 2.1]). (i) t1�1� � t1, t2�1� � t2 and r�1� � 1=r.

(ii) t1�2� � t2, t2�2� � t1 and r�2� � r. (iii) t1�3� � t1, t2�3� � �1=t2�3�� � Y 2=

t1t2�rÿ 1�2 ÿ 2 and r�3� � �1=r�3�� � X 2=�t1r�1ÿ t2�
2� ÿ 2.

Definition 2.1. Let F2 be the group of automorphisms of G � hA1;A2i.
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Let f1; f2 A F2. We say f1 and f2 are equivalent if f1�G� is equivalent to f2�G�

and we denote it by f1 @ f2. We denote by �f� the equivalence class of f in F2.

Remarks. (1) We can regard Nj � j � 1; 2; 3� and so f A F2 as automor-

phisms of the Schottky space of genus two.

(2) From the above (1) and De®nition 2.1, we have the following: If

hA1;A2i@ hÂ1; Â2i and f1 @ f2 �f1; f2 A F2�, then f1�hA1;A2i�@ f2�hÂ1; Â2i�.

The Schottky modular group of genus two, which is denoted by Mod�S2�,

is the set of all equivalence classes of orientation preserving automorphisms of

the Schottky space of genus two. We denote by Mod�RkS
0
2� the restriction of

Mod�S2� to the classical Schottky space of real type RkS
0
2 for k � I; II; . . . ;VIII.

We denote by Fk�Mod�S 0
2�� fundamental regions in RkS

0
2 for Mod�RkS

0
2�.

We de®ne functions t2 � t2�t1; r : k� �k � III;VI� as follows:

(i) t2�t1; r : III� is t2 satisfying the equation

�1� t1���ÿr�1=2 � 1=�ÿr�1=2� � �1ÿ t1���ÿt2�
1=2 � 1=�ÿt2�

1=2� �0 < t1 < 1�.

(ii) t2�t1; r : VI� � ÿ�1� t1r
1=2�=�r1=2 � t1� �1 < r < 1=t21 ; ÿ1 < t1 < 0�.

Proposition 2.1 (Sato [5]).

(i)

FIII�Mod�S 0
2�� � f�t1; t2; r� A RIIIS

0
2 j r

��T1;T2� < r < ÿ1;

t2�t1; r : III� < t2 < 0; 0 < t1 < 1g;

where r��T1;T2� � f4ÿT1T2���4ÿT 2
1 ��4ÿT 2

2 ��
1=2g=2�T2ÿT1�, T1 � t1�1=t1;

T2 � t2�1=t2.

(ii)

FVI�Mod�S 0
2�� � f�t1; t2; r� A RVIS

0
2 j t2�t1; r : VI� < t2 < 0;

1 < r < 1=t21 ; t2 < t1; ÿ1 < t1 < 0g:

Proposition 2.2 (Sato [8]). The modular group Mod�RVIS
0
2� is generated

by �N 2
3 � and �N1N2�, where N1;N2 and N3 are the Nielsen transformations de®ned

in Theorem A.

Proposition 2.3 (Sato [8, Theorem 1]). Let N3 be the Nielsen transformation

de®ned in Theorem A. Then N3�RVIS
0
2� � RVIIIS

0
2 and N3�RVIIIS

0
2� � RVIS

0
2 .

3. Theorems.

In this section the main theorems in this paper will be stated. Let G �

hA1;A2i be a marked two-generator group generated by MoÈbius transformations
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A1 and A2. We remember that the number

J�hA1;A2i� :� jtr2�A1� ÿ 4j � jtr�A1A2A
ÿ1
1 Aÿ1

2 � ÿ 2j

is called Jùrgensen's number for hA1;A2i.

Theorem 1. If G � hA1;A2i A RIIIS
0
2 , then J�hA1;A2i� > 4. The lower

bound is the best possible.

Theorem 2. If G � hA1;A2i A RVIS
0
2 , then J�hA1;A2i� > 16. The lower

bound is the best possible.

Theorem 3. If G � hA1;A2i A RVIIIS
0
2 , then J�hA1;A2i� > 16. The lower

bound is the best possible.

4. Lemmas.

In this section we will give some lemmas which are necessary to prove the

theorems stated in the previous section. We introduce two regions as follows:

MIII :� ft � �t1; t2; r� A R
3 j t2�t1; r : III� < t2 < 0; 0 < t1 < 1g;

MVI :� ft � �t1; t2; r� A R
3 j t2�t1; r : VI� < t2 < 0; 1 < r < 1=t21 ;ÿ1 < t1 < 0g;

where t2�t1; r : k� �k � III;VI� are the functions de®ned in O2.

We can easily see the following lemma by Theorem 3 in [8] and we omit the

proof.

Lemma 4.1. For each k � III;VI

Fk�Mod�S 0
2��JMk JRkS

0
2 :

Theorem B (Jùrgensen [2]). Suppose that the MoÈbius transformations A1 and

A2 generate a non-elementary discrete group G � hA1;A2i. Then

J�hA1;A2i� :� jtr2�A1� ÿ 4j � jtr�A1A2A
ÿ1
1 Aÿ1

2 � ÿ 2jb 1:

The lower bound is the best possible.

Let t� �t1; t2; r� correspond to G� hA1;A2i. Since jtr2�A1�ÿ4j � j1ÿ t1j
2=

jt1j and jtr�A1A2A
ÿ1
1 Aÿ1

2 � ÿ 2j � �j1ÿ t1j
2j1ÿ t2j

2jrj�=�jt1kt2krÿ1j2�, we have the

following proposition from Theorem B.

Proposition 4.1. Let G � hA1;A2i be a non-elementary discrete group and

let t � �t1; t2; r� be the point corresponding to hA1;A2i. Then

J�hA1;A2i� �
j1ÿ t1j

2

jt1j
�
j1ÿ t1j

2j1ÿ t2j
2jrj

jt1kt2krÿ 1j2
b 1:
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Let t � �t1; t2; r� correspond to G � hA1;A2i. We set

J1�hA1;A2i� :� jtr2�A1� ÿ 4j � j1ÿ t1j
2=jt1j;

and

J2�hA1;A2i� :� jtr�A1A2A
ÿ1
1 Aÿ1

2 � ÿ 2j �
j1ÿ t1j

2j1ÿ t2j
2jrj

jt1kt2krÿ 1j2
:

Lemma 4.2 ([9, Lemma 5.2]). J2�hA1;A2i� is F2-invariant, that is,

J2�f�hA1;A2i�� � J2�hA1;A2i� for any f A F2.

