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associated to polynomials of several variables

By Marc DE CRISENOY and Driss ESSOUABRI

(Received Mar. 16, 2006)

Abstract. We give a new and very concise proof of the existence of a
holomorphic continuation for a large class of twisted multivariable zeta functions.
To do this, we use a simple method of “decalage” that avoids using an integral
representation of the zeta function. This allows us to derive explicit recurrence
relations between the values at T—tuples of negative integers. This also extends
some earlier results of several authors where the underlying polynomials were
products of linear forms.

1. Introduction.

Let Q,Py,...,Pre R[Xy,...,Xy] and py,...,uy € C — {1}, each of mod-
ulus 1. To this data we can associate the following “twisted” multivariable zeta
series:

(I, k) QGom . )

T St
mp>1,...,my>1 Ht:l B(mh LR mN)

Z(Q;Pl,...7PT;/L1,...,/LN;81,...,ST):

where (si,...,sr) € CT.
In this article we will always assume that:

T
vie{1,...,T}, Vx € [1,+oo[", P(x) > 0 and HH(X)H—>+m (#)
=1 X|—=too
xeJN

It is not difficult to see that the condition (#) implies that Z(Q;Pi,...,
Pripy, ..., un;s1,-..,87) is an absolutely convergent series when $(s1),...,R(sr)
are sufficiently large.
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Cassou-Nogues ([6]) and Chen-Eie ([7]) proved in the case T =1, and P = P; a
polynomial with positive coefficients, that the above series can be holomorphically
continued to the whole complex plane and obtained very nice formulas for their
values at negative integers. In [8] de Crisenoy extended these results by allowing
T > 1 and introducing the (HDF) hypothesis (see definition 2 in Section 2) that is
much weaker than positivity of coefficients. The main result of [8] is the following;:

THEOREM ([8]). Let Q,Py,...,Pr € R[Xi,...,Xy] and p e (T\ {1})".
Assume that:
For each t=1,...,T P satisfies the (HDF) hypothesis and that

T
H Pi(x) —— 4o0.
|x|—+00
=1 N
xeJ*

Then:
e Z(Q;P,...,Pr;p;-) can be holomorphically extended to CT;

T
e Forallky,... ,kp € N if we setQHPtk’ = Zaaxa, we have:

t=1 acs
N
Z(Q, Pl, e ,PT; JIX —k‘l, ey —kT) = Zaa HCM”(—OA,L).
acsS n=1

where for all p € T, ¢,(s) = S5 L

m=1 m*

To obtain this theorem he used an integral representation for the zeta series.
The proof of the holomorphic continuation of the resulting integral is long and
complicated.

By restricting to hypoelliptic polynomials (see definition 1 in Section 2) we can
avoid the integrals:

The first result of this article gives a new proof of the holomorphic continuation of
these series under the assumption that P, ..., Pp are hypoelliptic. Our proof uses
the “decalage” method of Essouabri ([12]). Particular interest for this paper is
that this method does not use an integral representation for the zeta series. And
the resulting proof is very concise and much simple.

The second result is relations between the values at T—tuples of negative integers
of these series, relations that are true under the H DF hypothesis, and that give a
mean to calculate by induction the values.

These relations are very simple in the case of linear forms, particularly interesting
because of its link with the zeta functions of number fields ([5]). Similar results
have been obtained by severals authors in particular cases of linear forms (see [1],
[3] and [4]). Our method allows one also to obtain new relations even in the cases
of linear forms.
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2. Notations and preliminaries.

First, some notations:

1. Set N={0,1,2,..},N=N—{0}, J=[l,400[, and T={z¢

C ||z =1}.

