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Abstract. The theory of exact C�-algebras was introduced by Kirchberg and

has been influential in recent development of C�-algebras. A fundamental result on exact

C�-algebras is a local characterization of exactness. The notion of weakly exact von

Neumann algebras was also introduced by Kirchberg. In this paper, we give a local

characterization of weak exactness. As a corollary, we prove that a discrete group is exact

if and only if its group von Neumann algebra is weakly exact. The proof naturally involves

the operator space duality.

1. Introduction.

The theory of exact C�-algebras was introduced and studied intensively by

Kirchberg. We refer to [17] for general information on exact C�-algebras. This

influential theory has been playing a significant rôle in recent development of C�-

algebras. It is particularly important in the classification of C�-algebras [8] [14] and in

the theory of noncommutative topological entropy [16] [2] [15]. Hence it is natural to

explore an analogue of this notion for von Neumann algebras.

Throughout this paper, we mean by J / B a closed two sided ideal J in a unital

C�-algebra B and denote the quotient map by Q: B! B=J . Although it is not essential,

we assume for simplicity that all C�-algebras, except ideals, are unital. We denote

by � the algebraic tensor product and by �min the minimal (or spatial) tensor product.

Recall that a C�-algebra A is said to be exact if

ðA�min BÞ=ðA�min JÞ ¼ A�min ðB=JÞ

for any J / B, or equivalently, for any �-representation �: A�min B! BðH Þ with

A� J � ker�, the induced �-representation ~��: A� ðB=JÞ ! BðH Þ is continuous with

respect to the minimal tensor norm. Since von Neumann algebras are not exact unless

they are subhomogeneous, the correct notion of exactness for von Neumann algebras

shall be the weak exactness introduced in [8]. Thus, for a von Neumann algebra A ¼M,

we modify the above definition and require the �-representation � to be left normal, i.e.,

the restriction of � to M is normal.

DEFINITION 1. A von Neumann algebra M is said to be weakly exact if for any

J / B and any left normal �-representation
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�: M �min B! BðH Þ

with M � J � ker�, the induced �-representation

~��: M � ðB=JÞ ! BðH Þ

is continuous with respect to the minimal tensor norm.

Kirchberg [8] proved that a von Neumann algebraM is weakly exact if it contains a

weakly dense exact C�-algebra A. Indeed, by Theorem 4 (10) in [9], the exact C�-algebra

A is locally reflexive [1] [3] i.e., the left normal embedding A�� �min C � ðA�min CÞ��
is continuous for any C. Let J / B, � and ~�� be given as in Definition 1. Since A is exact,

~�� is continuous on A�min ðB=JÞ. By the local reflexivity of A, ~�� extends to a left normal

�-representation � on A�� �min ðB=JÞ. But, since ~�� is left normal on M � ðB=JÞ, it

coincides with � onM � ðB=JÞ and hence is continuous onM �min ðB=JÞ. We will prove

a partial converse of this result and a local characterization of weak exactness. Before

stating the theorem, we recall that an operator system S is exact if

ðS �min BÞ=ðS �min JÞ ¼ S �min ðB=JÞ

isometrically for any J / B. We note that exact operator systems are characterized

locally [9] [12] and they are locally reflexive (Corollary 4.8 in [4]). The term ‘‘u.c.p.’’

stands for ‘‘unital completely positive’’.

THEOREM 1. LetM be a von Neumann algebra with a separable predual. Then, the

following are equivalent.

(1) The von Neumann algebra M is weakly exact.

(2) For any finite dimensional operator system E inM, there exist nets of u.c.p. maps

’i: E ! MnðiÞ and  i: ’iðEÞ !M such that the net f i � ’ig converges to idE in

the point-ultrastrong topology.

(3) There exist an exact operator system S and normal u.c.p. maps ’: M ! S�� and

 : S�� !M such that  � ’ ¼ idM .

We note that the implications 1 , 2 ( 3 hold without separability assumption on

M. It would be interesting to know whether we can take S in the condition 3 to be an

exact C�-algebra (and moreover  to be a normal �-homomorphism). Kirchberg [8]

asked whether every von Neumann algebra is weakly exact. The following corollary

solves this problem negatively. (See [6] for existence of non-exact groups.) It is left open

whether the ultrapower R! of the hyperfinite type II1 factor R is weakly exact or not.

