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Abstract. A generalized Calabi-Yau structure is a geometrical structure on a

manifold which generalizes both the concept of the Calabi-Yau structure and that of the

symplectic one. In view of a result of Lin and Tolman in generalized complex cases, we

introduce in this paper the notion of a generalized moment map for a compact Lie group

action on a generalized Calabi-Yau manifold and construct a reduced generalized Calabi-

Yau structure on the reduced space. As an application, we show some relationship

between generalized moment maps and the Bergman kernels, and prove the Duistermaat-

Heckman formula for a torus action on a generalized Calabi-Yau manifold.

1. Introduction.

Generalized Calabi-Yau structures introduced by Hitchin [7] were developed by

Gualtieri [4] as a special case of generalized complex structures. It is a geometrical

structure defined by a differential form, which generalizes both the concept of the

Calabi-Yau structure – a non vanishing holomorphic form of the top degree – and that

of the symplectic structure. In this paper, we consider a compact Lie group action on a

generalized Calabi-Yau manifold.

A compact Lie group action on a generalized complex manifold was studied by

Lin and Tolman in [8]. In [8], they introduced a notion of generalized moment maps for

a compact Lie group action on a generalized complex manifold by generalizing the

notion of moment maps for a compact Lie group action on a symplectic manifold. Using

this definition, they constructed a generalized complex structure on the reduced space,

which is natural up to a transformation by an exact B-field.

In the present paper, we apply the definition of a generalized moment map to a

compact Lie group action on a generalized Calabi-Yau manifold, and construct a

generalized Calabi-Yau structure on the reduced space. Moreover, we shall show that

the reduced generalized Calabi-Yau structure is unique and has the same type as the

original generalized Calabi-Yau structure (cf. Section 3).

THEOREM A. Let a compact Lie group G act on a generalized Calabi-Yau manifold

ðM;’Þ in a Hamiltonian way with a generalized moment map � :M �! g�. If G acts

freely on ��1ð0Þ, then the quotient space M0 ¼ ��1ð0Þ=G is a smooth manifold, and

inherits a unique generalized Calabi-Yau structure e’’ which satisfies
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p�0e’’ ¼ i�0’;

where i0 : �
�1ð0Þ �!M is the inclusion and p0 : �

�1ð0Þ �!M0 is the natural projection.

Moreover, for each p 2 ��1ð0Þ,

typeð’pÞ ¼ typeðe’’½p�Þ:

The detailed definitions of the theorem are in Section 3. In particular, in the case

that the generalized Calabi-Yau structure is induced by a symplectic structure, the

reduced form is induced by the reduced symplectic form. In addition we construct an

example of a Hamiltonian action on a generalized Calabi-Yau structure which is not

induced by either a symplectic structure or a Calabi-Yau one. We then show some

relationship between generalized moment maps and Bergman kernels (cf. Example 3.3.2

and 3.3.3 in Section 3).

We next consider that a generalized Calabi-Yau structure ’ on a connected

manifold M which has constant type k. Then there exists a natural volume form dm ¼
ðð

ffiffiffiffiffiffiffi
�1

p
Þn=ð2n�kÞÞh’; �’’i defined by ’, which generalizes the Liouville form on a

symplectic manifold. Indeed, if ’ is a generalized Calabi-Yau structure induced by a

symplectic structure !, then dm coincides with the Liouville form for the symplectic

structure !. Further by assuming that a compact torus T acts on M effectively. Under

the assumptions, we shall show the Duistermaat-Heckman formula for the volume form

dm (cf. Section 4).

THEOREM B. Let ðM;’Þ be a 2n-dimensional connected generalized Calabi-Yau

manifold which has constant type k, and suppose that compact l-torus T acts on M

effectively and in a Hamiltonian way. In addition, we assume that the generalized

moment map � is proper. Then the pushforward ��ðdmÞ of the natural volume form dm

under � is absolutely continuous with respect to the Lebesgue measure on t� and the

Radon-Nikodym derivative f can be written by

fðaÞ ¼
Z
Ma

dma ¼ volðMaÞ

for each regular value a 2 t� of �, and dma denotes the measure defined by the natural

volume form on the reduced space Ma ¼ ��1ðaÞ=T .

This paper is organized as follows. In Section 2 we introduce background materials

and the definition of generalized Calabi-Yau structures. In Section 3 we define the

notion of generalized moment maps for a Lie group action on a generalized Calabi-Yau

manifold, and construct a generalized Calabi-Yau structure on the reduced space. In

addition, we discuss some relations between generalized moment maps and Bergman

kernels. At last Section, we proved the Duistermaat-Heckman formula for a Hamil-

tonian torus action on a generalized Calabi-Yau manifold.
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2. Generalized Calabi-Yau structures.

In this section we recall the definition of generalized Calabi-Yau structures. For the

detail, see [4] and [7].

2.1. Clifford algebras and the spin representation.

Let V be a real vector space of dimension n, and V � be the dual space of V . Then the

direct sum V � V � admits a natural indefinite metric of signature (n, n) defined by

ðX þ �; Y þ �Þ ¼
1

2
�ðXÞ þ �ðY Þð Þ

for X þ �; Y þ � 2 V � V �. Let T ðV � V �Þ ¼ �1
p¼0 �pðV � V �Þð Þ be the tensor algebra

of V � V �, and define I to be the two-sided ideal generated by fðX þ �Þ �
ðX þ �Þ � ðX þ �; X þ �Þ

�� X þ � 2 V � V �g. Then we call the quotient algebra

CLðV � V �Þ ¼ T ðV � V �Þ=I

the Clifford algebra of V � V �. For each E;F 2 CLðV � V �Þ, E � F denotes the

multiplication induced by the tensor product.

Consider the exterior algebra ^�V � and a linear mapping V � V � �! Endð^�V �Þ
defined by

ðX þ �Þ � ’ ¼ �X’þ � ^ ’:

Then we have

ðX þ �Þ2 � ’ ¼ �Xð� ^ ’Þ þ � ^ �X’
¼ ð�X�Þ’
¼ ðX þ �; X þ �Þ’;

so it can be extended to a representation of the Clifford algebra CLðV � V �Þ �!
Endð^�V �Þ. This is called the spin representation, and a element ’ 2 ^�V � is called a

spinor.