We easily see the following lemma and so we omit the proof.

Lemma 4.3. J1�hA1;A2i� and J�hA1;A2i� are invariant under the Nielsen

transformations N1 and N3, that is,

(i) J1�N1�hA1;A2i�� � J1�hA1;A2i� and J1�N3�hA1;A2i�� � J1�hA1;A2i�.

(ii) J�N1�hA1;A2i�� � J�hA1;A2i� and J�N3�hA1;A2i�� � J�hA1;A2i�.

The following lemma follows from Lemma 4.1.

Lemma 4.4. For k � III;VI

inffJ�hA1;A2i� j hA1;A2i A Fk�ModS 0
2�g

b inffJ�hA1;A2i� j hA1;A2i A Mkg

b inffJ�hA1;A2i� j hA1;A2i A RkS
0
2g:

Lemma 4.5. For each k � III;VI, if t � �t1; t2; r� A Mk and t0 � �t1; t20; r� A

qMk �t2000�, then J�hA10;A20i�< J�hA1;A2i� and J2�hA10;A20i�< J2�hA1;A2i�

where hA10;A20i and hA1;A2i represent t0 and t, respectively, and Mk are the regions

de®ned in the beginning of this section.

Proof. Since the function �1ÿ t2�
2=t2 is negative and monotonously de-

creasing in the interval ÿ1 < t2 < 0, we have the desired result by the de®nition

of the space Mk. r

5. Proof of Theorem 1.

In this section we will prove Theorem 1. Let G � hA1;A2i be a marked

two-generator group and let t � �t1; t2; r� correspond to G � hA1;A2i.

Lemma 5.1. If t � �t1; t2; r� is a point on the boundary surface of MIII

de®ned by the equation
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�1� t1���ÿr�1=2 � 1=�ÿr�1=2� � �1ÿ t1���ÿt2�
1=2 � 1=�ÿt2�

1=2� ���

�r < 0; 0 < t1 < 1�;

then J2�hA1;A2i� � �1� t1�
2=t1 > 4, where hA1;A2i represents t.

Proof. By substituting the identity ��� for J2�hA1;A2i� � fj1ÿ t1j
2j1ÿ

t2j
2jrjg=fjt1kt2krÿ 1j2g, we have the desired result J2�hA1;A2i� � �1� t1�

2=

t1 > 4. r

Proof of Theorem 1. Let G � hA1;A2i A RIIIS
0
2 and let t � �t1; t2; r�

correspond to hA1;A2i. By Proposition 2 (i) there exists f A Mod�RIIIS
0
2� such

that f�t� A FIII�Mod�S 0
2��. By Lemma 4.1 we have f�t� A MIII. Let hB1;B2i

represent f�t�. By Lemma 4.2 we have

J�hA1;A2i� � J1�hA1;A2i� � J2�hA1;A2i�b J2�hA1;A2i� � J2�hB1;B2i�:

By Lemmas 4.5 and 5.1 we have

J2�hB1;B2i� > 4:

It is seen by Example 1 in O7 that the lower bound is the best possible. r

6. Proofs of Theorems 2 and 3.

In this section we will prove Theorems 2 and 3. Let N1;N2 and N3 be

the Nielsen transformations de®ned in O2. We set j � N 2
3 and w � N1N2.

We set MVI�1� :� MVI and MVI�ÿ1� :� N1�MVI�. We remember that f1 @ f2
�f1; f2 A F2� means f1 is equivalent to f2. We easily see the following Lemmas

6.1, 6.2 and 6.3 (cf. [8]). We omit the proofs.

Lemma 6.1. Let Nj � j � 1; 2; 3� be the Nielsen transformations de®ned in

O2 and let j � N 2
3 and w � N1N2. Then

(i) N 2
1 � 1, N 2

2 � 1, N1N2 @N2N1 and N1N2N1N2 @ 1.

(ii)

wn
@

N1N2 if n is odd.

1 if n is even.

�

(iii) wÿ1
@ w.

(iv) wN1 � N1w
ÿ1.

(v) jN1 @N1j
ÿ1.

Lemma 6.2. Let j and w be the transformations in Lemma 6.1 and let MVI�1�

and MVI�ÿ1� be the regions de®ned in the above. Then

(i) jw�MVI�1�� � MVI�1�.
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(ii) wjÿ1�MVI�1�� � MVI�1�.

(iii) N2�MVI�1�� � MVI�1�.

(iv) jN1�MVI�1�� � MVI�1�.

(v)

wn�MVI�1�� �
MVI�ÿ1� if n is odd.

MVI�1� if n is even.

�

We can easily see the following lemma and we omit the proof.

Lemma 6.3. Let f;c AF2. If f@c, then J�f�hA1;A2i�� � J�c�hA1;A2i��.

By Lemmas 4.2 and 4.3 we have the following lemma.

Lemma 6.4. Let G � hA1;A2i A RVIS
0
2 be a marked two-generator group and

G � � f�G� � hA�
1 ;A

�
2i �f A Mod�RVIS

0
2��. Let �t1�G�; t2�G�; r�G�� and �t1�G

��;

t2�G
��; r�G ��� correspond to G and G �, respectively. Then the following four in-

equalities are equivalent.

(i) J�hA�
1 ;A

�
2i� > J�hA1;A2i�.

(ii) J1�hA
�
1 ;A

�
2i� > J1�hA1;A2i�.

(iii) tr2�A�
1 � < tr2�A1�.

(iv) ÿt1�G
�� < ÿt1�G�.

We easily see the following lemma by Lemma 4.3.

Lemma 6.5. Let j be the transformation in Lemma 6.1. Then

J�jm�hA1;A2i�� � J�hA1;A2i� �m A N� for hA1;A2i A RVIS
0
2 .