COROLLARY 2. Let � be a discrete group. Then, the group von Neumann algebra

L� is weakly exact if and only if � is exact.

We recall that a discrete group � is exact if and only if its reduced group C�-algebra

C�
r � is exact [10]. Since C�

r � is weakly dense in L�, the ‘‘if’’ part of the corollary follows
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from Kirchberg’s theorem mentioned above. It is not hard to show that weak exactness

passes to a von Neumann subalgebra which is the range of a normal conditional

expectation. Hence, every von Neumann subalgebra of a weakly exact finite von

Neumann algebra is again weakly exact. It follows that if � is exact and � is not, then

L� 6,!L�. Moreover, exactness is a measure equivalence invariant.

2. Proofs.

It is well-known that exactness for a C�-algebra is equivalent to the property

C0 (cf. [1] [3]). We prove a von Neumann algebra analogue of this fact. Recall that for

von Neumann algebrasM and N , a �-representation � ofM �N is said to be binormal if

both �jM and �jN are normal.

PROPOSITION 3. A von Neumann algebra M is weakly exact if and only if for any

C�-algebra B and any left normal �-representation �: M �min B! BðH Þ, the binormal

extension �̂�: M � B�� ! BðH Þ is continuous with respect to the minimal tensor norm.

PROOF. We first prove the ‘‘if’’ part. Let J / B and �: M �min B! BðH Þ be as in
Definition 1. Let p be the central projection which supports the normal �-homo-

morphism Q��: B�� ! ðB=JÞ�� so that we may identify ðB=JÞ�� with pB��. We denote

the canonical inclusion by

 : B=J ! ðB=JÞ�� ¼ pB�� � B��:

By the assumption, � extends to a binormal �-homomorphism �̂� on M �min B
��. Since

M � J � �, we have �̂�ð1� pÞ ¼ 1. We claim that ~�� coincides with �̂� � ðid�  Þ and

hence continuous on M �min ðB=JÞ. Indeed, for any a 2M and x 2 B, we have

ð�̂� � ðid�  ÞÞða�QðxÞÞ ¼ �̂�ða� pxÞ ¼ �ða� xÞ ¼ ~��ða�QðxÞÞ:

We next prove the ‘‘only if’’ part. Let a C�-algebra B and a left normal

�-representation �: M � B! BðH Þ be given. For a directed set I, we set

BI ¼ ðxðiÞÞi2I 2
Y
i2I

B : ultrastrong�-lim
i2I

xðiÞ exists in B��

( )
:

Since adjoint operation and multiplication are jointly ultrastrong�-continuous on a

bounded subset, BI is a C�-algebra and the map

�: BI 3 ðxðiÞÞi2I 7! ultrastrong�-lim
i2I

xðiÞ 2 B��

is a continuous �-homomorphism. Because of Kaplansky’s density theorem, we may

assume that � is surjective. Consider the �-representation �: M � BI ! BðH Þ defined
by
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�
Xn
k¼1

ak � ðxkðiÞÞi2I

 !
¼ ultrastrong�-lim

i
�
Xn
k¼1

ak � xkðiÞ
 !

:

We observe that � is continuous on M �min BI �
Q

i2IðM �min BÞ. Since M is weakly

exact, � is left normal and M � ker� � ker �, the induced �-representation ~�� is

continuous onM �min B
��. It is not too hard to see that �̂� ¼ ~�� and hence �̂� is continuous

on M �min B
��. �

The advantage of the above formulation is that B in the statement need not be a

C�-algebra. We make this point more precise. Let X be a C�-algebra or an operator

space. Let p 2M�� be the central support of the identity representation ofM so that we

may identify M with pM��. Then, the canonical binormal embedding M�� �X�� �
ðM �min XÞ�� gives rise to a (non-unital) binormal embedding

�X: M �X�� ¼ pM�� �X�� ,! ðM �min XÞ��;

i.e., for z ¼
P
ak � xk 2M �X, we have �XðzÞ ¼

P
pak � xk. Now, assume that M is

weakly exact and let B be a C�-algebra. Since �B is a binormal �-homomorphism which

is continuous on M �min B, it follows from Proposition 3 that �B is continuous

(isometric) on M �min B
��. This implies that �X is isometric on M �min X

�� for any

operator space X. Indeed, when X � B, we have the commuting diagram;