We define PinðV � V �Þ and SpinðV � V �Þ, subgroups of the group consists of

invertible elements of CLðV � V �Þ by

PinðV � V �Þ ¼ fE1 � � �Ek

�� k 2 N [ f0g; ðEi; EiÞ ¼ �1g;
SpinðV � V �Þ ¼ fE1 � � �E2k

�� k 2 N [ f0g; ðEi; EiÞ ¼ �1g:

we call PinðV � V �Þ the pin group, and SpinðV � V �Þ the spin group. The following

proposition says a geometrical meaning of the pin and spin group.

PROPOSITION 2.1.1 ([1], [4]). The pin group and the spin group have following

short exact sequences.
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1 �! Z=2Z �! PinðV � V �Þ �! OðV � V �Þ �! 1

1 �! Z=2Z �! SpinðV � V �Þ �! SOðV � V �Þ �! 1

Let Spin0ðV � V �Þ denote the identity component of SpinðV � V �Þ. Then ^�V � has

a Spin0ðV � V �Þ-invariant bilinear form defined by

h’;  i ¼ ð�ð’Þ ^  Þn;

where ðÞn indicates taking the n-th degree component of the form, and � : ^�V � �!
^�V � is an anti-homomorphism on ^�V � defined by

�ð’1 ^ � � � ^ ’kÞ ¼ ’k ^ � � � ^ ’1

for each ’1; � � � ; ’k 2 ^1V �.

2.2. Pure spinors and generalized Calabi-Yau structures on a vector

space.

Given a spinor ’ 2 ^�V �, we define the annihilator of ’ by

E’ ¼ fX þ � 2 V � V ��� ðX þ �Þ � ’ ¼ 0g:

We also define the annihilator E’ � ðV � V �Þ �C of a complex spinor ’ 2 ^�V � �C in

a similar way. Since an element X þ � 2 E’ satisfies

ðX þ �;X þ �Þ’ ¼ ðX þ �Þ2 � ’
¼ 0;

we see that if ’ is a non-zero spinor or a complex spinor, then E’ is isotropic with

respect to the natural metric on ðV � V �Þ �C . In particular, we have dimE’ 	 n.

DEFINITION 2.2.1. A spinor ’ 2 ^�V � is called pure if E’ is maximally isotropic,

which means that has the dimension equal to n. A complex spinor ’ 2 ^�V � �C with

the maximal isotropic subspace E’ is called a complex pure spinor.

REMARK 2.2.2. It is known that if ’ 2 ^�V � is a pure spinor, then ’ 2 ^ev/odV �,

where

^ev V � ¼ ^0V � � ^2V � � � � � ;
^od V � ¼ ^1V � � ^3V � � � � � ;

and ’ 2 ^ev/odV � means that ’ belongs in either ^evV � or ^odV �.

EXAMPLE 2.2.3. The spinor 1 2 ^0V � is pure, since E1 ¼ V .
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EXAMPLE 2.2.4. A non-zero vector ’ 2 ^nV � is also pure. The annihilator is

E’ ¼ V �.

EXAMPLE 2.2.5. If ’ is a pure spinor on V and B is a 2-form, then

expðBÞ’ ¼ 1þ Bþ
1

2!
B2 þ � � �

� �
^ ’

is also pure. The annihilator is EexpðBÞ’ ¼ fX þ �þ �XB
�� X þ � 2 E’g, where E’ is the

annihilator of ’.

Gualtieri shows in his thesis [4] that every pure spinor can be written by a complex

2-form and a decomposable complex form as follows.

FACT 2.2.6 ([4]). Let ’ be a complex pure spinor on V . Then there exists a

complex 2-form Bþ
ffiffiffiffiffiffiffi
�1

p
! 2 ^2V � �C and a complex k-form � such that

’ ¼ expðBþ
ffiffiffiffiffiffiffi
�1

p
!Þ�:

Moreover, � can be written

� ¼ �1 ^ � � � ^ �k

by some 1-forms �1; � � � ; �k 2 ^1V � �C , and ! is nondegenerate on a subspace

W ¼ fX 2 V
�� �X� ¼ 0g.

The degree of the form � is called the type of the complex pure spinor ’ and written

by typeð’Þ.
Now we give the definition of a generalized Calabi-Yau structure on a real vector

space V .

DEFINITION 2.2.7. Let V be a real vector space of dimension n ¼ 2m. A

generalized Calabi-Yau structure on V is a complex pure spinor ’ 2 ^ev/odV � �C

which satisfies that h’; �’’i 6¼ 0.

Fact 2.2.6 tells us if there exists a complex pure spinor on V which satisfies

h’; �’’i 6¼ 0, then V must be even dimensional. The condition h’; �’’i 6¼ 0 has the following

geometrical meaning.

FACT 2.2.8 ([1]). Let ’ and  be pure spinors. Then they satisfy h’;  i 6¼ 0 if and

only if their annihilators E’ and E satisfy E’ \ E ¼ f0g.

For the proof, see III.2.4 in [1].

EXAMPLE 2.2.9. For a symplectic form ! on V , we put
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’! ¼ exp
ffiffiffiffiffiffiffi
�1

p
!:

Then we have E’! ¼ fX �
ffiffiffiffiffiffiffi
�1

p
�X!

�� X 2 V �Cg and dimE’! ¼ n. Since ! is non-

degenerate, we have h’!; �’’!i ¼ ðð�2
ffiffiffiffiffiffiffi
�1

p
Þm=m!Þ!m 6¼ 0. Hence ’! is a generalized

Calabi-Yau structure on V . The type of ’! is equal to 0.