Lemma 6.6. Let w be the transformation in Lemma 6.1. Then

inffJ�w�hA1;A2i�� j hA1;A2i A MVI�1�g � inffJ�hA1;A2i� j hA1;A2i A MVI�1�g:

Proof. By Lemmas 4.3 and 6.2 (iii) we have

inffJ�w�hA1;A2i�� j hA1;A2i A MVI�1�g

� inffJ�N2�hA1;A2i�� j hA1;A2i A MVI�1�g

� inffJ�hA1;A2i� j hA1;A2i A MVI�1�g: r

Lemma 6.7. Let j and w be the transformations in Lemma 6.1. Let G �

hA1;A2i A RVIS
0
2 and let �t1; t2; r� correspond to G � hA1;A2i. If r > 1 and

mb 1, then J�wjm�hA1;A2i�� > J�hA1;A2i�.
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In particular, if G � hA1;A2i A MVI�1� and mb 1, then J�wjm�hA1;A2i�� >

J�hA1;A2i�.

Proof. We set G2 � wj
m�G�. Then we have G2 � hA2m

1 A2;A
ÿ1
1 i. By

Lemma 6.4 J�wjm�hA1;A2i�� > J�hA1;A2i� if and only if 0 > tr2�A1� >

tr2�A2m
1 A2�.

We set

A1 � 1=t
1=2
1

1 0

0 t1

� �

and A2 � 1=t
1=2
2 �rÿ 1�

rÿ t2 r�t2 ÿ 1�

1ÿ t2 t2rÿ 1

� �

:

Then

A2m
1 A2 � 1=tm1 t

1=2
2 �rÿ 1�

rÿ t2 r�t2 ÿ 1�

t2m1 �1ÿ t2� t2m1 �t2rÿ 1�

� �

:

Hence we have tr2�A1� � �1� t1�
2=t1 and tr2�A2m

1 A2� � frÿ t2 �

t2m1 �t2rÿ 1�g2=t2m1 t2�rÿ 1�2. Therefore tr2�A1� > tr2�A2m
1 A2� if and only if

frÿ t2 � t2m1 �t2rÿ 1�g2 ÿ t2mÿ1
1 t2�rÿ 1�2�1� t1�

2 > 0. By easy calculations we

have

frÿ t2 � t2m1 �t2rÿ 1�g2 ÿ t2mÿ1
1 t2�rÿ 1�2�1� t1�

2

� �rÿ t2 � t2m1 t2rÿ t2m1 �2 ÿ f�ÿt1�
mÿ1=2�ÿt2�

1=2�rÿ 1��1� t1�g
2

� frÿ t2 � t2m1 t2rÿ t2m1 ÿ �ÿt1�
mÿ1=2�ÿt2�

1=2�rÿ 1��1� t1�g

� frÿ t2 � t2m1 t2rÿ t2m1 � �ÿt1�
mÿ1=2�ÿt2�

1=2�rÿ 1��1� t1�g:

Since 1� t2m1 t2ÿ�ÿt1�
mÿ1=2�ÿt2�

1=2��ÿt1�
m�1=2�ÿt2�

1=2 > 0, r> 1 and mb1,

we have

rÿ t2 � t2m1 t2rÿ t2m1 ÿ �ÿt1�
mÿ1=2�ÿt2�

1=2�rÿ 1��1ÿ �ÿt1��

� rf1� t2m1 t2 ÿ �ÿt1�
mÿ1=2�ÿt2�

1=2 � �ÿt1�
m�1=2�ÿt2�

1=2g

� f�ÿt2� ÿ t2m1 � �ÿt1�
mÿ1=2�ÿt2�

1=2 ÿ �ÿt1�
m�1=2�ÿt2�

1=2g

> f1� t2m1 t2 ÿ �ÿt1�
mÿ1=2�ÿt2�

1=2 � �ÿt1�
m�1=2�ÿt2�

1=2g

� f�ÿt2� ÿ t2m1 � �ÿt1�
mÿ1=2�ÿt2�

1=2 ÿ �ÿt1�
m�1=2�ÿt2�

1=2g

� 1ÿ t2 � t2m1 t2 ÿ t2m1

� �1ÿ t2��1ÿ t2m1 � > 0:
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Furthermore we have the following:

rÿ t2 � t2m1 t2rÿ t2m1 � �ÿt1�
mÿ1=2�ÿt2�

1=2�rÿ 1��1ÿ �ÿt1��

> rÿ t2 � t2m1 t2rÿ t2m1

> �1ÿ t2��1ÿ t2m1 � > 0:

Therefore we have tr2�A1� > tr2�A2m
1 A2�, which implies J�wjm�hA1;A2i�� >

J�hA1;A2i�. r

Corollary 1. Let G � hA1;A2i A MVI�1� and mb 1. Then

inffJ�wjm�G�� jG A MVI�1�gb inffJ�G� jG A MVI�1�g:

Corollary 2. Let G � hA1;A2i A RVIS
0
2 and let G2 � wj

m�hA1;A2i�.

Let �t1; t2; r� and �t1�G2�; t2�G2�; r�G2�� correspond to G and G2, respectively. If

r > 1 and mb 1, then ÿt1�G2� < ÿt2�G2�.

In particular, if G � hA1;A2i A MVI�1� and mb 1, then ÿt1�G2� < ÿt2�G2�.

Proof. By Lemmas 6.4 and 6.7 we have ÿt1�G2� < ÿt1. Since t2�G2� � t1,

we have the desired result ÿt1�G2� < ÿt2�G2�: r

Lemma 6.8. Let j and w be the transformations in Lemma 6.1. Let G �

hA1;A2i A MVI�1�. Then

inffJ�wjÿ1�G�� jG A MVI�1�g � inffJ�G� jG A MVI�1�g:

Proof. This follows from Lemma 6.2 (ii). r

Lemma 6.9. Let j and w be the transformations in Lemma 6.1. Let G �

hA1;A2i A MVI�1� and G2 � wj
m�G� �m � ÿ2;ÿ3;ÿ4; . . .�. Let �t1�G2�; t2�G2�;

r�G2�� correspond to G2. Then ÿt1�G2� < ÿt2�G2�.