2. The real part of s € C will be denoted R(s) = o and its imaginary part
S(s) =7.

3. Set0=(0,...,00c RN and 1 =(1,...,1) € R".

4. For x = (z1,...,ox) € RY we set [x| = |z1| + ... + |2y

5. For z=(z,...,2x) € CV and a=(ai,...,ay) € RY we set z%=

6. The notation f(\,y,x) <y g(x) (uniformly in x € X and A € A) means that
there exists A = A(y) > 0, that depends neither on x nor A, but could a
priori depend on other parameters, and in particular on y, such that:
Vx e X VA e A|f(\y,x)| < Ag(x).

When there is no ambiguity, we will omit the word uniformly and the
index y.

7. The notation f =< g means that we have both f < g and g < f.

8. For a€ RY and Pe€ R[Xi,...,Xy], we define A,P € R[Xi,...,Xy]
by A,P(X)=P(X+a)— P(X). If no ambiguity, we will note simply
A,P by AP.

9. Let ac N¥, Ne N*, Ic{l,...,N}, q=#I, I°={1,...,N}\ I and
b= (bi>ielﬂ S Hiep{o, PN ,ai}. Set [ = {il, ce 7’L'q} and ¢ = {jh ce ,jN,q}.
Then:

(a) Foralld = (dy,...,d,) € N?we define m®'?(d) = (my,...,my) € NV
by Vk=1,...,q, mj, = a;, +dyand Vk=1,...,N — q, mj, = b;,;

(b) For all f: NV - C we define f2'P:N?— C by f2IPd)=
f(ma’l’b(d)).

CONVENTION. In this work we will say that a series defined by a sum over
N > 1 variables is convergent when it is absolutely convergent.

Let us recall some definitions:

DEFINITION 1. P € R[X;y,...,Xn] is said to be hypoelliptic if:

vx € J¥ P(x) > 0 and Va € NV \ {0}, 8PP (x)

|x]—+00
xeJN

DEFINITION 2. Let P € R[Xy,..., Xy].
P is said to satisfy the weak decreasing hypothesis (denoted HDF in the rest of the
article) if:
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o Vx c JV P(x) >0,
e Jey > 0 such that for a € NY and ne {1,...,N}: a, > 1=
0 (x e JV).

n

o*P

(x) <

REMARK 1. Tt follows from Hérmander ([13], p.62) (see also Lichtin ([14],
P.342) that if P € R[X;,..., Xy] is hypoelliptic then there exists € > 0 such that

Vo € NV \ {0},

P
P (x) < x %t (x € JV). Therefore P satisfy also the HDF
hypothesis.

3. Main results.

We first give a new and concise proof of the existence of a holomorphic

continuation for our series when each polynomial is hypoelliptic. The procedure
uses the “decalage” method, and does not require an integral representation.
A consequence of this method is found in corollaries 1 and 2. This gives simple
recurrent relations between the values at T—tuples of negative integers when the
polynomials P, are products of linear polynomials or a class of quadratic
polynomials. This procedure is different from that in [8] where the calculation of
the special values was not an immediate consequence of the holomorphic
continuation of the zeta series.

THEOREM 1. Let pe (T\{1})Y and Q,P1,...,Pr € R[Xy,..., Xy].
We assume that Py, ..., Pr are hypoelliptic and that at least one of them is not
constant.
Then Z(Q; Py, ..., Pr; ;) can be holomorphically extended to CT.
Let aeNV. We set E@@={meN" " m#ta+1}={meN"|3ne
{1,...,N} m, < a}.
Then for all k € N we have the following relation:

(1_I’l’a)Z(Q1P17aPT1”7_k)

T
= QX +a)[[(a.P)* " P,...,Prip;—u

0<u<k

+pZ(AQ; P, ..., Prip; —k) + Zy_,(—k).

T
Where Z%_,(s) = Z qu(m)HPt(m)*S*. By using notation (9) above it’s
mekE(a) =
easy to see that:
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iel¢

N-1
= Z Z (H lé?f) Z(Qa,l,b; Pia,l.,b’ o P;"I’b; (Ni)igﬁ S).