EXAMPLE 2.2.10. If V has a complex structure J , then for the
ffiffiffiffiffiffiffi
�1

p
-eigenspace

V 1;0 of J� : V � �C �! V � �C , ^mV 1;0 is one-dimensional complex vector space. Let �

be a non-zero vector in ^mV 1;0. Then, we have E� ¼ V0;1 � V 1;0 and h�; ���i ¼
ð�1Þm� ^ ��� 6¼ 0. So � is a generalized Calabi-Yau structure on V . The type of � is

equal to m.

EXAMPLE 2.2.11. Let ’ be a generalized Calabi-Yau structure on V . For each

B 2 ^2V �, the previous example shows that expðBÞ’ is pure. Moreover, the bilinear

form gives hexpðBÞ’; expðBÞ’i ¼ h’; �’’i 6¼ 0. Hence expðBÞ’ is also a generalized

Calabi-Yau structure on V . The type of expðBÞ’ coincides with that of ’.

EXAMPLE 2.2.12. If ’1 and ’2 are two generalized Calabi-Yau structures on

two vector spaces V1 and V2, and p1, p2 are the projections from the direct sum V1 � V2.

Then ’ ¼ p�1’1 ^ p�2’2 is a generalized Calabi-Yau structure on the product. The type

of ’ is equal to the sum type(’1) + type(’2).

2.3. Generalized Calabi-Yau structures on a manifold.

Let M be a smooth manifold of dimension 2n, and consider the direct sum TM �
T �M of the tangent bundle and the cotangent bundle. Then there is an indefinite metric

on the vector bundle TM � T �M defined by ðX þ �; Y þ �Þ ¼ 1
2 ð�ðXÞ þ �ðY ÞÞ.

DEFINITION 2.3.1 ([7]). A generalized Calabi-Yau structure on a manifold M is a

closed differential form ’ 2 �ev/od �C which satisfies the following conditions.

. For each p 2M, ’p is a complex pure spinor on ðTpM � T �
pMÞ �C .

. At each point, h’; �’’i 6¼ 0.

REMARK 2.3.2. Generalized Calabi-Yau structures were defined by Hitchin in [7].

If a generalized Calabi-Yau structure ’ is given, then the annihilator E’ defines a

generalized complex structure in the sense of Hitchin [7]. This shows that a generalized

Calabi-Yau manifold is a special case of a generalized complex manifold. For the detail,

see Proposition 1 in [7].

EXAMPLE 2.3.3. Let M be a 2n-dimensional symplectic manifold with the

symplectic form !, and put

’! ¼ exp
ffiffiffiffiffiffiffi
�1

p
!:

Then we have E’! ¼ fX �
ffiffiffiffiffiffiffi
�1

p
�X!

�� X 2 T �Cg and h’!; �’’!i ¼ ðð�2
ffiffiffiffiffiffiffi
�1

p
Þn=n!Þ!n 6¼ 0.

Since ! is closed, ’! is also closed. Hence ’! is a generalized Calabi-Yau structure onM.
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EXAMPLE 2.3.4. Let M be an n-dimensional complex manifold with a non-

vanishing holomorphic n-form �. Then � is pure since E� ¼ T0;1 � T 1;0. In addition, the

bilinear form gives h�; ���i ¼ ð�1Þn� ^ ���, which is non-vanishing. Since � is closed, � is a

generalized Calabi-Yau structure on M.

EXAMPLE 2.3.5. If B is a closed 2-form on a generalized Calabi-Yau manifold

ðM;’Þ, then expðBÞ’ is also a closed form. By the previous example, expðBÞ’ is pure

and hexpðBÞ’; expðBÞ’i 6¼ 0 at each point. So expðBÞ’ is also a generalized Calabi-Yau

structure on M. This is called the B-field transform of ’.

EXAMPLE 2.3.6. If ðM1; ’1Þ and ðM2; ’2Þ are two generalized Calabi-Yau

manifolds and p1, p2 are the projections from the product manifold M1 
M2. Then

’ ¼ p�1’1 ^ p�2’2 is a generalized Calabi-Yau structure on the product. In particular, a

product manifold of generalized Calabi-Yau manifolds is also a generalized Calabi-Yau

manifold.

The local expression of a generalized Calabi-Yau structure is given by the following

proposition by Gualtieri [4]. This helps us to prove the Duistermaat-Heckman formula

later.

FACT 2.3.7 ([4]). An element of a generalized Calabi-Yau manifold ðM;’Þ is said
to be regular if it has a neighborhood where the type of ’ is constant. If p 2M is regular,

then for sufficiently small neighborhood Up of p, there exists a complex 2-form

Bþ
ffiffiffiffiffiffiffi
�1

p
! 2 �2ðUpÞ �C such that

’ ¼ expðBþ
ffiffiffiffiffiffiffi
�1

p
!Þ’k on Up;

where k is the type of ’p. Moreover, ’k can be written

’k ¼ �1 ^ � � � ^ �k

by some 1-forms �1; � � � ; �k 2 �1ðUpÞ �C .

3. Reduction of generalized Calabi-Yau structures.

3.1. Generalized moment maps.

In this section we define the notion of generalized moment maps for a compact

Lie group action on a generalized Calabi-Yau manifold, and construct a generalized

Calabi-Yau structure on the reduced space. The definition of generalized moment maps

for generalized complex cases is given by Lin and Tolman [8].

DEFINITION 3.1.1. Let a compact Lie group G with its Lie algebra g act on a

generalized Calabi-Yau manifold ðM;’Þ preserving ’. A generalized moment map is a

smooth function � :M �! g� which satisfies

. � is G-equivariant, and

. �M �
ffiffiffiffiffiffiffi
�1

p
d�� lies in E’ for all � 2 g, where �M denotes the induced vector field on

M and �� is the smooth function defined by ��ðpÞ ¼ �ðpÞð�Þ.
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A G-action which preserves the generalized Calabi-Yau structure ’ is called

Hamiltonian if a generalized moment map exists.

Here are some examples of generalized moment maps.

EXAMPLE 3.1.2. Let G act on a symplectic manifold ðM;!Þ preserving !, and

� :M �! g� be a moment map. Then G also preserves the generalized Calabi-Yau

structure ’! ¼ exp
ffiffiffiffiffiffiffi
�1

p
!, and � is also a generalized moment map.