Proof. By Lemma 6.1 (iv) and (v) we have

G2 � wj
m�G� � wj

mN1N1�G� � N1w
ÿ1
j
ÿmN1�G�

� N1w
ÿ1
j
ÿmÿ1

jN1�G�:

By Lemma 6.2 (iv) we have G 0
:� jN1�G� A MVI�1�. Thus G2 �

N1w
ÿ1
j
ÿmÿ1�G 0�. We set G 0

2 � N1�G2�. Then G 0
2 � w

ÿ1
j
ÿmÿ1�G 0�@ wj

ÿmÿ1�G 0�

by Lemma 6.1 (iii). Since �ÿm� ÿ 1b 1 and G 0 A MVI�1�, we have ÿt1�G
0
2� <

ÿt2�G
0
2� by Corollary 2 to Lemma 6.7. Since t1�G2� � t1�G

0
2� and t2�G2� �

t2�G
0
2�, we have the desired result, ÿt1�G2� < ÿt2�G2�: r
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Lemma 6.10. Let j and w be the transformations in Lemma 6.1. Let G �

hA1;A2i A MVI�1�. Then

inffJ�wjm�G�� jG A MVI�1�gb inffJ�G� jG A MVI�1�g

for m � ÿ2;ÿ3;ÿ4; . . . :

Proof. Noting that J�N1wj
m�G�� � J�wjm�G��, we can see this corollary

by the same method as in the proof of Lemma 6.9. r

By Corollary 1 to Lemma 6.7, Lemmas 6.8 and 6.10 we have the following.

Lemma 6.11. Let j and w be the transformations in Lemma 6.1. Let

G � hA1;A2i A MVI�1�. Then for m A Z,

inffJ�wjm�G�� jG A MVI�1�gb inffJ�G� jG A MVI�1�g:

Let G0 � hA1;A2i be a marked Schottky group in MVI�1�. We remember

that j � N 2
3 and w � N1N2, where Nj � j � 1; 2; 3� be the Nielsen transformations

de®ned in O2. We introduce some marked Schottky groups Gj�G0� and G �
j �G0�

� j � 1; 2; 3; . . .� in RVIS
0
2 as follows:

G2kÿ1�G0� :� j
m�k�

wj
m�kÿ1� � � � wjm�2�

wj
m�1��G0�;

G �
2k�G0� :� j

m�k�
wj

m�kÿ1� � � � wjm�1�
w�G0�;

G2k�G0� :� w�G2kÿ1�G0�� and G �
2k�1�G0� :� w�G �

2k�G0��, where m� j� A Z ÿ f0g

� j � 1; 2; 3; . . .�. We call Gj�G0� (resp. G
�
j �G0�� a group of length j (resp. a group

of length j with an asterisk) for G0.

Noting that G2k�1�G0� � j
m�k�1��G2k�G0�� and G �

2k�G0� � j
m�k��G�

2kÿ1�G0��,

we have the following lemmas by Lemma 4.3.

Lemma 6.12. J�G2k�1�G0�� � J�G2k�G0�� �k � 0; 1; 2; 3; . . .�.

Lemma 6.13. J�G �
2k�G0�� � J�G �

2kÿ1�G0�� �k � 1; 2; 3; . . .�.

By Lemma 6.2 (i), we have the following.

Lemma 6.14. Let G �
2k�1�G0� � wj

m�k�
w � � � jm�2�

wj
m�1�

w�G0� be a group of

length 2k � 1 with an asterisk for G0, where G0 A MVI�1�.

(i) If m�1�0 1, then

inffJ�G �
2k�1�G0�� jG0 A MVI�1�g

� inffJ�wjm�k�
w � � � jm�2�

wj
m�1�ÿ1�G0�� jG0 A MVI�1�g:
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(ii) If m�1� � 1, then

inffJ�G �
2k�1�G0�� jG0 A MVI�1�g

� inffJ�wjm�k�
w � � � jm�2�

w�G0�� jG0 A MVI�1�g:

Since by Lemmas 6.12 and 6.13

inffJ�G �
l
�G0�� jG0 A MVI�1�g � inffJ�G2j�G0�� jG0 A MVI�1�g

for some integer j with 0a 2j < l, we have the following.

Corollary. Let Gk (resp. G �
k ) be groups of length k (resp. groups of length

k with an asterisk) for G0. Then for each k � 1; 2; 3; . . . ; if

inffJ�G2j�G0�� jG0 A MVI�1�gb inffJ�G0� jG0 A MVI�1�g

holds for 0a ja k, then

inffJ�G �
l
�G0�� jG0 A MVI�1�gb inffJ�G0� jG0 A MVI�1�g

holds for each l � 2k � 1; 2k � 2, where G0�G0� � G0.

Thus it su½ces to consider Gj�G0�. For simplicity, we write Gj for Gj�G0� if

there is no confusion.

Let �t1�Gj�; t2�Gj�; r�Gj�� correspond to Gj � hA1j ;A2ji. Then by properties

of the Nielsen transformations Nj � j � 1; 2; 3�, we easily see the following.

Lemma 6.15. Let Gj � hA1j;A2ji be the marked group de®ned in the above,

and let �t1�Gj�; t2�Gj�; r�Gj�� correspond to Gj. Then

(i) t1�G2k� � t2�G2kÿ1�.

(ii) t2�G2k� � t1�G2kÿ1�.

(iii) t1�G2k� � t1�G2k�1�.

Lemma 6.16. Let G2k�1�G0� � j
m�k�1�

wj
m�k� � � � wjm�1��G0� be a group of

length 2k � 1 for G0 A MVI�1�. Set G2k � wj
m�k� � � � wjm�1��G0�. If m�1�0ÿ1,

then j
ÿm�k�1��N1�G2k�� is equivalent to a group of length 2k � 1 for G 0

0 �

jN1�G0� A MVI�1�, where N1 is the Nielsen transformation de®ned in O2.