In particular, it is clear that Z%_, is a finite linear combination of zeta series Z
associated to hypoelliptic polynomials of at most N — 1 variables.

REMARK 2. When p? # 1 (and we can of course choose a such that this is
satisfied, this formula allows us to compute the values at T—tuples of negative
integers of the series Z by recurrence because in each term on the right a integral
value is strictly less than the corresponding value on the left: |u| < |k,
deg(AQ) < deg@, N —1 < N.

Now, using theorem A of [8](that gives the existence of the holomorphic
continuation under the HDF hypothesis) and theorem B of [8] (that gives closed
formula for the values, still under HDF) and the preeceding theorem, we show
that the relations remain true under the HDF hypothesis:

THEOREM 2. Let pe (T\{1})" and Q,P,,...,Pr € R[Xy,..., Xy].
We assume that Pi,...,Pp satisfies the HDF hypothesis and that
T
H Pi(x) —— 4o0.
=1 |x|—+00

xeJV
Then, the relations of theorem 1 are still true.

Now we deal with the particular case of linear forms. In this case the relations
become particularly simple.

COROLLARY 1. Let we (T\{1})" and Ly,..., Ly linear forms with posi-
tive coefficients.
We assume that for each n there exists t such that L; really depends on X,,.
We set Z(p;-) = Z(1; Ly, ..., L; ps ).
Let ae NV. We set Bl ={meN" mfa+1l}={meN"|3ne
{1,...,N}, m, <a,}.
Forallt € {1,...,T} we set: 6 = Ly(X +a) — Li(X). 6 € R.
Then, for allk € NT we have the following relation:
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k
(1= p)Z(p; —k) = p* » 5k“< )Z(u; —u) + Z5_(pn, —k).
0<u<k u

Where Z%_(s) = Z u™ | | Li(m) ™. By using notation (9) above it’s easy to

mekFE(a)

T

see that:

N-1
Zi ) =Y > > (H ui-”) Z(l; LY L (e S)-

=1 _ iclc
q IC;QI-;ZIN}bf(b,)eHiEP{U,...,a,,} i€

In particular, it is clear that Z%_, is o finite linear combination of zeta series Z
associated to linear forms of at most N — 1 variables.

REMARK 3. Of course, here as well this formula allows a calculus by
induction.

Since the works of Cassou-Nogues and Shintani, we know that the case of
linear forms is particulaly interesting for algebraic number theory because of the
link with the zeta functions of number fields. See also [16] for more motivations.

REMARK 4. Let us assume that P € R[X,..., Xy] is a product of linear

T

forms: P = HLt where Li,..., Ly have real positive coefficients, and that we
=1

want to evaluate the numbers Z(1; P; u; —k) where k € N.

We could use Theorem 1, but it seems more interesting to note that

Vse C Z(1;P;pu;s)=Z(1; L1, ..., Ly;p;s,...,s) and then to consider the
numbers  Z(1; P;u;—k) = Z(1; Ly, ..., Lr;p; —k,...,—k) inside the family
Z(1; Ly, ..., Ly;pu; —ky,...,—kr) because of the simple relations between these
numbers given by the preceeding proposition.

The particular case of linear forms is not the only case when relations of
theorems 1 and 2 become particularly simple. The great flexibility in the
assumptions of these theorems, allowed one to obtain also very simple relations
in some other cases as in the following:

COROLLARY 2. Let pe (T\{1)" and let P,,...,Pr e R[X,,...,Xy] be
polynomials of degree at most 2. Suppose that for allt =1,...,T:
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Tt

N
A 2
P(X) = Pi(X1,.... Xn) =Y (", X))+ X, + dy

k=1 n=1

where a'* € RN, ¢;; € R, and d; € R, Vt, k,i.
Assume that there exists a € N \ {0} such that (o* a) = 0 for all t, k.
Then:

1. forallte{l,...,T}, 6; == P(X+a) — P(X) € R,;
2. the relations of Corollary 1 are still true.