EXAMPLE 3.1.3. Let G act on a connected Calabi-Yau n-fold ðM;�Þ, where � is a

non-vanishing holomorphic n-form. If the G-action is Hamiltonian, �M must be anti-

holomorphic for all � 2 g. However induced vector fields must be real, so we have

�M ¼ 0. In particular, the G-action is trivial and the generalized moment map is

regarded as a linear functional on the Lie algebra g.

EXAMPLE 3.1.4. If G acts on two generalized Calabi-Yau manifolds ðM1; ’1Þ and
ðM2; ’2Þ, preserving both ’1 and ’2. Let �1 and �2 are generalized moment maps for

these actions. Then the diagonal action of G on the product manifoldM1 
M2 preserves

the generalized Calabi-Yau structure ’ ¼ p�1’1 ^ p�2’2, where p1 and p2 are the

projections from the product M1 
M2. Moreover � ¼ �1 � p1 þ �2 � p2 is a generalized

moment map for this action.

3.2. Generalized Calabi-Yau structure on the reduced space.

Let a compact Lie group G act on a generalized Calabi-Yau manifold ðM;’Þ in a

Hamiltonian way with a generalized moment map � :M �! g�: Suppose that G acts

freely on ��1ð0Þ: Then 0 is a regular value and the quotient space

M0 ¼ ��1ð0Þ=G

is a manifold. The purpose of 3.2 is to prove Theorem A in Introduction. By restricting

to an appropriate neighborhood of ��1ð0Þ, we may assume that G acts freely on M. The

following lemmas are required for the proof of the theorem.

LEMMA 3.2.1. Under the assumptions above, let gM be the subbundle of TM

generated by the fundamental vector fields �M for � 2 g, and d� be the subbundle of T �M

generated by the differential d�� for � 2 g. Then we have

(1) Tp�
�1ð0Þ ¼ ðd�Þ0p,

(2) kerðp0�Þp ¼ ðgMÞp, and
(3) T½p�M0 ¼� Tp�

�1ð0Þ=ðgMÞp ¼ ðd�Þ0p=ðgMÞp,

where p 2 ��1ð0Þ and ðd�Þ0p ¼ fX 2 TpM
�� ðd��ÞpðXÞ ¼ 0 ð� 2 gÞg is the annihilator of

ðd�Þp.

PROOF. For each � 2 g, the smooth function �� vanishes on ��1ð0Þ. So

ðd��ÞðXÞ ¼ 0 for all X 2 Tp�
�1ð0Þ. This implies that Tp�

�1ð0Þ � ðd�Þ0p. In addition,

because dimTp�
�1ð0Þ ¼ dimðd�Þ0p, the first claim holds. Since ðgMÞp � kerðp0�Þp and
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p0 : �
�1ð0Þ �!M0 is a submersion, the second claim holds. Now it is easy to see the last

claim. �

The following lemma will help us to prove that the reduced form does not vanish

anywhere.

LEMMA 3.2.2. Under the assumptions above, let 	 : ðTM � T �MÞ �C �! TM �
C be the natural projection. Then we have

dimC ðTp��1ð0Þ �CÞ \ 	ðE’Þp ¼ dimC 	ðE’Þp � dimG

for each p 2 ��1ð0Þ.

PROOF. For a subspace W � ðTM � T �MÞp �C , we denote by W? the annihi-

lator of W with respect to the natural metric on ðTM � T �MÞp �C . Then, since E’ is

maximal isotropic, we have

E’ ¼ E?
’ ; and W

? \ ðE’Þp ¼ ðW þ ðE’ÞpÞ
?:

If X 2 ðTp��1ð0Þ �CÞ \ 	ðE’Þp, then it satisfies that

X 2 	ðE’Þp; and d��ðXÞ ¼ 0

for each � 2 g. Thus we have X 2 	ððgM �CÞ? \ E’Þp. Conversely, if X 2
	ððgM �CÞ? \ E’Þp, then we also have d��ðXÞ ¼ 0 for each � 2 g. So we have

X 2 ðTp��1ð0Þ �CÞ \ 	ðE’Þp. This shows that

ðTp��1ð0Þ �CÞ \ 	ðE’Þp ¼ 	ððgM �CÞ? \ E’Þp:

Since the kernel of 	 : ðTM � T �MÞp �C �! TpM �C is equal to T �
pM �C , we have

ðgM �CÞ?p \ ðE’Þp \ T �
pM �C ¼ ððgM �CÞ þ E’Þ?p \ T �

pM �C

¼ 	ððgM �CÞ þ E’Þ0p
¼ 	ðE’Þ0p;

and thus

dimC 	ððgM �CÞ? \ E’Þp ¼ dimCðgM �CÞ?p \ ðE’Þp � dimC 	ðE’Þ0p:

In addition, by ðgM �CÞp \ ðE’Þp ¼ f0g, we obtain the dimension

dimCðgM �CÞ?p \ ðE’Þp ¼ dimC ððgM �CÞ þ E’Þ?p
¼ dimM � dimG:
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Hence we have

dimC Tp�
�1ð0Þ �C

� �
\ 	ðE’Þp ¼ dimC 	ððgM �CÞ? \ ðE’ÞÞp

¼ dimC ðgM �CÞ?p \ ðE’Þp � dimC 	ðE’Þ0p
¼ dimC 	ðE’Þp � dimG;

this completes the proof. �

PROOF OF THEOREM A. For each p 2 ��1ð0Þ, we denote by ð’sÞp the s-th degree

component of ’p 2 ^ev/odT �
pM �C . Then, by the definition of the generalized moment

map, we have

��M’s �
ffiffiffiffiffiffiffi
�1

p
d�� ^ ’s�2 ¼ 0

for each � 2 g. Moreover, the identity Tp�
�1ð0Þ ¼ ðd�Þ0p in Lemma 3.2.1 tells us that the