Proof. By Lemma 6.1 (iii), (iv) and (v) we have

j
ÿm�k�1��N1�G2k�� � j

ÿm�k�1�N1wj
m�k� � � � wjm�1��G0�

@ j
ÿm�k�1�

w
ÿ1
j
ÿm�k� � � � wÿ1

j
ÿm�1�N1�G0�

@ j
ÿm�k�1�

wj
ÿm�k� � � � wjÿm�1�ÿ1�jN1�G0��

� j
ÿm�k�1�

wj
ÿm�k� � � � wjÿm�1�ÿ1�G 0

0�:
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By Lemma 6.2(iv) we have G 0
0 � jN1�G0� A MVI�1�. Since m�1�0ÿ1, we have

the desired result. r

Lemma 6.17. Assume that ÿt1�G2k�1�G0�� > ÿt2�G2k�1�G0�� holds for every

G0 A MVI�1� and for every group G2k�1�G0� � j
m�k�1�

w � � � wjm�1��G0� of length

2k � 1 with r�G2k�G0�� > 1 and m�1�0ÿ1. Then ÿt1�G2k�1�G
0
0�� >

ÿt2�G2k�1�G
0
0�� holds for every G 0

0 A MVI�1� and every group G2k�1�G
0
0� �

j
n�k�1�

w � � � wjn�1��G 0
0� of length 2k � 1 with 0 < r�G2k�G

0
0�� < 1 and n�1�0ÿ1.

Proof. Let G2k�1�G
0
0� � j

n�k�1�
wj

n�k� � � � wjn�1��G 0
0� be a group of length

2k � 1 such that 0 < r�G2k�G
0
0�� < 1; n�1�0ÿ1 and G 0

0 A MVI�1�. We easily

see that

G2k�1�G
0
0�@N1j

ÿn�k�1��wjÿn�k� � � � wjÿn�1�ÿ1�jN1�G
0
0���:

If we set G0 � jN1�G
0
0�, then G0 A MVI�1� by Lemma 6.2 (iv). Since

j
ÿn�k�1��wjÿn�k� � � � wjÿn�1�ÿ1�G0��@ j

ÿn�k�1��N1wj
n�k� � � � wjn�1��G 0

0�� is a group of

length 2k � 1 by Lemma 6.16 and

r�wjÿn�k� � � � wjÿn�1�ÿ1�G0�� � r�wjÿn�k� � � � wjÿn�1�ÿ1
jN1�G

0
0��

� r�wjÿn�k� � � � wjÿn�1�N1�G
0
0��

� r�N1wj
n�k� � � � wjn�1��G 0

0��

> 1;

we have

ÿt1�j
ÿn�k�1��wjÿn�k� � � � wjÿn�1�ÿ1�G0��� > ÿt2�j

ÿn�k�1��wjÿn�k� � � � wjÿn�1�ÿ1�G0���

by the assumption.

By Lemma 2.1 (i) we have

ÿt1�N1j
ÿn�k�1�

wj
ÿn�k� � � � wjÿn�1�ÿ1�G0�� > ÿt2�N1j

ÿn�k�1�
wj

ÿn�k� � � � wjÿn�1�ÿ1�G0��:

Thus ÿt1�G2k�1�G
0
0�� > ÿt2�G2k�1�G

0
0�� holds for 0 < r�G2k�G

0
0�� < 1. r

Lemma 6.18. Let Gj � hA1j;A2ji A MVI�1� be the marked groups of length

j de®ned in the above, and let �t1�Gj�; t2�Gj�; r�Gj�� correspond to Gj . Then

(i) ÿt1�G2kÿ1� > ÿt2�G2kÿ1� �k � 1; 2; 3; . . .� if m�1�0ÿ1.

(ii) ÿt1�G2k� < ÿt2�G2k� �k � 1; 2; 3; . . .� if m�1�0ÿ1.

Proof. First we will show that (i) holds if and only if (ii) holds. Since

hA1;2k;A2;2ki� hA2;2kÿ1;A
ÿ1
1;2kÿ1i, we have �t1�G2k�; t2�G2k�; r�G2k�� � �t2�G2kÿ1�;

t1�G2kÿ1�; 1=r�G2kÿ1��. Hence we have the desired result.
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Now we will prove (i) by induction. We consider two cases: (1) k � 1 and

(2) kb 2.

(1) The case of k � 1. By Corollary 2 to Lemmas 6.7 and 6.9 we have

ÿt1�G2� < ÿt2�G2� for m�1�0ÿ1. Since t1�G1� � t2�G2� and t2�G1� � t1�G2�,

we have ÿt2�G1� < ÿt1�G1� for m�1�0ÿ1.

(2) The case of kb 2. Assume that ÿt1�G2kÿ1� > ÿt2�G2kÿ1� holds for

every G0 A MVI�1�. Then it su½ces to show that ÿt1�G2k�1� > ÿt2�G2k�1� holds.

We only prove ÿt1�G2k�1� > ÿt2�G2k�1� for the case of r�G2k� > 1 by Lemma

6.17. Therefore we only prove that if r�G2k� > 1 and ÿt1�G2kÿ1� > ÿt2�G2kÿ1�,

then ÿt1�G2k�1� > ÿt2�G2k�1�. We will show this for the following two cases:

case 1. m�k � 1�b1; case 2. m�k � 1�aÿ1. For simplicity, we set G2k :� hB1;B2i

and t1 :� t1�G2k�, t2 :� t2�G2k� and r :� r�G2k�. Then G2k�1 � hB1;B
2m�k�1�
1 B2i.

Case 1: m�k � 1�b 1. By the same method as in the proof of Lemma 6.7,

we have J�wjm�k�1��G2k�� > J�G2k�. Let �t1�Gj�; t2�Gj�; r�Gj�� correspond to Gj

� j� 2k; 2k�1; 2k�2�. By Lemma 6.4 we have ÿt1�w�G2k�1��<ÿt1�G2k� where

G2k�1 � j
m�k�1��G2k�. Since t1�w�G2k�1�� � t2�G2k�1� and t1�G2k� � t1�G2k�1� by

Lemma 6.15, we have the desired result, ÿt2�G2k�1� < ÿt1�G2k�1�.