M ⊗ X∗∗ ΘX ��
� �

��

(M ⊗min X)∗∗
� �

��
M ⊗min B∗∗ ΘB �� (M ⊗min B)∗∗

where the bottom and the vertical inclusions are all isometric. It follows that for any

z 2M �X�� with kzkmin � 1, there exists a net fzig in M �X with kzikmin � 1 which

converges to �XðzÞ 2 ðM �XÞ�� in the weak�-topology. We observe that the net fzig
converges to z in the �ðM �X��;M� �X�Þ-topology.

We use the operator space duality to restate the above result. Recall that the

operator space duality says that for z ¼
P
ak � xk 2M �X�� and the corresponding

(finite rank) map Tz: X
� !M defined by

Tz: X
� 3 f 7!

X
hf; xki ak 2M;

we have kTzkcb ¼ kzkmin (cf. [5] [13]). We note that Tz is weak
�-continuous if and only if

z comes from M �X (rather than M �X��). Thus we arrive at the following corollary.

The term ‘‘c.c.’’ stands for ‘‘completely contractive’’.

COROLLARY 4. Let M be a weakly exact von Neumann algebra and X be an

operator space. Then, for any finite rank c.c. map ’: X� !M, there exists a net f’ig of

weak�-continuous finite rank c.c. maps ’i: X
� !M which converges to ’ in the

point-ultraweak topology.
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We are now in position to prove the theorem.

PROOF OF THEOREM 1.

Ad1)2: Let M � BðH Þ be a weakly exact von Neumann algebra and E �M be a

finite dimensional operator system. Fix an increasing sequence fH kg of finite dimen-

sional subspaces of H with a dense union and denote by �k: E ! BðH kÞ ¼ MnðkÞ the

compression corresponding to H k. We note that �k is a linear isomorphism onto Ek ¼
�kðEÞ if k is sufficiently large. Consider a complete isometry given by

�: E 3 a 7! ð�kðaÞÞk 2
Y
k

Ek:

We note that
Q
Ek �

Q
MnðkÞ is an ultraweakly closed operator subspace (and hence is

a dual operator space). There exists a right inverse of � given by

�:
Y
k

Ek 3 ðxkÞk 7! ultraweak-lim
k!!

��1
k ðxkÞ 2 E �M;

where ! is a fixed free ultrafilter on N . Indeed, � is a well-defined c.c. map with

� � � ¼ idE. By Corollary 4, there exists a net of ultraweakly continuous c.c. maps

 i:
Q
Ek !M such that limi  i ¼ � in the point-ultraweak topology. Since each  i is

ultraweakly continuous, if we set

’m: E 3 a 7! ð�1ðaÞ; . . . ;�mðaÞ; 0; 0; . . .Þ 2
Y
k

Ek;

then we have

lim
i
lim
m
 i � ’m ¼ lim

i
 i � � ¼ � � � ¼ idE:

We note that ’mðEÞ �
Lm

k¼1Ek �
Lm

k¼1 MnðkÞ. Passing to a convex combination,

we may assume that the convergence is with respect to the point-ultrastrong topology.

This proves the condition 2 except that  i’s may not be u.c.p. One can fix this problem

as follows. First, using a standard cut and paste method, one may assume that  i is

approximately unital in norm. Then, one invokes Theorem 2.5 in [3].

Ad2)3: Let M be a weakly exact von Neumann algebra with a separable predual

and A be a ultraweakly-dense norm-separable C�-subalgebra inM. We denote by j � j� a
seminorm which defines the ultrastrong topology on the unit ball of M. Using the

condition 2 recursively, we can construct sequences of finite dimensional operator

systems and connecting u.c.p. maps

E1
θ1 ��

ϕ1 ���
��

��
��

�
E2

θ2 ��

ϕ2 ���
��

��
��

�
E3

θ3 ��

ϕ3 ���
��

��
��

�
· · ·

F1
σ1 ��

ψ1

����������
F2

σ2 ��

ψ2

����������
F3

σ3 ��

ψ3

����������
· · ·
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such that

(1) E1 � E2 � � � � �M and the norm-closure of
S
Ek contains A,

(2) Fn � MnðkÞ for some nðkÞ 2 N ,

(3) the diagram commutes and j�kðaÞ � aj� < 2�kkak for a 2 Ek.