ðs� 1Þ-form �ð�M Þpð’sÞp vanishes on Tp�
�1ð0Þ. So by identifying the tangent space T½p�M0

with Tp�
�1ð0Þ=ðgMÞp (see Lemma 3.2.1, (3)), we obtain a well-defined complex s-form

ð~’’sÞ½p� on T½p�M0 by

ð~’’sÞ½p�ð½X1�; � � � ; ½Xs�Þ ¼ ði�0’sÞpðX1; � � � ; XsÞ;

where X1; � � � ; Xs 2 Tp�
�1ð0Þ. Thus we have a complex form ð~’’Þ½p� 2 ^ev/odT �

½p�M0 �C

defined by

ð~’’Þ½p� ¼ ð~’’kÞ½p� þ ð~’’kþ2Þ½p� þ � � � ;

where k is the type of ’p. G-invariance of the form ’ tells us that the definition of ðe’’Þ½p�
does not depend on a representative p 2 ��1ð0Þ. So we get the reduced forme’’ 2 �ev/od �C . It is clear that e’’ satisfies that p�0e’’ ¼ i�0’ and de’’ ¼ 0.

Next we shall show that ðe’’Þ½p� 6¼ 0. It is sufficient to show that ði�0’kÞp 6¼ 0. Suppose

that dimM ¼ 2n and dimG ¼ l. Then Lemma 3.2.2 tells us

dimCðTp��1ð0Þ �CÞ \ 	ðE’Þp ¼ 2n� k� l:

So we can take a basis

e1; � � � ; e2n�k�l; u1; � � � ; uk; v1; � � � ; vl

of TpM �C , where fe1; � � � ; e2n�k�l; u1; � � � ; ukg is a basis of Tp�
�1ð0Þ �C , and

fe1; � � � ; e2n�k�l; v1; � � � ; vlg is a basis of 	ðE’Þ. Since ð’kÞp 6¼ 0, so we have

ð’kÞpðu1; � � � ; ukÞ 6¼ 0:
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This shows that ði�0’kÞp 6¼ 0.

Now we say that an element ~XX þ ~�� 2 ðTM0 � T �M0Þ½p� �C satisfies the compat-

ibility condition if there exists X 2 Tp�
�1ð0Þ �C and � 2 T �

pM �C such that

ðp0�ÞpX ¼ ~XX, p�0 ~�� ¼ i�0�, and that ði0�ÞpðXÞ þ � 2 ðE’Þp. We denote by E0 the set of

elements ~XX þ ~�� 2 ðTM0 � T �M0Þ½p� �C which satisfy the compatibility condition.

Then, for each ~XX þ ~�� 2 E0, we have

p�0ð� ~XX ~’’þ ~�� ^ ~’’Þ ¼ i�0ð�ði0�ÞX’þ � ^ ’Þ
¼ 0:

So we can see E0 � E~’’ because p0 is a submersion. Moreover, since E~’’ is isotropic,

we have dimC E0 	 dimC E~’’ 	 2ðn� lÞ. Let us show the equality dimC E0 ¼ 2ðn� lÞ.
Since dimC ðTp��1ð0Þ �CÞ \ 	ðE’Þp ¼ 2n� k� l, we can take

X1 þ �1; � � � ; X2n�l�k þ �2n�l�k 2 E’;

which are linearly independent and Xi 2 Tp�
�1ð0Þ \ 	ðE’Þp for i ¼ 1; � � � ; 2n� l� k.

Since

��M�i ¼ ð�i; �MÞ ¼ ðXi þ �i; �M � d��Þ ¼ 0

for each � 2 g, �i descends to a form ~��i 2 ^ev/odT �
½p�M0 �C . If we take

~XXi ¼ ðp0�ÞpX;

then we have ~XXi þ ~��i 2 E0. Furthermore, since kerðp0�Þp ¼ ðgMÞp has dimension l, and it

is contained in Tp�
�1ð0Þ \ 	ðE’Þp, so we may assume that

~XX1 þ ~��1; � � � ; ~XX2ðn�lÞ�k þ ~��2ðn�lÞ�k

are linearly independent.

On the other hand, by Fact 2.2.6, we can take �1; � � � ; �k 2 T �
pM �C which satisfy

ð’kÞp ¼ �1 ^ � � � ^ �k:

Then, since ð’kÞp satisfies ��M ð’kÞp ¼ 0 for each � 2 g, so does �i for i ¼ 1; � � � ; k. Hence �i

descends to a 1-form ~��i 2 ^ev/odT �
½p�M0 �C . Then ~��i 2 E0, and

p�0ð~��1 ^ � � � ^ ~��kÞ ¼ i�0ð�1 ^ � � � ^ �kÞ
¼ i�0ðð’kÞpÞ
6¼ 0:
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This shows that ~��1; � � � ; ~��k are linearly independent. Thus we have

dimC E0 ¼ 2ðn� lÞ; and E0 ¼ E~’’;

in particular E~’’ is maximal isotropic.

Furthermore, since E’ does not have a real vector except for 0, neither does E0. So

we also have

ðEe’’Þ½p� \ ð �EEe’’Þ½p� ¼ f0g:

This shows that e’’ is a generalized Calabi-Yau structure on M0.

The last claim is clear because typeð’pÞ ¼ typeððe’’Þ½p�Þ ¼ k. �

REMARK 3.2.3. The reduction for other levels can be done by taking the coadjoint

orbit. The detailed statement is as follows. Let a compact Lie group G act on a

generalized Calabi-Yau manifold ðM;’Þ Hamiltonian way with a generalized moment

map � :M �! g�. For each a 2 g�, Oa denotes the coadjoint orbit of a. Suppose that

G acts on ��1ðOaÞ freely. Then the quotient space Ma ¼ ��1ðOaÞ=G is a manifold and

has unique generalized Calabi-Yau structure e’’ which satisfies that

p�ae’’ ¼ i�a’

and

typeð’pÞ ¼ typeðe’’½p�Þ

for all p 2 ��1ðOaÞ, where ia : ��1ðOaÞ �!M is the inclusion and pa : �
�1ðOaÞ �!Ma is

the natural projection. In addition, we have dimMa ¼ dimM þ dimOa � 2 dimG.