4. Proof of theorem 1.

Let t € {1,...,T}. It’s clear that there exists a € N" such that 0*P; is
a non-vanishing constant polynomial. So the hypoellipticity of P implies that
P,(x) — 400 when |x| — +00 (x € [1,+00["). By using Tarski-Seidenberg (see for
example [11], Lemme 1), we know that there exists § > 0 such that P;(x) >
(z1 .. .xN)(S uniformly in x € [1,—|—oo[N. Therefore, its clear that there exists oy
such that if oy,...,00 > 0y then Z(Q, Py, ..., Pr, p,s) converges.
By Remark 2.1 above, there exists also a fixed € > 0 such that V¢t € {1,...,T} we
have

(6]

—P(x) < x4 (xeJV.

vaoe N\ {0}, —

STEP 1. We establish a formula ().

PROOF OF STEP 1.

Py, ..., Pr are fixed in the whole proof so we will denote Z(Q, p, -) instead of
Z(Q,Py,...,Pr,p,-). With this notation for all s such that oy,...,00 > gy we
have:

T
Z(Q,p8) = Y, p"Q(m) ] P(m)™

meN"Y t=1
T
= > wmQm) [[ A(m)™ + 23 4(s)
m>a+1 t=1

=p* Y pmQm+a) [[P(m+a)™ + 25 (s).

meN*Y t=1
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U € N is a set for the whole step.

We have gy: C x C\] — o0, —1] — C holomorphic and satisfying:
U

Vse C, Vze C\| — oo, —1], (1+2)° =Z(Z>z“+zU+lgU(s,z).

u=0
Vk € N verifying k < U and Vz € C\] — 00, —1], gu(k, z) = 0.
Fort € {1,...,T} we define A; = A, P,.
Forte {1,...,T} and m € N*V, we define Himy: C — C by:

U —St _
Himu(s) = Z < >At(m)utpt(m) “

=0 Ut
Vit e {1,...,T} we have:

P(m+a)™*
= [Pi(m) + Ay (m)] ™
— P(m) ™ [1 T At(m)g(m)*l}

= Py(m) [Hym () + Ay () Py(m) Y gy (=i, Au(m) Po(m) ).

—38

For z1,...,2p,y1,...,yr € R, we have H (2 +y1) = Z Hxl it so
t=1 ec{0,1}7 t=1

T
[[2m+a)

t=1

i HH“HU 50)' " Ay (m) TV Py (m )81_6[(U+1>9U<_8t7At(m)Pt(m)_l)q.

ec{0,1}" 1=

For me N*V and €€ {0,1}" we define fynye: CT — C thanks to the
following formula:

€t

fratr s HHthsa A (on) Py ) gy (s, A ) Pym) )

t=

So for all m € N*V and s € CT we have: HB m+a) Z Jmu.e(s
ec{0,1}"
We define Zy(Q, i, ) by: Zy(Q, p,s) := Z > QM+ a) fmue(s).
ec{0,1}"\{0} meN*N
We will see in step 2 that for U large enough Zy(Q, ., -) exists and is holomorphic
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on
{SG c’ | 0’1,...,O'T>O'0}.
It’s clear that Zy(Q, w,s Z pQ(m+a) Z Sfmu.e(s).
meN*N ec{0,1}"\{0}
So Z(Q, p,s) = Z 1PQ(m + a) fmrro(s) + B Zu(Q, 1y 8) + Z5 4 (s)-
meN*\ T

By definition fum yo(s HHth s¢)P,(m)”* so:

T [ _
> OTI( Ay pmy

0<ur,up<U t=1 \ W

> I I A, (m)% P, (m) 5w
t( )Ur f( ) ST Ut
then, for all s such that oq,...,07r > 0(, we have:

Z pmQ(m + a) fmyo(s)

mEN*N

= D H"Qmta) > ( )HAt o P (am) (et
meN™ ue{0,...U)"