We define the operator system S as the inductive limit of ðFk; �kÞ; let

S ¼ Qð ~SSÞ �
Y

MnðkÞ=
M

MnðkÞ

where Q:
Q

MnðkÞ !
Q

MnðkÞ=
L

MnðkÞ is the quotient map and ~SS is the norm closure of

ðxkÞk 2
Y1
k¼1

MnðkÞ : xk 2 Fk and xkþ1 ¼ �kðxkÞ eventually
( )

�
Y1
k¼1

MnðkÞ:

We note that S coincides with the quotient of ~SS by the completeM-ideal
L

MnðkÞ. Since
~SS is exact and locally reflexive, so is S. Let �:

S
Ek ! S�� be a cluster point of the

sequence

�m:
[
Ek 3 a 7! Qðð�k�1 � � � � � �m � ’mðaÞÞ1k¼mþ1Þ 2 S

and let ~  : ~SS !M be a cluster point of the sequence

~  m: ~SS 3 ðxkÞk 7!  mðxmÞ 2M:

In both cases, cluster points are taken with respect to the point-weak� topology. It is

easy to see that ~  ¼  �Q for some u.c.p. map  : S !M. The unique weak�-continuous

extension of  on S�� is still denoted by  . Then, for any a 2
S
En, we have that

ja�  � �ðaÞj� � lim sup
m

ja�  � �mðaÞj�

¼ lim sup
m

ja� ~  ðð�k�1 � � � � � �m � ’mðaÞÞ1k¼mþ1Þj�

� lim sup
m

lim sup
k

ja�  k � �k�1 � � � � � �m � ’mðaÞj�

¼ lim sup
m

lim sup
k

ja� �k � � � � � �mðaÞj�

� lim sup
m

lim sup
k

Xk
j¼m

2�jkak ¼ 0:

It follows that  � � is the identity map on
S
Ek. We first extend � on the norm closure

of
S
Ek by norm continuity and then further extend �jA to ���: A�� ! S�� by ultraweak

continuity. Then,  � ���: A�� !M is a normal u.c.p. map such that  � ���jA ¼ idA.

Hence, the restriction ’ of ��� to M � A�� satisfies  � ’ ¼ idM .

Ad3)1: We omit the proof because it is almost same as that of Kirchberg’s

theorem cited in the remarks preceding Theorem 1. �
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PROOF OF COROLLARY 2. Let � be a discrete group such that L� is weakly exact.

To prove exactness of �, we use the criterion given in [11]. Let a finite subset E � � and

" > 0 be given. By Arveson’s extension theorem, Theorem 1 and its proof (or Paulsen’s

trick), there exist a finite subset F � � and a u.c.p. map  : Bð‘2FÞ ! Bð‘2�Þ such that

if we denote by ’: L� ! Bð‘2FÞ the compression, then  � ’ð�ðsÞÞ 2 L� and k�ðsÞ �
 � ’ð�ðsÞÞk2 < " for every s 2 E . As in [7], we consider the positive definite kernel

defined by

uðs; tÞ ¼ h � ’ð�ðst�1ÞÞ�t; �si

for s; t 2 �. We have that uðs; tÞ 6¼ 0 only if st�1 2 FF�1 and that kuðs; tÞ � 1k < " if

st�1 2 E . This proves exactness of �. �
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1995, pp. 943–954.

[ 9 ] E. Kirchberg, On subalgebras of the CAR-algebra, J. Funct. Anal., 129 (1995), 35–63.

[10] E. Kirchberg and S. Wassermann, Permanence properties of C�-exact groups, Doc. Math., 4 (1999),

513–558.

[11] N. Ozawa, Amenable actions and exactness for discrete groups, C. R. Acad. Sci., Paris Sér. I Math., 330

(2000), 691–695.

[12] G. Pisier, Exact operator spaces, Recent advances in operator algebras, Orléans, 1992, Astérisque, 232
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