EXAMPLE 3.2.4. Let G act on a symplectic manifold ðM;!Þ preserving !, and let

� :M �! g� be a moment map. Then G also acts on ðM;’!Þ Hamiltonian way and � is a

generalized moment map. Moreover if we assume that G acts freely on ��1ð0Þ, then we

get the reduced symplectic structure e!! and the reduced generalized Calabi-Yau

structure e’’! on the reduced space M0. Then e’’! coincides with the generalized Calabi-

Yau structure ’~!! induced by the reduced symplectic structure e!!.
EXAMPLE 3.2.5. Let G act on a Calabi-Yau manifold ðM;�Þ. If the G-action is

Hamiltonian, then the action is trivial and the generalized moment map � is regarded as

a linear functional on the Lie algebra g. So the reduced spaceM0 coincides with eitherM

or the empty set.

REMARK 3.2.6. Lin and Tolman showed the existence of a generalized complex

structure on the reduced space in [8]. The generalized complex structure induced by

the reduced generalized Calabi-Yau structure coincides with the reduced generalized

complex structure from the generalized complex structure induced by the original

generalized Calabi-Yau structure.
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3.3. Relationship to Bergman kernels.

We introduce a Hamiltonian action on a generalized Calabi-Yau structure which is

not induced from either a symplectic structure or a Calabi-Yau one here. Let D � Cmþn

be a Reinhardt bounded domain, that is, a bounded domain which the standard action

of ðmþ nÞ-dimensional torus Tmþn on Cmþn leaves D invariant. For each w ¼
ðw1; � � � ; wmÞ 2 Cm, Dw denotes the slice of D at w,

Dw ¼ ðz1; � � � ; zmþnÞ 2 D
�� zj ¼ wj ðj ¼ 1; � � � ;mÞ

� �
:

If the slice Dw is not empty, we can regard Dw as a Reinhardt bounded domain in Cn

naturally. Let

KwðzÞ ¼ Kwðz; zÞ : Dw �! R

be the Bergman kernel function ofDw, and �w ¼ ðð
ffiffiffiffiffiffiffi
�1

p
Þ=2Þ@ �@@ logKw be the Kähler form

of the Bergman metric on Dw. Then the natural action of S1 on Dw preserves �w, and

�w ¼ �
1

2

Xn
j¼1

zj
@

@zj

�
logKw

�
is a moment map for this action. Note that the function �w is real and S1-invariant since

the real function logKw is S1-invariant and the fundamental vector field � induced by

the S1-action is given by

� ¼
ffiffiffiffiffiffiffi
�1

p Xn
j¼1

zj
@

@zj
� �zzj

@

@�zzj

	 

:

Now we assume that the Bergman kernel Kw depends smoothly on w. Then we can

define a smooth function K on D by

Kðw; zÞ ¼ KwðzÞ : D �! R;

and a complex form ’ on D by

’ ¼ dw1 ^ � � � ^ dwm ^ exp
ffiffiffiffiffiffiffi
�1

p
�;

where � ¼ ð
ffiffiffiffiffiffiffi
�1

p
=2Þ@ �@@ logK. It is easy to see that the complex form ’ is a generalized

Calabi-Yau structure on D, and the S1-action on D defined by

e
ffiffiffiffiffi
�1

p
�ðw1; � � � ; wm; z1; � � � ; znÞ ¼ ðw1; � � � ; wm; e

ffiffiffiffiffi
�1

p
�z1; � � � ; e

ffiffiffiffiffi
�1

p
�znÞ;

preserves ’.
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THEOREM 3.3.1. Let � be a smooth function on D defined by

�ðw1; � � � ; wm; z1; � � � ; znÞ ¼ �wðz1; � � � ; znÞ ¼ �
1

2

Xn
j¼1

zj
@

@zj

�
logK

�
:

Then the function � is a generalized moment map for the S1 action on D defined above.

PROOF. Let � be the fundamental vector field for this action. Then S1-invariance

of the function logK implies that � is a S1-invariant real-valued function. By simple

calculation, we have

���
@

@zi

� �
¼ �

ffiffiffiffiffiffiffi
�1

p Xn
j¼1

zj
@

@zj
� �zzj

@

@�zzj

	 

;
@

@zi

 !

¼
ffiffiffiffiffiffiffi
�1

p Xn
j¼1

�zzj

ffiffiffiffiffiffiffi
�1

p

2

@2

@zi@�zzj
logKð Þ

 !

¼
@

@zi
�
1

2

Xn
j¼1

�zzj
@

@�zzj
logKð Þ

 !

¼ @

@zi
�
1

2

Xn
j¼1

zj
@

@zj
logKð Þ

 !

¼
@�

@zi
;

and ���
�

@
@wi

�
¼ @�

@wi
similarly. Hence we have d� ¼ ���, and we can check easily that � is

a generalized moment map for this action. �

EXAMPLE 3.3.2. Let D be an ðmþ nÞ-dimensional polydisc,

D ¼ ðD1Þmþn ¼ fðz1; � � � ; zmþnÞ
�� jzjj < 1 ðj ¼ 1; � � � ;mþ nÞg:

For each w 2 ðD1Þm ¼ fðw1; � � � ; wmÞ 2 Cm
�� jwjj < 1 ðj ¼ 1; � � � ;mÞg, Dw denote the

slice of D at w,

Dw ¼ fðz1; � � � ; znÞ 2 Cn
�� jzjj < 1 ðj ¼ 1; � � � ; nÞg:

Then Dw is a polydisc on Cn, and

Kw ¼
1

	n
1Qn

j¼1ð1� jzjj2Þ2

is the Bergman kernel function of Dw. Since the Bergman kernel Kw does not depend

on w,
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Kðw; zÞ ¼ KwðzÞ : D �! R;

is a smooth function on D, and thus we get a generalized Calabi-Yau structure on D,

’ ¼ dw1 ^ � � � ^ dwm ^ exp
ffiffiffiffiffiffiffi
�1

p
�;

where � ¼
ffiffiffiffiffi
�1

p

2
@ �@@ logK. The natural S1-action defined above preserves ’, and we have a

generalized moment map � for this action,

� ¼ �
Xn
j¼1

jzjj2

1� jzjj2
:

On the other hand, since the total space D and the parameter space ðD1Þm are also

Reinhardt bounded domains, they have Kähler forms induced by their Bergman kernels.