- <—us> 2 HrQm+ HAf ) P, (m) =)
ue{0,...,U}’ me NV

— T

s (S)z(Q<x+a>mf,u,s+u),

wefo,.oy" \ Pl

The combination of the precedings results gives us:
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_ T
= p? Z ( us> Z(Q(X +a) H AV s + u) + 1 Zy(Q, pm,8) + Z3%_,(s).
T t=1

ue{0,...,U}

The following () formula is now clear:

s T
(1—-pNZ(Q, p8) = p* > ( " >Z<Q(X+3)HA?‘,N,S+H>

uef0,...U}"\{0}
+/J’aZ(AQvH’7S) + Z?V—l(s) +“’aZU(Q7H7S)' (*)

STEP 2. For all a € R, there exists Uy € N such that for all U > U,
Zy(Q, p, ) exists and is holomorphic on {s € C" |Vt € {1,...,T}, oy > —a}.

PROOF OF STEP 2.
Let a€R. Let K be a compact of C? included in {s¢
ch|\vte{l,...,T}, o > —a}.
*Let t € {1,...,T}.
We know that Pi(x) > 1 (x € JV) so it’s easy to seen that: P(x) ™ < P;(x)*
(xeJV, seK).
Let denote p = max{degX” P|1<n<N,1<t< T}.
From now we assume a > 0. So P,(x)" < x* (x € JV).
As a conclusion we have: Py(x)™" < x'"! (x € JV, s € K).

Uy

U Uy
_ A :
Let U € N* and € € {0,1}". By definition Hymy(s) = Z< sf) <ﬂ) ; S0

=0

hypoellipticity of P, implies that H;mp(s) < 1 (m € NV s € K).

It implies also that there exists a compact of | — 1, +00[ containing all the

where m is in N*V so: gU(fst,At(m)Pt(m)fl>q<< 1 (me N, seK).

Thanks to the Taylor formula and to the choice of € we have
m ! (m e N*V).

From what proceeds we deduce that we have, uniformely in m € N*¥ and s € K

s (i

* By definition

e(U+1) o
) Rs(m)fsng <7St’ At(m)Pt(m)%) < mpalmfeer,(UJrl)l'
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Fuve(s) = f[l}J[t"m,U(s)l—ft (IADI((E)))q(U+1)Pt(m)—5ngU(—st7 At(m)Pt(m)—l)a.

Since € # 0, we have: fype(s) < mPrm=<U+D1 (m ¢ N*V).
We denote g = max{degxn Ql1<n< N} (obviously we can assume that @ # 0).
We see that Q(m + a) fup.e(s) < m@TPe=clUHL (1m ¢ N*V),
So it is enough to have ¢+ Tpa — e(U + 1) < =2, for U to fit.
q+ Tpa + 2} +1

Thus it is enough to choose U € N such that U > U := [
€

CONVENTION.

Let us take a convention, that we will use until the end of the proof. Let
a € R. We will say that a function Y is an entire combination until a of the
functions Y7, ...,Y; if there exists:

* entire functions Ay, ..., \i: €T — C,
* one function A: {s eCl|vte{l,...,T}, o> a} — C holomorphic,
k

such that Y = A + Z Y.
=1
A DEFINITION AND A REMARK.
For ue N and Q € R[Xy,...,Xy], we denote &4(Q) the subspace of

R[Xi,...,Xn] generated by the polynomials of the following form:
T
2PQ H H 7" p, where:

t=1 keF;

*x Be NV,

* Fi,..., Fr are finite subset of N satisfying |F}| = w,
*x Vt€{1,...,T} f; is a function from F, into NV \ {0}.

We remark that &,(Q) is stable under partial derivations.

We are now beginning the proof of the existence of an holomorphic
continuation.
The proof is by recurrence on N; it will be clear that the proof that rank N — 1
implies rank N — 1 gives the result at rank N = 1.
Let N > 1. We assume that the result is true at rank N — 1.