Case 2: m�k � 1�aÿ1. We set

B1 � 1=t
1=2
1

1 0

0 t1

� �

and B2 � 1=t
1=2
2 �rÿ 1�

rÿ t2 r�t2 ÿ 1�

1ÿ t2 t2rÿ 1

� �

:

For simplicity, we set m � ÿm�k � 1�. Then mb 1. We have

B
2m�k�1�
1 B2 � Bÿ2m

1 B2 � 1=tm1 t
1=2
2 �rÿ 1�

t2m1 �rÿ t2� t2m1 r�t2 ÿ 1�

1ÿ t2 t2rÿ 1

� �

:

We note that the following two inequalities are equivalent: (i) ÿt1�G2k�1� >

ÿt2�G2k�1�, (ii) 0 > tr2�B1� > tr2�Bÿ2m
1 B2�. Therefore we only show that the

following inequality holds:

ft2m1 �rÿ t2� � t2rÿ 1g2 > t2mÿ1
1 t2�rÿ 1�2�1� t1�

2:

We set

f �r� � �t2m1 rÿ t2m1 t2 � t2rÿ 1�2 ÿ t2mÿ1
1 t2�rÿ 1�2�1� t1�

2: ���

By the assumption ÿt1 < ÿt2 , the coe½cient of r2 in the above equation ��� is

positive, that is

�t2m1 � t2�
2 ÿ t2mÿ1

1 t2�1� t1�
2 > 0:

Thus it su½ces to show that the axis of the quadratic equation ��� in r is less

than one and f �1� > 0. The axis of the equation ��� is less than one if and only

if f 0�1� > 0. By simple calculations we have
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f 0�1� � 2�1ÿ t2��1ÿ t2m1 ��ÿt2 ÿ t2m1 �

> 2�1ÿ t2��1ÿ t2m1 ��ÿt2 � t1� > 0:

Furthermore substituting r � 1 for the equation ���, we have

f �1� � �t2m1 ÿ t2m1 t2 � t2 ÿ 1�2 > 0:

Thus we have tr2�B1� > tr2�Bÿ2m
1 B2�. Therefore we have the desired result,

ÿt1�G2k�1� > ÿt2�G2k�1�: r

Corollary. If G0 A MVI�1� and m�1�0ÿ1, then

J�G2k�G0�� > J�G2kÿ2�G0��

for k � 1; 2; 3; . . . :

Proof. This corollary follows from Lemmas 6.4, 6.15 and 6.18. r

By this corollary we have the following.

Lemma 6.19. If G0 A MVI�1� and m�1�0ÿ1, then J�G2k�G0�� > J�G0� for

k � 1; 2; 3; . . . :

Next we consider the case of m�1� � ÿ1. Let

G2k�G0� � wj
m�k�

w � � � jm�2�
wj

m�1��G0�

be a group of length 2k for G0 A MVI�1�. Since m�1� � ÿ1, we have G2k�G0� �

wj
m�k�

w � � � jm�2�
wj

ÿ1�G0�. By Lemma 6.2 (ii) we have G 0
0 :� wj

ÿ1�G0� A MVI�1�.

Thus

inffJ�G2k�G0�� jG0 A MVI�1�g � inffJ�G2�kÿ1��G
0
0�� jG

0
0 A MVI�1�g:

If m�1� � ÿ1 and m�2�0ÿ1, then by the same method as the proof in the

above lemmas we have

inffJ�G2k�G0�� jG0 A MVI�1�gb inffJ�G0� jG0 A MVI�1�g

for k � 1; 2; 3; . . . :

If m�1� � ÿ1 and m�2� � ÿ1, then by the same reason as above we have

inffJ�G2k�G0�� jG0 A MVI�1�g � inffJ�G2�kÿ2��G0� jG0 A MVI�1�g:

By continuing this procedure we have the following.

Lemma 6.20. Let G2k�G0� �k � 1; 2; 3; . . .� be a group of length 2k for G0 A

MVI�1�:

G2k�G0� � wj
m�k�

w � � � wjm�2�
wj

m�1��G0�:

Then
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inffJ�G2k�G0�� jG0 A MVI�1�gb inffJ�G0� jG0 A MVI�1�g:

By Lemmas 6.19 and 6.20 we have the following.

Lemma 6.21. Let Gj be a group of length j for G0 A MVI�1�. Then

inffJ�Gj�G0�� jG0 A MVI�1�gb inffJ�G0� jG0 A MVI�1�g

� j � 1; 2; 3; . . .�:

By Corollary to Lemma 6.14 and Lemma 6.21 we have the following.

Lemma 6.22. Let G �
j be a group of length j with an asterisk for G0 A MVI�1�.

Then

inffJ�G �
j �G0�� jG0 A MVI�1�gb inffJ�G0� jG0 A MVI�1�g

� j � 1; 2; 3; . . .�.

By Lemmas 6.21 and 6.22 we have the following.

Proposition 6.1. Let f A Mod�RVIS
0
2�. Then

inffJ�f�G0�� jG0 A MVI�1�gb inffJ�G0� jG0 A MVI�1�g:

Corollary. inffJ�G0� jG0 A RVIS
0
2gb inffJ�G0� jG0 A MVI�1�g:

Combining the above corollary with Lemma 4.4 we have the following.

Proposition 6.2.

inffJ�G0� jG0 A RVIS
0
2g � inffJ�G0� jG0 A MVI�1�g:

Lemma 6.23. Let �t1; t2; r� correspond to a marked group G � hA1;A2i.

Let M �
VI�1� � ft � �t1; t2; r� A R

3 j t2 � ÿ�1� t1r
1=2�=�r1=2 � t1�, 1 < r < 1=t21 ,

ÿ1 < t1 < 0g. Then J�hA1;A2i�b 16 on M �
VI�1�. The lower bound is the best

possible.

Proof. Let t � �t1; t2; r� A M �
VI�1�. We set x � ÿt1 and y � r1=2. Then

the equation t2 � ÿ�1� t1r
1=2�=�r1=2 � t1� turns into t2 � ÿ�1ÿ xy�=�yÿ x�.