So they have also generalized Calabi-Yau structures induced by their Kähler forms,

and they are preserved by the natural S1-actions on them. By simple calculations, we

get moment maps for their actions,

�D ¼ �
Xm
i¼1

jwij2

1� jwij2
þ
Xn
j¼1

jzjj2

1� jzjj2

 !

on D, and

�Dm ¼ �
Xm
i¼1

jwij2

1� jwij2

on Dm. Then they satisfy the following additive relation;

�D ¼ �Dm þ �:

EXAMPLE 3.3.3. Let D be an ðmþ nÞ-dimensional complex ball

D ¼ Dmþn ¼ ðw1; � � � ; wm; z1; � � � ; znÞ 2 Cmþn

����� Xm
j¼1

jwjj2 þ
Xn
j¼1

jzjj2 < 1

( )
:

For each w 2 Dm ¼ fðw1; � � � ; wmÞ 2 Cm
�� Pm

j¼1 jwjj
2 < 1g, Dw denote the slice of D

at w,

Dw ¼ ðz1; � � � ; znÞ 2 Cn

����� Xn
j¼1

jzjj2 < 1�
Xm
j¼1

jwjj2
( )

:
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Then Dw is also a complex ball on Cn, and

Kw ¼
n!

	n

1�
Pm

j¼1 jwjj
2

ð1�
Pm

j¼1 jwjj
2 �

Pn
j¼1 jzjj

2Þnþ1

is the Bergman kernel function of Dw. Since the Bergman kernel Kw depends smoothly

on w,

Kðw; zÞ ¼ KwðzÞ : D �! R;

is a smooth function on D, and thus we get a generalized Calabi-Yau structure on D,

’ ¼ dw1 ^ � � � ^ dwm ^ exp
ffiffiffiffiffiffiffi
�1

p
�;

where � ¼
ffiffiffiffiffi
�1

p

2 @ �@@ logK. The natural S1-action on D preserves ’, and we have a

generalized moment map � for this action,

� ¼ �
nþ 1

2

1�
Pm

j¼1 jwjj
2

1� ð
Pm

j¼1 jwjj
2 þ

Pn
j¼1 jzjj

2Þ
:

As in the case of the previous example, we have moment maps for the natural

actions of S1 on D and Dm which are derived from their Bergman kernels,

�D ¼ �
mþ nþ 1

2

1

1� ð
Pm

j¼1 jwjj
2 þ

Pn
j¼1 jzjj

2Þ

on D, and

�Dm ¼ �
mþ 1

2

1

1�
Pm

j¼1 jwjj
2

on Dm. They have the following multiplicative relation;

�D ¼ �
2ðmþ nþ 1Þ
ðmþ 1Þðnþ 1Þ �D

m � �:

4. The Duistermaat-Heckman formula.

4.1. The Duistermaat-Heckman measures and the reduced volumes.

Let ðM;’Þ be a 2n-dimensional connected generalized Calabi-Yau manifold which

has constant type k, and suppose that compact l-torus T acts on M effectively and in a

Hamiltonian way. In addition, we assume that the generalized moment map � is proper.

Then we have a natural volume form
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dm ¼
ð
ffiffiffiffiffiffiffi
�1

p
Þn

2n�k
h’; �’’i:

The volume form dm defines a measure on M. Our second purpose is to prove the

Duistermaat-Heckman formula in this case.

Let t denote the Lie algebra of T , and t�reg denote the subset of t� consisting of the

regular values of �. If a 2 t� is a regular value of � and p 2 ��1ðaÞ, then the stabilizer

group

Tp ¼ fg 2 T
�� g � p ¼ pg

is finite. So if T -action on ��1ðaÞ is not free, the quotient space Ma ¼ ��1ðaÞ=T is an

orbifold. In this case, There exists a complex differential form onMa which, in each local

representation is a generalized Calabi-Yau structure on R2ðn�lÞ, and satisfies

p�ae’’ ¼ i�a’;

where ia : �
�1ðaÞ �!M is the inclusion and pa : �

�1ðaÞ �!Ma is the natural projection.

We call it a generalized Calabi-Yau structure on an orbifold Ma.

Since � is proper, t�reg is a dense open subset, and t� n t�reg has measure 0 because of

Sard’s theorem. The following lemma is due to Appendix B in [5].

LEMMA 4.1.1. Suppose thatM is connected and T acts on M effectively. Then the

set Mfree on which T acts freely is equal to the complement of a locally finite union of

submanifolds of codimension  2. In particular Mfree is open, connected, dense, and

M nMfree has measure 0. Also ð��Þp is surjective for all p 2Mfree.

Now we consider the normalized Haar measure dt on T . Then the measure dt

induces the Lebesgue measure dX on its Lie algebra t, and we obtain the dual Lebesgue

measure d
 on t�. The assumption that � is proper implies that the pushforward ��ðdmÞ
of dm under � defines a measure in t�. We call it the Duistermaat-Heckman measure. In

view of Lemma 4.1.1, we obtain M nMfree has measure 0 and �jMfree
:Mfree �! t� is a

submersion. This shows that ��ðdmÞ is absolutely continuous with respect to the

Lebesgue measure d
. So there exists a Borel measurable function f on t� which satisfies

��ðdmÞ ¼ fd
:

The corresponding Duistermaat-Heckman formula is stated in Theorem B in Introduc-

tion. For the proof, we need the following lemma.