STEP 3. Let Q € R[X4,...,Xy] and a € R,.
Then Z(Q,p,s) is an entire combination until —a of functions of the type
Z(R, p,s +u) where u € NV \ {0} and R € £,(Q).
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PROOF OF STEP 3.

We are going to show by recurrence on d € N that if deg@ < d then the
result is true.
For d =0 it is clear.
Let us assume the result for d > 1.
Let @Q € R[Xq,...,Xy] such that deg@ < d+ 1.
Thanks to step 2 we set U such that Zy(Q,u,-) is holomorphic on
{seC”|vte{l,....T}, oy > —a}.
We are now going to use the formula (x) obtained in step 1. We look at each of the
4 term on the right.
e Let ue{0,...,U}" \{0}.
Thanks to the Taylor formula, it is easy to see that Q(X + a) Hthl A € £4(Q).
e deg AQ < d so the recurrence hypothesis on d implies that, Z(AQ, u,s) is an
entire combination until —a of functions of the type Z(R, p,s+u) where u €
NY\ {0} and R € &,(AQ).
Furthermore, clearly, &,(AQ) C &u(Q).
e Thanks to the recurrence hypothesis on N, Z%_, can be holomorphically
extended to CT.
e We chose U so that Zy(Q,p,-) is holomorphic on {s eCl|vte
{1,...,T}, o > —a}.
So the formula (%) gives the result.

STEP 4. R € &y(Q) and S € &v(R) = S € Euiv(Q).

PROOF OF STEP 4. . ,

S is a linear combination of terms of the form 9°R thl HkEF{ o) P, where:
Be NN, F| ... F. are finite subsets of N such that V¢, |F/|=v;, and
fi: Ff = N\ {0}.
R € &4(Q) s0 9PR € £4(Q) and then 9PR is a linear combination of terms of the
form: 97Q I_LT:1 erB ") P, where:
~e NV, F,...,Fr are finite subsets of N such that Vt, |F| =, fi:F, —
NY\ {o}.
We can assume that V¢, t' € {1,...,T}, F,NE, =0.

To conclude it is enough to show that:

def r fi(k) T fi(k) -
U=90Q (Ht:l erm @ Pt) (Htl erF; O"TR ) s in Suiv(Q).
For ¢t € {1,...,T} we define g;: F; UF] — NV {0} in the following way:
gi(k) = fi(k) if k ETFf,, gi(k) = fi(k)if ke F).
Then U = OQ [, [T @@ P and Ve € {1,.... T}, |FUF| = u + .
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So it is now clear that U € &y1+v(Q).

STEP 5. Let Q € R[X4,...,Xn],a € Rand b€ N*.
Then Z(Q,p,s) is an entire combination until —a of functions of the type
Z(R, ,s + u) where u € NV satisfies [u| > b and R € &4(Q).

PROOF OF STEP 5.

The proof is by recurrence on b € N*.
For b =1, it comes from step 3.
The combination of step 3 and step 4 allows us to deduce the result at rank b+ 1
from the result at rank b.

LAST STEP. Conclusion:
Let Q € R[Xy,...,Xy]and a € R,.
We wish to show that Z(Q, i, ) can be holomorphically extended until —a.
Let b € N. The value of b will be precised in the sequel.
By step 5 Z(Q, p,s) is an entire combination until —a of functions of the type
Z(R, p,s +u) where u € N” satisfies [u| > b and R € &,(Q).
Let us consider u € NV satisfying [u| > b and R € &4(Q). .
R is a linear combination of polynomials of the form S = 8°Q thl erﬂ ol p,
where:
Be€ NV, F,... Fr are finite subsets of N satisfying V¢, |Fj| = u, and f;: F; —
NY\ {0}.

HtT:I I1 reF, o5 p, T ol h) p,
t=1"1 t=1 keF;
T
<J[J]m (meN™)

~
Il
—
o~
M
!