By substituting t1 � ÿx, r � y2 and t2 � ÿ�1ÿ xy�=�yÿ x� for

J�hA1;A2i� �
j1ÿ t1j

2

jt1j
�
j1ÿ t1j

2j1ÿ t2j
2jrj

jt1j jt2j jrÿ 1j2

we have

J�hA1;A2i� �
�1� x�2

x
�

�1� x�2�1ÿ x�2y2

x�yÿ x��1ÿ xy��yÿ 1�2
:
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Setting X � x� 1=x and Y � y� 1=y, we have

J�hA1;A2i� � X � 2� �X 2 ÿ 4�=�X ÿ Y ��Y ÿ 2�:
By calculus we have that J�hA1;A2i� attains the minimum value 16 at X � 6,

Y � 4, that is, at the point t � �t1; t2; r� � �ÿ�3ÿ 2
���

2
p

�;ÿ�5ÿ 2
���

6
p

�; �2�
���

3
p

�2�
on M �

VI�1�. r

Since M �
VI � qMVI n ft � �t1; t2; r� A qMVI j t2 � 0g, we have the following by

Lemmas 4.5 and 6.23.

Proposition 6.3. If hA1;A2i A MVI�1�, then J�hA1;A2i� > 16.

Proof of Theorem 2. We can prove Theorem 2 by Propositions 6.2 and

6.3. We can see by Example 2 in O7 that the lower bound 16 is the best

possible. r

Proof of Theorem 3. Theorem 3 follows from Theorem 2, Proposition 2.3

and Lemma 4.3. Example 3 in O7 shows that the lower bound 16 is the best

possible. r

7. Examples.

In this section we will give some examples which guarantee that all of the

lower bounds in the inequalities in Theorems 1, 2 and 3 are the best possible.

Let ftn � �t1n; t2n; rn�g �n � 1; 2; 3; . . .� be a sequence of points in R
3 and let

Gn � hA1n;A2ni be the groups representing tn. Here we will give sequences of

marked classical Schottky groups fGng whose Jùrgensen's numbers J�Gn� tend to

the lower bounds in the inequalities in Theorems 1, 2 and 3.

Example 1 (Type III). Let t1n � ��nÿ 1�=�n� 1��2, t2n � ÿ1=�n� 1�2 and

rn � ÿ1 �n � 2; 3; 4; . . .�. Then (i) Gn A RIIIS
0
2 and (ii) limn!y J�Gn� � 4.

We easily see that t � �t1n; t2n; rn� A MIII �n � 1; 2; 3; . . .� and so Gn A RIIIS
0
2 ,

where MIII is the region de®ned in O4. Furthermor we can see limn!y J�Gn� � 4

by simple calculations.

Example 2 (Type VI). Let t1n �ÿ�3ÿ2
���

2
p

��1=�n� 10�, t2n �ÿ�5ÿ2
���

6
p

�
� 1=�n� 10� and rn � 7� 4

���

3
p

�n � 1; 2; 3; . . .�. Then (i) Gn A RVIS
0
2 and (ii)

limn!y J�Gn� � 16.

We easily see that t � �t1n; t2n; rn� A MVI�1� �n � 1; 2; 3; . . .� and so Gn A

RVIS
0
2 . Furthermor we can see limn!y J�Gn� � 16 by simple calculations.

Example 3 (Type VIII). Let t1n � ÿ�3ÿ 2
���

2
p

� � 1=�n� 10�, t2n � 3ÿ
2

���

2
p

ÿ 1=�n� 10� and rn � ÿ1 �n � 1; 2; 3; . . .�. Then (i) Gn A RVIIIS
0
2 and (ii)

limn!y J�Gn� � 16.
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We set

MVIII�0� �

�

�t1; t2; r� A R
3 j 0 < t2 <

f�ÿr�1=2 ÿ �ÿt1�
1=2gf1ÿ �ÿt1�

1=2�ÿr�1=2g

f�ÿr�1=2 � �ÿt1�
1=2gf1� �ÿt1�

1=2�ÿr�1=2g
;

1=t1 < r < t1; ÿ1 < t1 < 0

�

:

Then we note that MVIII�0�HRVIIIS
0
2 (cf. [8]). We easily see that t �

�t1n; t2n; rn� A MVIII�0� �n � 1; 2; 3; . . .� and so Gn A RVIIIS
0
2 . We can see (ii) in

Example 3 by Proposition 2.3, Lemma 4.3 and Example 2.

Though we have just seen that the group Gn � hA1n;A2ni in Examples

1, 2 and 3 are classical Schottky group of types III, VI and VIII, respectively,

we will show this fact by drawing explicitely de®ning circles for the groups

Gn � hA1n;A2ni. Namely, we draw four circles Cjn � j � 1; 2; 3; 4� satisfying the

following two conditions:

(1) A1n�C1n� � C3n and A2n�C2n� � C4n.

(2) C1n;C2n;C3n and C4n comprise the boundary of a 4-ply connected

region.

Example 1. If we can choose circles C1n;C2n;C3n and C4n satisfying the

following two conditions, then we easily see that Gn � hA1n;A2ni A MIII HRIIIS
0
2 .

(i) Cjn � j � 1; 2; 3; 4� are the circles perpendicular to the real axis such that

A1n�C1n� � C3n and A2n�C2n� � C4n.

(ii) For j � 1; 2; 3; 4, the points ajn and bjn satisfy the inequality

a3n < a4n < rn < b4n < a1n < 0 < b1n < a2n < 1 < b2n < b3n;

where ajn and bjn � j � 1; 2; 3; 4� are the intersection points of the circles Cjn with

the real axis.

Now we take ajn and bjn � j � 1; 2; 3; 4� as follows: a1n � ÿ�n2 ÿ 3�=

�n2 � 2n� 2�, b1n � �n2 ÿ 3�=�n2 � 2n� 2�; a2n � �n2 ÿ 2�=�n2 � 2n� 2�, b2n �

�n2 � 4n� 2�=�n2 � 2n� 2�; a3n � ÿ�n2 ÿ 3��n� 1�2=�n2 � 2n� 2��nÿ 1�2, b3n �

�n2 ÿ 3��n� 1�2=�n2 � 2n� 2��nÿ 1�2; a4n � ÿ�n2 � 4n� 2�=�n2 � 2n� 2�, b4n �

ÿ�n2 ÿ 2�=�n2 � 2n� 2�.