LEMMA 4.1.2. For each regular point p 2M of the generalized moment map �,

there exists a neighborhood Up of p and a complex 2-form Bþ
ffiffiffiffiffiffiffi
�1

p
! 2 �2ðUpÞ �C such

that ’ ¼ expðBþ
ffiffiffiffiffiffiffi
�1

p
!Þ’k on Up, and ��M! ¼ d�� for all � 2 t.
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PROOF. By Fact 2.3.7, there exists a neighborhood Up and a complex 2-formeBBþ
ffiffiffiffiffiffiffi
�1

p e!! 2 �2ðUpÞ �C such that ’ ¼ expð eBBþ
ffiffiffiffiffiffiffi
�1

p e!!Þ’k on Up. Moreover, there exists

a local frame �1; � � � ; �2n of ^1T �M such that ’k ¼ �1 ^ � � � ^ �k on Up. So we may assume

that eBBþ
ffiffiffiffiffiffiffi
�1

p e!! can be written

eBBþ
ffiffiffiffiffiffiffi
�1

p e!! ¼
X
i;j>k

cij�
i ^ �j;

where cij is a smooth complex function on Up. In addition, since p is a regular point, so

ðtMÞp has dimension l. Hence we may assume that tM has dimension l on Up.

Now consider the dual basis fX1; � � � ; X2ng of f�1; � � � ; �2ng, and take an arbitrary

Riemannian metric onM. Then we can define a complex 1-forms �1; � � � ; �k on Up defined
by

�ið�MÞ ¼
ffiffiffiffiffiffiffi
�1

p
d��ðXiÞ

for �M 2 tM , and vanishes on the orthogonal complement of tM . Then we define a

complex 2-form Bþ
ffiffiffiffiffiffiffi
�1

p
! on Up by

Bþ
ffiffiffiffiffiffiffi
�1

p
! ¼ eBBþ

ffiffiffiffiffiffiffi
�1

p e!!þ
Xk
s¼1

�s ^ �s:

It is clear that ’ ¼ expðBþ
ffiffiffiffiffiffiffi
�1

p
!Þ’k on Up and

��M ðBþ
ffiffiffiffiffiffiffi
�1

p
!ÞðXiÞ ¼

X
i;j>k

cij�
i ^ �j

 !
ð�M;XiÞ þ

Xk
s¼1

�s ^ �s
 !

ð�M;XiÞ

¼
Xk
s¼1

�s ^ �s
 !

ð�M;XiÞ

¼
Xk
s¼1

�sð�MÞ�sðXiÞ

¼ �ið�MÞ

¼
ffiffiffiffiffiffiffi
�1

p
d��ðXiÞ;

for each � 2 t and i ¼ 1; � � � ; k. On the other hand, since �M �
ffiffiffiffiffiffiffi
�1

p
d�� 2 E’ for each

� 2 t, so we have

ð��M ðBþ
ffiffiffiffiffiffiffi
�1

p
!Þ �

ffiffiffiffiffiffiffi
�1

p
d��Þ ^ ’k ¼ 0:

Thus for i ¼ kþ 1; � � � ; 2n, we obtain
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0 ¼ �Xi
ð��M ðBþ

ffiffiffiffiffiffiffi
�1

p
!Þ �

ffiffiffiffiffiffiffi
�1

p
d��Þ ^ ’k

� �
¼ ð��M ðBþ

ffiffiffiffiffiffiffi
�1

p
!Þ �

ffiffiffiffiffiffiffi
�1

p
d��ÞðXiÞ’k;

and

��M ðBþ
ffiffiffiffiffiffiffi
�1

p
!ÞðXiÞ ¼

ffiffiffiffiffiffiffi
�1

p
d��ðXiÞ:

This shows that

��M ðBþ
ffiffiffiffiffiffiffi
�1

p
!Þ ¼

ffiffiffiffiffiffiffi
�1

p
d��;

and in particular we have ��M! ¼ d��. �

PROOF OF THEOREM B. Let a 2 t�reg be an arbitrary regular value of � and U be a

convex neighborhood of a contained in t�reg. Since t�reg is an open set of t�, there exists

such a neighborhood. Now consider a T -invariant connection for the fibration

� : ��1ðUÞ �! U . For each p 2 ��1ðUÞ, draw the horizontal curves lying over the

straight lines through a and b ¼ �ðpÞ. This defines a T -equivariant projection � :

��1ðUÞ �! ��1ðaÞ such that for each b 2 U the restriction �
��
��1ðbÞ : �

�1ðbÞ �! ��1ðaÞ is a
T -equivariant diffeomorphism and

�
 � : ��1ðUÞ �! U 
 ��1ðaÞ

is a trivialization. Using this trivialization and Fubini theorem, we have that fðaÞ is

equal to the volume of ��1ðaÞ with respect to the quotient of dm by ��d
. In addition, by

Lemma 4.1.2 dm=��d
 is locally given by the (2n� l)-form

i�að’k ^ �’’kÞ ^
1

ðn� k� lÞ!
ði�a!Þ

n�k�l ^ �;

where ! is a 2-form given by the lemma above and � is an l-form which on the T -orbits

takes the value �1 on an l-tuple ðX1; � � � ; XlÞ such that dXðX1; � � � ; XlÞ ¼ 1.

Note that the complement of paðMfree \ ��1ðaÞÞ ¼ ðMfreeÞa has measure 0 for the

projection pa : �
�1ðaÞ �!Ma because the complement of ðMfreeÞa is equal to the image of

a finite union of submanifolds (or suborbifolds) of ��1ðaÞ of codimension  2. Since

pa :Mfree \ ��1ðaÞ �! ðMfreeÞa is a principle T -fibration and volðT Þ ¼ 1, we get that the

volume of Mfree \ ��1ðaÞ is equal to the volume of ðMfreeÞa with respect to the measure

dma induced by the reduced generalized Calabi-Yau structure on Ma. Because the

complement of ðMfreeÞa has measure 0, we have proved the formula. �

REMARK 4.1.3. For the density function f , one can show that f is a piecewise

polynomial of degree at most n� l� k. Moreover, in the case that M is compact, the

localization formula holds by applying the Atiyah-Bott-Berline-Vergne localization

theorem. Detailed statements and proofs can be seen in [9].
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