<m M (me N*Y)
<m ™ (me NN

Let K be a compact of C” included in {s € C" |Vt € {1,...,T}, oy > —a}.
As in step 2: 9°Q(m) Hthl P(m)™" <« m®7 (m e NV, s € K).

T L T . T, 6f*<k)P
HPt(m)_(-Sz+uz) — aﬂQ(m) H Pt(m)—al Ht—l HkEFt t
=1

T m),
11 [T 7"
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SO
T
S(m) HB(m>—(5t+U1) < m(q-‘—Tpn,—sb)l (1’1’1 c N*N’ se K)
t=1
+ Tpa + 2
We choose b € N satisfying b > gropawe so that g+ Tpa — eb < —2.
€

We see that Z(R, i, s + u) is holomorphic on {s ecl|vte{l,....T}, 0, > —a},
so the proof is done. To obtain the formula of the theorem, it suffices to make
s = —k in the formula (%) proved in step 1 and to remark that Zy(Q, p, —k) =0
when we choose U such that U > max{ky,...,kr}.

This ends the proof of theorem 1.

5. Proof of theorem 2.

Let e (T\{1})" and k € NV fixed. Let d € N be fixed.
We denote Ry[Xq,...,Xy] the set of the real polynomials of N variables with
degree at most d.
Let D = card{a € N | |a| < d}.
Let ¢: R” — Ry[X1,..., Xy] defined by: A = (@a) jaj<a = H(A Z\a\<d
It is an isomorphism of real vector spaces.
Thanks to theorem B of [8], we know that there exists a polynomial G €
R[Xi,...,Xperin) such that for all B, A,...,Ar € R” such that ¢(4),...,
¢(Ar) satisfy assumptions of Theorem 2, we have Z(¢(B);d(A1),...,¢(Ar);
w; —k)=G(B, Ay, ..., Ar).

Theorem B of [8] implies that if we restrain to polynomials of degree at
most d with Pj,..., Pp satisfying assumptions of Theorem 2, the following
relation, that we want to establish:

(1-p9Z(Q; Py, ..., Prip; —K)

k
o<u<k \ U

+uZ(AQ; Piy. .., Prip; —k) + Z5_,(—k)

~

T
(APR)"; P17-~-7PT§H§_k+u>
t=1

is equivalent to G1(B,Ay,...,Ar) = Gy(B,Ay,...,Ar) (with B=¢"1(Q) and
Vt, Ay = ¢~ H(P)) with G1,Gy € R[X1, .. -» Xp(r+1)] depending only on k,d, N,T
and p and repectively associated to the right side and left side.

It is easy to see that if A € RiD then ¢(A) is hypoelliptic and non constant.
Therefore Theorem 1 implies that for all B € R”, and for all A;,...,Ar € RiD
G1(B, Ay, ..., Ar) = Go(B, Ay, ..., Ap). Since Gy and Gy are polynomials, this
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implies that G; = Gs.
This end the poof of theorem 2.

6. Proof of corollaries.

Corollary 1 is a direct consequence of theorem 1.
Point 1 of corollary 2 follows from assumption on a by easy computation.

PROOF OF THE POINT 2 OF COROLLARY 2. By using theorem 1, to finish the
proof of corollary 2, it’s enough to verify that each polynomial P; is hypoelliptic.
Let t € {1,...,T} and n € {1,..., N} fixed. We have uniformly in [1,+oo[N:

O0P(x ok Olt’ka X)| 4 Cty
t( ) B—l(x) < - Zk:iﬂ n g ]\>/| t,n
amn ]€:1(<O¢/7 ) X>) + Zj:l CtjTj + dt
1
< p 2 N
\/ D ({0, x))" + 3750 + dy
< 1
(z1 +...+xN)1/2'

But deg P < 2. So the previous implies that P; is an hypoelliptic polynomial.
This completes the proof of corollary 2.
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