Then we can easily see that these points ajn and bjn and the circles Cjn

� j � 1; 2; 3; 4�, which have ajn and bjn as the intersection points of the circles Cjn

with the real axis, satisfy the above conditions (i) and (ii) for su½ciently large n.

Thus Gn � hA1n;A2ni are classical Schottky groups of type III.

Example 2. If we can choose circles C1n;C2n;C3n and C4n satisfying the

following two conditions, then we easily see that Gn � hA1n;A2ni A MVI�1�H

RVIS
0
2 .
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(i) Cjn � j � 1; 2; 3; 4� are the circles perpendicular to the real axis such that

A1n�C1n� � C3n and A2n�C2n� � C4n.

(ii) For j � 1; 2; 3; 4, the points ajn and bjn satisfy the inequalities

a3n < a1n < 0 < b1n < a2n < 1 < b2n < a4n < rn < b4n < b3n;

where ajn and bjn � j � 1; 2; 3; 4� are the intersection points of the circles Cjn with

the real axis.

We take t1; t2; r and t1n; t2n; rn as follows:

t1 � ÿ�3ÿ 2
���

2
p

�; t2 � ÿ�5ÿ 2
���

6
p

�; r � 7� 4
���

3
p

;

t1n � ÿ�3ÿ 2
���

2
p

� � 1=�n� 10�; t2n � ÿ�5ÿ 2
���

6
p

� � 1=�n� 10�; rn � 7� 4
���

3
p

:

Let G � hA1;A2i and Gn � hA1n;A2ni be the groups representing t �
�t1; t2; r� and tn � �t1n; t2n; rn�, respectively. We take ajn and bjn � j � 1; 2; 3; 4�
as follows:

a1n �ÿ�2�
���

3
p

�, b3n �A1n�a1n�, b4n �A1�a1n�; b2n �Aÿ1
2n �b4n�, a4n �Aÿ1

2 �b4n�;
a2n �Aÿ1

2n �a4n�, b1n �Aÿ1
2 �a4n�; a3n �A1n�b1n�.

Then we can easily see that these points ajn; bjn and the circles Cjn

� j � 1; 2; 3; 4�, which have ajn and bjn as the intersection points of the circles Cjn

with the real axis, satisfy the above conditions (i) and (ii). Thus Gn � hA1n;A2ni

are classical Schottky groups of type VI.

Example 3. If we can choose circles C1n;C2n;C3n and C4n satisfying the

following two conditions, then we easily see that Gn � hA1n;A2ni A MVIII�0�H
RVIIIS

0
2 .

(i) Cjn � j � 1; 2; 3; 4� are the circles perpendicular to the real axis such that

A1n�C1n� � C3n and A2n�C2n� � C4n.

(ii) For j � 1; 2; 3; 4, the points ajn and bjn satisfy the inequalities

a3n < a4n < rn < b4n < a1n < 0 < b1n < a2n < 1 < b2n < b3n;

where ajn and bjn � j � 1; 2; 3; 4� are the intersection points of the circles Cjn with

the real axis.

We take t1; t2; r and t1n; t2n; rn as follows:

t1 � ÿ�3ÿ 2
���

2
p

�; t2 � 3ÿ 2
���

2
p

; r � ÿ1;

t1n � ÿ�3ÿ 2
���

2
p

� � 1=�n� 10�; t2n � �3ÿ 2
���

2
p

� ÿ 1=�n� 10�; rn � ÿ1:

Let G � hA1;A2i and Gn � hA1n;A2ni be the groups representing t �
�t1; t2; r� and tn � �t1n; t2n; rn�, respectively. We take ajn and bjn � j � 1; 2; 3; 4�
as follows:
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a1n � ÿ�ÿt1�1=2�ÿr�1=2 � 1ÿ
���

2
p

, b3n � A1n�a1n�, b2n � A1�a1n� �
���

2
p

� 1;

a4n �A2n�b2n�, a3n �A2�b2n� �ÿ�
���

2
p

�1�; b1n �Aÿ1
1n �a3n�, a2n �Aÿ1

1 �a3n� �
���

2
p

ÿ1;

b4n � A2n�a2n�.
Then we can easily see that these points ajn; bjn and the circles Cjn

� j � 1; 2; 3; 4�, which have ajn and bjn as the intersection points of the circles Cjn

with the real axis, satisfy the above conditions (i) and (ii). Thus Gn � hA1n;A2ni

are classical Schottky groups of type VIII.

8. Appendices.

We will make a summary of Jùrgensen's inequalities for classical Schottky

groups of real type obtained in [1], [6], [9] and the present paper.

Theorem I (Gilman [1], Sato [6]). If G � hA1;A2i A RIS
0
2 , then

J�hA1;A2i� > 16. The lower bound is the best possible.

Theorem II (Sato [9]). If G � hA1;A2i A RIIS
0
2 , then J�hA1;A2i� > 16.

The lower bound is the best possible.

Theorem III (Theorem 1 in the present paper). If G � hA1;A2i A RIIIS
0
2 ,

then J�hA1;A2i� > 4. The lower bound is the best possible.

Theorem IV (Gilman [1], Sato [6 ]). If G � hA1;A2i A RIVS
0
2 , then

J�hA1;A2i� > 4. The lower bound is the best possible.

Theorem V (Sato [9]). If G � hA1;A2i A RVS
0
2 , then J�hA1;A2i� >

4�1�
���

2
p

�2. The lower bound is the best possible.

Theorem VI (Theorem 2 in the present paper). If G � hA1;A2i A RVIS
0
2 ,

then J�hA1;A2i� > 16. The lower bound is the best possible.

Theorem VII (Sato [9]). If G � hA1;A2i A RVIIS
0
2 , then J�hA1;A2i� >

4�1�
���

2
p

�2. The lower bound is the best possible.

Theorem VIII (Theorem 3 in the present paper). If G � hA1;A2i A RVIIIS
0
2 ,

then J�hA1;A2i� > 16. The lower bound is the best possible.
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